JP2011021229A - 超高純度合金鋳塊の製造方法 - Google Patents
超高純度合金鋳塊の製造方法 Download PDFInfo
- Publication number
- JP2011021229A JP2011021229A JP2009166726A JP2009166726A JP2011021229A JP 2011021229 A JP2011021229 A JP 2011021229A JP 2009166726 A JP2009166726 A JP 2009166726A JP 2009166726 A JP2009166726 A JP 2009166726A JP 2011021229 A JP2011021229 A JP 2011021229A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- refining
- pool
- ingot
- molten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
【解決手段】精錬剤は、酸化鉄とCaハライド組成フラックスとの混合物である。Caハライド組成フラックスは、例えばフッ化カルシウムに酸化カルシウムを5〜30wt%配合したCaF2-CaOである。酸化鉄の添加重量を、合金溶湯プール6中の炭素およびカルシウムを含む不純物元素を全量酸化させるために算出される算出重量の0.2倍以上、4.0倍以下とする。また、合金溶湯プール6の重量に対するCaハライド組成フラックスの添加率を、0.5wt%以上、5.0wt%以下とする。精錬工程では、チャンバー内の排気状態を15分以上保持する。
【選択図】図1
Description
前記したように、本発明は、コールドクルーシブル式誘導溶解装置1の水冷銅るつぼ3に例えば原料フィーダー2により合金原料を投入して、当該合金原料を例えばコイル5により誘導溶解させて、所定の合金組成に成分調整した合金溶湯プール6を形成する溶湯プール形成工程と、形成された合金溶湯プール6に精錬剤を添加した後、チャンバー内の不活性ガスを排気して排気状態を15分以上保持し、少なくとも炭素およびカルシウムを含む不純物元素を除去する精錬工程と、を備える超高純度合金鋳塊の製造方法である。そして、上記精錬剤は、酸化鉄などの所定の合金組成主要成分元素の酸化物である酸化剤とCaハライド組成フラックスとの混合物である。このCaハライド組成フラックスは、フッ化カルシウムに酸化カルシウムを5〜30wt%配合したCaF2-CaO、フッ化カルシウムに塩化カルシウムを5〜30wt%配合したCaF2-CaCl2、または、フッ化カルシウムに酸化カルシウムおよび塩化カルシウムを5〜30wt%配合したCaF2-(CaO+CaCl2)である。本製造方法では、酸化鉄の添加重量を、合金溶湯プール6中の少なくとも炭素およびカルシウムを含む不純物元素を全量酸化させるために算出される算出重量の0.2倍以上、4.0倍以下とする。また、前記精錬工程において、合金溶湯プール6の重量に対するCaハライド組成フラックスの添加率を、0.5wt%以上、5.0wt%以下とする(番号は、添付の図1を参照)。
[C]+[O]→CO(g)↑
この反応を進めるには、合金溶湯プール6中に酸素[O]を供給するとともに、発生するCO(g(ガス))を除去して、CO分圧を低下させ、反応を促進させる必要がある。この具体的な手段として、合金溶湯プール6への酸素供給のために、酸素ガスを使用することも可能ではある。しかし、CO(g)の除去には、真空排気を行い、発生COガスを排出し続けることが有効となるため、ガス状での酸素供給よりは、固体状での酸素源となる酸化鉄などの所定の合金組成主要成分元素の酸化物である酸化剤を添加する方が有効である。特に、金属Caにより還元精錬された合金鋳塊中には、残留酸素[O]は多くの場合5ppm以下となっており、酸素源のない状態となっていることから、脱炭反応用の酸素源の供給が不可欠となる。
[Si]+2[O]→(SiO2)
2[Al]+3[O]→(Al2O3)
[Ti]+2[O]→(TiO2)
[Zr]+2[O]→(ZrO2)
2[B]+3[O]→(B2O3)
[Ca]+[O]→(CaO)
合金原料がFe基合金の場合、酸素源となる酸化剤としては、Fe2O3、またはFe3O4などの酸化鉄を使用する。また、Ni基合金やFe−Ni基合金の場合は、酸化剤として酸化ニッケルなどを用いることも可能である。Co基合金の場合は、酸化コバルトなどを用いる。これらの酸化剤は、固体の酸化剤であり(酸素ガスのような気体ではない)、換言すれば酸化金属からなる酸化剤である。酸化反応の結果、発生する酸化物を、溶融スラグ層7中に安定して吸収させる必要がある。そこで、酸化物吸収能の高いフラックスとして、フッ化カルシウム(CaF2)や塩化カルシウム(CaCl2)などのCaハライド系フラックスに、CaOを添加したフラックスとしている。
{Flx}M=WFlx/M×100
WFlx:添加するするCaハライド組成フラックスの重量(kg)
M:合金溶湯プール6の重量(kg)
Caハライド組成フラックスの添加率が少なすぎると、発生酸化物の吸収効果が得られないことから、少なくとも合金溶湯プール6の重量の0.5wt%のフラックス量は必要である。一方、{Flx}Mが5.0wt%以上になると、合金溶湯プール6からの伝熱が不足し、溶融スラグ層7が形成されにくくなるため、5.0wt%を上限とする。
0.2×MFeO≦WFexOy≦4.0×MFeO
ここで、
MFeO=M/100×([C]/12.01+2×[Si]/28.09+1.5×[Al]/26.98+2×[Ti]/47.9+2×[Zr]/91.22+2×[Hf]/178.49+1.5×[B]/10.811+[Ca]/40.08−[O]/15.9994)/y×(55.85×x+16.0×y)
M:合金溶湯プール6の重量(kg)
[C]:合金溶湯プール6中のC濃度(wt%)
[Si]: 合金溶湯プール6中のSi濃度(wt%)
[Al]合金溶湯プール6中のAl濃度(wt%)
[Ti]: 合金溶湯プール6中のTi濃度(wt%)
[Zr]: 合金溶湯プール6中のZr濃度(wt%)
[Hf]: 合金溶湯プール6中のHf濃度(wt%)
[B]: 合金溶湯プール6中のB濃度(wt%)
[Ca]: 合金溶湯プール6中のCa濃度(wt%)
[O]: 合金溶湯プール6中のO濃度(wt%)
ここで、脱炭[C]率:η_Cは、次のように定義されている。
η_C=([C]0−[C])/[C]0×100 (%)
また、[Al],[Ti]などの元素と比べて、その酸化物の熱力学的な安定性が少ない[Si]や[B]の酸化除去精錬については、図3のWFe3O4/MFeOおよび{Flx}Mと、脱[Si]率との関係に示すように、脱[Si]率として50%以上を得ようとするならば、添加する酸化鉄の重量は、1.0×MFeO<WFexOyを満足し、かつ{Flx}Mは、3.0<{Flx}Mを満足することが有効であることは明らかである。
ここで、脱炭[Si]率:η_Siは、次のように定義されている。
η_Si=([Si]0−[Si])/[Si]0×100 (%)
さらに、より確実に脱[Si]率を高くするためには、WFexOyをMFeOの1.5倍から2倍程度にする必要があった。これは、添加した酸化鉄が、全て反応に使われているのではないためである。一方、酸化鉄の重量を所要量の4倍以上添加すると、合金成分のCrなどの酸化損失が増えすぎるため望ましくない。
Caハライド組成フラックスと酸化鉄との混合物である精錬剤を合金溶湯プール6に添加して、溶融スラグ層7が形成されれば、例えば油回転ポンプでチャンバー内の真空排気を行う。必要に応じて、メカニカルブースターポンプ、拡散ポンプなどによる真空排気を行い、真空雰囲気下での酸化精錬を行う。
前記した酸化精錬方法により溶製した鋳塊の内、[P],[S],[N],[Sn],[Pb]などの含有量が低い場合は、これを溶解原料として、当該溶解原料に脱酸元素系の合金成分を添加して合金化することが好ましい。脱酸元素系の合金成分としは、[Si],[Al],[Ti],[Zr],[B]などがある。これにより、所定の合金組成の超高純度(極低不純物)Fe基Ni基合金鋳塊を溶製することができる。
前記したコールドクルーシブル式誘導溶解装置1を用いての酸化精錬方法により溶製した鋳塊、または当該鋳塊に脱酸元素系の合金成分を添加して合金化した鋳塊、を1次鋳塊(合金原料)として、以下に記述するコールドハース式電子ビーム溶解方法で、さらなる脱炭[C]、脱酸[O]を行うことが好ましい。
脱炭反応は、真空度が高いほど促進されやすいため、極限までの脱[C]を行わせるには、高真空雰囲気下であることが望ましい。なお、「<5×10−4mbar」としたのは、真空チャンバー4内に微量のArガスを導入する場合があるからである。真空チャンバー4内にArガスなどの不活性ガスを導入しない場合は、1×10−4mbarよりも低い気圧下で溶製を行うことが望ましい。
溶解原料12中の酸素濃度が不足する場合は、高真空条件下においても、脱[C]されることはない。そのため、[C]の酸化に必要な[O]を供給する必要がある。しかし、電子ビーム溶解法は、高真空下で実施されるため、酸素ガスを供給することは困難である。そこで、固体の酸素源として、高純度な酸化鉄などの所定の合金組成主要成分元素の酸化物である酸化剤を溶解原料とともに供給する方式が有効である。この場合、微粉状の酸化鉄は、電子ビーム溶解の最初の真空排気の段階で、ガスの流れに巻き込まれて飛散し、真空ポンプにまで達して、当該真空ポンプを傷める結果となる。よって、事前に酸化鉄の焼結処理などを行い、顆粒状にした酸化鉄を添加することが望ましい。酸化剤としては、Fe基合金の場合は酸化鉄(Fe3O4,Fe2O3など)、Fe−Ni基合金の場合は酸化鉄や酸化ニッケルが、Ni基合金では酸化ニッケルが、Co基合金の場合は、酸化コバルトなどが適用できる。これらの酸化剤は、固体の酸化剤であり、換言すれば酸化金属からなる酸化剤である。
MFeO=WM/100×([C]/12.01)/y×(55.85×x+16.0×y)
WM:溶解原料の重量(kg)、[C]:溶解原料中のC濃度(wt%)
酸化鉄の添加重量は、目的とする炭素のCOガス化に必要な計算量と同程度か、4倍ほど多い量を添加することが、試験の結果、有効と判明している。添加量が少なすぎると、脱[C]が不十分となり、多すぎると、鋳塊中の酸素[O]濃度が高くなる傾向があり、経験的には、計算量の2から3倍程度の添加量が適正な場合が多い。
精錬効果の確認に用いた試験装置の構造模式図は、図1および図4に示す通りであり、設備の概略仕様は、以下の通りである。
(1)コールドクルシ−ブル式誘導溶解(CCIM)装置1
高周波電源 最大出力:400kW,周波数:3000Hz
水冷銅るつぼ3 内径:φ220,セグメント数:24
到達真空度 10−2mbar台
真空排気装置 ロータリーポンプ、メカニカルブースターポンプ
(2)コールドハース式電子ビーム溶解(EBCHR)装置11
高圧電源 加速電圧:40kV,最大出力:300kW
電子ビーム銃14 2基
到達真空度 10−6mbar台
真空排気装置 ロータリーポンプ、メカニカルブースターポンプ、拡散ポンプ
原料供給機構 最大φ210×1000Lmm
鋳塊引抜機構 最大φ200×1000Lmm
酸化鉄とCaハライド組成フラックスとの混合物である精錬剤を用いての酸化精錬試験の効果について表1に示す。この酸化精錬試験はCCIM装置を用いている。また、この酸化精錬試験では、炭素[C]や珪素[Si]などの不純物含有量の多いフェロクロム(FeCr)、極低炭素鋼、および高純度原料である電解Niを溶解原料としている。また、不純物元素の硼素[B]も50ppmほど含まれる条件としている。
φ220mmの水冷銅るつぼ3を有するCCIM装置で、酸化精錬(真空酸化精錬)処理を施した鋳塊を溶解原料として、コールドハース式電子ビーム溶解装置11により、当該溶解原料に酸化鉄を添加して溶解を行った場合の、脱[C]効果は、表2に示す通りである。
2:原料フィーダー
3:水冷銅るつぼ
4:真空チャンバー
6:合金溶湯プール
7:溶融スラグ層
Claims (4)
- コールドクルーシブル式誘導溶解装置の水冷銅るつぼに合金原料を投入して、所定の合金組成に成分調整した合金溶湯プールを形成する溶湯プール形成工程と、
前記合金溶湯プールに精錬剤を添加した後、チャンバー内の不活性ガスを排気して排気状態を15分以上保持し、少なくとも炭素およびカルシウムを含む不純物元素を除去する精錬工程と、
を備え、
前記精錬剤は、酸化鉄などの所定の合金組成主要成分元素の酸化物である酸化剤とCaハライド組成フラックスとの混合物であり、
前記Caハライド組成フラックスは、フッ化カルシウムに酸化カルシウムを5〜30wt%配合したCaF2-CaO、フッ化カルシウムに塩化カルシウムを5〜30wt%配合したCaF2-CaCl2、または、フッ化カルシウムに酸化カルシウムおよび塩化カルシウムを5〜30wt%配合したCaF2-(CaO+CaCl2)であり、
前記酸化剤の添加重量を、前記合金溶湯プール中の前記少なくとも炭素およびカルシウムを含む不純物元素を全量酸化させるために算出される算出重量の0.2以上、4.0倍以下とし、
前記精錬工程において、前記合金溶湯プールの重量に対する前記Caハライド組成フラックスの添加率を、0.5wt%以上、5.0wt%以下とすることを特徴とする、超高純度合金鋳塊の製造方法。 - 請求項1に記載の超高純度合金鋳塊の製造方法において、
前記Caハライド組成フラックスは、フッ化カルシウムに酸化カルシウムを5〜30wt%配合したCaF2-CaO、または、フッ化カルシウムに酸化カルシウムおよび塩化カルシウムを5〜30wt%配合したCaF2-(CaO+CaCl2)であり、
前記酸化剤の添加重量を、前記合金溶湯プール中の少なくとも炭素、カルシウム、アルミニウムおよび珪素を含む不純物元素を全量酸化させるために算出される算出重量の2.0倍以上、4.0倍以下とし、
前記精錬工程において、前記合金溶湯プールの重量に対する前記Caハライド組成フラックスの添加率を、3.0wt%以上、5.0wt%以下とすることを特徴とする、超高純度合金鋳塊の製造方法。 - 請求項1または2に記載の超高純度合金鋳塊の製造方法により製造した鋳塊に、脱酸元素系の合金成分を添加して、合金化することを特徴とする、超高純度合金鋳塊の製造方法。
- 請求項1〜3のいずれかに記載の超高純度合金鋳塊の製造方法により製造した鋳塊を1次鋳塊とし、
コールドハース式電子ビーム溶解装置の水冷銅製皿状容器に前記1次鋳塊を供給して、5×10−4mbarよりも低い気圧下において、当該水冷銅製皿状容器内と当該水冷銅製皿状容器に隣接する水冷銅鋳型内とに、合金溶湯プールを形成する第2溶湯プール形成工程と、
前記水冷銅製皿状容器内の合金溶湯プールに第2精錬剤を添加して、不純物元素である炭素を除去する第2精錬工程と、
を備え、
前記第2精錬剤は酸化鉄などの所定の合金組成主要成分元素の酸化物である酸化剤であり、
前記第2精錬剤の添加重量を、前記1次鋳塊の合金溶湯プール中の前記不純物元素である炭素を全量酸化させるために算出される算出重量の1.0倍以上、4.0倍以下とすることを特徴とする、超高純度合金鋳塊の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009166726A JP5379583B2 (ja) | 2009-07-15 | 2009-07-15 | 超高純度合金鋳塊の製造方法 |
US13/384,142 US8496046B2 (en) | 2009-07-15 | 2010-07-15 | Method for producing alloy ingot |
RU2012105311/02A RU2494158C1 (ru) | 2009-07-15 | 2010-07-15 | Способ получения слитка сплава |
EP10799642.3A EP2455501B1 (en) | 2009-07-15 | 2010-07-15 | Method for producing alloy ingot |
KR1020127003876A KR101384390B1 (ko) | 2009-07-15 | 2010-07-15 | 합금 주괴의 제조 방법 |
PCT/JP2010/004615 WO2011007578A1 (ja) | 2009-07-15 | 2010-07-15 | 合金鋳塊の製造方法 |
CN2010800318692A CN102471828B (zh) | 2009-07-15 | 2010-07-15 | 合金铸锭的制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009166726A JP5379583B2 (ja) | 2009-07-15 | 2009-07-15 | 超高純度合金鋳塊の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011021229A true JP2011021229A (ja) | 2011-02-03 |
JP5379583B2 JP5379583B2 (ja) | 2013-12-25 |
Family
ID=43631545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009166726A Active JP5379583B2 (ja) | 2009-07-15 | 2009-07-15 | 超高純度合金鋳塊の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5379583B2 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012167313A (ja) * | 2011-02-14 | 2012-09-06 | Mitsubishi Heavy Ind Ltd | 合金のリサイクル方法及び合金並びにタービン |
JP2012167312A (ja) * | 2011-02-14 | 2012-09-06 | Mitsubishi Heavy Ind Ltd | 合金のリサイクル方法及び合金並びにタービン |
JP2014129556A (ja) * | 2012-12-28 | 2014-07-10 | Kobe Steel Ltd | チタン鋳塊の製造方法 |
CN113412237A (zh) * | 2019-04-30 | 2021-09-17 | 瓦克化学股份公司 | 使用颗粒介质精炼粗硅熔体的方法 |
CN115094392A (zh) * | 2022-07-06 | 2022-09-23 | 天津华瑞新材料科技有限公司 | 一种细晶高致密镍铬铝钇硅合金靶材的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05295470A (ja) * | 1992-04-23 | 1993-11-09 | Daido Steel Co Ltd | チタンまたはチタン合金の脱酸方法 |
JP2003342629A (ja) * | 2002-05-20 | 2003-12-03 | National Institute For Materials Science | アルミニウム低減化耐熱鋼の製造方法 |
-
2009
- 2009-07-15 JP JP2009166726A patent/JP5379583B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05295470A (ja) * | 1992-04-23 | 1993-11-09 | Daido Steel Co Ltd | チタンまたはチタン合金の脱酸方法 |
JP2003342629A (ja) * | 2002-05-20 | 2003-12-03 | National Institute For Materials Science | アルミニウム低減化耐熱鋼の製造方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012167313A (ja) * | 2011-02-14 | 2012-09-06 | Mitsubishi Heavy Ind Ltd | 合金のリサイクル方法及び合金並びにタービン |
JP2012167312A (ja) * | 2011-02-14 | 2012-09-06 | Mitsubishi Heavy Ind Ltd | 合金のリサイクル方法及び合金並びにタービン |
JP2014129556A (ja) * | 2012-12-28 | 2014-07-10 | Kobe Steel Ltd | チタン鋳塊の製造方法 |
CN113412237A (zh) * | 2019-04-30 | 2021-09-17 | 瓦克化学股份公司 | 使用颗粒介质精炼粗硅熔体的方法 |
CN115094392A (zh) * | 2022-07-06 | 2022-09-23 | 天津华瑞新材料科技有限公司 | 一种细晶高致密镍铬铝钇硅合金靶材的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5379583B2 (ja) | 2013-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8496046B2 (en) | Method for producing alloy ingot | |
Shi et al. | Non-metallic inclusions in electroslag remelting: A review | |
JPS6237687B2 (ja) | ||
TW201730355A (zh) | 疲勞特性優異的高強度不銹鋼板及其製造方法 | |
JP5379583B2 (ja) | 超高純度合金鋳塊の製造方法 | |
KR20170087867A (ko) | 저질소, 본질적으로 질화물을 함유하지 않는 크롬 및 크롬과 니오븀-함유 니켈계 합금의 제조 방법 및 수득된 크롬 및 니켈계 합금 | |
WO2007063748A1 (ja) | ハライド系るつぼを用いる誘導溶解装置、同るつぼの製作法および誘導溶解法並びに超高純度Fe基、Ni基、Co基合金材料の溶製法 | |
JP2016222970A (ja) | 高清浄鋼とその精錬方法 | |
JP6230531B2 (ja) | 金属クロムの製造方法 | |
JP5395545B2 (ja) | 超高純度合金鋳塊の製造方法 | |
JP2007154214A (ja) | 超高純度Fe基、Ni基、Co基合金材料の溶製法 | |
JP2010144195A (ja) | 高窒素含有ステンレス鋼の製造方法 | |
JP5814500B2 (ja) | 鋳塊中炭素[C]が10ppm以下であるステンレス鋼鋳塊の製造方法 | |
JP2002339014A (ja) | 極低硫鋼の製造方法 | |
JP5266903B2 (ja) | Mn合金の製造方法 | |
JP5985437B2 (ja) | 高マンガンクロム含有鋼の溶製方法 | |
RU2456349C1 (ru) | Способ внепечной обработки железоуглеродистого расплава | |
JP2008050700A (ja) | 含クロム鋼スラグの処理方法 | |
JP7338663B2 (ja) | 含クロム溶鉄の製造方法 | |
RU2810410C1 (ru) | Способ производства коррозионно-стойкой стали | |
US8641800B2 (en) | Method of alloying various grades of steel with manganese oxides | |
JP2008081845A (ja) | 含クロム鋼精錬スラグの処理方法 | |
JP4202967B2 (ja) | 極低酸素鉄および鉄合金の溶製方法 | |
Duan et al. | Novel Applications of Ferroalloys for Manufacturing of High Entropy Alloy | |
CN117987747A (zh) | 一种超高纯316l不锈钢及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110902 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130903 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130927 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5379583 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |