[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011025114A - Switching type ro water purifier - Google Patents

Switching type ro water purifier Download PDF

Info

Publication number
JP2011025114A
JP2011025114A JP2009171081A JP2009171081A JP2011025114A JP 2011025114 A JP2011025114 A JP 2011025114A JP 2009171081 A JP2009171081 A JP 2009171081A JP 2009171081 A JP2009171081 A JP 2009171081A JP 2011025114 A JP2011025114 A JP 2011025114A
Authority
JP
Japan
Prior art keywords
water
raw water
concentration
raw
purified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009171081A
Other languages
Japanese (ja)
Inventor
Takahide Maruyama
貴秀 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duskin Co Ltd
Original Assignee
Duskin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duskin Co Ltd filed Critical Duskin Co Ltd
Priority to JP2009171081A priority Critical patent/JP2011025114A/en
Publication of JP2011025114A publication Critical patent/JP2011025114A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a switching type RO (reverse osmosis) water purifier where raw water is switched from stored water in a raw water tank to tap water in a tap water pipe in accordance with using purposes, applications or the like, and purifying treatment of high quality can be performed. <P>SOLUTION: When raw water feed is switched from stored water in a raw water tank 1 to tap water W, similarly to the stored water, it can be purified by an RO membrane device 9. The concentration of the purified water is monitored, and, when it exceeds a standard concentration, various abnormality information is notified, and, in accordance with the using conditions of the stored water in the raw water tank 1 or the tap water W, maintenance times in raw water exchange, tap water feed abnormality, RO membrane inspection or the like are correctly informed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、集合住宅、飲食店、ホテル、旅館、事務所、工場、レジャー施設等において使用する浄水を得るためにRO(Reverse Osmosis:逆浸透)膜を使用したRO浄水器に関し、特には原水にタンク貯留水又は水道水を切り替え使用できる切替型RO浄水器に関するものである。   The present invention relates to an RO water purifier that uses an RO (Reverse Osmosis) membrane to obtain purified water used in apartment houses, restaurants, hotels, inns, offices, factories, leisure facilities, and the like, particularly raw water. The present invention relates to a switchable RO water purifier that can switch between tank storage water and tap water.

従来、この種の浄水生成システムの一例として、例えば、特許文献1に示すように、原水槽から汲み出した原水を、活性炭充填槽及びろ過膜フィルタを通過させて浄水化し供給先に提供するようにしている。この浄水生成システムでは、浄水は一旦、貯水槽に収容され、貯水槽内の水位が一定に保持されるように浄水の生成と貯水が行われる。ろ過膜フィルタには、0.01〜0.5μmの細孔を有するろ過膜を使用することが記載されている。   Conventionally, as an example of this type of purified water generation system, for example, as shown in Patent Document 1, raw water pumped from a raw water tank is purified through an activated carbon filling tank and a filtration membrane filter and supplied to a supply destination. ing. In this purified water generation system, purified water is once stored in a water tank, and purified water is generated and stored so that the water level in the water tank is kept constant. It is described that a filtration membrane having pores of 0.01 to 0.5 μm is used for the filtration membrane filter.

ろ過膜フィルタには、中空糸膜によるマイクロフィルタあるいは限外ろ過によるウルトラフィルタが使用されるが、これらのフィルタによる不純物除去効果は0.01μm程度の粒子除去が限界となっている。このため、原水に溶解している、各種塩素化合物、トリハロメタン、ダイオキシン等の不純物は0.01μmよりはるかに小さく、ろ過膜フィルタでは除去できないといった問題があった。   As the filtration membrane filter, a microfilter using a hollow fiber membrane or an ultrafilter using ultrafiltration is used. However, the removal of particles of about 0.01 μm is the limit of the effect of removing impurities by these filters. For this reason, impurities such as various chlorine compounds, trihalomethane, and dioxin dissolved in raw water are much smaller than 0.01 μm, and there is a problem that they cannot be removed by a filter membrane filter.

飲料水の提供の観点からいえば、水道栓の無い場所では水道水を原水タンクに投入して、原水タンクから水供給を行えばよいし、あるいは、水道栓のある場所では水道栓から直接、水供給を行うのが好ましい。しかしながら、浄水処理の観点からいえば、同一の浄水装置を原水タンク仕様と水道水仕様に使い分けることは、夫々の仕様に合わせて部品交換の手間を必要とするため、単一の浄水装置を両仕様に兼用化するのが難しかった。もっとも、原水タンク専用の浄水器や水道水専用の浄水器は夫々、単独で使用されるものが存在しているものの、両方に兼用可能な機能、構造を有していなかった。   From the standpoint of providing drinking water, tap water can be supplied to the raw water tank and supplied from the raw water tank in a place without a water tap, or directly from the water tap in a place with a water tap. It is preferable to supply water. However, from the viewpoint of water purification treatment, using the same water purification device for the raw water tank specification and tap water specification requires labor to replace parts in accordance with each specification. It was difficult to combine the specifications. However, water purifiers dedicated to raw water tanks and water purifiers dedicated to tap water each have one that is used alone, but did not have a function or structure that can be used for both.

特開平3−131383号公報JP-A-3-131383

本発明の目的は、上記課題に鑑み、使用目的や用途等に応じて原水を原水タンクの貯留水又は水道管の水道水に切り替えて高品質の浄水処理を行うことができる切替型RO浄水器を提供することである。   In view of the above-mentioned problems, the object of the present invention is a switched-type RO water purifier capable of performing high-quality water purification treatment by switching raw water to stored water in a raw water tank or tap water in a water pipe according to the purpose of use or application. Is to provide.

本発明の第1の形態は、原水供給部から原水を送水ポンプにより供給する原水供給管と、前記原水供給管を流通する前記原水の不純物濃度を計測する原水センサと、前記原水供給管から前記原水を通水して前記原水中の不純物を除去して浄水を生成するRO(Reverse Osmosis:逆浸透)膜を少なくとも含む浄化フィルタ部と、前記浄水を貯留する浄水タンクと、前記浄化フィルタ部から浄水を前記浄水タンクに供給する浄水供給管と、前記浄水タンクから前記浄水を必要量だけ供給する浄水提供部とを有し、前記原水供給部として原水タンク又は水道管を選択する切替スイッチと、前記切替スイッチの切替設定に応じて、前記原水タンクの貯留水又は前記水道管からの水道水に対して前記原水センサにより異常原水濃度を計測したとき、異常報知する異常報知手段とを有する切替型RO浄水器である。   The first aspect of the present invention is a raw water supply pipe that supplies raw water from a raw water supply section by a water pump, a raw water sensor that measures an impurity concentration of the raw water flowing through the raw water supply pipe, and the raw water supply pipe From a purification filter unit including at least a RO (Reverse Osmosis) membrane that removes impurities in the raw water by passing raw water and generates purified water, a purified water tank that stores the purified water, and the purification filter unit A purified water supply pipe that supplies purified water to the purified water tank, and a purified water supply unit that supplies the purified water from the purified water tank in a required amount, and a selector switch that selects a raw water tank or a water pipe as the raw water supply part; Depending on the switching setting of the selector switch, the raw water sensor measures the abnormal raw water concentration with respect to the water stored in the raw water tank or tap water from the water pipe. When a switched RO water purifier having an abnormality informing means for abnormality notification.

本発明の第2の形態は、第1の形態において、前記原水タンクから前記原水供給管を通じて原水供給するとき、前記RO膜の浄化作用により生ずる濃縮水を前記原水タンクに帰還させる濃縮水帰還管と、前記水道管から前記原水供給管を通じて原水供給するとき、前記RO膜の浄化作用により生ずる濃縮水を排水する排水管とを具備した切替型RO浄水器である。   According to a second aspect of the present invention, in the first aspect, when the raw water is supplied from the raw water tank through the raw water supply pipe, the concentrated water return pipe that returns the concentrated water generated by the purification action of the RO membrane to the raw water tank. When the raw water is supplied from the water pipe through the raw water supply pipe, the switchable RO water purifier includes a drain pipe for draining concentrated water generated by the purification action of the RO membrane.

本発明の第3の形態は、第1又は第2の形態において、前記浄水供給管を流通する前記浄水の不純物濃度を計測する浄水センサと、前記貯留水又は前記水道水の原水供給が開始された後、前記原水センサにより最初に計測される最先原水濃度を記憶する最先原水濃度記憶手段と、前記浄水センサにより継続的に計測される浄水濃度を記憶する浄水濃度記憶手段と、前記最先原水濃度から計算される基準濃度と前記浄水濃度を比較する比較手段と、前記浄水濃度が前記基準濃度より大きくなったときに前記異常原水濃度に達したとして、前記異常報知手段により前記貯留水の交換、前記水道水の供給異常又は前記RO膜の交換を報知する切替型RO浄水器である。   According to a third aspect of the present invention, in the first or second aspect, a purified water sensor that measures an impurity concentration of the purified water flowing through the purified water supply pipe, and supply of raw water of the stored water or tap water is started. After that, the earliest raw water concentration storage means for storing the earliest raw water concentration first measured by the raw water sensor, the purified water concentration storage means for storing the purified water concentration continuously measured by the water purification sensor, Comparing means for comparing the purified water concentration with the reference concentration calculated from the raw water concentration, and the abnormal notification means for reaching the abnormal raw water concentration when the purified water concentration is greater than the reference concentration. Switchable water purifier for notifying the replacement of the water, the supply abnormality of the tap water, or the replacement of the RO membrane.

本発明の第4の形態は、第1又は第2の形態において、前記浄水供給管を流通する前記浄水の不純物濃度を計測する浄水センサと、前記切替スイッチにより前記原水タンクに切り替えて、前記原水タンクから前記貯留水を原水供給するとき、前記原水センサにより最初に計測される最先原水濃度を記憶する最先原水濃度記憶手段と、前記切替スイッチにより前記水道管に切り替えて、前記水道管からの水道水を原水供給するとき、所定の基準水道水濃度を記憶する基準水道水濃度記憶手段と、前記浄水センサにより継続的に計測される浄水濃度を記憶する浄水濃度記憶手段と、前記貯留水を原水供給するとき前記最先原水濃度から求めた基準濃度と前記浄水濃度を比較し、あるいは前記水道水を原水供給するとき前記基準水道水濃度と前記浄水濃度を比較する比較手段とを有し、前記異常報知手段は、前記浄水濃度が前記基準濃度より大きくなったことを条件に前記原水の交換及び/又は前記RO膜の交換を報知する原水タンク使用時異常報知手段と、前記浄水濃度が前記基準水道水濃度より大きくなったことを条件に前記水道水の供給異常及び/又は前記RO膜の交換を報知する水道水使用時異常報知手段とを含む切替型RO浄水器である。   According to a fourth aspect of the present invention, in the first or second aspect, the raw water tank is switched to the raw water tank by a purified water sensor for measuring an impurity concentration of the purified water flowing through the purified water supply pipe and the changeover switch. When supplying the stored water from the tank, the first raw water concentration storage means for storing the first raw water concentration first measured by the raw water sensor, and the water switch is switched to the water pipe by the changeover switch. When the tap water is supplied, the reference tap water concentration storage means for storing a predetermined reference tap water concentration, the purified water concentration storage means for storing the purified water concentration continuously measured by the purified water sensor, and the stored water When the raw water is supplied, the reference concentration obtained from the first raw water concentration is compared with the purified water concentration, or when the tap water is supplied, the reference tap water concentration and the purified water are supplied. Using a raw water tank for notifying the replacement of the raw water and / or the replacement of the RO membrane on the condition that the purified water concentration is higher than the reference concentration. An abnormality notification means for abnormality in time and an abnormality notification means for abnormality in use of tap water for notifying the supply abnormality of the tap water and / or the replacement of the RO membrane on the condition that the purified water concentration is larger than the reference tap water concentration It is a switching type RO water purifier.

本発明の第5の形態は、第3の形態において、前記浄水濃度が前記異常原水濃度を超えたときに、前記送水ポンプの送水を停止させる送水停止手段を備えた切替型RO浄水器である。   The 5th form of this invention is a switching type RO water purifier provided with the water supply stop means which stops the water supply of the said water supply pump when the said purified water density | concentration exceeds the said abnormal raw water density | concentration in the 3rd form. .

本発明の第6の形態は、第4の形態において、前記浄水濃度が前記基準濃度又は前記基準水道水濃度を超えたときに、前記送水ポンプの送水を停止させる送水停止手段を備えた切替型RO浄水器である。   According to a sixth aspect of the present invention, in the fourth aspect, when the purified water concentration exceeds the reference concentration or the reference tap water concentration, the switching type is provided with a water supply stop unit that stops water supply of the water pump. RO water purifier.

本発明の第7の形態は、第1〜第6のいずれかの形態において、前記切替スイッチの切替設定により前記原水タンクから前記貯留水を原水供給するとき、前記原水センサにより、前記原水タンクが空になったことを検出して報知する空報知手段を備えた切替型RO浄水器である。   According to a seventh aspect of the present invention, in any one of the first to sixth aspects, when the stored water is supplied from the raw water tank by the switching setting of the changeover switch, the raw water tank is It is a switching type RO water purifier provided with an empty notification means for detecting and notifying that it has become empty.

本発明の第8の形態は、第2〜第7のいずれかの形態において、前記濃縮水帰還管は、前記RO膜の浸透圧を所定値に保持する流量調整流路と、前記流量調整流路に併設された開閉自在のバイパス流路とを含み、前記RO膜の交換時に前記バイパス流路を開放する切替型RO浄水器である。   According to an eighth aspect of the present invention, in any one of the second to seventh aspects, the concentrated water return pipe includes a flow rate adjustment flow path for maintaining an osmotic pressure of the RO membrane at a predetermined value, and the flow rate adjustment flow. The switchable RO water purifier includes an openable and closable bypass flow path provided alongside a road, and opens the bypass flow path when the RO membrane is replaced.

本発明の第9の形態は、第1〜第8のいずれかの形態において、前記原水センサは水に溶け込んだ全溶解性物質を測定するセンサからなる切替型RO浄水器である。   According to a ninth aspect of the present invention, in any one of the first to eighth aspects, the raw water sensor is a switching type RO water purifier comprising a sensor for measuring all soluble substances dissolved in water.

本発明の第10の形態は、前記第3〜第8のいずれかの形態において、前記浄水センサは、水に溶け込んだ全溶解性物質を測定するセンサからなる切替型RO浄水器である。   According to a tenth aspect of the present invention, in any one of the third to eighth aspects, the water purification sensor is a switching type RO water purifier including a sensor for measuring all soluble substances dissolved in water.

本発明の第11の形態は、前記第1〜第10のいずれかの形態において、前記浄化フィルタ部の、少なくとも原水導入側流路に、前記原水を活性炭槽を通過させて浄化する活性炭処理部を設け、前記活性炭槽を通過した原水を前記RO膜に通水する切替型RO浄水器である。   In an eleventh aspect of the present invention, in any one of the first to tenth aspects, the activated carbon treatment unit purifies the raw water by passing the activated water through at least the raw water introduction side flow path of the purification filter unit. It is a switching type RO water purifier which supplies raw water that has passed through the activated carbon tank to the RO membrane.

