JP2011017044A - 高強度熱延鋼板およびその製造方法 - Google Patents
高強度熱延鋼板およびその製造方法 Download PDFInfo
- Publication number
- JP2011017044A JP2011017044A JP2009161384A JP2009161384A JP2011017044A JP 2011017044 A JP2011017044 A JP 2011017044A JP 2009161384 A JP2009161384 A JP 2009161384A JP 2009161384 A JP2009161384 A JP 2009161384A JP 2011017044 A JP2011017044 A JP 2011017044A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- strength
- hot
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 118
- 239000010959 steel Substances 0.000 title claims abstract description 118
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000002244 precipitate Substances 0.000 claims abstract description 61
- 229910001568 polygonal ferrite Inorganic materials 0.000 claims abstract description 44
- 239000000203 mixture Substances 0.000 claims abstract description 35
- 229910001567 cementite Inorganic materials 0.000 claims abstract description 24
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000002245 particle Substances 0.000 claims abstract description 20
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 12
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims description 41
- 238000005096 rolling process Methods 0.000 claims description 33
- 238000010438 heat treatment Methods 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 238000005728 strengthening Methods 0.000 description 33
- 238000001556 precipitation Methods 0.000 description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 15
- 230000000694 effects Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 238000005098 hot rolling Methods 0.000 description 10
- 229910000859 α-Fe Inorganic materials 0.000 description 9
- 150000001247 metal acetylides Chemical class 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 230000007704 transition Effects 0.000 description 8
- 238000004804 winding Methods 0.000 description 8
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 7
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 7
- 239000006104 solid solution Substances 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 6
- 238000005868 electrolysis reaction Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000013585 weight reducing agent Substances 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 229910001563 bainite Inorganic materials 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 229910001562 pearlite Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- YLRAQZINGDSCCK-UHFFFAOYSA-M methanol;tetramethylazanium;chloride Chemical compound [Cl-].OC.C[N+](C)(C)C YLRAQZINGDSCCK-UHFFFAOYSA-M 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 241000219307 Atriplex rosea Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 238000011077 uniformity evaluation Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
【解決手段】C:0.010〜0.060%、Si:0.5%以下、Mn:0.8〜1.8%、P:0.030%以下、S:0.01%以下、Al:0.005〜0.1%、N:0.005%以下、Ti:0.035〜0.100%を含有し、残部がFeおよび不可避的不純物からなる。組織は、平均粒径が5.0〜10.0μmであるポリゴナルフェライトが80%以上の分率で存在し、サイズ20nm未満の析出物中に存在するTiの量が、下式(1)で計算されるTi*の値の70%以上であり、鋼板のCの成分組成(質量%)に対するセメンタイトとして析出したC量の割合が20%以下である。Ti*=[Ti]−48×[N]÷14…(1)ここで、[Ti]および[N]はそれぞれ鋼板のTiおよびNの成分組成(質量%)を示す。
【選択図】図2
Description
特許文献1に記載の方法では、NbやMo添加のためコスト増加を招き経済的に不利である。さらに、Ti、V、Nbの添加により高強度化を狙う鋼板においては、熱間仕上げ圧延後に鋼板温度が高い状態であるとひずみ誘起析出による粗大な析出物が生じる。そのため、余剰に添加元素が必要になる問題を有している。
また、特許文献2に記載の鋼板では、Ti系であるが、高価なMoを添加する必要があり、コストアップを招く。
[1]成分組成が、質量%で、C:0.010〜0.060%、Si:0.5%以下、Mn:0.8〜1.8%、P:0.030%以下、S:0.01%以下、Al:0.005〜0.1%、N:0.005%以下、Ti:0.035〜0.100%を含有し、残部がFeおよび不可避的不純物からなり、平均粒径が5.0〜10.0μmであるポリゴナルフェライトを80%以上の分率で含む組織を有し、サイズ20nm未満の析出物中に存在するTiの量が、下式(1)で計算されるTi*の値の70%以上であり、鋼板のCの成分組成(質量%)に対するセメンタイトとして析出したC量の割合が20%以下であることを特徴とする高強度熱延鋼板。
Ti*=[Ti]−48×[N]÷14…(1)
ここで、[Ti]および[N]はそれぞれ鋼板のTiおよびNの成分組成(質量%)を示す。
[2]成分組成が、質量%で、C:0.010〜0.060%、Si:0.5%以下、Mn:0.8〜1.8%、P:0.030%以下、S:0.01%以下、Al:0.005〜0.1%、N:0.005%以下、Ti:0.035〜0.100%を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを、1200〜1300℃の加熱温度に加熱後、800〜950℃の仕上げ温度で熱間仕上げ圧延を行い、該熱間仕上げ圧延後2秒以内に20℃/s以上の冷却速度で冷却を開始し、650℃〜750℃の温度で冷却を停止し、引き続き、2秒〜30秒の放冷工程を経たのちに、再度100℃/s以上の冷却速度で冷却を施し、650℃以下の温度で巻き取ることを特徴とする高強度熱延鋼板の製造方法。
さらに、本発明の目標とする特性は、熱延コイル内の強度バラツキΔTSが35MPa以下、穴広げ値(λ)が100%以上、エネルギー遷移温度(TrE)が−40℃以下である。
対象の鋼板の一例としてはコイル状に巻きとったもので、その重量が5t以上、鋼板の幅が500mm以上のものがあげられる。このような場合には、熱間圧延ままの状態における、長手方向の先端部と後端部で最内周と最外周の各々ひと巻きと幅方向の両端10mmは評価の対象とはしない。これの、長手方向に少なくとも10分割、幅方向に少なくとも5分割にした試料に対して2次元的に測定した引張強度(TS)の分布をもって強度バラツキ(ΔTS)を評価するものとする。また、本発明は鋼板の引張強度(TS)が540MPa以上780MPa以下の範囲を対象としている。
