[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011025123A - Exhaust gas treatment method and exhaust gas treatment equipment - Google Patents

Exhaust gas treatment method and exhaust gas treatment equipment Download PDF

Info

Publication number
JP2011025123A
JP2011025123A JP2009171834A JP2009171834A JP2011025123A JP 2011025123 A JP2011025123 A JP 2011025123A JP 2009171834 A JP2009171834 A JP 2009171834A JP 2009171834 A JP2009171834 A JP 2009171834A JP 2011025123 A JP2011025123 A JP 2011025123A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
ammonia
gas treatment
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009171834A
Other languages
Japanese (ja)
Other versions
JP5564846B2 (en
Inventor
Naoki Sato
直樹 佐藤
Shunichiro Ueno
俊一郎 上野
Hiroyuki Kamata
博之 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009171834A priority Critical patent/JP5564846B2/en
Publication of JP2011025123A publication Critical patent/JP2011025123A/en
Application granted granted Critical
Publication of JP5564846B2 publication Critical patent/JP5564846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas treatment method which can inhibit the adsorption of ammonia by a catalyst for mercury oxidation reaction and simplify treatment steps as a whole, as well as exhaust gas treatment equipment. <P>SOLUTION: This exhaust gas treatment equipment 1 is for sending an exhaust gas to a denitrification device 5 from a fire furnace 2, and the denitrification device 5 includes a first catalyst 10 which brings about mercury oxidation reaction and a second catalyst 11 which generates a denitrification reaction downstream of the first catalyst 10. In addition, an ammonia adding line 12 which adds ammonia, is arranged between the first catalyst 10 and the second catalyst 11. When the exhaust gas is treated, a halogenated gas is kept in such a state that it coexists in the exhaust gas from the fire furnace 2, and a hardly soluble metallic mercury contained in the exhaust gas is transformed to a water-soluble divalent mercury with the help of the first catalyst 10. Next, the exhaust gas is denitrified by the second catalyst 11 with the addition of ammonia supplied from the ammonia adding line 12. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、火炉からの排ガスを処理する排ガス処理方法及び排ガス処理設備に関するものである。   The present invention relates to an exhaust gas treatment method and exhaust gas treatment equipment for treating exhaust gas from a furnace.

一般に石炭焚きボイラの排ガス処理設備は、火炉から煙突へ排ガスを流す流路に、上流側から順に脱硝装置、集塵器、脱硫装置を設置している。   In general, a coal-fired boiler exhaust gas treatment facility is provided with a denitration device, a dust collector, and a desulfurization device in order from the upstream side in a flow path through which exhaust gas flows from a furnace to a chimney.

脱硝装置は、所定の触媒を備えた構成であり、触媒によりアンモニアの共存下で排ガス中のNOxを還元処理して除去するようにしている。又、集塵器は、電気集塵器やバグフィルタ等であり、排ガス中の煤や塵を除去するようにしている。更に脱硫装置は、炭酸カルシウムを含む反応液を噴霧する噴霧手段を備え、反応液の噴霧により排ガス中のSOxを硫酸カルシウムにして除去するようにしている。   The denitration apparatus is configured to include a predetermined catalyst, and NOx in the exhaust gas is reduced and removed by the catalyst in the presence of ammonia in the presence of ammonia. The dust collector is an electric dust collector, a bag filter or the like, and removes soot and dust in the exhaust gas. Further, the desulfurization apparatus is provided with a spraying means for spraying a reaction liquid containing calcium carbonate, and SOx in the exhaust gas is removed as calcium sulfate by spraying the reaction liquid.

一方で、石炭焚きボイラで石炭を燃焼した際には、排ガス中に難溶性の金属水銀Hgが含まれる可能性があることから、排ガス中に塩化水素HClを添加すると共に水銀酸化反応用の触媒を備え、難溶性の金属水銀Hgを水溶性の2価水銀Hg2+に形態変換させ[式1]、湿式脱硫装置で溶解除去することが考えられている。
[式1]
Hg+2HCl+1/2O→HgCl+H
ここで2価水銀Hg2+はHgClで示されている。
On the other hand, when coal is burned in a coal-fired boiler, it may contain slightly soluble metal mercury Hg 0 in the exhaust gas. Therefore, hydrogen chloride HCl is added to the exhaust gas and mercury oxidation reaction is performed. It is considered that a catalyst is provided, and that the hardly soluble metal mercury Hg 0 is converted into a water-soluble divalent mercury Hg 2+ [formula 1] and dissolved and removed by a wet desulfurization apparatus.
[Formula 1]
Hg 0 + 2HCl + 1 / 2O 2 → HgCl 2 + H 2 O
Here, divalent mercury Hg 2+ is represented by HgCl 2 .

又、他の例の排ガス処理設備として、ボイラから煙突へ排ガスを流す流路に、上流側から順に脱硝装置、アンモニア分解触媒、エアヒータ、集塵器、脱硫装置を配置すると共に、アンモニア分解触媒とエアヒータの間、エアヒータと集塵器の間、集塵器と脱硫装置の間のいずれかに、水銀酸化触媒を配置するものがある(特許文献1参照)。   As another example of the exhaust gas treatment facility, a denitration device, an ammonia decomposition catalyst, an air heater, a dust collector, and a desulfurization device are arranged in order from the upstream side in the flow path for flowing exhaust gas from the boiler to the chimney. There is a type in which a mercury oxidation catalyst is disposed between the air heater, between the air heater and the dust collector, or between the dust collector and the desulfurizer (see Patent Document 1).

特開2004−237244号公報JP 2004-237244 A

しかしながら、排ガスのNOxを還元処理するアンモニアは水銀酸化反応用の触媒に吸着するため、水銀酸化反応用の触媒上での塩化水素と難溶性の金属水銀との反応を阻害し、難溶性の金属水銀を適切に形態変換させることができないという問題があった。又、他の例の如くアンモニア分解触媒を配置してアンモニアの影響を排除する場合には、全体の構成が複雑になり、製造コストが増加するという問題があった。   However, ammonia that reduces NOx in the exhaust gas is adsorbed on the catalyst for mercury oxidation reaction, so that the reaction between hydrogen chloride and the hardly soluble metal mercury on the catalyst for mercury oxidation reaction is inhibited, and the hardly soluble metal There was a problem that mercury could not be properly transformed. Further, when the ammonia decomposition catalyst is arranged as in other examples to eliminate the influence of ammonia, there is a problem that the entire configuration becomes complicated and the manufacturing cost increases.

本発明は、斯かる実情に鑑み、アンモニアが水銀酸化反応用の触媒に吸着することを防止すると共に、全体の構成を簡易化する排ガス処理方法及び排ガス処理設備を提供しようとするものである。   In view of such circumstances, the present invention is intended to provide an exhaust gas treatment method and an exhaust gas treatment facility that prevent ammonia from being adsorbed on a catalyst for mercury oxidation reaction and simplify the overall configuration.

本発明の排ガス処理方法は、火炉からの排ガスを流す流路に、水銀酸化反応を生じる第一触媒を備えると共に、第一触媒の下流側に、脱硝反応を生じる第二触媒を備える排ガス処理方法であって、
前記火炉からの排ガス中にハロゲン化ガスが共存する状態にし、排ガス中に含まれる難溶性の金属水銀を第一触媒で水溶性の二価の水銀に形態変換させ、次に第一触媒と第二触媒の間にアンモニアを添加して第二触媒で脱硝を行うものである。
The exhaust gas treatment method of the present invention includes a first catalyst that generates a mercury oxidation reaction in a flow path for flowing exhaust gas from a furnace, and an exhaust gas treatment method that includes a second catalyst that generates a denitration reaction downstream of the first catalyst. Because
In the exhaust gas from the furnace, a halogenated gas is allowed to coexist, and the hardly soluble metal mercury contained in the exhaust gas is converted into water-soluble divalent mercury by the first catalyst, and then the first catalyst and Ammonia is added between the two catalysts and denitration is performed with the second catalyst.

本発明の排ガス処理設備は、火炉からの排ガスを脱硝装置に流す排ガス処理設備であって、
前記脱硝装置は、水銀酸化反応を生じる第一触媒を備えると共に、第一触媒の下流側で脱硝反応を生じる第二触媒を備え、
前記第一触媒と第二触媒の間にアンモニアを添加するアンモニア添加ラインを配置し、
排ガスを処理する際には、前記火炉からの排ガス中にハロゲン化ガスが共存する状態にし、排ガス中に含まれる難溶性の金属水銀を第一触媒で水溶性の二価の水銀に形態変換させ、次にアンモニア添加ラインからのアンモニアの添加により第二触媒で脱硝を行うように構成したものである。
The exhaust gas treatment facility of the present invention is an exhaust gas treatment facility for flowing exhaust gas from a furnace to a denitration device,
The denitration apparatus includes a first catalyst that generates a mercury oxidation reaction, and a second catalyst that generates a denitration reaction downstream of the first catalyst.
An ammonia addition line for adding ammonia is disposed between the first catalyst and the second catalyst,
When treating the exhaust gas, make the halogenated gas coexist in the exhaust gas from the furnace, and convert the hardly soluble metal mercury contained in the exhaust gas into water-soluble divalent mercury with the first catalyst. Then, denitration is performed with the second catalyst by adding ammonia from the ammonia addition line.

本発明の排ガス処理設備において、火炉中にハロゲン化物又はハロゲンガスを添加するハロゲン添加ラインを備えることが好ましい。   In the exhaust gas treatment facility of the present invention, it is preferable to provide a halogen addition line for adding halide or halogen gas in the furnace.

又、本発明の排ガス処理設備において、火炉から第一触媒までの流路にハロゲン化物又はハロゲンガスを添加するハロゲン添加ラインを備えることが好ましい。   In the exhaust gas treatment facility of the present invention, it is preferable to provide a halogen addition line for adding a halide or halogen gas to the flow path from the furnace to the first catalyst.

本発明の排ガス処理方法及び排ガス処理設備によれば、水銀酸化反応を生じる第一触媒と、脱硝反応を生じる第二触媒との間にアンモニアを添加するので、アンモニアが水銀酸化反応用の第一触媒に吸着することを防止して第一触媒上で難溶性の金属水銀とハロゲン化ガスとの反応を適切に行い、難溶性の金属水銀を水溶性の二価の水銀に高効率で形態変換させることができる。又、アンモニア添加ラインにより水銀酸化反応用の第一触媒の下流側にアンモニアを添加するので、アンモニア分解触媒の配置を不要にして全体の構成を簡易化し、製造コストを抑制することができるという優れた効果を奏し得る。   According to the exhaust gas treatment method and the exhaust gas treatment facility of the present invention, ammonia is added between the first catalyst that generates the mercury oxidation reaction and the second catalyst that generates the denitration reaction. Prevents adsorption to the catalyst and appropriately reacts the hardly soluble metal mercury with the halogenated gas on the first catalyst, converting the hardly soluble metal mercury into water-soluble divalent mercury with high efficiency. Can be made. In addition, since ammonia is added to the downstream side of the first catalyst for mercury oxidation reaction through the ammonia addition line, the arrangement of the ammonia decomposition catalyst is not required, the overall configuration is simplified, and the manufacturing cost can be suppressed. The effects can be achieved.

本発明の排ガス処理方法及び排ガス処理設備の第一例を示す全体概要構成図である。1 is an overall schematic configuration diagram showing a first example of an exhaust gas treatment method and an exhaust gas treatment facility of the present invention. 水銀酸化反応及び脱硝反応の進行を示すグラフである。It is a graph which shows progress of mercury oxidation reaction and denitration reaction. 本発明の排ガス処理方法及び排ガス処理設備の第二例を示す全体概要構成図である。It is a whole schematic block diagram which shows the 2nd example of the waste gas processing method of this invention, and waste gas processing equipment. 本発明の排ガス処理方法及び排ガス処理設備の第二例の他の構成を示す全体概要構成図である。It is a whole schematic block diagram which shows the other structure of the 2nd example of the waste gas processing method of this invention, and waste gas processing equipment.

以下、本発明の実施の形態の第一例を図1、図2を参照して説明する。   Hereinafter, a first example of an embodiment of the present invention will be described with reference to FIGS.

実施の形態の第一例である排ガス処理方法及び排ガス処理設備1は、石炭焚きボイラの火炉2から煙突3へ排ガスを流す流路4に、上流側から順に脱硝装置5、集塵器6、脱硫装置7を設置している。   An exhaust gas treatment method and an exhaust gas treatment facility 1 as a first example of an embodiment are a denitration device 5, a dust collector 6, and a flow path 4 through which exhaust gas flows from a furnace 2 of a coal fired boiler to a chimney 3, in order from the upstream side. A desulfurization apparatus 7 is installed.

火炉2は、微粉炭機にて粉砕した石炭を供給する石炭供給ライン8を備えると共に、塩素化合物のハロゲン化物を供給するハロゲン添加ライン9を備え、石炭とハロゲン化物を300℃で混合燃焼するようになっている。ここでハロゲン化物のハロゲンは、F,Cl,Br,I等から選択されるものであり、ハロゲン添加ライン9は、ハロゲン化物の代わりにハロゲンガスを供給しても良いし、ハロゲン化物としてHCl等のハロゲン化ガスを供給しても良い。   The furnace 2 includes a coal supply line 8 for supplying coal pulverized by a pulverized coal machine and a halogen addition line 9 for supplying a halide of a chlorine compound so that the coal and the halide are mixed and burned at 300 ° C. It has become. Here, the halogen of the halide is selected from F, Cl, Br, I, and the like, and the halogen addition line 9 may supply a halogen gas instead of the halide, or HCl or the like as the halide. The halogenated gas may be supplied.

脱硝装置5は、水銀酸化反応を生じる第一触媒10を備えると共に、第一触媒10の下流側に脱硝反応を生じる第二触媒11を備えており、第一触媒10には排ガスが200℃〜500℃の温度で流れ、第二触媒11には排ガスが200℃〜500℃、好ましくは300℃〜400℃で流れるようになっている。ここで第一触媒10及びは第二触媒11は、担体がTiO,Al,ZrO,SiO等から選択され、担体にはV,Cu,W等の単体、酸化物、化合物から選択した活性成分が担持されている。 The denitration device 5 includes a first catalyst 10 that generates a mercury oxidation reaction, and a second catalyst 11 that generates a denitration reaction on the downstream side of the first catalyst 10. It flows at a temperature of 500 ° C., and exhaust gas flows through the second catalyst 11 at 200 ° C. to 500 ° C., preferably 300 ° C. to 400 ° C. Here, in the first catalyst 10 and the second catalyst 11, the carrier is selected from TiO 2 , Al 2 O 3 , ZrO 2 , SiO 2, etc., and the carrier is a simple substance such as V, Cu, W, oxide, compound The active ingredient selected from is carried.

又、第一触媒10と第二触媒11との間には、所定の距離L(図2参照)を有する流路4aが配置されており、流路4aには、アンモニアを添加するアンモニア添加ライン12が接続されている。ここで所定の距離Lは、第二触媒11での排ガスの適切な温度を維持するように排ガスの温度が低下しすぎない距離で設定されている。又、アンモニアの添加位置から第二触媒11までの距離は、アンモニアが十分に拡散する距離で設定されている。   Further, a flow path 4a having a predetermined distance L (see FIG. 2) is disposed between the first catalyst 10 and the second catalyst 11, and an ammonia addition line for adding ammonia to the flow path 4a. 12 is connected. Here, the predetermined distance L is set such that the temperature of the exhaust gas does not decrease excessively so as to maintain an appropriate temperature of the exhaust gas in the second catalyst 11. Further, the distance from the ammonia addition position to the second catalyst 11 is set to a distance at which ammonia is sufficiently diffused.

一方、集塵器6は、電気集塵器やバグフィルタ等であり、脱硫装置7は、炭酸カルシウムを含む反応液を噴霧する噴霧手段を備え、反応液の噴霧により排ガス中のSOxを硫酸カルシウムにして除去するようにしている。   On the other hand, the dust collector 6 is an electric dust collector, a bag filter, or the like, and the desulfurization device 7 includes spraying means for spraying a reaction liquid containing calcium carbonate, and SOx in the exhaust gas is converted into calcium sulfate by spraying the reaction liquid. To remove it.

以下本発明を実施する形態の第一例の作用を説明する。   The operation of the first embodiment of the present invention will be described below.

石炭焚きボイラの火炉2からの排ガスを処理する際には、最初に、火炉2で石炭と塩素化合物等のハロゲン化物を混合燃焼して排ガス中にHCl等のハロゲン化ガス(ハロゲン)が共存する状態にし、第一触媒10下で難溶性の水銀Hgとハロゲン化ガスとの触媒反応を行い、難溶性の水銀Hgを2価水銀Hg2+に形態変換させる[式2]。
[式2]
Hg+2HCl+1/2O→HgCl+H
ここでハロゲン化ガスはHClで示され、2価水銀Hg2+はHgClで示されている。又、水銀酸化率は約70%以上になるように処理している。
When treating the exhaust gas from the furnace 2 of the coal-fired boiler, first, the coal 2 and a halide such as a chlorine compound are mixed and burned in the furnace 2, and a halogenated gas (halogen) such as HCl coexists in the exhaust gas. In this state, a catalytic reaction between the hardly soluble mercury Hg 0 and the halogenated gas is performed under the first catalyst 10 to convert the hardly soluble mercury Hg 0 into divalent mercury Hg 2+ [Formula 2].
[Formula 2]
Hg 0 + 2HCl + 1 / 2O 2 → HgCl 2 + H 2 O
Here, the halogenated gas is indicated by HCl, and the divalent mercury Hg 2+ is indicated by HgCl 2 . Further, the mercury oxidation rate is processed to be about 70% or more.

次に、第一触媒10と第二触媒11との間の流路4aにアンモニア添加ライン12よりアンモニアを添加し、流路4aで排ガスとアンモニアガスを混合し、第二触媒11下でのNOとアンモニアガスとの反応により脱硝を行う[式3]。
[式3]
NO+NH+1/4O→N+3/2H
ここで脱硝率は約70%以上になるように処理している。
Next, ammonia is added to the flow path 4a between the first catalyst 10 and the second catalyst 11 from the ammonia addition line 12, the exhaust gas and the ammonia gas are mixed in the flow path 4a, and the NO under the second catalyst 11 is mixed. Denitration is performed by the reaction of ammonia with ammonia gas [Formula 3].
[Formula 3]
NO + NH 3 + 1 / 4O 2 → N 2 + 3 / 2H 2 O
Here, the denitration rate is processed to be about 70% or more.

その後、排ガス処理設備1の集塵器6で灰や煤を取り除き、脱硫装置7で脱硫して煙突3から排ガスを外気へ放出する。   Thereafter, ash and soot are removed by the dust collector 6 of the exhaust gas treatment facility 1, and desulfurization is performed by the desulfurization device 7, and the exhaust gas is discharged from the chimney 3 to the outside air.

而して、実施の形態の第一例によれば、水銀酸化反応を生じる第一触媒10と、脱硝反応を生じる第二触媒11との間にアンモニアを添加するので、アンモニアが水銀酸化反応用の第一触媒10に吸着することを防止して第一触媒10上で難溶性の金属水銀とハロゲン化ガスとの触媒反応を適切に行い、難溶性の金属水銀を水溶性の二価の水銀に高効率で形態変換させることができる。又、脱硝を高効率で行うことができる。更にアンモニア添加ライン12により第一触媒10の下流側にアンモニアを添加するので、アンモニア分解触媒等の配置を不要にして全体の構成を簡易化し、製造コストを抑制することができる。   Thus, according to the first example of the embodiment, since ammonia is added between the first catalyst 10 that generates the mercury oxidation reaction and the second catalyst 11 that generates the denitration reaction, the ammonia is used for the mercury oxidation reaction. The first catalyst 10 is prevented from adsorbing, and the catalytic reaction of the hardly soluble metal mercury with the halogenated gas is appropriately performed on the first catalyst 10 to convert the hardly soluble metal mercury into water-soluble divalent mercury. Can be transformed with high efficiency. Further, denitration can be performed with high efficiency. Furthermore, since ammonia is added to the downstream side of the first catalyst 10 by the ammonia addition line 12, the arrangement of an ammonia decomposition catalyst or the like is not required, the overall configuration is simplified, and the manufacturing cost can be suppressed.

更に実施の形態の第一例において、火炉2中にハロゲン化物又はハロゲンガスを添加するハロゲン添加ライン9を備えると、第一触媒10上で難溶性の金属水銀とハロゲン化ガスとの触媒反応を好適に行い、難溶性の金属水銀を水溶性の二価の水銀に一層高効率で形態変換させることができる。   Further, in the first example of the embodiment, when the halogen addition line 9 for adding a halide or halogen gas is provided in the furnace 2, the catalytic reaction between the hardly soluble metal mercury and the halogenated gas is performed on the first catalyst 10. It is possible to suitably perform the transformation of the hardly soluble metal mercury into the water-soluble divalent mercury with higher efficiency.

以下、本発明の実施の形態の第二例を図3を参照して説明する。ここで第二例の排ガス処理方法及び排ガス処理設備1aは、ハロゲン化物又はハロゲンの供給位置を変更したものであり、図3中、第一例と同じ符号を付したものは同じものを示している。   A second example of the embodiment of the present invention will be described below with reference to FIG. Here, the exhaust gas treatment method and the exhaust gas treatment facility 1a of the second example are obtained by changing the supply position of the halide or halogen, and in FIG. 3, the same reference numerals as those of the first example are the same. Yes.

実施の形態の第二例である排ガス処理方法及び排ガス処理設備1aは、石炭焚きボイラの火炉2から煙突3へ排ガスを流す流路4に、第一例と同様に上流側から順に脱硝装置5、集塵器6、脱硫装置7を設置している。   The exhaust gas treatment method and the exhaust gas treatment facility 1a, which are the second example of the embodiment, are connected to the flow path 4 through which the exhaust gas flows from the furnace 2 of the coal-fired boiler to the chimney 3 in order from the upstream side in the same manner as in the first example. A dust collector 6 and a desulfurization device 7 are installed.

火炉2は、微粉炭機にて粉砕した石炭を供給する石炭供給ライン8を備え、石炭を燃焼するようになっている。ここで火炉2には、図4の他の構成の排ガス処理設備1bに示す如く第一例と同様な塩素化合物のハロゲン化物を供給するハロゲン添加ライン9を備えても良い。   The furnace 2 includes a coal supply line 8 that supplies coal pulverized by a pulverized coal machine, and burns the coal. Here, the furnace 2 may be provided with a halogen addition line 9 for supplying a halide of a chlorine compound similar to the first example as shown in the exhaust gas treatment facility 1b having another configuration shown in FIG.

脱硝装置5は、第一例と同様に水銀酸化反応を生じる第一触媒10を備えると共に、第一触媒10の下流側に脱硝反応を生じる第二触媒11を備えており、第一触媒10には排ガスが200℃〜500℃の温度で流れ、第二触媒11には排ガスが200℃〜500℃、好ましくは300℃〜400℃で流れるようになっている。ここで第一触媒10及び第二触媒11は、担体がTiO,Al,ZrO,SiO等から選択され、担体にはV,Cu,W等の単体、酸化物、化合物から選択した活性成分が担持されている。 Similar to the first example, the denitration device 5 includes a first catalyst 10 that generates a mercury oxidation reaction, and a second catalyst 11 that generates a denitration reaction downstream of the first catalyst 10. The exhaust gas flows at a temperature of 200 ° C. to 500 ° C., and the exhaust gas flows through the second catalyst 11 at 200 ° C. to 500 ° C., preferably 300 ° C. to 400 ° C. Here, in the first catalyst 10 and the second catalyst 11, the support is selected from TiO 2 , Al 2 O 3 , ZrO 2 , SiO 2, etc., and the support is made of a simple substance such as V, Cu, W, an oxide, or a compound. The selected active ingredient is supported.

又、火炉2と第一触媒10との間には、所定の距離を有する流路4bが配置されており、流路4bには、塩素化合物のハロゲン化物を供給するハロゲン添加ライン13が接続されている。ここでハロゲン化物のハロゲンは、F,Cl,Br,I等から選択されるものであり、ハロゲン添加ライン13は、ハロゲン化物の代わりにハロゲンを供給しても良いし、ハロゲン化物としてHCl等のハロゲン化ガスを供給しても良い。又、所定の距離(図示せず)は、ハロゲン化物等の添加位置から第一触媒10までの距離がハロゲン化ガスが十分に拡散する距離で設定されている。   A flow path 4b having a predetermined distance is disposed between the furnace 2 and the first catalyst 10, and a halogen addition line 13 for supplying a halide of a chlorine compound is connected to the flow path 4b. ing. Here, the halogen of the halide is selected from F, Cl, Br, I, and the like, and the halogen addition line 13 may supply halogen instead of the halide, and the halide such as HCl may be supplied. A halogenated gas may be supplied. The predetermined distance (not shown) is set such that the distance from the addition position of the halide or the like to the first catalyst 10 is a distance at which the halogenated gas is sufficiently diffused.

更に、第一触媒10と第二触媒11との間には、第一例と同様に、所定の距離L(図2参照)を有する流路4aが配置されており、流路4aには、アンモニアを添加するアンモニア添加ライン12が接続されている。ここで所定の距離Lは、第二触媒11での排ガスの適切な温度を維持するように排ガスの温度が低下しすぎない距離で設定されている。又、アンモニアの添加位置から第二触媒11までの距離は、アンモニアが十分に拡散する距離で設定されている。   Further, a channel 4a having a predetermined distance L (see FIG. 2) is arranged between the first catalyst 10 and the second catalyst 11, as in the first example. An ammonia addition line 12 for adding ammonia is connected. Here, the predetermined distance L is set such that the temperature of the exhaust gas does not decrease excessively so as to maintain an appropriate temperature of the exhaust gas in the second catalyst 11. Further, the distance from the ammonia addition position to the second catalyst 11 is set to a distance at which ammonia is sufficiently diffused.

一方、集塵器6及び脱硫装置7は、第一例と同様に構成されている。   On the other hand, the dust collector 6 and the desulfurization device 7 are configured in the same manner as in the first example.

以下本発明を実施する形態の第二例の作用を説明する。   The operation of the second embodiment of the present invention will be described below.

石炭焚きボイラの火炉2からの排ガスを処理する際には、ハロゲン添加ライン13より流路4bにハロゲン化物又はハロゲンガスを添加し、火炉2からの200℃〜500℃の排ガス中にHCl等のハロゲン化ガス(ハロゲン)が共存する状態にし、第一触媒10下で難溶性の水銀Hgとハロゲン化ガスとの触媒反応を行い、難溶性の水銀Hgを2価水銀Hg2+に形態変換させる[式4]。
[式4]
Hg+2HCl+1/2O→HgCl+H
ここでハロゲン化ガスはHClで示され、2価水銀Hg2+はHgClで示されている。又、水銀酸化率は約70%以上になるように処理している。
When the exhaust gas from the furnace 2 of the coal fired boiler is treated, a halide or a halogen gas is added to the flow path 4b from the halogen addition line 13, and HCl or the like is contained in the exhaust gas at 200 ° C to 500 ° C from the furnace 2. In a state in which a halogenated gas (halogen) coexists, a catalytic reaction between the hardly soluble mercury Hg 0 and the halogenated gas is performed under the first catalyst 10, and the form of the hardly soluble mercury Hg 0 is converted to divalent mercury Hg 2+. [Formula 4]
[Formula 4]
Hg 0 + 2HCl + 1 / 2O 2 → HgCl 2 + H 2 O
Here, the halogenated gas is indicated by HCl, and the divalent mercury Hg 2+ is indicated by HgCl 2 . Further, the mercury oxidation rate is processed to be about 70% or more.

次に、第一例と同様に第一触媒10と第二触媒11との間の流路4aにアンモニア添加ライン12よりアンモニアを添加し、流路4aで排ガスとアンモニアガスを混合し、第二触媒11下でのNOとアンモニアガスとの反応により脱硝を行う[式5]。
[式5]
NO+NH+1/4O→N+3/2H
ここで脱硝率は約70%以上になるように処理している。
Next, similarly to the first example, ammonia is added to the flow path 4a between the first catalyst 10 and the second catalyst 11 from the ammonia addition line 12, and the exhaust gas and the ammonia gas are mixed in the flow path 4a. Denitration is performed by the reaction of NO and ammonia gas under the catalyst 11 [Formula 5].
[Formula 5]
NO + NH 3 + 1 / 4O 2 → N 2 + 3 / 2H 2 O
Here, the denitration rate is processed to be about 70% or more.

その後、排ガス処理設備1aの集塵器6で灰や煤を取り除き、脱硫装置7で脱硫して煙突3から排ガスを外気へ放出する。   Thereafter, ash and soot are removed by the dust collector 6 of the exhaust gas treatment facility 1a, and desulfurization is performed by the desulfurization device 7, and the exhaust gas is discharged from the chimney 3 to the outside air.

而して、実施の形態の第二例によれば、第一例と同様な作用効果を得ることができる。   Thus, according to the second example of the embodiment, the same operation and effect as the first example can be obtained.

又、実施の形態の第二例において、火炉2から第一触媒10までの流路4bにハロゲン化物又はハロゲンガスを添加するハロゲン添加ライン13を備えると、第一触媒10上で難溶性の金属水銀とハロゲン化ガスとの触媒反応を好適に行い、難溶性の金属水銀を水溶性の二価の水銀に一層高効率で形態変換させることができる。   Further, in the second example of the embodiment, when a halogen addition line 13 for adding a halide or a halogen gas is provided in the flow path 4 b from the furnace 2 to the first catalyst 10, a hardly soluble metal on the first catalyst 10. A catalytic reaction between mercury and a halogenated gas is suitably performed, and the hardly soluble metallic mercury can be converted into water-soluble divalent mercury with higher efficiency.

尚、本発明の排ガス処理方法及び排ガス処理設備は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The exhaust gas treatment method and exhaust gas treatment equipment of the present invention are not limited to the illustrated examples described above, and it is needless to say that various modifications can be made without departing from the scope of the present invention.

1 排ガス処理設備
1a 排ガス処理設備
1b 排ガス処理設備
2 火炉
4a 流路
5 脱硝装置
9 ハロゲン添加ライン
10 第一触媒
11 第二触媒
12 アンモニア添加ライン
13 ハロゲン添加ライン
DESCRIPTION OF SYMBOLS 1 Exhaust gas treatment equipment 1a Exhaust gas treatment equipment 1b Exhaust gas treatment equipment 2 Furnace 4a Flow path 5 Denitration device 9 Halogen addition line 10 First catalyst 11 Second catalyst 12 Ammonia addition line 13 Halogen addition line

Claims (4)

火炉からの排ガスを流す流路に、水銀酸化反応を生じる第一触媒を備えると共に、第一触媒の下流側に、脱硝反応を生じる第二触媒を備える排ガス処理方法であって、
前記火炉からの排ガス中にハロゲン化ガスが共存する状態にし、排ガス中に含まれる難溶性の金属水銀を第一触媒で水溶性の二価の水銀に形態変換させ、次に第一触媒と第二触媒の間にアンモニアを添加して第二触媒で脱硝を行うこと特徴とする排ガス処理方法。
An exhaust gas treatment method comprising a first catalyst that generates a mercury oxidation reaction in a flow path for flowing exhaust gas from a furnace, and a second catalyst that generates a denitration reaction downstream of the first catalyst,
In the exhaust gas from the furnace, a halogenated gas is allowed to coexist, and the hardly soluble metal mercury contained in the exhaust gas is converted into water-soluble divalent mercury by the first catalyst, and then the first catalyst and An exhaust gas treatment method comprising adding ammonia between two catalysts and performing denitration with a second catalyst.
火炉からの排ガスを脱硝装置に流す排ガス処理設備であって、
前記脱硝装置は、水銀酸化反応を生じる第一触媒を備えると共に、第一触媒の下流側で脱硝反応を生じる第二触媒を備え、
前記第一触媒と第二触媒の間にアンモニアを添加するアンモニア添加ラインを配置し、
排ガスを処理する際には、前記火炉からの排ガス中にハロゲン化ガスが共存する状態にし、排ガス中に含まれる難溶性の金属水銀を第一触媒で水溶性の二価の水銀に形態変換させ、次にアンモニア添加ラインからのアンモニアの添加により第二触媒で脱硝を行うように構成したこと特徴とする排ガス処理設備。
An exhaust gas treatment facility for flowing exhaust gas from a furnace to a denitration device,
The denitration apparatus includes a first catalyst that generates a mercury oxidation reaction, and a second catalyst that generates a denitration reaction downstream of the first catalyst.
An ammonia addition line for adding ammonia is disposed between the first catalyst and the second catalyst,
When treating the exhaust gas, make the halogenated gas coexist in the exhaust gas from the furnace, and convert the hardly soluble metal mercury contained in the exhaust gas into water-soluble divalent mercury with the first catalyst. Next, an exhaust gas treatment facility characterized in that denitration is performed with a second catalyst by adding ammonia from an ammonia addition line.
火炉中にハロゲン化物又はハロゲンガスを添加するハロゲン添加ラインを備えたことを特徴とする請求項2に記載の排ガス処理設備。   The exhaust gas treatment facility according to claim 2, further comprising a halogen addition line for adding a halide or a halogen gas in the furnace. 火炉から第一触媒までの流路にハロゲン化物又はハロゲンガスうちの少なくとも1種を添加するハロゲン添加ラインを備えたことを特徴とする請求項2又は3に記載の排ガス処理設備。   The exhaust gas treatment facility according to claim 2 or 3, further comprising a halogen addition line for adding at least one of a halide or a halogen gas to a flow path from the furnace to the first catalyst.
JP2009171834A 2009-07-23 2009-07-23 Exhaust gas treatment method and exhaust gas treatment equipment Active JP5564846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009171834A JP5564846B2 (en) 2009-07-23 2009-07-23 Exhaust gas treatment method and exhaust gas treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009171834A JP5564846B2 (en) 2009-07-23 2009-07-23 Exhaust gas treatment method and exhaust gas treatment equipment

Publications (2)

Publication Number Publication Date
JP2011025123A true JP2011025123A (en) 2011-02-10
JP5564846B2 JP5564846B2 (en) 2014-08-06

Family

ID=43634516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009171834A Active JP5564846B2 (en) 2009-07-23 2009-07-23 Exhaust gas treatment method and exhaust gas treatment equipment

Country Status (1)

Country Link
JP (1) JP5564846B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053142A (en) * 2001-08-09 2003-02-25 Mitsubishi Heavy Ind Ltd Method and equipment for removing mercury in exhaust gas
JP2005125213A (en) * 2003-10-22 2005-05-19 Nippon Shokubai Co Ltd Exhaust gas treatment method
JP2005180388A (en) * 2003-12-22 2005-07-07 Mitsubishi Heavy Ind Ltd Gasification combined power generation system
JP2006263700A (en) * 2005-02-28 2006-10-05 Mitsubishi Heavy Ind Ltd Method and system for removing mercury in exhaust gas
JP2007167698A (en) * 2005-12-19 2007-07-05 Mitsubishi Heavy Ind Ltd Exhaust gas treatment apparatus and exhaust gas treatment method
JP2009045522A (en) * 2007-08-15 2009-03-05 Ihi Corp Exhaust gas treating method and treatment apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053142A (en) * 2001-08-09 2003-02-25 Mitsubishi Heavy Ind Ltd Method and equipment for removing mercury in exhaust gas
JP2005125213A (en) * 2003-10-22 2005-05-19 Nippon Shokubai Co Ltd Exhaust gas treatment method
JP2005180388A (en) * 2003-12-22 2005-07-07 Mitsubishi Heavy Ind Ltd Gasification combined power generation system
JP2006263700A (en) * 2005-02-28 2006-10-05 Mitsubishi Heavy Ind Ltd Method and system for removing mercury in exhaust gas
JP2007167698A (en) * 2005-12-19 2007-07-05 Mitsubishi Heavy Ind Ltd Exhaust gas treatment apparatus and exhaust gas treatment method
JP2009045522A (en) * 2007-08-15 2009-03-05 Ihi Corp Exhaust gas treating method and treatment apparatus

Also Published As

Publication number Publication date
JP5564846B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
JP5319934B2 (en) Exhaust gas treatment method and apparatus
JP4616497B2 (en) Desulfurization apparatus and desulfurization method
JP2009166010A (en) Exhaust gas treatment system and its method of coal fired boiler
JP6095923B2 (en) Mercury treatment system in exhaust gas
JP4898751B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment system
JP2009166013A (en) Exhaust gas treatment system of coal fired boiler
JP2014057913A5 (en)
JP2017006813A (en) Denitration apparatus and treatment method of nitrogen oxide
JP4959650B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment system
JP2012213744A (en) Apparatus and method for treating exhaust gas and coal upgrading process facility
JP4936002B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
JP2007167698A (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP2014057912A (en) Mercury processing system in exhaust gas
JP5564846B2 (en) Exhaust gas treatment method and exhaust gas treatment equipment
JP2010036157A (en) Exhaust gas treatment device, exhaust gas treatment system and in-exhaust gas mercury oxidizing performance control system
JP5709438B2 (en) Exhaust gas treatment equipment
JP5299600B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
JP2010162520A (en) Denitrification device
JP2009045522A (en) Exhaust gas treating method and treatment apparatus
JP2016036779A (en) Denitration method of flue gas
JP2006136856A (en) Mercury removing device and method
KR102434015B1 (en) Method for treating exhaust gas using exhaust gas treatment apparatus
JP4952935B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
JP2010046596A (en) Exhaust gas treatment apparatus and exhaust gas treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R151 Written notification of patent or utility model registration

Ref document number: 5564846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250