本発明においては逆浸透膜(RO膜)を使用して高品質の浄水処理が行われる。RO膜は、約0.0001μmの孔を無数に持った人工膜からなり、半透膜と同様の性質を有して、水に溶解した微細な不純物、例えば、細菌、塩素、砒素、トリハロメタン、さび、ダイオキシン等を取り除くことができる。従って、RO膜による純水生成システムを原水の通水経路に適用することにより、前記ろ過膜フィルタよりも一層、浄化された浄水を得ることができる。
本発明の第1の形態によれば、原水をRO膜により浄水化する浄化システムにおいて、前記切替スイッチの切替設定に応じて、前記原水供給部として原水タンク又は水道管を選択して、前記原水タンクの貯留水又は前記水道管からの水道水に対して前記原水センサにより異常原水濃度を計測したとき、前記異常報知手段により異常報知するので、原水を前記原水タンクの貯留水だけでなく、水道水に切り替えて原水供給しても前記RO膜により浄水化すると共に、前記原水タンクの貯留水又は前記水道水の使用状況に応じて前記異常報知して、原水交換やRO膜点検等のメンテナンス時期を的確に知らせて、高品質の浄水化処理を行うことができる。例えば、本形態に係る切替型RO浄水器を飲食店舗等で用いれば、水道水、天然水等を汲み入れた原水タンクから原水供給して飲用浄水を前記浄水提供部から供給でき、あるいは水道栓が近くにある使用環境下においては、前記水道管から直接、取水して原水として浄化して洗浄水を供給することもできる。従って、本形態においては、部品交換の手間を要することなく原水の選択を自在に行え、また、水道栓の設置状況を勘案して、原水タンク仕様と水道管仕様夫々に専用の浄水器を用意しなくて済み、低コスト化を実現することができ、しかも使用上の利便性に富んだ浄水器を実現することができる。
In this invention, a high quality water purification process is performed using a reverse osmosis membrane (RO membrane). The RO membrane is made of an artificial membrane having an infinite number of pores of about 0.0001 μm, has the same properties as a semipermeable membrane, and has fine impurities dissolved in water, such as bacteria, chlorine, arsenic, trihalomethane, Rust, dioxins, etc. can be removed. Therefore, by applying the pure water generation system using the RO membrane to the flow path of the raw water, it is possible to obtain purified water that is further purified than the filtration membrane filter.
According to the 1st form of this invention, in the purification system which purifies raw water with RO membrane, according to the switching setting of the said changeover switch, a raw | natural water tank or a water pipe is selected as said raw | natural water supply part, The said raw | natural water When abnormal raw water concentration is measured by the raw water sensor with respect to the water stored in the tank or the tap water from the water pipe, the abnormal notification means notifies the abnormality, so the raw water is not only stored in the raw water tank, Even when switching to water and supplying raw water, the RO membrane purifies the water and notifies the abnormality according to the use status of the water stored in the raw water tank or the tap water, and maintenance time such as raw water exchange or RO membrane inspection Can be accurately communicated, and high-quality water purification treatment can be performed. For example, if the switched-type RO water purifier according to this embodiment is used in a restaurant or the like, raw water can be supplied from a raw water tank pumped with tap water, natural water, etc., and drinking water can be supplied from the water purification providing unit, or a water tap In a use environment in which the water is close, water can be directly taken from the water pipe and purified as raw water to supply cleaning water. Therefore, in this embodiment, raw water can be freely selected without the need for parts replacement, and dedicated water purifiers are prepared for both the raw water tank specification and the water pipe specification in consideration of the installation status of the water tap. Therefore, it is possible to realize a water purifier that can be realized at low cost and that is convenient for use.

特に、水道栓のある場所で、例えば、ミネラル水等の原水タンクを使用している場合にあっても、タンク貯留用の原水が不足したとき、あるいは原水タンクの故障、メンテナンス等に際して、本発明においては原水供給を水道水に切り替えて飲用浄水を継続して生成することができるので、応急処置的にも飲用浄水の供給が可能になり、飲食店や病院等の営業に支障なく、浄水提供を行える利点を有する。
なお、前記浄水タンクは前記原水タンクの貯留水を原水にして得た浄水と、水道水を原水にして得た浄水を切り替えて貯留する共用タンクを用いてもよいし、夫々の浄水を個別に貯留する2種類の浄水タンクを用意するようにしてもよい。
In particular, even when a raw water tank such as mineral water is used in a place where there is a water tap, the present invention is used when the raw water for storing the tank is insufficient, or when the raw water tank is broken, maintained, etc. In this case, it is possible to continue to generate drinking water by switching the raw water supply to tap water, so it is possible to supply drinking water even as an emergency measure, providing clean water without hindering the business of restaurants, hospitals, etc. Has the advantage of being able to
In addition, the said water purification tank may use the common tank which switches and stores the purified water obtained by using the stored water of the said raw water tank as raw water, and the purified water obtained using the tap water as raw water, and each purified water is separately used. You may make it prepare two types of water tanks to store.

前記ろ過膜フィルタの浄化では通水の全量を浄水として取り出すことになるが、RO膜の純水処理では、膜を通過しなかった塩類を連続的に排出させなければ、加圧側の塩類濃度が限りなく上昇し浸透圧が高まって水が通過できなくなるため、RO膜からは必ず、塩類や不純物が濃縮された水(以下、これを濃縮水という。)が連続的に排出されることになる。
本発明の第2の形態によれば、前記原水タンクから前記原水供給管を通じて原水供給するとき、前記濃縮水帰還管により管前記RO膜の浄化作用により生ずる濃縮水を前記原水タンクに帰還させる循環式再処理システムを具備しているので、前記RO膜を通過した水を浄水と濃縮水に分離して浄水の回収量(率)を上げることができるので、高品質のRO膜浄化処理を行え、しかも、前記水道管から前記原水供給管を通じて原水供給するとき、前記排水管により前記濃縮水を排水して水道水の原水使用時にも支障なく浄水処理を行うことができる。
In the purification of the filtration membrane filter, the entire amount of water passing through is taken out as purified water, but in the pure water treatment of the RO membrane, if the salts that did not pass through the membrane are not continuously discharged, the salt concentration on the pressurized side will be Since it rises indefinitely and osmotic pressure increases and water cannot pass through, the RO membrane always discharges water with concentrated salts and impurities (hereinafter referred to as concentrated water) continuously. .
According to the second aspect of the present invention, when the raw water is supplied from the raw water tank through the raw water supply pipe, the concentrated water generated by the purification action of the RO membrane is returned to the raw water tank by the concentrated water return pipe. Since it has a reprocessing system, the water that has passed through the RO membrane can be separated into purified water and concentrated water to increase the amount of recovered water (rate), so high-quality RO membrane purification treatment can be performed. Moreover, when raw water is supplied from the water pipe through the raw water supply pipe, the concentrated water is drained by the drain pipe, and water purification can be performed without any trouble even when the raw water is used.

前記RO膜には、膜孔が約1〜2ナノメートル以下のものを使用するのが好ましく、RO膜による逆浸透作用により、水道水に含まれる全溶解性物質、例えば、細菌、砒素、塩素、トリハロメタン、さび、ダイオキシン等を除去することができる。   The RO membrane preferably has a membrane pore size of about 1 to 2 nanometers or less, and due to the reverse osmosis action by the RO membrane, all soluble substances contained in tap water, such as bacteria, arsenic, chlorine, etc. , Trihalomethane, rust, dioxin and the like can be removed.

前記循環式再処理システムにおいて前記原水タンクに濃縮水を戻す場合には、タンク内の全溶解性物質あるいは総溶解固形分(TDS:Total Dissolved Solids)の濃度が徐々に高くなり、RO膜への負担が増大して不純物の除去率が低減するため、使用者、浄水提供者あるいはメンテナンス業者等の作業者がタンク内のTDS濃度を定期的に測定して、RO膜の劣化を監視する必要がある。   When returning the concentrated water to the raw water tank in the circulation type reprocessing system, the concentration of total dissolved substances or total dissolved solids (TDS) in the tank gradually increases, Since the burden increases and the removal rate of impurities decreases, it is necessary for workers such as users, water purification providers or maintenance contractors to periodically measure the TDS concentration in the tank and monitor the deterioration of the RO membrane. is there.

そこで、本発明の第3の形態によれば、前記原水タンクの使用時においては、少なくとも原水供給開始時ないしそれ以降の所定時間経過時における、前記貯留水の不純物濃度を前記原水センサにより予め計測し、その初期計測値と、前記浄水タンクに供給する浄水の不純物濃度を前記浄水センサにより計測した浄水の計測値とを前記比較手段により比較することにより、前記原水タンク内の不純物濃度の変化を監視しながら浄水供給することができる。即ち、前記原水タンクに前記濃縮水を戻して前記RO膜による再浄化を行わせる浄化循環システムの稼働時においては、前記浄水濃度が前記基準濃度より大きくなったとき、前記異常報知手段により前記原水の交換及び/又は前記RO膜の交換を報知するので、定期的に作業員が浄水濃度を計測しなくても、前記異常報知により前記原水の交換及び/又は前記RO膜の交換を知ることができ、メンテナンス作業の省力化を実現でき、浄水処理コストの低減を図ることができる。一方、水道水の使用時においても、前記濃縮水の循環は行われないが、前記水道水の不純物濃度を前記原水センサにより予め計測し、その初期計測値と、前記浄水タンクに供給する浄水の不純物濃度を前記浄水センサにより計測した浄水の計測値とを前記比較手段により比較することにより、前記浄水濃度が前記基準濃度より大きくなったときに前記異常原水濃度に達したとして、前記水道水の供給異常を報知するので、定期的に作業員が浄水濃度を計測しなく済み、メンテナンス作業の省力化を実現でき、浄水処理コストの低減を図ることができる。
本発明における報知出力の態様には、アラーム音、アラームランプ点灯・点滅、アラーム表示等が含まれる。
Therefore, according to the third aspect of the present invention, when the raw water tank is used, the impurity concentration of the stored water is measured in advance by the raw water sensor at least at the time of starting the supply of the raw water or at a predetermined time thereafter. Then, by comparing the initial measured value with the measured value of purified water measured by the purified water sensor with respect to the impurity concentration of purified water supplied to the purified water tank, the change of the impurity concentration in the raw water tank is compared. Clean water can be supplied while monitoring. That is, during operation of a purification circulation system that returns the concentrated water to the raw water tank and performs re-purification by the RO membrane, when the purified water concentration becomes higher than the reference concentration, the abnormality notification means causes the raw water Therefore, even if a worker does not regularly measure the concentration of purified water, it is possible to know the replacement of the raw water and / or the replacement of the RO membrane by the abnormality notification. This can save labor for maintenance work and can reduce the cost of water purification. On the other hand, when the tap water is used, the concentrated water is not circulated, but the impurity concentration of the tap water is measured in advance by the raw water sensor, and the initial measured value and the purified water supplied to the purified water tank. By comparing the measured value of the purified water measured by the purified water sensor with the comparison means by the comparison means, when the purified water concentration becomes higher than the reference concentration, the abnormal raw water concentration is reached. Since the supply abnormality is notified, it is not necessary for the worker to regularly measure the purified water concentration, labor saving of the maintenance work can be realized, and the purified water treatment cost can be reduced.
The form of the notification output in the present invention includes alarm sound, alarm lamp lighting / flashing, alarm display, and the like.

第3の形態においては、水道水使用時にも前記原水センサの計測結果に基づく前記基準値の設定処理を行っているが、水道水の基準濃度値は公表され、既知となっていることに鑑み、前記基準値の設定処理を省略することができる。即ち、本発明の第4の形態によれば、前記原水タンクの使用時においては、第3の形態と同様に、少なくとも原水供給開始時ないしそれ以降の所定時間経過時における、前記貯留水の不純物濃度を前記原水センサにより予め計測し、その初期計測値と、前記浄水タンクに供給する浄水の不純物濃度を前記浄水センサにより計測した浄水の計測値とを前記比較手段により比較することにより、前記原水タンク内の不純物濃度の変化を監視しながら浄水供給して、前記浄水濃度が前記基準濃度より大きくなったとき、前記原水タンク使用時異常報知手段により前記原水の交換及び/又は前記RO膜の交換を異常報知するので、定期的に作業員が浄水濃度を計測しなくても、前記異常報知により前記原水の交換及び/又は前記RO膜の交換を知ることができ、メンテナンス作業の省力化を実現でき、浄水処理コストの低減を図ることができる。   In the third embodiment, the setting process of the reference value based on the measurement result of the raw water sensor is performed even when the tap water is used. However, the reference concentration value of the tap water is published and known. The reference value setting process can be omitted. That is, according to the fourth aspect of the present invention, when the raw water tank is used, as in the third aspect, the stored water impurities at least at the time of starting the supply of the raw water or at a predetermined time thereafter. Concentration is measured in advance by the raw water sensor, and the initial measured value is compared with the measured value of purified water measured by the purified water sensor with respect to the impurity concentration of purified water supplied to the purified water tank. When purified water is supplied while monitoring changes in the impurity concentration in the tank, and the purified water concentration becomes higher than the reference concentration, the raw water tank and / or the RO membrane are replaced by the abnormality notification means when the raw water tank is used. Therefore, even if the worker does not regularly measure the purified water concentration, it is possible to know the replacement of the raw water and / or the replacement of the RO membrane by the abnormality notification. Can be, can be realized labor saving of the maintenance work, it is possible to reduce the water treatment costs.

一方、前記切替スイッチにより前記水道管に切り替えて、前記水道管からの水道水を原水供給するときには、予め設定記憶された前記基準水道水濃度に基づき、前記浄水タンクに供給する浄水の不純物濃度を前記浄水センサにより計測した浄水の計測値の比較処理が行われる。従って、第4の形態によれば、水道水の前記基準水道水濃度の使用により、第3の形態における前記基準値の設定処理を省略することができると共に、第3の形態と同様に、前記浄水濃度が前記基準水道水濃度より大きくなったとき、前記水道水使用時異常報知手段により前記水道水の供給異常及び/又は前記RO膜の交換を異常報知するので、定期的に作業員が浄水濃度を計測しなくても、前記異常報知により前記水道水の供給異常及び/又は前記RO膜の交換を知ることができ、メンテナンス作業の省力化を実現でき、浄水処理コストの低減を図ることができる。
本発明における報知出力の態様には、アラーム音、アラームランプ点灯・点滅、アラーム表示等が含まれる。
On the other hand, when supplying the tap water from the water pipe by switching to the water pipe by the changeover switch, the impurity concentration of the purified water supplied to the water purification tank is set based on the reference tap water concentration set and stored in advance. The comparison process of the measured value of the purified water measured with the said purified water sensor is performed. Therefore, according to the fourth embodiment, by using the reference tap water concentration of tap water, the setting process of the reference value in the third embodiment can be omitted, and as in the third embodiment, When the purified water concentration becomes higher than the reference tap water concentration, the abnormality notification means when the tap water is in use notifies the supply abnormality of the tap water and / or the replacement of the RO membrane. Even without measuring the concentration, it is possible to know the supply abnormality of the tap water and / or the replacement of the RO membrane by the abnormality notification, to realize the labor saving of the maintenance work, and to reduce the cost of the water purification treatment. it can.
The form of the notification output in the present invention includes alarm sound, alarm lamp lighting / flashing, alarm display, and the like.