Cは、後述のTiとともに本発明における重要な元素である。Cは、Tiとともに炭化物を形成し、析出強化により鋼板を高強度するのに有効である。本発明では析出強化の観点からCを0.010%以上含有する。炭化物の析出効率の観点から好ましくは後述するTi*の1.2倍以上である。一方、過剰に含有するCはセメンタイトとして析出する。0.060%を超えると靭性や穴広げ性に悪影響を及ぼしやすく、C含有量の上限は0.060%とする。好ましいC含有量の範囲は0.015〜0.055%である。含有するCは(a) 固溶状態、(b) TiCとして析出した状態、(c) セメンタイト(Fe3C)として析出した状態の3パターンに大別される。本発明鋼においては、(a) 固溶状態にあるCは0.001%、(b) Tiと結合するC量はTi*の原子量比にして1.0〜1.1倍と一定であるので、C:0.010〜0.060%の範囲とすることで、セメンタイトとして析出したC量の割合を20%以下とすることができる。このときのC含有量上限は原子量比にしてTi*の2.5倍、すなわち、重量比はTi*の0.63倍である。
Siは、固溶強化の効果ともに延性を向上させる効果がある。上記効果を得るためには、Siは0.01%以上含有することが好ましい。一方、Siを0.5%を超えて含有すると、熱間圧延時に赤スケールと称される表面欠陥が発生しやすくなり、鋼板とした時の表面外観を悪くしたり、耐疲労性、靭性に悪影響を及ぼすことがある。よって、Si含有量は0.5%以下とする。好ましくは0.05%以下である。
Mnは、高強度化に有効であるとともに、変態点を下げ、フェライト粒径を微細化させる作用があることから、0.8%以上含有する必要がある。好ましくは1.0%以上である。一方、1.8%を超える過度のMnを含有すると、熱延後に低温変態相が生成して延性が低下したり、後述するTi系炭化物の析出が不安定になりやすくなり、強度バラツキが大きくなる。よって、Mn含有量の上限は1.8%とする。
Pは、固溶強化に有効な元素であり、また、Si起因のスケール欠陥を軽減する効果をもつ。しかしながら、0.030%を超える過剰なPの含有は、Pが粒界に偏析しやすく、靭性および溶接性を劣化させやすい。よって、P含有量の上限は0.030%とする。
Sは、不純物であり、鋼中に介在物として存在し、伸びフランジ性を著しく低下させる、また、熱間割れの原因になるなど鋼板の諸特性を劣化させるので、できるだけ低減する必要がある。具体的には、S含有量は、0.01%までは許容できるため、0.01%以下とする。好ましくは0.005%以下である。
Alは、鋼の脱酸元素として有用である他、不純物として存在する固溶Nを固定して耐常温時効性を向上させる作用がある。かかる作用を発揮させるためには、Al含有量は0.005%以上とする必要がある。一方、0.1%を超えるAlの含有は、高合金コストを招き、さらに表面欠陥を誘発しやすいので、Al含有量の上限は0.1%とする。
Nは耐常温時効性を劣化させる元素であり、できるだけ低減することが好ましい元素である。N含有量が多くなると耐常温時効性が劣化し、機械的特性向上の寄与が少ない粗大なTi系窒化物として析出してしまうため、固溶Nを固定するために多量のAlやTiの含有が必要となる。そのため、できるだけ低減することが好ましく、N含有量の上限は0.005%とする。
Tiは、析出強化により鋼を強化させるために重要な元素である。本発明の場合、Cとともに炭化物を形成することで析出強化に寄与する。
引張強度TSが540MPa以上780MPa以下の高強度鋼板を得るためには、析出物は析出物サイズ20nm未満となるように微細化することが好ましい。また、この微細な析出物(析出物サイズ20nm未満)の割合を高めることが重要である。これは、析出物のサイズが20nm以上では、転位の移動を抑制する効果が得られにくく、またポリゴナルフェライトを十分に硬質化できないため、強度が低下する場合があるからと考えられるからである。したがって、析出物のサイズは20nm未満とすることが好ましい。そして、この20nm未満の微細なTiを含む析出物は、TiとCを共に0.035%以上0.100%以下の範囲で含有することにより形成される。
なお、本発明においては、これらTiとCを含有する析出物を総称してTi系炭化物と呼ぶ。Ti系炭化物としては例えばTiC、Ti4C2S2などがあげられる。また、前記炭化物中にNを組成として含んだり、MnSなどと複合して析出していても良い。
さらに、本発明の高強度鋼板においては、Ti系炭化物は、主にポリゴナルフェライト中に析出していることが確認できている。これは、ポリゴナルフェライトにおけるCの固溶限は小さいので、過飽和のCがポリゴナルフェライト中に炭化物として析出しやすいためと考えられる。このため、このような析出物により軟質のポリゴナルフェライトが硬質化し、540MPa以上780MPa以下の引張強度(TS)が得られることになる。同時にTiは、固溶Nと結合しやすく、TiNは粗大であり強化に寄与しないので、固溶Nを固定するのにも好ましい元素でもある。このような観点からもTiは0.035%以上とする。
しかしながら、Tiの過剰な含有は加熱段階で強度に寄与しない粗大なTiの未溶解炭化物であるTiC等を生成させるだけで好ましくなく、非経済的である。よって、Tiの上限は0.100%とする。
また、本発明では、上記した成分以外の残部は鉄および不可避的不純物の組成とする。
平均粒径5.0〜10.0μmのポリゴナルフェライトを80%以上の分率で含む組織を有し、かつ、サイズ20nm未満の析出物中に存在するTiの量が、下式(1)で計算されるTi*の値の70%以上であり、鋼板のCの成分組成(質量%)に対するセメンタイトとして析出したC量の割合が20%以下である。
Ti*=[Ti]−48×[N]÷14…(1)
ここで、[Ti]および[N]はそれぞれ鋼板のTiおよびNの成分組成(質量%)を示す。
細粒化強化では、ホールペッチ則で知られているように粒界面積、すなわち鋼組織を形成する結晶粒径と強化量は相関がある。
析出強化による強化量は、析出物のサイズと分散(具体的には析出物間隔)によって定められる。析出物の分散は、析出物の量とサイズによって表現できるため、析出物のサイズと量が決まれば析出強化による強化量が定まる。
化学組成が後述する表1の鋼Aを転炉で溶製し、連続鋳造法でスラブとした。これら鋼スラブを1200〜1300℃の範囲で再加熱した後、粗圧延してシートバーとした。これを、800〜950℃の温度にて仕上げ圧延を施し、仕上げ圧延から1.4〜3.0秒後に25℃/s以上の冷却速度で冷却を開始し、550〜780℃の温度で冷却を停止した。引き続き、2〜60秒の放冷工程を経た後、50〜200℃/sの冷却速度で再度冷却し、700℃以下の温度範囲で巻き取り、コイル状の板厚6〜14mmの熱延鋼板を製造した。得られた熱延鋼板から、後述する実施例における採取位置と同様の方法にて、引張試験片を189点採取した。
図1より、ポリゴナルフェライト分率の増加とともに強度バラツキΔTSは減少の傾向を示すことがわかった。そして、ポリゴナルフェライト分率が80%以上(符号○)の場合では、ΔTSが35MPa以下となる試料群(図1中、点線Aで囲った領域)が現れることが分かった。
なお、ポリゴナルフェライトの分率は、例えば以下のようにして求めることができる。鋼板のL断面(圧延方向に平行な断面)の板厚の表層10%を除く部分について、5%ナイタールによる腐食現出組織を走査型電子顕微鏡(SEM)で100倍に拡大して撮影する。粒界の凹凸が0.1μm未満の滑らかで、かつ粒内に腐食痕が残らず平滑なフェライト結晶粒をポリゴナルフェライトと定義して、その他の形態のフェライト相やパーライトやベイナイトなどの異なる変態相区別する。これらを画像解析ソフト上で色分けし、その面積率をもって、ポリゴナルフェライト分率とする。
一方、引張試験の方法は、後述する実施例と同様の方法にて行った。さらに、強度バラツキ(ΔTS)は、上記測定した189点の引張強度TSの標準偏差σを求めてこれを4倍したものとした。
図2より、ポリゴナルフェライト平均粒径が5.0μm以上10.0μm以下の範囲(符号○)の一部で、ΔTSが35MPa以下となる試料群(図中、点線Bで囲った領域)が現れることも分かった。但し、板厚が6mm未満の場合には、板厚方向に存在する粒径の数が相対的に減少し、平均粒径が10.0μmを超えた場合でも強度バラツキは鋼材全体として問題となるほど大きくならないことが判明している。また、板厚が大きい鋼板においては、鋼板表層部は冷却速度が大きいが、板厚中心部は表層部と比して冷却速度が小さい。このとき、板厚中止分のポリゴナルフェライト粒径が5.0μm以上10.0μm以下の範囲にない場合、板厚方向の粒径分布を無視できなくなる。従って、板厚6mm以上の場合に、平均粒径の範囲を5.0μm以上10.0μm以下とすればより発明の効果を奏することになる。
なお、ポリゴナルフェライトの平均粒径は、JIS G 0551に準拠した切断法にて測定し、倍率100倍で撮影した1枚の写真につき、3本の垂直、水平線を引きそれぞれの平均粒径を計算し、その平均をもって最終的な粒径とした。
また、ポリゴナルフェライトの平均粒径dpは、コイル長手中央かつ幅中央の値をもって代表値とした。
そこで、次に、上記のように製造された熱延鋼板群より、ポリゴナルフェライトの分率が80%以上、かつ、ポリゴナルフェライトの粒径が5.0μm以上10.0μm以下のものを抽出して、下式(1)で示されるTi*に対するサイズ20nm未満の析出物に含まれるTi量[Ti20]の割合[Ti20]/Ti*(%)と、強度バラツキΔTS(MPa)との相関を調査した。得られた結果を図3に示す。上述したように、析出強化に寄与するサイズ20nm未満の析出物は、含有したTiにより形成されるため、20nm未満の析出物中のTi量[Ti20]を把握すれば、Tiが効率良く微細析出物として析出しているかどうかを明確にできるからである。
図3においては、縦軸に強度バラツキΔTS(MPa)、横軸にTi*に対するサイズ20nm未満の析出物に含まれるTi量の割合[Ti20]/Ti*(%)とし、Ti*に対するサイズ20nm未満の析出物に含まれるTi量の割合[Ti20]/Ti*が70%以上を符号○、70%未満を符号×にて示している。
図3より、サイズ20nm未満の析出物に含まれるTi量の割合[Ti20]/Ti*の増加とともに強度バラツキΔTSは減少の傾向を示す。また、サイズ20nm未満の析出物に含まれるTi量の割合[Ti20]/Ti*が70%以上であれば、ΔTSが35MPa以下となることも分かった。
なお、Ti*に対するサイズ20nm未満の析出物に含まれるTi量の割合[Ti20]/Ti*は、コイル長手中央かつ幅中央の値をもって代表値としたものである。
Ti*=[Ti]−48×[N]÷14…(1)
ここで、[Ti]および[N]はそれぞれ鋼板のTiおよびNの成分組成(質量%)を示す。
試料を電解液中で所定量電解した後、試料片を電解液から取り出して分散性を有する溶液中に浸漬する。次いで、この溶液中に含まれる析出物を、孔径20nmのフィルタを用いてろ過する。この孔径20nmのフィルタをろ液と共に通過した析出物がサイズ20nm未満である。次いで、ろ過後のろ液に対して、誘導結合プラズマ(ICP)発光分光分析法、ICP質量分析法、および原子吸光分析法等から適宜選択して分析し、鋼組成に対するサイズ20nm未満での析出物におけるTiの量[Ti20]を求める。
なお、穴広げ値(λ) およびエネルギー遷移温度(TrE)の測定は、後述する実施例と同様の方法で行った。
本発明の製造方法に用いられる鋼スラブの組成は、上述した鋼板の組成と同様であり、またその限定理由も同様である。本発明の高強度熱延鋼板は、上記した範囲内の組成を有する鋼スラブを素材とし、該素材に粗圧延を施し熱延鋼板とする熱間圧延工程を経ることにより製造できる。
鋼スラブを熱間圧延前に加熱する目的のひとつとして、連鋳までに生成した粗大なTi系炭化物を鋼中に再固溶させることが挙げられる。1200℃を下回る加熱温度では析出物の固溶状態が不安定になり、後の工程で生成する微細なTi系炭化物の生成量が不均一となる。したがって、加熱温度の下限は1200℃とする。一方で、1300℃を超える加熱はスラブ表面のスケールロス増大の悪影響を及ぼすことから、上限は1300℃とする。
次いで、上記条件で加熱された鋼スラブに粗圧延および仕上圧延を行う熱間圧延を施す。ここで、鋼スラブは粗圧延によりシートバーとされる。なお、粗圧延の条件は特に規定する必要はなく、常法に従って行えばよい。また、仕上げ圧延温度を確保し、かつ熱間圧延時のトラブルを防止するといった観点からは、シートバーを加熱する、所謂シートバーヒーターを活用することが好ましい。
次いで、シートバーを仕上げ圧延して熱延鋼板とする。
仕上げ温度が800℃未満では、圧延荷重が増大し、オーステナイト未再結晶温度領域での圧延率が高くなることにより異常な集合組織が発達したり、Ti系炭化物のひずみ誘起析出による粗大な析出物が生じることから好ましくない。一方で、仕上げ温度が950℃超えではポリゴナルフェライト粒径の粗大化を招き、成形性が低下したり、スケール性欠陥が生じる。好ましくは840℃〜920℃とする。
また、熱間圧延時の圧延荷重を低減するため、仕上げ圧延の一部または全部のパス間で潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の均一化や強度の均一化の観点から有効である。潤滑圧延の際の摩擦係数は、0.10〜0.25の範囲とするのが好ましい。さらに、相前後するシートバー同士を接合し、連続的に仕上げ圧延する連続圧延プロセスとすることも好ましい。連続圧延プロセスを適用することは、熱間圧延の操業安定性の観点からも望ましい。
熱間仕上げ圧延後2秒以内に20℃/s以上の冷却速度で冷却を開始する。仕上げ圧延後冷却を開始するまでに2秒を超える時間を経過すると、仕上げ圧延時に蓄積された歪みが開放され、ポリゴナルフェライト粒の粗大化や、粗大なTi系炭化物のひずみ誘起析出が生じるため好ましくない。また、冷却速度が20℃/sを下回る場合も同様な現象が生じやすくなる。
650℃〜750℃の温度で冷却を停止し、引き続き、2秒〜30秒の放冷する。放冷の温度はランアウトテーブルを通過する短時間に効果的にTiC のようなTi系炭化物を析出させる温度とし、最もフェライト変態が進行する温度域に一定時間保持する必要がある。650℃未満の放冷(保持)温度ではポリゴナルフェライト粒の成長が阻害され、それに伴いTi系炭化物の析出も生じにくくなる。一方750℃を超える放冷(保持)温度においては、ポリゴナルフェライト粒およびTi系炭化物の粗大化が起きる悪影響につながる。したがって、放冷温度は650℃〜750℃とする。
また、本発明鋼でポリゴナルフェライト分率80%以上を得るための最低放冷時間は2秒である。また、30秒を超える放冷はTi系炭化物の粗大化により強度が低下する。したがって、放冷時間は2秒〜30秒とする。
再度100℃/s以上の冷却速度で冷却を施す。前述の工程により安定的に得られた微細なTi系炭化物の状態を維持するため、大きな冷却速度を要する。そのため冷却速度の下限は100℃/sとする。
650℃以下の温度で巻き取る。巻き取り温度が650℃超えでは、析出物のサイズが粗大化し、著しく不均一になるため好ましくない。低温側の巻き取り温度に対しては強度バラツキの原因とはならないため、巻き取り温度の下限は特に定めない。
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブとした。これら鋼スラブを表2に示す条件の温度で加熱し、粗圧延してシートバーとし、次いで、表2に示す条件の仕上圧延を施す熱間圧延工程により熱延鋼板とした。
上記により得られた熱延鋼板を適当な大きさに切断し、10%AA系電解液(10vol%アセチルアセトン-1mass%塩化テトラメチルアンモニウム-メタノール)中で、約0.2gを電流密度20mA/cm2で定電流電解した。
電解後の、表面に析出物が付着している試料片を電解液から取り出して、ヘキサメタリン酸ナトリウム水溶液(500mg/l)(以下、SHMP水溶液と称す)中に浸漬し、超音波振動を付与して、析出物を試料片から剥離しSHMP水溶液中に抽出した。次いで、析出物を含むSHMP水溶液を、孔径20nmのフィルタを用いてろ過し、ろ過後のろ液に対してICP発光分光分析装置を用いて分析し、ろ液中のTiの絶対量を測定した。次いで、Tiの絶対量を電解重量で除して、サイズ20nm未満の析出物に含まれるTiの量(試料の全組成を100質量%とした場合の質量%)を得た。なお、電解重量は、析出物剥離後の試料に対して重量を測定し、電解前の試料重量から差し引くことで求めた。この後、上記で得られたサイズ20nm未満の析出物に含まれるTiの量(質量%)を、表1に示したTiとNの含有量を式(1)に代入して算出したTi*で除して、サイズ20nm未満の析出物に含まれるTiの量の割合(%)とした。
Ti*=[Ti]−48×[N]÷14…(1)
ここで、[Ti]および[N]はそれぞれ鋼板のTiおよびNの成分組成(質量%)を示す。
析出したセメンタイトの定量は、以下の定量法により実施した。上記により得られた熱延鋼板を適当な大きさに切断し、10%AA系電解液(10vol%アセチルアセトン-1mass%塩化テトラメチルアンモニウム-メタノール)中で、約0.5gを電流密度20mA/cm2で定電流電解した。電解後の表面に析出物が付着している試料片を電解液から取り出して、SHMP水溶液中に浸漬し、超音波振動を付与して、析出物を試料片から剥離しSHMP水溶液中に抽出した。次いで、析出物を含むSHMP水溶液を、孔径200μmのフィルタを用いてろ過し、それによって得られた抽出物をICP発光分光分析装置を用いて分析し、Feの絶対量を測定した。Feの析出物はセメンタイト(Fe3C)として存在していることから、このFeの測定量から、セメンタイトとして析出しているC量を求め、セメンタイトとして析出しているC量の割合は鋼中のC含有量とセメンタイトとして析出しているC量から求めた。
また、これらの結果から、本発明においては、特に、板厚6mm以上14mm以下の熱延コイル内での強度バラツキΔTSを35MPa以下とすることができ、そのため、大型車両用の鋼板としてプレス成形時の形状凍結性や部材強度、耐久性能を安定化することが可能となる。
Claims (2)
- 成分組成が、質量%で、C:0.010〜0.060%、Si:0.5%以下、Mn:0.8〜1.8%、P:0.030%以下、S:0.01%以下、Al:0.005〜0.1%、N:0.005%以下、Ti:0.035〜0.100%を含有し、残部がFeおよび不可避的不純物からなり、平均粒径が5.0〜10.0μmであるポリゴナルフェライトを80%以上の分率で含む組織を有し、サイズ20nm未満の析出物中に存在するTiの量が、下式(1)で計算されるTi*の値の70%以上であり、鋼板のCの成分組成(質量%)に対するセメンタイトとして析出したC量の割合が20%以下であることを特徴とする高強度熱延鋼板。
Ti*=[Ti]−48×[N]÷14…(1)
ここで、[Ti]および[N]はそれぞれ鋼板のTiおよびNの成分組成(質量%)を示す。 - 成分組成が、質量%で、C:0.010〜0.060%、Si:0.5%以下、Mn:0.8〜1.8%、P:0.030%以下、S:0.01%以下、Al:0.005〜0.1%、N:0.005%以下、Ti:0.035〜0.100%を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを、1200℃〜1300℃の加熱温度に加熱後、800℃〜950℃の仕上げ温度で熱間仕上げ圧延を行い、該熱間仕上げ圧延後2秒以内に20℃/s以上の冷却速度で冷却を開始し、650℃〜750℃の温度で冷却を停止し、引き続き、2秒〜30秒の放冷工程を経たのちに、再度100℃/s以上の冷却速度で冷却を施し、650℃以下の温度で巻き取ることを特徴とする高強度熱延鋼板の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009161384A JP5453964B2 (ja) | 2009-07-08 | 2009-07-08 | 高強度熱延鋼板およびその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009161384A JP5453964B2 (ja) | 2009-07-08 | 2009-07-08 | 高強度熱延鋼板およびその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011017044A true JP2011017044A (ja) | 2011-01-27 |