本発明の第5の形態によれば、前記送水停止手段により前記浄水濃度が前記異常原水濃度を超えたときに、前記送水ポンプの送水を停止させるので、純度の低下した浄水を前記浄水タンクに送水することなく、前記原水の交換、前記水道水の供給異常あるいは前記RO膜の交換を促すことができる。   According to the fifth aspect of the present invention, when the purified water concentration exceeds the abnormal raw water concentration by the water supply stopping means, the water supply pump stops the water supply, so the purified water having a reduced purity is supplied to the purified water tank. Without sending water, the exchange of the raw water, the supply abnormality of the tap water, or the exchange of the RO membrane can be promoted.

本発明の第6の形態によれば、前記送水停止手段により前記浄水濃度が前記貯留水使用時に前記基準値を超えたときに、あるいは前記水道水使用時に前記基準水道水濃度を超えたときに、前記送水ポンプの送水を停止させるので、純度の低下した浄水を前記浄水タンクに送水することなく、前記原水の交換、前記水道水の供給異常あるいは前記RO膜の交換を促すことができる。   According to the sixth aspect of the present invention, when the purified water concentration exceeds the reference value when the stored water is used by the water supply stop means, or when the reference tap water concentration is exceeded when the tap water is used. Since the water supply of the water supply pump is stopped, it is possible to promote the replacement of the raw water, the abnormal supply of tap water, or the replacement of the RO membrane without supplying purified water having reduced purity to the water purification tank.

前記原水センサは前記原水供給管を流通する前記原水の不純物濃度を計測するので、前記原水タンクの原水供給状態、つまりタンクの空状態も監視することが可能になる。即ち、本発明の第7の形態によれば、前記切替スイッチの切替設定により前記原水タンクから前記貯留水を原水供給するとき、前記空報知手段により前記原水タンクが空になったことを報知するので、前記原水の交換時期を適切に知ることができ、前記原水タンクの監督作業を簡素化することができ、浄水処理コストの低減に寄与する。   Since the raw water sensor measures the impurity concentration of the raw water flowing through the raw water supply pipe, it is possible to monitor the raw water supply state of the raw water tank, that is, the empty state of the tank. That is, according to the seventh aspect of the present invention, when the stored water is supplied from the raw water tank by the switching setting of the changeover switch, the empty notification means notifies that the raw water tank is empty. Therefore, it is possible to appropriately know the replacement time of the raw water, simplify the supervision work of the raw water tank, and contribute to the reduction of water purification costs.

本発明の第8の形態によれば、前記濃縮水帰還管は、前記RO膜の浸透圧を所定値に保持する流量調整流路と、前記流量調整流路に併設された開閉自在のバイパス流路とを含み、前記RO膜の通水初期時に前記バイパス流路を開放するので、前記RO膜を交換した際には、通水初期時に前記バイパス流路を開放した後、原水を加圧して供給し、前記RO膜の水圧が所定値を超えたときに前記バイパス流路を閉塞することができ、前記RO膜交換後の再稼動を自動化して、浄水処理の省力化・自動化を実現することができる。   According to an eighth aspect of the present invention, the concentrated water return pipe includes a flow rate adjusting flow path that maintains the osmotic pressure of the RO membrane at a predetermined value, and an openable and closable bypass flow that is provided in the flow rate adjusting flow path. And when the RO membrane is replaced, the raw water is pressurized after opening the bypass channel at the initial stage of water flow. When the water pressure of the RO membrane exceeds a predetermined value, the bypass flow path can be closed, and the re-operation after the RO membrane replacement is automated to realize labor saving and automation of water purification treatment. be able to.

本発明の第9又は第10の形態によれば、前記原水センサ及び前記浄水センサは、水に溶け込んだ全溶解性物質を測定するTDSセンサからなるので、夫々、前記原水、前記浄水の不純物濃度を高精度に計測して、前記原水の交換の時期、前記水道水の供給異常あるいは前記RO膜の交換の時期を適切に検出して報知することができる。   According to the ninth or tenth aspect of the present invention, since the raw water sensor and the water purification sensor are composed of TDS sensors that measure all soluble substances dissolved in water, the impurity concentrations of the raw water and the purified water respectively. Can be measured with high accuracy, and the time of replacement of the raw water, abnormal supply of the tap water or the time of replacement of the RO membrane can be appropriately detected and notified.

本発明の第11の形態によれば、前記浄化フィルタ部の、少なくとも原水導入側流路に、前記原水を活性炭槽を通過させて浄化する活性炭処理部を設け、前記活性炭槽を通過した原水を前記RO膜に通水するので、前記RO膜に供給する前段階で、前記活性炭槽によって原水中の有害物質を吸着、除去して、より効率的に不純物が除去された高純度の浄水を生成することができる。   According to the eleventh aspect of the present invention, at least the raw water introduction-side flow path of the purification filter unit is provided with an activated carbon treatment unit that purifies the raw water through the activated carbon tank, and the raw water that has passed through the activated carbon tank Since water is passed through the RO membrane, before the supply to the RO membrane, harmful substances in the raw water are adsorbed and removed by the activated carbon tank to produce highly purified water from which impurities are removed more efficiently. can do.

本発明の一実施形態である浄水処理システムの概略構成図である。It is a schematic block diagram of the water purification system which is one Embodiment of this invention. 前記浄水処理システムにおける浄水処理制御を示すフローチャートである。It is a flowchart which shows the water purification process control in the said water purification system. 前記浄水処理プログラムの一部である、水道水使用時により実行される浄水処理制御を示すフローチャートである。It is a flowchart which shows the water purification process control performed by the time of tap water use which is a part of the said water purification process program. 前記浄水処理システムにおける取水処理制御を示すフローチャートである。It is a flowchart which shows the water intake process control in the said water purification system. 前記浄水処理システムにおける貯水量保持の監視処理及び浄水殺菌処理を示すフローチャートである。It is a flowchart which shows the monitoring process of the stored water amount in the said purified water processing system, and a purified water sterilization process. 本発明の別の実施形態である前記浄水処理システムの浄水処理制御を示すフローチャートである。It is a flowchart which shows the water purification process control of the said water purification system which is another embodiment of this invention.

本発明の実施形態に係る切替型RO浄水器を含む浄水処理システムを図面を参照して以下に説明する。
図1は本実施形態の浄水処理システムの概略構成図である。図1では流通する水流経路を実線で示し、電磁弁等への電気系統の信号線を破線で示している。
A water purification system including a switching type RO water purifier according to an embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a water purification system of the present embodiment. In FIG. 1, the flowing water flow path is indicated by a solid line, and the signal line of the electric system to the solenoid valve or the like is indicated by a broken line.

この浄水処理システムにおける切替型RO浄水器は、高級水や水道水等の原水(貯留水)2を貯留する原水タンク1と、原水タンク1から原水2を送水ポンプ4により送水、供給する原水供給管3と、原水供給管3を流通する原水2の不純物濃度を計測する原水センサ5と、原水供給管3から原水2を通水して原水2中の不純物を除去して浄水を生成するRO膜装置9を含む浄化フィルタ部と、RO膜の浄化作用により生ずる濃縮水を原水タンク1に帰還させる濃縮水帰還管23と、浄水29を貯留する浄水タンク26と、前記浄化フィルタ部から浄水を浄水タンク26に供給する浄水供給管24と、浄水供給管24を流通する浄水の不純物濃度を計測する浄水センサ25と、浄水タンク26から浄水29を必要量だけ供給する浄水提供部とを有する。高級水には、湧水や深層水を活性炭でろ過し、更に加熱又はフィルター除菌したミネラル水等が使用される。原水タンク1及び浄水タンク26の容積は、夫々、10〜20リットル、4〜8リットルである。   The switched-type RO water purifier in this water purification system is a raw water tank 1 for storing raw water (reserved water) 2 such as high-grade water and tap water, and a raw water supply for supplying and supplying raw water 2 from the raw water tank 1 by a water supply pump 4. The raw water sensor 5 that measures the impurity concentration of the raw water 2 flowing through the pipe 3, the raw water supply pipe 3, and the RO that passes through the raw water 2 from the raw water supply pipe 3 to remove the impurities in the raw water 2 and generates purified water. The purification filter unit including the membrane device 9, the concentrated water return pipe 23 for returning the concentrated water generated by the purification action of the RO membrane to the raw water tank 1, the purified water tank 26 for storing the purified water 29, and purified water from the purification filter unit A purified water supply pipe 24 that supplies the purified water tank 26, a purified water sensor 25 that measures the impurity concentration of purified water that flows through the purified water supply pipe 24, and a purified water supply unit that supplies the required amount of purified water 29 from the purified water tank 26, A. As the high-grade water, mineral water or the like obtained by filtering spring water or deep water with activated carbon and further heating or filter sterilizing is used. The volumes of the raw water tank 1 and the purified water tank 26 are 10 to 20 liters and 4 to 8 liters, respectively.

原水供給管3は電磁三方弁3Cを介して、タンク水給水管3Aと水道水給水管3Bに分岐、接続している。タンク水給水管3Aの始端部は原水タンク1内に浸漬される。水道水給水管3Bには水道バルブ3Dを経て水道管3Eに連通している。濃縮水帰還管23の途中には電磁三方弁23Aが設置されており、電磁三方弁23Aには、濃縮水が原水タンク1に帰還されることなく排水される排水管23Bが分岐、接続されている。電磁三方弁23Aによる電磁的切換によって濃縮水の送出方向が原水タンク1の帰還側と排水管23Bの排水側に切り替えられる。電磁三方弁23Aは制御回路部41からの駆動信号S10により切換制御される。電磁三方弁23Aに代えて手動操作による三方弁を使用してもよい。   The raw water supply pipe 3 is branched and connected to a tank water supply pipe 3A and a tap water supply pipe 3B via an electromagnetic three-way valve 3C. The starting end of the tank water supply pipe 3 </ b> A is immersed in the raw water tank 1. The tap water supply pipe 3B communicates with the water pipe 3E via the water valve 3D. An electromagnetic three-way valve 23A is installed in the middle of the concentrated water return pipe 23, and a drain pipe 23B from which the concentrated water is drained without returning to the raw water tank 1 is branched and connected to the electromagnetic three-way valve 23A. Yes. The concentrated water feed direction is switched between the return side of the raw water tank 1 and the drain side of the drain pipe 23B by electromagnetic switching by the electromagnetic three-way valve 23A. The electromagnetic three-way valve 23A is switch-controlled by a drive signal S10 from the control circuit unit 41. Instead of the electromagnetic three-way valve 23A, a manually operated three-way valve may be used.

前記浄化フィルタ部はRO膜装置9と、その前後に配設された3つの活性炭槽7、8、10からなる。RO膜装置9の前方の流路側には、2つの活性炭槽7、8が直列状に接続され、後方側にも活性炭槽9が直列状に接続されている。活性炭槽7、8、10はタワー形状をなし、最前段の活性炭槽7の原水導入口には、原水供給管3の送水端6が連結されている。原水センサ5及び送水ポンプ4は原水供給管3に配設されている。原水センサ5は送水ポンプ4により原水タンク1から汲み出された原水2に含有されるTDSの含有量を計測するTDSセンサからなる。原水センサ5は原水のTDSの計測信号S8を出力する。原水供給管3の取水端は原水タンク1の底部付近まで延設されている。送水ポンプ4は電動ポンプからなり、後述の制御回路部41からの駆動信号S4により駆動制御される。   The purification filter section includes an RO membrane device 9 and three activated carbon tanks 7, 8, and 10 disposed before and after the RO membrane device 9. Two activated carbon tanks 7 and 8 are connected in series on the flow path side in front of the RO membrane device 9, and the activated carbon tank 9 is also connected in series on the rear side. The activated carbon tanks 7, 8, and 10 have a tower shape, and the water supply end 6 of the raw water supply pipe 3 is connected to the raw water inlet of the activated carbon tank 7 in the foremost stage. The raw water sensor 5 and the water pump 4 are disposed in the raw water supply pipe 3. The raw water sensor 5 includes a TDS sensor that measures the content of TDS contained in the raw water 2 pumped from the raw water tank 1 by the water pump 4. The raw water sensor 5 outputs a TDS measurement signal S8 of the raw water. The intake end of the raw water supply pipe 3 is extended to the vicinity of the bottom of the raw water tank 1. The water pump 4 is an electric pump, and is driven and controlled by a drive signal S4 from a control circuit unit 41 described later.

活性炭槽7、8は連結管11により連結されている。活性炭槽8とRO膜装置9は連結管12により連結されている。原水タンク1から汲み出された原水2は連結管11、12を介して活性炭槽7、8を順次、通過し、活性炭の吸着作用により、原水2に含まれる塩素イオンや有機化合物等の有害物質を吸着して除去する。連結管12の中間には三方弁13が配設されている。活性炭槽7、8の活性炭を入替える際、新品の活性炭に含まれる塵埃がRO膜に流れ込まないように、三方弁13を出口側流路14に切換え、活性炭槽7、8内部を洗い流す活性炭前処理を行う。この活性炭前処理を施した後、三方弁13をRO膜装置9に切換え、活性炭槽7、8を通過した原水をRO膜装置9の給水口(原水導入口)に流入させる。RO膜装置9の後方側にも、連結管15を介して最終段の活性炭槽10が配設されている。   The activated carbon tanks 7 and 8 are connected by a connecting pipe 11. The activated carbon tank 8 and the RO membrane device 9 are connected by a connecting pipe 12. The raw water 2 pumped from the raw water tank 1 sequentially passes through the activated carbon tanks 7 and 8 through the connecting pipes 11 and 12, and harmful substances such as chlorine ions and organic compounds contained in the raw water 2 due to the adsorption action of the activated carbon. Is removed by adsorption. A three-way valve 13 is disposed in the middle of the connecting pipe 12. When the activated carbon in the activated carbon tanks 7 and 8 is replaced, the three-way valve 13 is switched to the outlet channel 14 so that dust contained in the new activated carbon does not flow into the RO membrane, and the activated carbon tanks 7 and 8 are washed away inside the activated carbon tank. Process. After performing this activated carbon pretreatment, the three-way valve 13 is switched to the RO membrane device 9, and the raw water that has passed through the activated carbon tanks 7 and 8 is caused to flow into the water supply port (raw water introduction port) of the RO membrane device 9. Also on the rear side of the RO membrane device 9, a final stage activated carbon tank 10 is disposed via a connecting pipe 15.

RO膜装置9は、RO膜(図示せず)を収納させた筒状容器からなり、容器上には、給水口、純水排出口及び濃縮水排出口が設けられている。純水排出口からは給水した水から不純物を高度に除去した純水が排出され、濃縮水排出口からは逆浸透作用により生じた濃縮水が排出される。RO膜には中空糸膜、スパイラル膜あるいはチューブラー膜等を使用でき、膜材質としては酢酸セルロース、芳香族ポリアミド、ポリビニルアルコールあるいはポリスルホン等を使用することができる。   The RO membrane device 9 is a cylindrical container in which an RO membrane (not shown) is accommodated, and a water supply port, a pure water discharge port, and a concentrated water discharge port are provided on the container. Pure water from which impurities are highly removed is discharged from the pure water discharge port, and concentrated water generated by reverse osmosis is discharged from the concentrated water discharge port. As the RO membrane, a hollow fiber membrane, a spiral membrane, a tubular membrane or the like can be used, and as the membrane material, cellulose acetate, aromatic polyamide, polyvinyl alcohol, polysulfone or the like can be used.

RO膜装置9の浄水排出口(純水排出口)は連結管15を介して活性炭槽10に接続されている。RO膜装置9の濃縮水排出口は連結管18を介して濃縮水帰還管23に連結している。濃縮水帰還管23の排出口は原水タンク1内部に収設され、RO膜を経て不純物が濃縮された濃縮水を原水タンク1に帰還させ、再処理に供する。原水タンク1に戻された濃縮水は原水2となって、送水ポンプ6により再び前記浄化フィルタ部に送水される。連結管15及び濃縮水帰還管23によって、濃縮水を原水として原水タンク1に戻し、RO膜装置9に循環させる循環処理システムが構成されている。   A purified water discharge port (pure water discharge port) of the RO membrane device 9 is connected to the activated carbon tank 10 via a connecting pipe 15. The concentrated water discharge port of the RO membrane device 9 is connected to the concentrated water return pipe 23 via the connecting pipe 18. The outlet of the concentrated water return pipe 23 is accommodated in the raw water tank 1, and the concentrated water enriched with impurities through the RO membrane is returned to the raw water tank 1 for reprocessing. The concentrated water returned to the raw water tank 1 becomes the raw water 2 and is sent again to the purification filter section by the water pump 6. The connection pipe 15 and the concentrated water return pipe 23 constitute a circulation processing system that returns the concentrated water to the raw water tank 1 as raw water and circulates it through the RO membrane device 9.

濃縮水帰還管23には、連結管18から分岐して、RO膜装置9のRO膜の浸透圧を所定値に保持する流量調整流路19と、流量調整流路19に併設されたバイパス流路20が設けられている。流量調整流路19には、所定のオリフィスからなる流量調整器22が配設されている。RO膜装置9のRO膜による逆浸透作用を働かせるには加圧流をRO膜に流す必要があるので、流量調整器22により、濃縮水帰還管23に流す濃縮水の流量を特定流量、例えば200ミリリットル/分に制限して、前記加圧流を生成している。   The concentrated water return pipe 23 is branched from the connecting pipe 18 and has a flow rate adjusting channel 19 that maintains the osmotic pressure of the RO membrane of the RO membrane device 9 at a predetermined value, and a bypass flow that is provided in the flow rate adjusting channel 19. A path 20 is provided. A flow rate regulator 22 made of a predetermined orifice is disposed in the flow rate regulation channel 19. In order to exert the reverse osmosis action by the RO membrane of the RO membrane device 9, it is necessary to flow a pressurized flow through the RO membrane, so that the flow rate of the concentrated water flowing through the concentrated water return pipe 23 is set to a specific flow rate, for example 200 The pressure flow is generated at a limit of milliliters / minute.

流量調整流路19に併設されたバイパス流路20には電磁弁21が設置されている。原水タンク1の原水2又はタンク自体の取替え時、あるいは活性炭槽7、8、10、RO膜装置9の取替え時には、通水初期に電磁弁21を開放側に切り換えて、RO膜装置9から排出される濃縮水を大量に排出させ、その後、RO膜全体に通水が満たされたとき、電磁弁21を閉成側に切り換えて、バイパス流路20への流通を遮断する。バイパス流路20の遮断により、濃縮水は流量調整流路19にのみ流れ、前記流量調整器22による流量の絞込みによって加圧流を生じて、円滑に逆浸透膜作用を原水に及ぼすことができる。電磁弁21は制御回路部41からの駆動信号S5により開閉制御される。   An electromagnetic valve 21 is installed in the bypass flow path 20 provided along with the flow rate adjustment flow path 19. When the raw water 2 of the raw water tank 1 or the tank itself is replaced, or when the activated carbon tanks 7, 8, 10 and the RO membrane device 9 are replaced, the electromagnetic valve 21 is switched to the open side at the initial stage of water flow and discharged from the RO membrane device 9. The concentrated water to be discharged is discharged in a large amount, and then, when the entire RO membrane is filled with water, the solenoid valve 21 is switched to the closed side to block the flow to the bypass flow path 20. By shutting off the bypass flow path 20, the concentrated water flows only in the flow rate adjustment flow path 19, and a pressurized flow is generated by narrowing the flow rate by the flow rate regulator 22, so that the reverse osmosis membrane action can be smoothly applied to the raw water. The solenoid valve 21 is controlled to open and close by a drive signal S5 from the control circuit unit 41.

RO膜装置9と活性炭槽10の間の連結管15の中間には三方弁16が配設されている。RO膜装置9の入替え時等において、最初に流れ出る浄水には、活性炭やRO膜に付着している僅かの汚れが混入しているおそれがあるので、三方弁16を出口側流路17に切換えて外部に排出させることができる。この排出処理を施した後、三方弁16を活性炭槽10に切換え、RO膜装置9により生成された浄水を活性炭槽10の浄水導入口に流入させる。活性炭槽10に導入された浄水は活性炭槽10を通過することにより、活性炭の吸着作用により、原水2に含まれる微量の有害物質も取り除かれて、活性炭槽10の浄水排水口に接続された浄水供給管24を通じて浄水タンク26に排出される。浄水供給管24に設けた浄水センサ25は、浄水に含有されるTDSの含有量を計測するTDSセンサからなる。浄水センサ25は浄水のTDSの計測信号S3を出力する。   A three-way valve 16 is disposed in the middle of the connecting pipe 15 between the RO membrane device 9 and the activated carbon tank 10. When the RO membrane device 9 is replaced, the purified water that flows out first may be contaminated with activated carbon or a slight amount of dirt adhering to the RO membrane, so the three-way valve 16 is switched to the outlet-side flow path 17. Can be discharged to the outside. After performing this discharge process, the three-way valve 16 is switched to the activated carbon tank 10, and the purified water generated by the RO membrane device 9 is caused to flow into the purified water inlet of the activated carbon tank 10. The purified water introduced into the activated carbon tank 10 passes through the activated carbon tank 10, thereby removing a trace amount of harmful substances contained in the raw water 2 by the adsorption action of the activated carbon, and the purified water connected to the purified water drain of the activated carbon tank 10. The water is discharged to the purified water tank 26 through the supply pipe 24. The purified water sensor 25 provided in the purified water supply pipe 24 includes a TDS sensor that measures the content of TDS contained in the purified water. The water purification sensor 25 outputs a TDS measurement signal S3.

前記浄水提供部は、浄水タンク26の浄水を蛇口38を通じて冷水又は温水として提供可能に構成されている。浄水供給管24の排水端は、浄水タンク26の上蓋45に取着され、その排水口はタンク内部に臨んでいる。浄水供給管24の排水端にはフロート弁27が設けられている。また、浄水タンク26の上蓋45には、タンク内部に向けて、紫外線殺菌灯31と、液面センサ32が取着されている。紫外線殺菌灯31は制御回路部41からの制御信号S1により点灯・消灯制御される。液面センサ32は収容された浄水液面に接触することにより、所定量の浄水が貯留されているか否かを検出する。液面センサ32は所定量の浄水が貯留されていることを検出する検出手段であり、液面の上昇・下降に応じて上下動するフロートを有し、液面の上限位置と下限位置を検出するフロートスイッチからなる。液面センサ32が液面の上限位置LH又は下限位置LLを検出したとき検出信号S2を出力する。制御回路部41は検出信号S2の受信により送水ポンプ4を停止させて、浄水タンク26への浄水の送水を停止させる。送水の停止後、所定時間が経過したとき、制御回路部41は駆動信号S4を送水ポンプ4に送信して駆動させ、浄水の送水を開始する。液面センサ32による浄水量の監視と送水ポンプ4の間欠駆動により、浄水タンク26内の浄水が一定の水位に保持されるように浄水量の制御が行われる。液面センサ32のフロートスイッチに代えて、上限位置LHと下限位置LLを夫々、検知する一対のレベルセンサを設置してもよい。   The said purified water provision part is comprised so that the purified water of the purified water tank 26 can be provided as cold water or warm water through the faucet 38. The drain end of the purified water supply pipe 24 is attached to the upper cover 45 of the purified water tank 26, and the drain port faces the inside of the tank. A float valve 27 is provided at the drain end of the purified water supply pipe 24. Moreover, the ultraviolet germicidal lamp 31 and the liquid level sensor 32 are attached to the upper cover 45 of the water purification tank 26 toward the inside of the tank. The ultraviolet germicidal lamp 31 is controlled to be turned on / off by a control signal S 1 from the control circuit unit 41. The liquid level sensor 32 detects whether or not a predetermined amount of purified water is stored by contacting the stored purified water level. The liquid level sensor 32 is a detecting means for detecting that a predetermined amount of purified water is stored, has a float that moves up and down in accordance with the rise and fall of the liquid level, and detects the upper limit position and the lower limit position of the liquid level. It consists of a float switch. When the liquid level sensor 32 detects the upper limit position LH or the lower limit position LL of the liquid level, it outputs a detection signal S2. The control circuit unit 41 stops the water supply pump 4 by receiving the detection signal S <b> 2 and stops water supply to the water purification tank 26. When a predetermined time has elapsed after stopping the water supply, the control circuit unit 41 transmits the drive signal S4 to the water supply pump 4 to drive it, and starts the supply of purified water. By monitoring the amount of purified water by the liquid level sensor 32 and intermittently driving the water pump 4, the amount of purified water is controlled so that the purified water in the purified water tank 26 is maintained at a constant water level. Instead of the float switch of the liquid level sensor 32, a pair of level sensors for detecting the upper limit position LH and the lower limit position LL may be provided.

フロート弁27のフロート28の設置位置は液面センサ32の上限検出位置よりも上方に位置し、液面センサ32の検出後も貯留水量が増大したとき、液面上昇によりフロート28が浮力で動作して、フロート弁27を強制的に閉成して、浄水の供給を緊急に停止させることができる。浄水タンク26の底面にはドレイン管43が配設され、ドレイン管43は開閉弁30により開閉される。   When the float 28 is located above the upper limit detection position of the liquid level sensor 32 and the amount of stored water increases after the liquid level sensor 32 is detected, the float 28 operates with buoyancy due to the rise in liquid level. Then, the float valve 27 can be forcibly closed to urgently stop the supply of purified water. A drain pipe 43 is disposed on the bottom surface of the water purification tank 26, and the drain pipe 43 is opened and closed by the opening / closing valve 30.

浄水タンク26には冷却装置(図示せず)が付設されており、貯留水を5〜10℃程度まで冷却して冷水化することができる。冷却温度は任意に設定することができる。浄水タンク26には2本の取水管33、42がタンク内に連通して取着されている。取水管33の一端はホットタンク34の内部に延設されている。ホットタンク34は加熱ヒータ(図示せず)により加熱され、取水管33を通じて浄水タンク26から供給された浄水を加熱して温水化する。ホットタンク34の底面にはドレイン管44が配設され、ドレイン管44は開閉弁36により開閉される。ホットタンク34には温水管35が接続され、温水管35の一端には電磁弁37と蛇口38が配設されている。ホットタンク34の温水は浄水タンク26からの水圧で温水管35を通じて蛇口38より排水される。   The water purification tank 26 is provided with a cooling device (not shown), and the stored water can be cooled to about 5 to 10 ° C. to be chilled. The cooling temperature can be set arbitrarily. Two intake pipes 33 and 42 are attached to the water purification tank 26 in communication with the tank. One end of the intake pipe 33 is extended inside the hot tank 34. The hot tank 34 is heated by a heater (not shown), and the purified water supplied from the purified water tank 26 through the intake pipe 33 is heated to warm it. A drain pipe 44 is disposed on the bottom surface of the hot tank 34, and the drain pipe 44 is opened and closed by an opening / closing valve 36. A hot water pipe 35 is connected to the hot tank 34, and an electromagnetic valve 37 and a faucet 38 are disposed at one end of the hot water pipe 35. The hot water in the hot tank 34 is drained from the faucet 38 through the hot water pipe 35 with the water pressure from the water purification tank 26.

取水管42の一端には電磁弁40が配設され、更に、排出管39を介して蛇口38に接続されている。浄水タンク26の浄水は前記冷却装置により冷水化されて、冷水として、浄水タンク26からの水圧で取水管42及び排出管39を通じて蛇口38より排水される。電磁弁37、40は夫々、制御回路部41からの開閉信号S6、S7により開閉される。
なお、本実施形態における電磁弁には、電磁石(ソレノイド)の磁力によりプランジャを可動させるソレノイド弁等を使用することができる。また、原水センサ5及び浄水センサ25には、0〜2000ppmの範囲でTDS検出が可能で、0.1〜10ppmの分解能を有するTDSセンサを使用することができる。
An electromagnetic valve 40 is disposed at one end of the water intake pipe 42, and is further connected to a faucet 38 via a discharge pipe 39. The purified water in the purified water tank 26 is chilled by the cooling device, and is drained from the faucet 38 through the intake pipe 42 and the discharge pipe 39 as cold water by the water pressure from the purified water tank 26. The electromagnetic valves 37 and 40 are opened and closed by open / close signals S6 and S7 from the control circuit unit 41, respectively.
In addition, the solenoid valve etc. which move a plunger with the magnetic force of an electromagnet (solenoid) can be used for the solenoid valve in this embodiment. Moreover, TDS detection is possible for the raw | natural water sensor 5 and the water purification sensor 25 in the range of 0-2000 ppm, and a TDS sensor which has a resolution of 0.1-10 ppm can be used.

制御回路部41はマイクロプロセッサにより構成され、本発明に係る浄水処理プログラム、取水処理プログラム、殺菌灯の点灯制御プログラム及び原水切替プログラムを記憶するプログラム記憶メモリ46を有する。制御回路部41には、液面センサ32の液面レベル検出信号S2、浄水センサ25の計測信号S3及び原水センサ5の計測信号S8が与えられ、これらの信号データを記憶するワークメモリ47が制御回路部41に設けられている。外部出力手段として、原水又はRO膜の交換時期をアラーム報知する警報器48と、アラーム内容を表示するディスプレイ49が制御回路部41に接続されている。外部入力手段として、各種操作キーからなる入力手段50と原水切替スイッチ51が制御回路部41に接続されている。原水切替スイッチ51は本実施形態に係る切替型RO浄水器により浄水処理する原水を、原水タンク1の貯留水又は水道水のいずれかに切替設定するための設定手段である。原水切替スイッチ51により原水タンク1の使用が設定されたとき、タンク貯留水の原水2が原水供給管3を通じて通水される。原水切替スイッチ51により水道水の使用が設定されたとき、水道管タンク貯留水の原水2が原水供給管3を通じて通水される。   The control circuit unit 41 includes a microprocessor, and has a program storage memory 46 for storing a water purification treatment program, a water intake treatment program, a germicidal lamp lighting control program, and a raw water switching program according to the present invention. The control circuit unit 41 is given a liquid level detection signal S2 of the liquid level sensor 32, a measurement signal S3 of the water purification sensor 25, and a measurement signal S8 of the raw water sensor 5, and a work memory 47 for storing these signal data is controlled. The circuit unit 41 is provided. As external output means, an alarm device 48 for alarming the replacement timing of the raw water or the RO membrane and a display 49 for displaying the alarm content are connected to the control circuit unit 41. As external input means, an input means 50 comprising various operation keys and a raw water selector switch 51 are connected to the control circuit unit 41. The raw water changeover switch 51 is a setting unit for switching and setting the raw water to be purified by the switching type RO water purifier according to the present embodiment to either the stored water or the tap water in the raw water tank 1. When the use of the raw water tank 1 is set by the raw water changeover switch 51, the raw water 2 of the tank stored water is passed through the raw water supply pipe 3. When the use of tap water is set by the raw water switch 51, the raw water 2 stored in the water pipe tank is passed through the raw water supply pipe 3.

図2は制御回路部41の浄水処理プログラムにより実行される浄水処理制御を示すフローチャートである。
浄水処理の開始に先立ち、事前に、各種前処理が行われる。活性炭槽7、8の活性炭入替えを行うときは、三方弁13のマニュアル開閉によって上記活性炭前処理を行っておく。また、原水タンク1の原水2又はタンク自体の取替えた時、活性炭槽7、8、10、RO膜装置9の取替えた時、あるいは原水の切替時には、初期設定が行われる(ステップST1)。即ち、浄水前処理開始の指示入力を入力手段50により制御回路部41に与えることによって、通水初期時に、制御回路部41から駆動信号S5が送信され、電磁弁21を開放側に切り換える。ついで、RO膜装置9から排出される濃縮水を大量に排出させて、RO膜全体に通水が満たされたとき、電磁弁21を閉成側に切り換えて、バイパス流路20への流通を遮断し、加圧水流状態に自動設定しておく。
FIG. 2 is a flowchart showing water purification treatment control executed by the water purification treatment program of the control circuit unit 41.
Prior to the start of the water purification treatment, various pretreatments are performed in advance. When the activated carbon tanks 7 and 8 are replaced, the activated carbon pretreatment is performed by manually opening and closing the three-way valve 13. Moreover, when the raw water 2 of the raw water tank 1 or the tank itself is replaced, when the activated carbon tanks 7, 8, 10 and the RO membrane device 9 are replaced, or when the raw water is switched, initial setting is performed (step ST1). That is, by giving an instruction input for starting the pretreatment of water purification to the control circuit unit 41 by the input means 50, the drive signal S5 is transmitted from the control circuit unit 41 at the initial stage of water flow, and the electromagnetic valve 21 is switched to the open side. Next, a large amount of the concentrated water discharged from the RO membrane device 9 is discharged, and when the entire RO membrane is filled with water, the solenoid valve 21 is switched to the closed side and the flow to the bypass flow path 20 is made. Shut off and automatically set to pressurized water flow.

初期設定後、原水切替スイッチ51による使用原水の確認が行われる(ステップST2)。原水切替スイッチ51の切替操作により原水タンク1の使用又は水道水の使用が設定されたとき、電磁三方弁3C及び電磁三方弁23Aの切換制御が行われる(ステップST3)。   After the initial setting, the raw water to be used is confirmed by the raw water selector switch 51 (step ST2). When the use of the raw water tank 1 or the use of tap water is set by the switching operation of the raw water selector switch 51, the switching control of the electromagnetic three-way valve 3C and the electromagnetic three-way valve 23A is performed (step ST3).

水道水使用状態から、例えば原水タンク1の取替等により新たな原水タンク1の設置が行われたとき、即ち、図1に示すように、原水タンク1内にタンク給水管3A及び濃縮水帰還管23が浸漬された状態において、制御回路部41から電磁三方弁3Cに駆動信号S9が送信されて水道水給水管3Bからタンク水給水管3Aに流路が切り換えられ、また駆動信号S10が電磁三方弁23Aに送信されて濃縮水の送出流路が原水タンク1の帰還側に切り替えられ、タンク貯留水の原水供給管3への通水が可能となる原水タンク使用状態にセットされる。
また、貯留水使用状態から、例えば原水タンク1の取替作業のために一時的な水道水使用が行われるとき、あるいは単に使用原水を水道水にする場合には、制御回路部41から電磁三方弁3Cに駆動信号S9が送信され、タンク水給水管3Aから水道水給水管3Bに流路が切り換えられ、また駆動信号S10が電磁三方弁23Aに送信されて濃縮水の送出流路が排水側に切り替えられ、水道バルブ3Dの開放により水道管3Eから、水道水Wの原水供給管3への通水が可能となる水道水使用状態にセットされる。なお、電磁三方弁3Cには手動切換可能な三方弁を使用することができる。また、単一の原水供給管3を分岐せずに、タンク水給水管3A及び水道水給水管3Bの夫々に連通する2本の原水供給管を配管して切替使用するようにしてもよい。
When a new raw water tank 1 is installed, for example, by replacing the raw water tank 1 from the state of using tap water, that is, as shown in FIG. 1, the tank water supply pipe 3A and the concentrated water return in the raw water tank 1 In the state where the pipe 23 is immersed, the drive signal S9 is transmitted from the control circuit unit 41 to the electromagnetic three-way valve 3C, the flow path is switched from the tap water supply pipe 3B to the tank water supply pipe 3A, and the drive signal S10 is electromagnetically supplied. The concentrated water delivery channel is transmitted to the three-way valve 23 </ b> A and switched to the return side of the raw water tank 1, and the raw water tank is used in a state where water can be supplied to the raw water supply pipe 3 of the tank stored water.
Further, when the tap water is used temporarily for the replacement work of the raw water tank 1 from the stored water use state or when the raw water used is simply used as the tap water, the control circuit unit 41 can be used for electromagnetic three-way. The drive signal S9 is transmitted to the valve 3C, the flow path is switched from the tank water supply pipe 3A to the tap water supply pipe 3B, and the drive signal S10 is transmitted to the electromagnetic three-way valve 23A so that the concentrated water delivery flow path is connected to the drain side. The water supply valve 3D is opened, and the water supply pipe 3E is set to a tap water usage state in which the tap water W can be passed through the raw water supply pipe 3. A three-way valve that can be manually switched can be used as the electromagnetic three-way valve 3C. Further, two raw water supply pipes communicating with each of the tank water supply pipe 3A and the tap water supply pipe 3B may be connected to be switched and used without branching the single raw water supply pipe 3.

原水タンク1の貯留水使用状態にセットされているとき(ステップST5)、ステップST6以下の浄水処理が実行される。浄水処理の開始を入力手段50により制御回路部41に与えることによって、浄水処理が開始される(ステップST4)。まず、原水センサ5によって計測された原水TDS濃度の計測値が読み取られる(ステップST6)。このTDSデータ値はワークメモリ47に最先原水濃度C1として記憶される(ステップST7)。ついで、最先原水濃度C1から基準濃度C0が算出される(ステップST8)。一般に、原水の基準に用いる水道水のTDSは50〜200ppmであるので、基準濃度C0としては最先原水濃度C1の例えば20%(α%)の値に設定されるが、α値は原水種別、浄化要求度に応じて種々に設定できる。算出された基準濃度C0の値はワークメモリ47に記憶される(ステップST9)。基準濃度C0は浄化の目標TDS除去率に相当し、α値を制御回路部41に対して可変設定可能にして任意に設定して、水道水、天然水等の原水源の濃度に応じて任意に設定することができる。本実施形態では、基準濃度C0と実測濃度との比較により、臨界濃度に達したことにより原水又はRO膜の交換時期を判別するが、原水供給管3内に配置された原水センサ5が通水を検出しなくなった時には、原水タンク1は空になったと判断して、タンクの空状態の発生を報知することができる。   When the stored water use state of the raw water tank 1 is set (step ST5), the water purification process after step ST6 is executed. By giving the start of the water purification treatment to the control circuit unit 41 by the input means 50, the water purification treatment is started (step ST4). First, the measured value of the raw water TDS concentration measured by the raw water sensor 5 is read (step ST6). The TDS data value is stored in the work memory 47 as the earliest raw water concentration C1 (step ST7). Next, a reference concentration C0 is calculated from the earliest raw water concentration C1 (step ST8). Generally, since the TDS of tap water used for the standard of raw water is 50 to 200 ppm, the reference concentration C0 is set to a value of, for example, 20% (α%) of the earliest raw water concentration C1, but the α value is the type of raw water Various settings can be made according to the degree of purification requirement. The calculated value of the reference density C0 is stored in the work memory 47 (step ST9). The reference concentration C0 corresponds to the target TDS removal rate for purification, and the α value can be arbitrarily set to the control circuit unit 41 so as to be arbitrarily set according to the concentration of raw water sources such as tap water and natural water. Can be set to In this embodiment, when the critical concentration is reached by comparing the reference concentration C0 with the actually measured concentration, the replacement time of the raw water or the RO membrane is discriminated. However, the raw water sensor 5 disposed in the raw water supply pipe 3 has a water flow rate. Can no longer be detected, it can be determined that the raw water tank 1 is empty, and the occurrence of an empty state of the tank can be notified.

RO膜装置9と活性炭槽7、8、10による浄水化の進行に伴い、浄水供給管24を通じて浄水タンク26に順次、浄水の移送が行われていくが、このとき浄水供給管24に流れる浄水に対して、浄水センサ25によりTDS濃度が計測され、その計測値Ctが読み取られる(ステップST10)。原水供給管3内に配置された原水センサ5が通水を検出しなくなった時には、計測値Ctの読み取りが行われないので(ステップST11)、原水タンク1は空になったと判断して、タンクの空状態の発生を報知する(ステップST14)。   With the progress of water purification by the RO membrane device 9 and the activated carbon tanks 7, 8, and 10, purified water is sequentially transferred to the purified water tank 26 through the purified water supply pipe 24. At this time, purified water flowing to the purified water supply pipe 24 On the other hand, the TDS concentration is measured by the water purification sensor 25, and the measured value Ct is read (step ST10). When the raw water sensor 5 disposed in the raw water supply pipe 3 no longer detects water flow, the measured value Ct is not read (step ST11). Therefore, it is determined that the raw water tank 1 is empty, and the tank The occurrence of the empty state is notified (step ST14).

計測値Ctの読み取りが正常に行われた場合には(ステップST11)、所定時間(例えば、1分)内の前記浄水TDS濃度Ctの平均値が算出され、浄水TDS濃度Ctの平均値と基準濃度C0の比較が行われる(ステップST12)。この比較により浄水TDS濃度Ctが基準濃度C0より大きくなったとき、駆動信号S4により送水ポンプ4の駆動を停止させると共に、原水2及びRO膜装置9の交換を促す警報処理を行う(ステップST13)。警報処理は警報器48のアラーム音の出力と、ディスプレイ49上のアラームメッセージの表示が行われる。このとき、RO膜装置9の取付時期(前回の交換時期)を予め記憶しておき、警報と共に、使用中のRO膜装置9の所要使用時間を表示するようにすれば、RO膜の寿命の判断に役立つ。比較処理(ステップST12)により、浄水TDS濃度Ctが基準濃度C0を超えていないときは、警報処理は行われない。その後、前記所定時間(例えば、1分)内の前記浄水TDS濃度Ctの平均値が新たに読み取られ、上記比較処理が繰り返される(ステップST10〜ST12)。   When the measurement value Ct is normally read (step ST11), the average value of the purified water TDS concentration Ct within a predetermined time (for example, 1 minute) is calculated, and the average value of the purified water TDS concentration Ct and the reference The density C0 is compared (step ST12). When the purified water TDS concentration Ct becomes larger than the reference concentration C0 by this comparison, the driving of the water pump 4 is stopped by the drive signal S4, and an alarm process for prompting replacement of the raw water 2 and the RO membrane device 9 is performed (step ST13). . In the alarm processing, an alarm sound of the alarm device 48 is output and an alarm message on the display 49 is displayed. At this time, if the RO membrane device 9 mounting time (previous replacement time) is stored in advance and the required usage time of the RO membrane device 9 in use is displayed together with an alarm, the life of the RO membrane is shortened. Useful for judgment. When the purified water TDS concentration Ct does not exceed the reference concentration C0 by the comparison process (step ST12), the alarm process is not performed. Thereafter, the average value of the purified water TDS concentration Ct within the predetermined time (for example, 1 minute) is newly read, and the comparison process is repeated (steps ST10 to ST12).

上記比較処理(ステップST12)は、本発明における、最先原水濃度から計算される基準濃度と浄水濃度を比較する比較手段に対応する。また、浄水濃度が基準濃度より大きくなったときに、原水の交換及び/又はRO膜の交換を報知する報知手段は、警報器48、ディスプレイ49及び警報処理(ステップST13)により構成される。   The comparison process (step ST12) corresponds to comparison means for comparing the reference concentration calculated from the earliest raw water concentration with the purified water concentration in the present invention. In addition, when the purified water concentration becomes higher than the reference concentration, the notification means for notifying the replacement of the raw water and / or the replacement of the RO membrane is configured by an alarm device 48, a display 49, and an alarm process (step ST13).

以上のように、濃縮水帰還管23により、前記RO膜の浄化作用により生ずる濃縮水を原水タンク1に帰還させる濃縮水帰還流路を設けた浄水生成システムにおいて、浄水処理開始時に、原水2のTDS濃度を原水センサ5により予め計測し、その初期計測値から算出した基準値C0と、浄水タンク26に供給する浄水のTDS濃度を浄水センサ25により計測した計測値Ctとを比較することにより、原水タンク1内の不純物濃度の変化を監視しながら浄水供給することが可能になる。従って、貯留水使用状態において、原水センサ5及び浄水センサ25による自動監視により、原水タンク1に濃縮水を戻して、前記RO膜による再浄化を行わせる浄化循環システムを実現でき、原水やRO膜の交換に手間がかからず、またメンテナンスに必要な人件費を削減して、浄水処理費用の低減を図ることができる。   As described above, in the purified water generation system provided with the concentrated water return flow path for returning the concentrated water generated by the purification action of the RO membrane to the raw water tank 1 by the concentrated water return pipe 23, at the start of the purified water treatment, By measuring the TDS concentration in advance with the raw water sensor 5 and comparing the reference value C0 calculated from the initial measurement value with the measured value Ct measured by the water purification sensor 25 for the TDS concentration of purified water supplied to the water purification tank 26, It becomes possible to supply purified water while monitoring changes in the impurity concentration in the raw water tank 1. Therefore, in the state where the stored water is used, it is possible to realize a purification circulation system in which the concentrated water is returned to the raw water tank 1 by the automatic monitoring by the raw water sensor 5 and the purified water sensor 25 and repurified by the RO membrane. It is possible to reduce the cost of water purification by reducing labor costs for maintenance and reducing labor costs required for maintenance.

図3は上記浄水処理プログラムの一部である、水道水使用時により実行される浄水処理制御を示すフローチャートである。水道水Wの使用状態にセットされているとき(ステップST5)、ステップST15以下の浄水処理が実行される。浄水処理の開始を入力手段50により制御回路部41に与えることによって、浄水処理が開始される(ステップST4)。本実施形態においては、水道水の基準濃度として、一般に入手可能な既知の値が基準水道水濃度Cwとして、予めワークメモリ47に設定記憶される。前述のように、原水に用いる水道水のTDSは50〜200ppmである。水道水の基準濃度の変動が少ない場合には、プログラム記憶メモリ46に固定、記憶させてもよい。基準水道水濃度Cwの入力は入力手段50により行うことができる(ステップST16)。   FIG. 3 is a flowchart showing water purification control executed when using tap water, which is a part of the water purification treatment program. When the tap water W is set to the use state (step ST5), the water purification process after step ST15 is executed. By giving the start of the water purification treatment to the control circuit unit 41 by the input means 50, the water purification treatment is started (step ST4). In the present embodiment, a known value that is generally available is set and stored in advance in the work memory 47 as the reference tap water concentration Cw as the reference concentration of tap water. As described above, the TDS of tap water used for raw water is 50 to 200 ppm. When the fluctuation of the reference concentration of tap water is small, it may be fixed and stored in the program storage memory 46. The input of the reference tap water concentration Cw can be performed by the input means 50 (step ST16).

基準水道水濃度Cwが設定記憶されている場合には(ステップST15、S16)、貯留水使用状態時と同様に、浄水供給管24に流れる浄水に対して、浄水センサ25によりTDS濃度が計測され、その計測値Ctが読み取られる(ステップST18)。原水供給管3内に配置された原水センサ5が通水を検出しなくなった時には、計測値Ctの読み取りが行われないので(ステップST18)、水道供給異常と判断してその旨を報知する(ステップST21)。計測値Ctの読み取りが正常に行われた場合には(ステップST18)、所定時間(例えば、1分)内の前記浄水TDS濃度Ctの平均値が算出され、浄水TDS濃度Ctの平均値と基準水道水濃度Cwの比較が行われる(ステップST19)。この比較により浄水TDS濃度Ctが基準水道水濃度Cwより大きくなったとき、駆動信号S4により送水ポンプ4の駆動を停止させると共に、原水2及びRO膜装置9の交換を促す警報処理を行う(ステップST20)。警報処理は警報器48のアラーム音の出力と、ディスプレイ49上のアラームメッセージの表示が行われる。このとき、RO膜装置9の取付時期(前回の交換時期)を予め記憶しておき、警報と共に、使用中のRO膜装置9の所要使用時間を表示するようにすれば、RO膜の寿命の判断に役立つ。比較処理(ステップST19)により、浄水TDS濃度Ctが基準水道水濃度Cwを超えていないときは、警報処理は行われない。その後、前記所定時間(例えば、1分)内の前記浄水TDS濃度Ctの平均値が新たに読み取られ、上記比較処理が繰り返される(ステップST17〜ST19)。   When the reference tap water concentration Cw is set and stored (steps ST15 and S16), the TDS concentration is measured by the purified water sensor 25 for the purified water flowing through the purified water supply pipe 24 in the same manner as when the stored water is used. The measured value Ct is read (step ST18). When the raw water sensor 5 disposed in the raw water supply pipe 3 no longer detects water flow, the measured value Ct is not read (step ST18), so that it is determined that the water supply is abnormal and that is notified ( Step ST21). When the measurement value Ct is normally read (step ST18), the average value of the purified water TDS concentration Ct within a predetermined time (for example, 1 minute) is calculated, and the average value of the purified water TDS concentration Ct and the reference The tap water concentration Cw is compared (step ST19). When the purified water TDS concentration Ct becomes larger than the reference tap water concentration Cw by this comparison, the driving of the water pump 4 is stopped by the drive signal S4, and an alarm process for prompting replacement of the raw water 2 and the RO membrane device 9 is performed (step) ST20). In the alarm processing, an alarm sound of the alarm device 48 is output and an alarm message on the display 49 is displayed. At this time, if the RO membrane device 9 mounting time (previous replacement time) is stored in advance and the required usage time of the RO membrane device 9 in use is displayed together with an alarm, the life of the RO membrane is shortened. Useful for judgment. When the purified water TDS concentration Ct does not exceed the reference tap water concentration Cw by the comparison process (step ST19), the alarm process is not performed. Thereafter, the average value of the purified water TDS concentration Ct within the predetermined time (for example, 1 minute) is newly read, and the comparison process is repeated (steps ST17 to ST19).

本実施形態によれば、原水を原水タンク1の貯留水だけでなく、水道水Wに切り替えて原水供給してもRO膜により浄水化すると共に、原水タンク1の貯留水又は水道水Wの使用状況に応じて、各種の異常報知を行って、原水交換やRO膜点検等のメンテナンス時期を的確に知らせて、高品質の浄水化処理を行うことができる。即ち、本実施形態に係る切替型RO浄水器を例えば、飲食店舗等で用いたとき、天然水等の原水タンクから原水供給して飲用浄水を生成して供給することができる。一方、原水タンクの故障やメンテナンス作業時に応急処置的に水道水を使用する場合、あるいは常時、水道水を使用する場合においては、水道管3Eから取水して浄化して浄水を供給することができる。従って、本実施形態に係る浄水器は、水道栓の設置状況に制約されない、使用上の利便性に富むので、使用目的、態様に応じて原水の選択が自由に行え、部品交換の手間を要することなく原水の選択を自在に行え、また原水タンク仕様と水道管仕様夫々に専用の浄水器を用意しなくて済み、低コスト化を実現することができる。   According to the present embodiment, the raw water is not only stored in the raw water tank 1, but is also purified by the RO membrane even when the raw water is switched to the tap water W, and the stored water or the tap water W in the raw water tank 1 is used. Depending on the situation, various kinds of abnormality notifications can be performed to accurately notify maintenance timing such as raw water exchange and RO membrane inspection, and high-quality water purification treatment can be performed. That is, when the switching type RO water purifier according to the present embodiment is used in, for example, a restaurant, raw water can be supplied from a raw water tank such as natural water to generate and supply drinking water. On the other hand, when tap water is used as an emergency measure at the time of failure of the raw water tank or maintenance work, or when tap water is always used, water can be taken from the water pipe 3E and purified to supply purified water. . Therefore, the water purifier according to the present embodiment is not limited by the installation status of the water tap, and is convenient for use. Therefore, the raw water can be freely selected according to the purpose of use and the mode, and it takes time to replace parts. Therefore, it is possible to freely select raw water, and it is not necessary to prepare a dedicated water purifier for each of the raw water tank specification and the water pipe specification, thereby realizing cost reduction.

図2及び図3の浄水処理制御においては、水道水の基準濃度として既知の値の基準水道水濃度Cwを入力設定しているが、該入力設定を行わずに、水道水使用時にも原水センサ5の計測結果に基づく基準値設定処理により基準水道水濃度を設定するようにしてもよい。   In the water purification treatment control of FIGS. 2 and 3, a reference tap water concentration Cw having a known value is input and set as the reference concentration of tap water. However, the raw water sensor is used even when using tap water without performing the input setting. The reference tap water concentration may be set by the reference value setting process based on the measurement result of 5.

図6は原水センサ5の計測結果に基づく基準値設定処理により基準水道水濃度を設定するときの浄水処理制御フローを示す。この浄水処理制御フローにおいては、水道水使用時にも貯留水使用時と同様に基準濃度C0の設定処理が行われるので、図2及び図3の浄水処理制御フローと比較して、必要としないステップST5及びステップST15〜ST21を除いて同様の処理が行われる。図6の浄水処理制御において、初期設定から原水切替までのステップST60〜ST62は前記ステップST1〜ST3に対応する。また、浄水処理開始後の基準濃度の設定処理(ステップST64〜ST67)は前記ステップST6〜ST9に対応する。即ち、原水センサ5による水道水濃度の計測が行われて(ステップST64)、最先原水濃度C1から基準濃度C0を求め、基準濃度C0が基準水道水濃度に代えて設定記憶される(ステップST65〜ST67)。以下、水道水使用時にも貯留水使用時と同様に、基準濃度C0を基準に水道水の不純物濃度の変化を監視しながら浄水供給して、浄水濃度が基準濃度より大きくなったとき、水道供給異常やRO膜の交換を異常報知する(ステップST69〜ST72)。   FIG. 6 shows a water purification treatment control flow when the reference tap water concentration is set by the reference value setting processing based on the measurement result of the raw water sensor 5. In this water purification process control flow, the setting process of the reference concentration C0 is performed in the same way as when using the tap water even when using tap water. Therefore, compared to the water purification process control flow of FIGS. The same processing is performed except ST5 and steps ST15 to ST21. In the water purification process control of FIG. 6, steps ST60 to ST62 from the initial setting to the raw water switching correspond to the steps ST1 to ST3. Moreover, the reference concentration setting process (steps ST64 to ST67) after the start of the water purification process corresponds to steps ST6 to ST9. That is, the tap water concentration is measured by the raw water sensor 5 (step ST64), the reference concentration C0 is obtained from the earliest raw water concentration C1, and the reference concentration C0 is set and stored instead of the reference tap water concentration (step ST65). -ST67). In the same way, when using tap water, as in the case of using stored water, purified water is supplied while monitoring changes in the impurity concentration of tap water based on the reference concentration C0, and when the purified water concentration exceeds the reference concentration, the water supply is supplied. Abnormality and RO membrane replacement are reported abnormally (steps ST69 to ST72).

図4は本実施形態に係る浄水処理システムにおける取水処理制御を示す。
浄水タンク26からの取水は浄水処理が可能な状態で行われる。上述の浄水処理の前処理を終えていない状態、つまり活性炭やRO膜あるいは原水の取替中における警報発生時には取水停止の報知が行われる(ステップST50、ST56)。また、浄水の浄水タンク26への供給不良のとき、つまり、送水ポンプ4の駆動不良等時などにおいて、液面センサ32の監視により、浄水タンク26内の貯留浄水の量が上限位置LHと下限位置LLの間で適正に充填されていない場合にも、取水停止の報知が行われる(ステップST51、ST56)。
FIG. 4 shows water intake control in the water purification system according to this embodiment.
Water intake from the water purification tank 26 is performed in a state where water purification treatment is possible. In the state where the pretreatment of the water purification treatment is not finished, that is, when an alarm is generated during replacement of activated carbon, RO membrane, or raw water, a water intake stop is notified (steps ST50 and ST56). In addition, when the supply of purified water to the purified water tank 26 is poor, that is, when the water pump 4 is driven poorly, the amount of stored purified water in the purified water tank 26 is monitored by the liquid level sensor 32 and the upper limit position LH and the lower limit. Even when the filling is not properly performed between the positions LL, the intake stop is notified (steps ST51 and ST56).

取水停止の報知が行われていず、上記前処理を完了し、浄水の浄水タンク26への供給不良も生じていない状態 (ステップST50、ST51)、取水モードの設定を行うことができる(ステップST52)。入力手段50により、取水開始を指示するキーインを行うと共に、温水又は冷水の区別をキー入力する(ステップST53)。温水を選択した場合には、電磁弁37のみを開成してホットタンク34を経由して加熱された浄水を排出可能にする(ステップST54)。冷水を選択した場合には、電磁弁40のみを開成して浄水タンク26内の浄水を排出可能にする(ステップST55)。   Intake stop notification is not performed, the pretreatment is completed, and there is no supply failure of purified water to the purified water tank 26 (steps ST50 and ST51), and the intake mode can be set (step ST52). ). A key-in for instructing the start of water intake is performed by the input means 50, and a distinction is made between hot water and cold water (step ST53). When hot water is selected, only the electromagnetic valve 37 is opened, and the heated purified water can be discharged via the hot tank 34 (step ST54). When cold water is selected, only the solenoid valve 40 is opened to allow the purified water in the purified water tank 26 to be discharged (step ST55).

上記取水モードに設定した通常の浄水使用状態において、液面センサ32による浄水タンク26の貯水量保持の監視処理(後述のステップST32〜ST34、ST37〜ST41参照)が行われる。貯水量の監視処理は取水モード設定に関わりなく、浄水処理中、強制的に行うことができるようにしてもよい。   In the normal clean water use state set in the water intake mode, a monitoring process (see steps ST32 to ST34 and ST37 to ST41 described later) for holding the amount of water stored in the water purification tank 26 by the liquid level sensor 32 is performed. Regardless of the water intake mode setting, the monitoring process of the water storage amount may be forcibly performed during the water purification process.

浄水タンク26内の浄水はRO膜の逆浸透作用によって高純度化されるものの、水道水の次亜塩素酸など、原水に含まれる殺菌成分を全て除去してしまうため、RO膜を透過した水に細菌やカビなどが繁殖しないとも限らない。そこで、本実施形態においては、紫外線殺菌灯31を浄水タンク26内に投入して浄水29の紫外線殺菌を行っている。   Although the purified water in the water purification tank 26 is highly purified by the reverse osmosis action of the RO membrane, it removes all the sterilizing components contained in the raw water such as hypochlorous acid in tap water. There is no guarantee that bacteria and mold will not propagate. Therefore, in this embodiment, the ultraviolet sterilization lamp 31 is put into the water purification tank 26 to sterilize the purified water 29.

紫外線殺菌灯31を常時、点灯して使用すると、その消耗が早まり、設備費用が嵩むので、本実施形態においては紫外線殺菌灯31の省電力制御システムを導入している。   If the ultraviolet germicidal lamp 31 is always lit and used, its consumption is accelerated and the equipment cost increases. Therefore, in this embodiment, a power saving control system for the ultraviolet germicidal lamp 31 is introduced.

図5は本実施形態における貯水量保持の監視処理及び浄水殺菌処理を示す。
この貯水量保持の監視処理及び浄水殺菌処理制御は、上記取水モードに設定した浄水処理可能状態で実行される(ステップST31)。浄水処理可能状態においては、浄水処理が実行され、送水ポンプによる浄水タンク26への送水が行われる。液面センサ32により、所定量の浄水が上限位置LHまで貯留されていることを検出したとき、その旨の検出信号S2が出力される(ステップST32)。LH検出の検出信号S2の受信により、制御回路部41は、制御信号S4により送水ポンプ4の駆動が停止する(ステップST33)。送水ポンプ4の停止により浄水タンク26への浄水の送水が停止されると、送水停止状態を監視するための送水停止タイマ(図示せず)が起動される(ステップST34)。この送水停止タイマは制御回路部41に内蔵されている。このように、液面センサ32による浄水量の監視と送水ポンプ4の間欠駆動により、浄水タンク26内の浄水が一定の水位に保持されるので、取水に必要な浄水量を常時、確保しておくことができる。
FIG. 5 shows the monitoring process of the water storage amount retention and the purified water sterilization process in this embodiment.
The monitoring process of water storage amount retention and the purified water sterilization process control are executed in the purified water processable state set in the water intake mode (step ST31). In the state where the water purification treatment is possible, the water purification treatment is performed, and water is supplied to the water purification tank 26 by the water supply pump. When the liquid level sensor 32 detects that a predetermined amount of purified water is stored up to the upper limit position LH, a detection signal S2 to that effect is output (step ST32). Upon reception of the detection signal S2 for LH detection, the control circuit unit 41 stops driving the water pump 4 with the control signal S4 (step ST33). When water supply to the water purification tank 26 is stopped by stopping the water supply pump 4, a water supply stop timer (not shown) for monitoring the water supply stop state is started (step ST34). This water supply stop timer is built in the control circuit unit 41. Thus, since the purified water in the purified water tank 26 is maintained at a constant water level by monitoring the purified water amount by the liquid level sensor 32 and intermittent driving of the water pump 4, always secure the purified water amount necessary for water intake. I can leave.

タンク内の浄水が上限位置LHと下限位置LLの間の水位に所定量貯留された貯水状態で、制御回路部41は制御信号S1により紫外線殺菌灯31を点灯させている(ステップST38)。従って、送水ポンプ4の停止(ステップST33)に至るまでには紫外線殺菌灯31の点灯状態が継続されており、十分に殺菌処理が行われている。流水中や十分に新しい浄水が浄水タンク26へ供給されているときには、タンク内で細菌やカビなどの繁殖が進行せず、滞水状態に長時間放置するとき繁殖が進むので、十分に紫外線を照射した後は省電力のために消灯させて寿命を維持するのが好ましい。そこで、送水ポンプ4の停止後、1時間経過したときには、紫外線殺菌灯31を消灯する(ステップST35、ST36)。   The control circuit unit 41 turns on the ultraviolet germicidal lamp 31 by the control signal S1 in a water storage state in which a predetermined amount of purified water in the tank is stored at the water level between the upper limit position LH and the lower limit position LL (step ST38). Therefore, until the water pump 4 is stopped (step ST33), the ultraviolet germicidal lamp 31 is kept on, and the sterilization process is sufficiently performed. When running water or sufficiently new purified water is supplied to the water purification tank 26, the propagation of bacteria and mold does not proceed in the tank, and the propagation proceeds when left in a stagnant state for a long time. After irradiation, it is preferable to maintain the life by turning off the light for power saving. Therefore, when one hour has passed after the water pump 4 is stopped, the ultraviolet germicidal lamp 31 is turned off (steps ST35 and ST36).

上限位置LHまで貯水されている状態から浄水の使用により徐々に液面が低下していく。液面センサ32により下限位置LLまで貯水量が低下したことを検出したとき、その旨の検出信号S2が出力される(ステップST37)。このとき、送水ポンプ4の再駆動に先立ち、紫外線殺菌灯31を点灯しておく(ステップST38)。何らかの原因により浄水供給が間に合わず、少量の貯水で滞水が長引くおそれがあるので、紫外線殺菌灯31の点灯を開始している。この点灯後、送水開始タイマ(図示せず)を起動し、そのタイマで1分を計時したとき(ステップST39)、制御回路部41は制御信号S4により送水ポンプ4を駆動させる(ステップST40)。送水開始タイマは制御回路部41に内蔵されている。送水ポンプ4の駆動開始により前記送水停止タイマはリセットされる(ステップST41)。   From the state where the water is stored up to the upper limit position LH, the liquid level gradually decreases by using purified water. When the liquid level sensor 32 detects that the amount of stored water has decreased to the lower limit position LL, a detection signal S2 to that effect is output (step ST37). At this time, prior to re-driving the water pump 4, the ultraviolet germicidal lamp 31 is turned on (step ST38). Since the purified water supply is not in time for some reason and there is a possibility that the water retention will be prolonged with a small amount of stored water, the ultraviolet germicidal lamp 31 is turned on. After this lighting, a water supply start timer (not shown) is started, and when the timer counts 1 minute (step ST39), the control circuit unit 41 drives the water supply pump 4 by the control signal S4 (step ST40). The water supply start timer is built in the control circuit unit 41. The water supply stop timer is reset by the start of driving of the water supply pump 4 (step ST41).

上記取水モードに設定した浄水処理可能状態においては、ステップST32〜ST41にて貯水量保持の監視処理及び浄水殺菌処理が制御される。しかし、例えば、店舗等における閉店時には、取水モードから稼働停止モードになり、送水が停止される。このときは貯水量保持の監視処理が実行されず、稼働停止モードにおける浄水殺菌処理(ステップST42〜ST46)が実行される。勿論、送水ポンプ4の故障等により取水モードが解除されたりして稼働停止モードになると、浄水殺菌処理(ステップST42〜ST46)が実行される。   In the water-purifying process possible state set in the water intake mode, the monitoring process of the water storage amount retention and the water purification sterilization process are controlled in steps ST32 to ST41. However, for example, when the store is closed in a store or the like, the water intake mode is changed to the operation stop mode, and the water supply is stopped. At this time, the monitoring process for holding the stored water amount is not executed, and the purified water sterilization process (steps ST42 to ST46) in the operation stop mode is executed. Of course, when the water intake mode is canceled due to a failure of the water pump 4 or the like and the operation stop mode is entered, the water purification sterilization process (steps ST42 to ST46) is executed.

浄水殺菌処理においては、前記送水停止タイマによる監視が行われる (ステップST42)。タンク内の浄水が上限位置LHと下限位置LLの間の水位に所定量貯留された貯水状態では、上述のように、送水ポンプ4の停止後、1時間経過すると紫外線殺菌灯31を消灯させている(ステップST33〜ST36)。このとき前記送水停止タイマが起動されており(ステップST34)、その計時時間が7時間経過したか否か判断される(ステップST43)。滞水状態が7時間を超えると雑菌の繁殖が開始するおそれが強くなるので、この時点で前記送水停止タイマをリセットして、紫外線殺菌灯31を1時間点灯させ、雑菌の増殖を未然に防止する(ステップST44、ST45)。1時間の点灯後は紫外線殺菌灯31を消灯させて、前記送水停止タイマを再起動させ、7時間監視を継続する(ステップ
ST46、ST42)。
In the purified water sterilization process, monitoring by the water supply stop timer is performed (step ST42). In the water storage state in which a predetermined amount of purified water in the tank is stored at the water level between the upper limit position LH and the lower limit position LL, as described above, the ultraviolet germicidal lamp 31 is turned off after one hour has elapsed after the water pump 4 is stopped. (Steps ST33 to ST36). At this time, the water supply stop timer is started (step ST34), and it is determined whether or not the measured time has elapsed for 7 hours (step ST43). If the stagnant condition exceeds 7 hours, there is a strong possibility that the breeding of germs will start. At this point, the water supply stop timer is reset and the UV germicidal lamp 31 is turned on for 1 hour to prevent the propagation of germs. (Steps ST44 and ST45). After lighting for 1 hour, the ultraviolet germicidal lamp 31 is turned off, the water supply stop timer is restarted, and monitoring is continued for 7 hours (steps ST46 and ST42).

上記浄水殺菌処理制御によれば、紫外線殺菌灯31は、浄水タンク26内に所定量又はそれ以上の浄水が貯留すべく送水ポンプ4を駆動している場合に点灯され、浄水タンク26内に十分給水されて、送水ポンプ4を停止した後は所定時間経過後に消灯されるので、常時点灯ではなく、貯水状態に応じて点灯・消灯を切り換えることにより紫外線殺菌灯31の寿命を延長でき、且つ点灯消費電力を低減して消電力化を実現することができる。   According to the purified water sterilization treatment control, the ultraviolet germicidal lamp 31 is turned on when the water pump 4 is driven to store a predetermined amount or more of purified water in the purified water tank 26, and is sufficiently in the purified water tank 26. Since the water supply pump 4 is stopped after the water supply pump 4 is stopped after a predetermined time has elapsed, the life of the ultraviolet germicidal lamp 31 can be extended by switching on / off according to the water storage state instead of always lighting. Power consumption can be reduced by reducing power consumption.

尚、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々変形例、設計変更などをその技術的範囲内に包含するものであることは云うまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and various modifications, design changes and the like within the scope not departing from the technical idea of the present invention are included in the technical scope. Nor.

本発明によれば、原水タンクの貯留水だけでなく、水道水に切り替えて原水供給してもRO膜により浄水を得ることができ、しかも原水タンクの貯留水又は水道水の使用状況に応じて異常報知して、原水交換やRO膜点検等のメンテナンス時期を的確に知らせて、高品質の浄水化処理を行うことができる切替型RO浄水器を提供することができる。   According to the present invention, not only stored water in the raw water tank, but also purified water can be obtained by switching to tap water and supplying raw water, and depending on the usage status of the stored water or tap water in the raw water tank It is possible to provide a switchable RO water purifier capable of performing a high-quality water purification process by notifying abnormality and accurately informing the maintenance time such as raw water exchange or RO membrane inspection.

1 原水タンク
2 原水
3 原水供給管
3A タンク水給水管
3B 水道水給水管
3C 電磁三方弁
3D 水道バルブ
3E 水道管
4 送水ポンプ
5 原水センサ
6 送水端
7 活性炭槽
8 活性炭槽
9 RO膜装置
10 活性炭槽
11 連結管
12 連結管
13 三方弁
14 出口側流路
15 連結管
16 三方弁
17 出口側流路
18 連結管
19 流量調整流路
20 バイパス流路
21 電磁弁
22 流量調整器
23 濃縮水帰還管
23A 電磁三方弁
23B 排水管
24 浄水供給管
25 浄水センサ
26 浄水タンク
27 フロート弁
28 フロート
29 浄水
30 開閉弁
31 紫外線殺菌灯
32 液面センサ
33 取水管
34 ホットタンク
35 温水管
36 開閉弁
37 電磁弁
38 蛇口
39 排出管
40 電磁弁
41 制御回路部
42 取水管
43 ドレイン管
44 ドレイン管
45 上蓋
46 プログラム記憶メモリ
47 ワークメモリ
48 警報器
49 ディスプレイ
50 入力手段
51 原水切替スイッチ
S1 制御信号
S2 検出信号
S3 計測信号
S4 駆動信号
S5 開閉信号
S6 開閉信号
S7 開閉信号
S8 計測信号
S9 駆動信号
S10 駆動信号
W 水道水
DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Raw water 3 Raw water supply pipe 3A Tank water supply pipe 3B Tap water supply pipe 3C Electromagnetic three-way valve 3D Water supply valve 3E Water pipe 4 Water pump 5 Raw water sensor 6 Water supply end 7 Activated carbon tank 8 Activated carbon tank 9 RO membrane device 10 Activated carbon Tank 11 Connection pipe 12 Connection pipe 13 Three-way valve 14 Outlet side flow path 15 Connection pipe 16 Three-way valve 17 Outlet side flow path 18 Connection pipe 19 Flow rate adjustment flow path 20 Bypass flow path 21 Solenoid valve 22 Flow rate adjuster 23 Concentrated water return pipe 23A Electromagnetic three-way valve 23B Drain pipe 24 Purified water supply pipe 25 Purified sensor 26 Purified tank 27 Float valve 28 Float 29 Purified water 30 Open / close valve 31 UV germicidal lamp 32 Liquid level sensor 33 Intake pipe 34 Hot tank 35 Hot water pipe 36 Open / close valve 37 Solenoid valve 38 Faucet 39 Drain pipe 40 Solenoid valve 41 Control circuit section 42 Intake pipe 43 Drain pipe 44 Drain pipe 45 Upper lid 46 Program memory 48 Work memory 48 Alarm 49 Display 50 Input means 51 Raw water selector switch S1 Control signal S2 Detection signal S3 Measurement signal S4 Drive signal S5 Open / close signal S6 Open / close signal S7 Open / close signal S8 Measurement signal S9 Drive signal S10 Drive signal W Water supply water

Claims (11)

原水供給部から原水を送水ポンプにより供給する原水供給管と、前記原水供給管を流通する前記原水の不純物濃度を計測する原水センサと、前記原水供給管から前記原水を通水して前記原水中の不純物を除去して浄水を生成するRO(Reverse Osmosis:逆浸透)膜を少なくとも含む浄化フィルタ部と、前記浄水を貯留する浄水タンクと、
前記浄化フィルタ部から浄水を前記浄水タンクに供給する浄水供給管と、前記浄水タンクから前記浄水を必要量だけ供給する浄水提供部とを有し、前記原水供給部として原水タンク又は水道管を選択する切替スイッチと、前記切替スイッチの切替設定に応じて、前記原水タンクの貯留水又は前記水道管からの水道水に対して前記原水センサにより異常原水濃度を計測したとき、異常報知する異常報知手段とを有することを特徴とする切替型RO浄水器。
A raw water supply pipe that supplies raw water from a raw water supply section with a water pump, a raw water sensor that measures an impurity concentration of the raw water flowing through the raw water supply pipe, and the raw water that is passed through the raw water supply pipe A purification filter unit including at least an RO (Reverse Osmosis) membrane that removes impurities and generates purified water; a purified water tank that stores the purified water;
A purified water supply pipe that supplies purified water from the purification filter section to the purified water tank, and a purified water supply section that supplies the required amount of purified water from the purified water tank, and selects a raw water tank or a water pipe as the raw water supply section And an abnormality notification means for notifying abnormalities when the raw water sensor measures an abnormal raw water concentration with respect to the water stored in the raw water tank or tap water from the water pipe according to the switching setting of the changeover switch. A switching type RO water purifier characterized by comprising:
前記原水タンクから前記原水供給管を通じて原水供給するとき、前記RO膜の浄化作用により生ずる濃縮水を前記原水タンクに帰還させる濃縮水帰還管と、前記水道管から前記原水供給管を通じて原水供給するとき、前記RO膜の浄化作用により生ずる濃縮水を排水する排水管とを具備した請求項1に記載の切替型RO浄水器。 When supplying raw water from the raw water tank through the raw water supply pipe, when supplying raw water from the water pipe through the raw water supply pipe, and a concentrated water return pipe for returning the concentrated water generated by the purification action of the RO membrane to the raw water tank. The switchable RO water purifier according to claim 1, further comprising a drain pipe for draining concentrated water generated by the purification action of the RO membrane. 前記浄水供給管を流通する前記浄水の不純物濃度を計測する浄水センサと、前記貯留水又は前記水道水の原水供給が開始された後、前記原水センサにより最初に計測される最先原水濃度を記憶する最先原水濃度記憶手段と、前記浄水センサにより継続的に計測される浄水濃度を記憶する浄水濃度記憶手段と、前記最先原水濃度から計算される基準濃度と前記浄水濃度を比較する比較手段と、前記浄水濃度が前記基準濃度より大きくなったときに前記異常原水濃度に達したとして、前記異常報知手段により前記貯留水の交換、前記水道水の供給異常又は前記RO膜の交換を報知する請求項1又は2に記載の切替型RO浄水器。 A purified water sensor for measuring an impurity concentration of the purified water flowing through the purified water supply pipe, and a concentration of the first raw water concentration first measured by the raw water sensor after the raw water supply of the stored water or the tap water is started The first raw water concentration storage means, the purified water concentration storage means for storing the purified water concentration continuously measured by the water purification sensor, and the comparison means for comparing the purified water concentration with the reference concentration calculated from the first raw water concentration. And the abnormal notification means notifies the replacement of the stored water, the supply abnormality of the tap water, or the replacement of the RO membrane, assuming that the abnormal raw water concentration has reached when the purified water concentration becomes larger than the reference concentration. The switching type RO water purifier according to claim 1 or 2. 前記浄水供給管を流通する前記浄水の不純物濃度を計測する浄水センサと、前記切替スイッチにより前記原水タンクに切り替えて、前記原水タンクから前記貯留水を原水供給するとき、前記原水センサにより最初に計測される最先原水濃度を記憶する最先原水濃度記憶手段と、前記切替スイッチにより前記水道管に切り替えて、前記水道管からの水道水を原水供給するとき、所定の基準水道水濃度を記憶する基準水道水濃度記憶手段と、前記浄水センサにより継続的に計測される浄水濃度を記憶する浄水濃度記憶手段と、前記貯留水を原水供給するとき前記最先原水濃度から求めた基準濃度と前記浄水濃度を比較し、あるいは前記水道水を原水供給するとき前記基準水道水濃度と前記浄水濃度を比較する比較手段とを有し、前記異常報知手段は、前記浄水濃度が前記基準濃度より大きくなったことを条件に前記原水の交換及び/又は前記RO膜の交換を報知する原水タンク使用時異常報知手段と、前記浄水濃度が前記基準水道水濃度より大きくなったことを条件に前記水道水の供給異常及び/又は前記RO膜の交換を報知する水道水使用時異常報知手段とを含む請求項1又は2に記載の切替型RO浄水器。 A purified water sensor that measures the impurity concentration of the purified water that circulates through the purified water supply pipe, and when the raw water tank is supplied from the raw water tank by switching to the raw water tank by the changeover switch, the raw water sensor first measures A first reference raw water concentration storage means for storing the first raw water concentration, and when the tap water is supplied from the water pipe by switching to the water pipe by the changeover switch, a predetermined reference tap water concentration is stored. Reference tap water concentration storage means, purified water concentration storage means for storing the purified water concentration continuously measured by the purified water sensor, reference concentration obtained from the earliest raw water concentration when the stored water is supplied to the raw water, and the purified water Comparing means for comparing concentrations or comparing the reference tap water concentration with the purified water concentration when the tap water is supplied as raw water, the abnormality notification means The raw water tank use abnormality notification means for notifying the replacement of the raw water and / or the replacement of the RO membrane on the condition that the purified water concentration is higher than the reference concentration, and the purified water concentration is more than the reference tap water concentration The switchable RO water purifier according to claim 1 or 2, further comprising a tap water use abnormality notifying means for notifying the supply abnormality of the tap water and / or the replacement of the RO membrane on the condition that it has become larger. 前記浄水濃度が前記異常原水濃度を超えたときに、前記送水ポンプの送水を停止させる送水停止手段を備えた請求項3に記載の切替型RO浄水器。 The switchable RO water purifier according to claim 3, further comprising a water supply stopping unit that stops water supply of the water supply pump when the purified water concentration exceeds the abnormal raw water concentration. 前記浄水濃度が前記基準濃度又は前記基準水道水濃度を超えたときに、前記送水ポンプの送水を停止させる送水停止手段を備えた請求項4に記載の切替型RO浄水器。 The switching type RO water purifier according to claim 4, further comprising a water supply stop unit that stops water supply of the water pump when the purified water concentration exceeds the reference concentration or the reference tap water concentration. 前記切替スイッチの切替設定により前記原水タンクから前記貯留水を原水供給するとき、前記原水センサにより、前記原水タンクが空になったことを検出して報知する空報知手段を備えた請求項1〜6のいずれかに記載の切替型RO浄水器。 When the raw water is supplied from the raw water tank by the switching setting of the changeover switch, the raw water sensor includes an empty notification means for detecting and notifying that the raw water tank is empty. 6. The switching type RO water purifier according to any one of 6 above. 前記濃縮水帰還管は、前記RO膜の浸透圧を所定値に保持する流量調整流路と、前記流量調整流路に併設された開閉自在のバイパス流路とを含み、前記RO膜の交換時に前記バイパス流路を開放する請求項2〜7のいずれに記載の切替型RO浄水器。 The concentrated water return pipe includes a flow rate adjusting flow path that maintains the osmotic pressure of the RO membrane at a predetermined value, and an openable / closable bypass flow path that is provided alongside the flow rate adjusting flow path. The switchable RO water purifier according to any one of claims 2 to 7, wherein the bypass flow path is opened. 前記原水センサは水に溶け込んだ全溶解性物質を測定するセンサからなる請求項1〜8のいずれに記載の切替型RO浄水器。 The switchable RO water purifier according to any one of claims 1 to 8, wherein the raw water sensor is a sensor that measures all soluble substances dissolved in water. 前記浄水センサは、水に溶け込んだ全溶解性物質を測定するセンサからなる請求項3〜8のいずれに記載の切替型RO浄水器。 The switched-type RO water purifier according to any one of claims 3 to 8, wherein the water purification sensor comprises a sensor that measures all soluble substances dissolved in water. 前記浄化フィルタ部の、少なくとも原水導入側流路に、前記原水を活性炭槽を通過させて浄化する活性炭処理部を設け、前記活性炭槽を通過した原水を前記RO膜に通水する請求項1〜10のいずれかに記載の切替型RO浄水器。 The activated carbon treatment part which passes the activated carbon tank and purifies the raw water through at least the raw water introduction side flow path of the purification filter part, and passes the raw water that has passed through the activated carbon tank to the RO membrane. The switching type RO water purifier according to any one of 10.
JP2009171081A 2009-07-22 2009-07-22 Switching type ro water purifier Pending JP2011025114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009171081A JP2011025114A (en) 2009-07-22 2009-07-22 Switching type ro water purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009171081A JP2011025114A (en) 2009-07-22 2009-07-22 Switching type ro water purifier

Publications (1)

Publication Number Publication Date
JP2011025114A true JP2011025114A (en) 2011-02-10

Family

ID=43634509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009171081A Pending JP2011025114A (en) 2009-07-22 2009-07-22 Switching type ro water purifier

Country Status (1)

Country Link
JP (1) JP2011025114A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051078A1 (en) * 2011-10-03 2013-04-11 株式会社テクノシステム Apparatus for producing drinking water
KR101325119B1 (en) * 2012-02-03 2013-11-06 주식회사 이앤이로하텍 Apparatus for sterilizing and cleaning of Service water purifier and the Service water purifier
KR101334201B1 (en) 2012-02-10 2013-11-28 주식회사 심스바이오닉스 Water purifier for water container
JP2015107476A (en) * 2013-12-05 2015-06-11 サントリーホールディングス株式会社 Container filling equipment for food filling
CN105776685A (en) * 2015-01-08 2016-07-20 Lg电子株式会社 Water purifier
CN106467333A (en) * 2015-10-27 2017-03-01 宁波安吉尔环保科技有限公司 A kind of integral type purifying drinking appliance of waste water recoverable
JP2018065584A (en) * 2016-10-18 2018-04-26 株式会社オーセンテック Clear water supply apparatus
CN108002566A (en) * 2017-11-28 2018-05-08 刘宁 A kind of double film waste water treatment systems reverse osmosis based on Full-automatic ultra-filtering+RO and method
CN108002456A (en) * 2016-11-30 2018-05-08 佛山市顺德区美的饮水机制造有限公司 Water purifier and the based reminding method for replacing filter core
CN108585267A (en) * 2018-04-28 2018-09-28 贵州雅洁源环保科技有限公司 A kind of intelligent water purifier of raw water box excessive low water level protection
WO2019091937A1 (en) 2017-11-09 2019-05-16 Unilever N.V. A water dispensing device for dispensing water having consistent taste
JP2021041369A (en) * 2019-09-13 2021-03-18 株式会社放電精密加工研究所 Recycling method of aqueous nitric acid solution, electrolytic processing method using the same, recycling solution of aqueous nitric acid solution, and recycling system
JP2022182552A (en) * 2021-05-28 2022-12-08 敏雄 霜田 drinking water supply system
CN116119890A (en) * 2023-03-01 2023-05-16 邹洪武 Water mixing tank of non-waste water purifier
CN116819030A (en) * 2023-08-28 2023-09-29 天津天元信息技术有限公司 Tap water pipeline water quality purifying and monitoring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078943A (en) * 1993-06-29 1995-01-13 Mitsubishi Rayon Co Ltd Water purifier with cooling function
JPH07116659A (en) * 1993-10-21 1995-05-09 Cosmo Bio:Kk Water purifier
JPH09500053A (en) * 1993-03-16 1997-01-07 ニムバス ウォーター システムズ インコーポレイテッド Reverse osmosis water purification device
JP2007175607A (en) * 2005-12-27 2007-07-12 Hoju:Kk Water purifier for both normal and emergency use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500053A (en) * 1993-03-16 1997-01-07 ニムバス ウォーター システムズ インコーポレイテッド Reverse osmosis water purification device
JPH078943A (en) * 1993-06-29 1995-01-13 Mitsubishi Rayon Co Ltd Water purifier with cooling function
JPH07116659A (en) * 1993-10-21 1995-05-09 Cosmo Bio:Kk Water purifier
JP2007175607A (en) * 2005-12-27 2007-07-12 Hoju:Kk Water purifier for both normal and emergency use

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051078A1 (en) * 2011-10-03 2013-04-11 株式会社テクノシステム Apparatus for producing drinking water
JPWO2013051078A1 (en) * 2011-10-03 2015-03-30 株式会社テクノシステム Drinking water production equipment
KR101325119B1 (en) * 2012-02-03 2013-11-06 주식회사 이앤이로하텍 Apparatus for sterilizing and cleaning of Service water purifier and the Service water purifier
KR101334201B1 (en) 2012-02-10 2013-11-28 주식회사 심스바이오닉스 Water purifier for water container
JP2015107476A (en) * 2013-12-05 2015-06-11 サントリーホールディングス株式会社 Container filling equipment for food filling
CN105776685A (en) * 2015-01-08 2016-07-20 Lg电子株式会社 Water purifier
CN105776685B (en) * 2015-01-08 2019-03-15 Lg电子株式会社 Water purifier
CN106467333A (en) * 2015-10-27 2017-03-01 宁波安吉尔环保科技有限公司 A kind of integral type purifying drinking appliance of waste water recoverable
JP2018065584A (en) * 2016-10-18 2018-04-26 株式会社オーセンテック Clear water supply apparatus
CN108002456A (en) * 2016-11-30 2018-05-08 佛山市顺德区美的饮水机制造有限公司 Water purifier and the based reminding method for replacing filter core
CN108002456B (en) * 2016-11-30 2023-09-26 佛山市顺德区美的饮水机制造有限公司 Water purifier and reminding method for replacing filter element
WO2019091937A1 (en) 2017-11-09 2019-05-16 Unilever N.V. A water dispensing device for dispensing water having consistent taste
CN108002566A (en) * 2017-11-28 2018-05-08 刘宁 A kind of double film waste water treatment systems reverse osmosis based on Full-automatic ultra-filtering+RO and method
CN108585267A (en) * 2018-04-28 2018-09-28 贵州雅洁源环保科技有限公司 A kind of intelligent water purifier of raw water box excessive low water level protection
CN108585267B (en) * 2018-04-28 2023-09-12 贵州雅洁源环保科技有限公司 Intelligent water purifier for protecting original water tank from water shortage
JP7269850B2 (en) 2019-09-13 2023-05-09 株式会社放電精密加工研究所 Recycling method of nitric acid aqueous solution, electrolytic processing method using the same, recycling liquid of nitric acid aqueous solution, and recycling system
JP2021041369A (en) * 2019-09-13 2021-03-18 株式会社放電精密加工研究所 Recycling method of aqueous nitric acid solution, electrolytic processing method using the same, recycling solution of aqueous nitric acid solution, and recycling system
JP2022182552A (en) * 2021-05-28 2022-12-08 敏雄 霜田 drinking water supply system
JP7195553B2 (en) 2021-05-28 2022-12-26 敏雄 霜田 drinking water supply system
CN116119890A (en) * 2023-03-01 2023-05-16 邹洪武 Water mixing tank of non-waste water purifier
CN116819030A (en) * 2023-08-28 2023-09-29 天津天元信息技术有限公司 Tap water pipeline water quality purifying and monitoring device
CN116819030B (en) * 2023-08-28 2023-10-31 天津天元信息技术有限公司 Tap water pipeline water quality purifying and monitoring device

Similar Documents

Publication Publication Date Title
JP2011025114A (en) Switching type ro water purifier
JP2010149030A (en) Ro water purifier
JP2011020098A (en) Raw water sensor-controlled ro water purifier
JP6121442B2 (en) Apparatus and method for purifying and reusing shower water
KR100843313B1 (en) Circulating water purifier
JP2018171577A (en) Pure water production method and apparatus
US10159939B2 (en) Reverse osmosis system
US20030034292A1 (en) Water purifier
CA2775542A1 (en) Reverse osmosis system with circulation and cleaning and/or disinfection device
JP2009233591A (en) Water purifier
JP2011255357A (en) Drinking water apparatus
CN106277443A (en) A kind of full automatic water purifier
JP5202286B2 (en) UV water purifier
CN104843904A (en) Water purification equipment, filtering system and water filtering method for filtering system
JPS6295189A (en) Purified water generator
US20060219613A1 (en) Water purification system and method
JP2000189965A (en) Fresh water maker and production of fresh water
KR101936733B1 (en) Water purifier and method for descaling of water purifier
JP2005279614A (en) Water cleaning device
CN104829024A (en) Filter system of water purifying plant and water purifying plant with same
JP2007136384A (en) Permeate production equipment
JP7189612B2 (en) water purifier
JP5105036B2 (en) Dual water distribution system
KR101198652B1 (en) Purifier apparatus equipped with self-sterilizing and Sterilization Method having the same
KR100666555B1 (en) Water purifier and water circulation operation method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120706

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A02 Decision of refusal

Effective date: 20130319

Free format text: JAPANESE INTERMEDIATE CODE: A02