JP5453964B2 JP5453964B2 (ja) | 2014-03-26 |
Family
ID=43595034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009161384A Active JP5453964B2 (ja) | 2009-07-08 | 2009-07-08 | 高強度熱延鋼板およびその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5453964B2 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013103125A1 (ja) | 2012-01-05 | 2013-07-11 | 新日鐵住金株式会社 | 熱延鋼板およびその製造方法 |
WO2014132968A1 (ja) | 2013-02-26 | 2014-09-04 | 新日鐵住金株式会社 | 焼き付け硬化性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板 |
WO2014185405A1 (ja) | 2013-05-14 | 2014-11-20 | 新日鐵住金株式会社 | 熱延鋼板およびその製造方法 |
WO2014188966A1 (ja) | 2013-05-21 | 2014-11-27 | 新日鐵住金株式会社 | 熱延鋼板及びその製造方法 |
KR101555418B1 (ko) | 2011-04-13 | 2015-09-23 | 신닛테츠스미킨 카부시키카이샤 | 열연 강판 및 그 제조 방법 |
US9453269B2 (en) | 2011-04-13 | 2016-09-27 | Nippon Steel & Sumitomo Metal Corporation | Hot-rolled steel sheet for gas nitrocarburizing and manufacturing method thereof |
JP2017057449A (ja) * | 2015-09-15 | 2017-03-23 | 新日鐵住金株式会社 | 耐サワー性に優れた鋼板及びその製造方法 |
-
2009
- 2009-07-08 JP JP2009161384A patent/JP5453964B2/ja active Active
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9752217B2 (en) | 2011-04-13 | 2017-09-05 | Nippon Steel & Sumitomo Metal Corporation | Hot-rolled steel sheet and method of producing the same |
KR101555418B1 (ko) | 2011-04-13 | 2015-09-23 | 신닛테츠스미킨 카부시키카이샤 | 열연 강판 및 그 제조 방법 |
US9453269B2 (en) | 2011-04-13 | 2016-09-27 | Nippon Steel & Sumitomo Metal Corporation | Hot-rolled steel sheet for gas nitrocarburizing and manufacturing method thereof |
US9797024B2 (en) | 2011-04-13 | 2017-10-24 | Nippon Steel & Sumitomo Metal Corporation | Hot-rolled steel sheet for gas nitrocarburizing and manufacturing method thereof |
KR20140098841A (ko) | 2012-01-05 | 2014-08-08 | 신닛테츠스미킨 카부시키카이샤 | 열연 강판 및 그 제조 방법 |
WO2013103125A1 (ja) | 2012-01-05 | 2013-07-11 | 新日鐵住金株式会社 | 熱延鋼板およびその製造方法 |
US10087499B2 (en) | 2012-01-05 | 2018-10-02 | Nippon Steel & Sumitomo Metal Corporation | Hot-rolled steel sheet and manufacturing method thereof |
WO2014132968A1 (ja) | 2013-02-26 | 2014-09-04 | 新日鐵住金株式会社 | 焼き付け硬化性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板 |
US10196726B2 (en) | 2013-02-26 | 2019-02-05 | Nippon Steel & Sumitomo Metal Corporation | High-strength hot-rolled steel sheet having excellent baking hardenability and low temperature toughness with maximum tensile strength of 980 MPa or more |
WO2014185405A1 (ja) | 2013-05-14 | 2014-11-20 | 新日鐵住金株式会社 | 熱延鋼板およびその製造方法 |
US11208702B2 (en) | 2013-05-14 | 2021-12-28 | Nippon Steel Corporation | Hot-rolled steel sheet and manufacturing method thereof |
US10260124B2 (en) | 2013-05-14 | 2019-04-16 | Nippon Steel & Sumitomo Metal Corporation | Hot-rolled steel sheet and manufacturing method thereof |
KR20150126683A (ko) | 2013-05-14 | 2015-11-12 | 신닛테츠스미킨 카부시키카이샤 | 열연 강판 및 그 제조 방법 |
WO2014188966A1 (ja) | 2013-05-21 | 2014-11-27 | 新日鐵住金株式会社 | 熱延鋼板及びその製造方法 |
US10023929B2 (en) | 2013-05-21 | 2018-07-17 | Nippon Steel & Sumitomo Metal Corporation | Hot-rolled steel sheet |
JP2017057449A (ja) * | 2015-09-15 | 2017-03-23 | 新日鐵住金株式会社 | 耐サワー性に優れた鋼板及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5453964B2 (ja) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5194858B2 (ja) | 高強度熱延鋼板およびその製造方法 | |
JP4998755B2 (ja) | 高強度熱延鋼板およびその製造方法 | |
JP5041084B2 (ja) | 加工性に優れた高張力熱延鋼板およびその製造方法 | |
JP4797807B2 (ja) | 高剛性低密度鋼板およびその製造方法 | |
RU2518852C1 (ru) | Высокопрочный холоднокатаный стальной лист и способ его изготовления | |
JP5482204B2 (ja) | 高強度熱延鋼板およびその製造方法 | |
KR101706441B1 (ko) | 양호한 연성, 신장 플랜지성, 재질 균일성을 갖는 고강도 열연 강판 및 그 제조 방법 | |
KR20120023129A (ko) | 고강도 강판 및 그 제조 방법 | |
JP5453964B2 (ja) | 高強度熱延鋼板およびその製造方法 | |
JP5194857B2 (ja) | 高強度熱延鋼板およびその製造方法 | |
JP5637225B2 (ja) | バーリング加工性に優れた高強度熱延鋼板およびその製造方法 | |
JP5821864B2 (ja) | バーリング加工性に優れた高強度熱延鋼板およびその製造方法 | |
JP5482205B2 (ja) | 高強度熱延鋼板およびその製造方法 | |
JP5453973B2 (ja) | 高強度冷延鋼板およびその製造方法 | |
JP6036617B2 (ja) | 靭性に優れた高強度熱延鋼板およびその製造方法 | |
JP5556157B2 (ja) | 伸びおよび伸びフランジ特性に優れた引張強度が780MPa以上の高強度熱延鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120423 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131017 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131022 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131223 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5453964 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |