[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011016914A - Foamed polypropylene resin particle and molded product of foamed particle made of the foamed particle - Google Patents

Foamed polypropylene resin particle and molded product of foamed particle made of the foamed particle Download PDF

Info

Publication number
JP2011016914A
JP2011016914A JP2009162271A JP2009162271A JP2011016914A JP 2011016914 A JP2011016914 A JP 2011016914A JP 2009162271 A JP2009162271 A JP 2009162271A JP 2009162271 A JP2009162271 A JP 2009162271A JP 2011016914 A JP2011016914 A JP 2011016914A
Authority
JP
Japan
Prior art keywords
particles
polypropylene resin
core layer
foamed
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009162271A
Other languages
Japanese (ja)
Other versions
JP5399146B2 (en
Inventor
Norinaga Nohara
徳修 野原
Mitsuru Shinohara
篠原  充
Masaharu Oikawa
政春 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2009162271A priority Critical patent/JP5399146B2/en
Priority to CN2010102262833A priority patent/CN101948585A/en
Priority to CN201510472025.6A priority patent/CN105131325A/en
Publication of JP2011016914A publication Critical patent/JP2011016914A/en
Application granted granted Critical
Publication of JP5399146B2 publication Critical patent/JP5399146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide foamed polypropylene resin particles that can be heat-molded under a low steam pressure, does not leave any resin deposit on a surface of a molding die in molding, is excellent in fusibility between the foamed particles and is capable of yielding a smooth-surfaced, highly flexible molded product of foamed particles, and the smooth-surfaced, highly flexible molded product of the foamed polypropylene resin particles.SOLUTION: The foamed polypropylene resin particles are multilayered foamed particles obtained by expanding multilayered resin particles comprising a core layer and a coating layer formed from a polypropylene resin, provided that the weight ratio of the core layer to the coating layer is from 99.5:0.5 to 80:20. Regarding the polypropylene resin forming the core layer and the polypropylene resin forming the coating layer, the difference in their melting points falls within a specific range, the ratio of amounts of partial melting heat within the temperature range equal to or higher than the melting point falls within a specific range, the difference in their flexural modulus falls within a specific range, and the flexural modulus of the polypropylene resin forming the core layer is equal to or smaller than a prescribed value.

Description

本発明はポリプロピレン系樹脂発泡粒子に関し、詳しくは低い加熱スチーム圧力で成形が可能であり、耐熱性を有し、かつ表面が平滑で可撓性に優れた発泡粒子成形体を得ることができるポリプロピレン系樹脂発泡粒子および該発泡粒子からなる発泡粒子成形体に関する。   The present invention relates to expanded polypropylene resin particles, and in particular, polypropylene that can be molded with a low heating steam pressure, has heat resistance, and has a smooth surface and excellent flexibility. The present invention relates to a foamed resin foam particle and a foamed particle molded body comprising the foamed particle.

ポリプロピレン系樹脂発泡粒子は、用途に合わせて様々な形状に成形可能であり、その優れた機械的物性、耐熱性、緩衝性、加工性にバランスがとれており、各種包装材や自動車等の衝撃吸収材等に広く利用されている。
しかしながら、ポリプロピレン系樹脂発泡粒子においては、ポリプロピレン系樹脂の融点が135℃以上となると、発泡粒子を型内成形する際、発泡粒子間を十分に融着させるためには高い加熱スチーム圧力が必要となる。このため成形に要する用役コストが高くなる。従来、型内成形時の加熱スチーム圧力を下げる方法としては、ポリプロピレン系樹脂発泡粒子表面を低融点の樹脂で覆うなどの方法が行われている。
Polypropylene-based foamed resin particles can be molded into various shapes according to the application, and have excellent mechanical properties, heat resistance, shock-absorbing properties, and workability. Widely used in absorbent materials.
However, in the polypropylene resin expanded particles, when the melting point of the polypropylene resin is 135 ° C. or higher, a high heating steam pressure is required to sufficiently fuse the expanded particles when the expanded particles are molded in the mold. Become. For this reason, the service cost required for shaping | molding becomes high. Conventionally, as a method of lowering the heating steam pressure at the time of in-mold molding, a method of covering the surface of the polypropylene resin foamed particles with a low melting point resin has been performed.

例えば、特許文献1には、結晶性の熱可塑性樹脂からなる発泡状態の芯層と、該熱可塑性樹脂よりも融点が低いエチレン系重合体からなり、かつ実質的に非発泡状態の被覆層で構成された発泡粒子が、型閉め圧の低い汎用成型機で成形が可能であることが記載されている。   For example, Patent Document 1 includes a foamed core layer made of a crystalline thermoplastic resin, an ethylene polymer having a melting point lower than that of the thermoplastic resin, and a substantially non-foamed coating layer. It is described that the formed expanded particles can be molded by a general-purpose molding machine having a low mold closing pressure.

特許文献2には、高剛性のポリプロピレン系樹脂で形成される芯層と該芯層より低融点のポリプロピレン系樹脂で形成される被覆層からなるポリプロピレン系樹脂発泡粒子が開示されており、十分な剛性と耐熱性を有する発泡成形体が得られることが記載されている。   Patent Document 2 discloses a polypropylene resin expanded particle composed of a core layer formed of a highly rigid polypropylene resin and a coating layer formed of a polypropylene resin having a melting point lower than that of the core layer. It is described that a foamed molded article having rigidity and heat resistance can be obtained.

特許第3418081号Japanese Patent No. 3418081 特開2004−68016号公報JP 2004-68016 A

しかしながら、特許文献1に記載の発泡粒子を用いて成形された発泡粒子成形体は、芯層と被覆層とが異質の樹脂の組合せで構成されているために、発泡粒子の芯層と被覆層との間で剥離が生じ易いという問題があった。また、発泡粒子は芯層と被覆層とが異質の樹脂で構成されていることからリサイクル性にも問題があった。
さらに、芯層と被覆層の融点差が大きいことから、発泡粒子の被覆層同士を融着させる温度と芯層が2次発泡する温度との間には大きな温度差があった。このため、芯層を十分に2次発泡させるために高い加熱スチーム圧で成形すると、被覆層が軟化して成形体が成形金型表面に付着してしまい、成形加工性に劣るという問題があった。
However, in the foamed particle molded body molded using the foamed particles described in Patent Document 1, the core layer and the coating layer of the foamed particles are formed because the core layer and the coating layer are composed of a combination of different resins. There is a problem that peeling easily occurs between the two. Further, the foamed particles have a problem in recyclability because the core layer and the coating layer are made of different resins.
Furthermore, since the melting point difference between the core layer and the coating layer is large, there is a large temperature difference between the temperature at which the coating layers of the expanded particles are fused together and the temperature at which the core layer is secondarily foamed. For this reason, if the core layer is molded at a high heating steam pressure in order to sufficiently secondary foam, the coating layer softens and the molded body adheres to the surface of the molding die, resulting in inferior molding processability. It was.

特許文献2に記載の発泡粒子を型内成形した発泡粒子成形体においては、表面平滑性が良好な成形体とするためには、高い加熱スチーム圧によって高剛性の芯層を十分に2次発泡させる必要があり、従来のポリプロピレン系樹脂発泡粒子に用いられる成形機の一般的な耐圧性能(0.4MPa)を超えてしまうという問題がある。
一方、従来の成形機の耐圧性能範囲内の加熱スチーム圧力で成形を行った場合には、発泡粒子相互間の融着には大きな問題がないが、芯層の2次発泡が不十分となり、成形体表面の粒子間に空隙が生じ表面平滑性が劣る結果となる。また、このような成形体は成形体表面に亀裂が入り易く、可撓性に課題を残すものであった。
In the foamed particle molded body in which the foamed particles described in Patent Document 2 are molded in-mold, a highly rigid core layer is sufficiently secondary foamed by a high heating steam pressure in order to obtain a molded body with good surface smoothness. There is a problem that it exceeds the general pressure resistance (0.4 MPa) of the molding machine used for the conventional expanded polypropylene resin particles.
On the other hand, when molding is performed at a heating steam pressure within the pressure resistant performance range of the conventional molding machine, there is no major problem in the fusion between the foam particles, but the secondary foaming of the core layer becomes insufficient, As a result, voids are generated between the particles on the surface of the molded body, resulting in poor surface smoothness. In addition, such a molded body is easily cracked on the surface of the molded body, leaving a problem in flexibility.

本発明は、従来のポリプロピレン系樹脂発泡粒子の加熱成形に必要とされる加熱スチーム圧力よりも、低いスチーム圧力で成形が可能であり、成形時に成形金型表面への樹脂付着がなく、発泡粒子相互間の融着性に優れ、表面が平滑であり可撓性に優れた発泡粒子成形体を得ることができるポリプロピレン系樹脂発泡粒子及び表面が平滑であり可撓性に優れるポリプロピレン系樹脂発泡粒子成形体を提供することを目的とする。   The present invention can be molded at a steam pressure lower than the heating steam pressure required for heat molding of conventional polypropylene resin foamed particles, and there is no resin adhesion to the mold surface during molding, and the foamed particles Polypropylene resin foam particles having excellent fusion properties between them, a smooth surface, and a foamed particle molded article excellent in flexibility, and polypropylene resin foam particles having a smooth surface and excellent flexibility It aims at providing a molded object.

上記の課題を達成すべく種々の観点から多角的に検討を重ねた結果、前記多層樹脂粒子を形成しているポリプロピレン系樹脂の融点や融解熱量、曲げ弾性率が特定の範囲を満足するポリプロピレン系樹脂であり、前記多層樹脂粒子を発泡してなる発泡粒子が、発泡粒子相互間の融着性に優れ、低い加熱スチーム圧力で、金型への樹脂付着もなく、加熱成形が可能であり、前記発泡粒子を加熱成形して得られる発泡粒子成形体は表面が平滑で可撓性に優れたものであることが判明し、これに基づき本発明を為すに至った。   As a result of diversified examinations from various viewpoints to achieve the above-mentioned problems, the polypropylene resin that satisfies the specific ranges of the melting point, heat of fusion, and flexural modulus of the polypropylene resin forming the multilayer resin particles The foamed particles formed by foaming the multilayer resin particles, which are resins, have excellent fusion properties between the foamed particles, and can be heat-molded with a low heating steam pressure, without resin adhesion to the mold, The foamed particle molded body obtained by thermoforming the foamed particles was found to have a smooth surface and excellent flexibility, and the present invention was made based on this.

すなわち、本発明は
[1]ポリプロピレン系樹脂で形成される芯層と被覆層とからなり、前記芯層と被覆層の重量比率が99.5:0.5〜80:20である多層樹脂粒子を発泡してなる多層発泡粒子であって、下記(a−1)及び/又は(a−2)と、(b)と(c)の要件を満足することを特徴とするポリプロピレン系樹脂発泡粒子。
(a−1)前記芯層を形成しているポリプロピレン系樹脂の樹脂融点Tc(℃)と、前記被覆層を形成しているポリプロピレン系樹脂の樹脂融点Ts(℃)が、下記式(1)を満足する。
(数4)
1.5≦Tc−Ts≦30(℃)・・・(1)
(a−2)前記芯層を形成しているポリプロピレン系樹脂の熱流束示差走査熱量測定によって得られるDSC吸熱曲線における、前記芯層の樹脂融点(Tc)以上の温度範囲の部分融解熱量をEc(J/g)とし、前記被覆層を形成しているポリプロピレン系樹脂の熱流束示差走査熱量測定によって得られるDSC吸熱曲線における、前記芯層の樹脂融点(Tc)以上の温度範囲の部分融解熱量をEs(J/g)としたとき、EcとEsが下記式(2)を満足する。
(数5)
0≦Es/Ec≦0.7・・・・(2)
(b)前記芯層を形成しているポリプロピレン系樹脂の曲げ弾性率:Mc(MPa)と、前記被覆層を形成しているポリプロピレン系樹脂の曲げ弾性率:Ms(MPa)が、下記式(3)を満足する。し、
(数6)
Mc−Ms≦500(MPa)・・・・(3)
(c)前記芯層を形成しているポリプロピレン系樹脂の曲げ弾性率:Mc(MPa)が1100MPa以下である。
[2]前記芯層を形成しているポリプロピレン系樹脂の融点:Tc(℃)が150℃以下であることを特徴とする[1]に記載のポリプロピレン系樹脂発泡粒子。
[3]上記[1]又は[2]に記載の発泡粒子を成形金型内に充填し加熱成形して得られる、見かけ密度が12g/L〜50g/Lであることを特徴とする発泡粒子成形体。
を要旨とする。
That is, the present invention is [1] a multilayer resin particle comprising a core layer and a coating layer formed of a polypropylene resin, wherein the weight ratio of the core layer to the coating layer is 99.5: 0.5 to 80:20. Polypropylene-based resin foamed particles, which satisfy the following requirements (a-1) and / or (a-2), and (b) and (c) .
(A-1) The resin melting point Tc (° C.) of the polypropylene resin forming the core layer and the resin melting point Ts (° C.) of the polypropylene resin forming the coating layer are expressed by the following formula (1). Satisfied.
(Equation 4)
1.5 ≦ Tc−Ts ≦ 30 (° C.) (1)
(A-2) In the DSC endothermic curve obtained by heat flux differential scanning calorimetry of the polypropylene resin forming the core layer, the partial melting heat amount in the temperature range equal to or higher than the resin melting point (Tc) of the core layer is expressed as Ec (J / g), and the partial melting heat amount in the temperature range equal to or higher than the resin melting point (Tc) of the core layer in the DSC endothermic curve obtained by heat flux differential scanning calorimetry of the polypropylene resin forming the coating layer Is Es (J / g), Ec and Es satisfy the following formula (2).
(Equation 5)
0 ≦ Es / Ec ≦ 0.7 (2)
(B) The bending elastic modulus of the polypropylene resin forming the core layer: Mc (MPa) and the bending elastic modulus of the polypropylene resin forming the coating layer: Ms (MPa) are expressed by the following formula ( Satisfy 3). And
(Equation 6)
Mc-Ms ≦ 500 (MPa) (3)
(C) The bending modulus of elasticity of the polypropylene resin forming the core layer: Mc (MPa) is 1100 MPa or less.
[2] The polypropylene resin expanded particle according to [1], wherein the polypropylene resin forming the core layer has a melting point: Tc (° C.) of 150 ° C. or less.
[3] Foamed particles having an apparent density of 12 g / L to 50 g / L obtained by filling the foamed particles according to [1] or [2] in a molding die and heat-molding Molded body.
Is the gist.

本発明のポリプロピレン系樹脂発泡粒子は、発泡粒子相互間の融着性、および2次発泡性に優れており、成形時に必要とされる加熱スチーム圧力を低くして加熱成形が可能である。
また、本発明の発泡粒子を型内成形した発泡粒子成形体は、表面が平滑で可撓性に優れた発泡粒子成形体であり、衝撃吸収材や各種包装材、緩衝材などに好適であり、特に、包装材や緩衝材として好適である。
The polypropylene resin foamed particles of the present invention are excellent in fusion property between the foamed particles and secondary foamability, and can be heat-molded by lowering the heating steam pressure required at the time of molding.
Further, the foamed particle molded body obtained by molding the foamed particles of the present invention in a mold is a foamed particle molded body having a smooth surface and excellent flexibility, and is suitable for an impact absorbing material, various packaging materials, buffer materials, and the like. In particular, it is suitable as a packaging material or a cushioning material.

本発明の多層発泡粒子を形成する原料樹脂のDSC曲線の一例を示す。An example of the DSC curve of raw material resin which forms the multilayer expanded particle of this invention is shown. 本発明の多層発泡粒子の芯層部及び被覆層部の軟化点を示すマイクロ熱機械測定による曲線の一例を示す。An example of the curve by the micro thermo mechanical measurement which shows the softening point of the core layer part of the multilayer expanded particle of this invention and a coating layer part is shown. 発泡粒子の第1回目のDSC曲線の一例を示す。An example of the 1st time DSC curve of an expanded particle is shown. 発泡粒子の第2回目のDSC曲線の一例を示す。An example of the 2nd DSC curve of an expanded particle is shown.

本発明のポリプロピレン系樹脂多層発泡粒子は、ポリプロピレン系樹脂で形成される芯層と被覆層とからなり、該芯層と被覆層の重量比率が99.5:0.5〜80:20である多層樹脂粒子を発泡してなる、多層発泡粒子(以下、単に「発泡粒子」ということがある。)である。
前記発泡粒子は、前記多層樹脂粒子の芯層のポリプロピレン系樹脂が発泡してなる芯層部と、前記多層樹脂粒子の被覆層のポリプロピレン系樹脂からなる実質的に非発泡の被覆層部とからなる。
The polypropylene resin multilayer expanded particle of the present invention comprises a core layer and a coating layer formed of a polypropylene resin, and the weight ratio of the core layer to the coating layer is 99.5: 0.5 to 80:20. Multi-layer foamed particles (hereinafter sometimes simply referred to as “foamed particles”) formed by foaming multi-layer resin particles.
The foamed particles include a core layer portion formed by foaming a polypropylene resin of a core layer of the multilayer resin particles, and a substantially non-foamed cover layer portion formed of a polypropylene resin of a coating layer of the multilayer resin particles. Become.

前記(a−1)、(a−2)の要件は、発泡粒子の加熱成形時のスチーム圧力を低いスチーム圧力で成形可能な発泡粒子を得るという、本発明の目的を達成するうえで重要な要件の一つである。また、発泡粒子相互間の融着性や2次発泡性が良好な発泡粒子となり、本発明の発泡粒子を型内成形した成形体は、可撓性に優れ、表面平滑性に優れた発泡粒子成形体となる点で重要である。   The requirements of the above (a-1) and (a-2) are important in achieving the object of the present invention to obtain foamed particles that can be molded at a low steam pressure during the steam molding of the foamed particles. One of the requirements. In addition, the molded article obtained by molding the foamed particles of the present invention in the mold is excellent in flexibility and surface smoothness. It is important in that it becomes a molded body.

具体的には、(a−1)は前記芯層を形成しているポリプロピレン系樹脂の樹脂融点Tc(℃)と、前記被覆層を形成しているポリプロピレン系樹脂の樹脂融点Ts(℃)が、上記式(1)を満足するものである。 Specifically, (a-1) has a resin melting point Tc (° C.) of the polypropylene resin forming the core layer and a resin melting point Ts (° C.) of the polypropylene resin forming the coating layer. The above formula (1) is satisfied.

(a−2)は、図1に示すように、芯層の樹脂の熱流束示差走査熱量測定によって得られる原料樹脂固有のDSC吸熱曲線において、図1(a)に示すように、芯層の樹脂融点(Tc)以上の温度範囲の部分融解熱量をEc(J/g)とし、一方、被覆層の樹脂の熱流束示差走査熱量測定によって得られる原料樹脂固有のDSC吸熱曲線において、図1(b)〜(c)に示すような、前記芯層の樹脂融点(Tc)以上の温度範囲の部分融解熱量をEs(J/g)としたとき、上記式(2)を満足するものである。 (A-2) is a DSC endothermic curve specific to the raw material resin obtained by heat flux differential scanning calorimetry of the core layer resin, as shown in FIG. 1, and as shown in FIG. In the DSC endothermic curve specific to the raw material resin obtained by measuring the heat flux differential scanning calorimetry of the resin of the coating layer as Ec (J / g), the partial melting heat quantity in the temperature range above the resin melting point (Tc) is shown in FIG. When the partial heat of fusion in the temperature range equal to or higher than the resin melting point (Tc) of the core layer as shown in b) to (c) is Es (J / g), the above formula (2) is satisfied. .

前記多層樹脂粒子の芯層を形成しているポリプロピレン系樹脂の融点:Tc(℃)と、前記多層樹脂粒子の被覆層を形成しているポリプロピレン系樹脂の融点:Ts(℃)の融点差:Tc−Tsが大きすぎる場合には、発泡粒子を型内成型する際に、発泡粒子の被覆層部を形成している樹脂の軟化、融解が起こり、融着性が低下したり、成形時に成型金型表面へ樹脂が付着する虞がある。   Melting point difference between the melting point of the polypropylene resin forming the core layer of the multilayer resin particle: Tc (° C.) and the melting point of the polypropylene resin forming the coating layer of the multilayer resin particle: Ts (° C.): When Tc-Ts is too large, when the foamed particles are molded in the mold, the resin forming the coating layer portion of the foamed particles is softened and melted, so that the fusion property is lowered or molded at the time of molding. There is a risk of resin adhering to the mold surface.

また、上記樹脂融点差は、下記式(4)の範囲であることが好ましく、さらに好ましくは下記式(5)の範囲である。
(数7)
5℃≦Tc−Ts≦25℃・・・(4)
(数8)
7℃≦Tc−Ts≦20℃・・・(5)
Moreover, it is preferable that the said resin melting | fusing point difference is the range of following formula (4), More preferably, it is the range of following formula (5).
(Equation 7)
5 ° C. ≦ Tc−Ts ≦ 25 ° C. (4)
(Equation 8)
7 ° C. ≦ Tc−Ts ≦ 20 ° C. (5)

上記芯層と被覆層を形成しているポリプロピレン系樹脂の融点は、JIS K 7122(1987年)に基づく熱流束示差走査熱量測定方法(DSC法)により得られた値を採用する。
即ち、多層樹脂粒子を作製する際、芯層用の原料として用いられるポリプロピレン系樹脂2〜4mgを採取し、熱流束示差走査熱量計によって室温(10〜40℃)から220℃まで10℃/分の速度で昇温し、220℃に達した後、220℃から、40℃まで10℃/分の速度で降温した後、再度40℃から220℃まで10℃/分の速度で2回目の昇温を行う。かかる測定により得られた2回目の昇温時のDSC吸熱曲線ピークの頂点温度を融点とする。なお、吸熱曲線ピークが2つ以上ある場合、ピーク強度が最も大きい吸熱曲線ピークの頂点温度をその融点として採用する。
As the melting point of the polypropylene resin forming the core layer and the coating layer, a value obtained by a heat flux differential scanning calorimetry method (DSC method) based on JIS K 7122 (1987) is adopted.
That is, when producing multilayer resin particles, 2 to 4 mg of polypropylene resin used as a raw material for the core layer is collected, and 10 ° C./min from room temperature (10 to 40 ° C.) to 220 ° C. by a heat flux differential scanning calorimeter. The temperature was raised at a rate of 10 ° C / min from 220 ° C to 40 ° C and then increased again at a rate of 10 ° C / min from 40 ° C to 220 ° C. Do warm. The peak temperature of the DSC endothermic curve peak at the second temperature rise obtained by such measurement is defined as the melting point. When there are two or more endothermic curve peaks, the peak temperature of the endothermic curve peak having the highest peak intensity is adopted as the melting point.

前記多層樹脂粒子の芯層及び被覆層を形成しているポリプロピレン系樹脂の融点差が上記範囲内であれば、被覆層の融点が相対的に低くなることから、発泡粒子の融着性が良好となる。さらに、型内成形時に、発泡粒子の被覆層部を形成している樹脂の軟化、融解が過度になることがなく、成型金型表面へ樹脂が付着することなく、表面平滑性がさらに良好な発泡粒子成形体となる。
又、多層樹脂粒子の被覆層を形成しているポリプロピレン系樹脂は、上述の範囲となるように適宜選択することが好ましい。
If the difference in melting point between the polypropylene resin forming the core layer and the coating layer of the multilayer resin particles is within the above range, the melting point of the coating layer is relatively low, so the fusibility of the expanded particles is good. It becomes. In addition, during in-mold molding, the resin that forms the coating layer portion of the expanded particles is not excessively softened and melted, the resin does not adhere to the molding die surface, and the surface smoothness is even better. A foamed particle molded body is obtained.
Moreover, it is preferable to select suitably the polypropylene resin which has formed the coating layer of the multilayer resin particle so that it may become the above-mentioned range.

前記芯層の樹脂融点(Tc)以上の温度範囲の部分融解熱量Ecは、図1(a)に示すとおり実質的に0(ゼロ)J/gは存在しない。前記部分融解熱量Ecが大きくなると高温側にブロードなDSC曲線の形状となり、高温側での成形が必要となることから、得られる発泡粒子の2次発泡性は低いものとなる虞がある。   The partial melting heat quantity Ec in the temperature range equal to or higher than the resin melting point (Tc) of the core layer is substantially 0 (zero) J / g as shown in FIG. When the partial heat of fusion Ec increases, the DSC curve becomes broader on the high temperature side, and molding on the high temperature side is necessary, so that the secondary foamability of the obtained foamed particles may be low.

前記被覆層の樹脂において、その部分融解熱量Esが前記式(2)の関係を満足せずに、Es/Ecが大きすぎる場合には、芯層の樹脂融点以上での、芯層と被覆層を形成している樹脂の結晶融解挙動が近いものとなることを意味する。後述するように、発泡工程にて芯層の樹脂に高温ピークが形成されるような発泡方法を行なうと、Es/Ecが大きすぎる場合には被覆層の樹脂の結晶にも高温ピークが形成されるようになり、被覆層の樹脂の融解温度が高くなる。その結果、発泡粒子の表面において、高温ピークが形成されるような結晶が多く混在するようになり、低いスチーム圧では発泡粒子表面の結晶を融解し難くなることから、発泡粒子成形体の発泡粒子相互の融着性が相対的に低いものとなり、本発明の所期の目的を達成できなくなる虞がある。   In the resin of the coating layer, when the partial melting heat quantity Es does not satisfy the relationship of the above formula (2) and Es / Ec is too large, the core layer and the coating layer at or above the resin melting point of the core layer. It means that the crystal melting behavior of the resin forming the resin is close. As will be described later, when a foaming method is performed such that a high temperature peak is formed in the resin of the core layer in the foaming step, a high temperature peak is also formed in the resin crystal of the coating layer if Es / Ec is too large. As a result, the melting temperature of the resin of the coating layer increases. As a result, a large number of crystals that form high-temperature peaks are mixed on the surface of the expanded particles, and it becomes difficult to melt the crystals on the expanded particle surface at a low steam pressure. The mutual fusion property is relatively low, and the intended purpose of the present invention may not be achieved.

前記Es/Ecが上記範囲内であれば、発泡工程において芯層の樹脂に高温ピークが形成されても、被覆層の樹脂への影響は少なく、被覆層は良好な融着性を有する。Es/Ecの値は、
(数9)
0≦Es/Ec≦0.5・・・(6)
であることが好ましく、
(数10)
0≦Es/Ec≦0.3・・・(7)
であることが更に好ましい。
If Es / Ec is within the above range, even if a high temperature peak is formed in the resin of the core layer in the foaming step, the influence of the coating layer on the resin is small, and the coating layer has good fusion properties. The value of Es / Ec is
(Equation 9)
0 ≦ Es / Ec ≦ 0.5 (6)
It is preferable that
(Equation 10)
0 ≦ Es / Ec ≦ 0.3 (7)
More preferably.

上記芯層のポリプロピレン系樹脂の融点(Tc)は、上述したように、JIS K 7122(1987年)に基づく熱流束示差走査熱量測定方法(DSC法)により得られた値を採用する。   As described above, the melting point (Tc) of the polypropylene resin of the core layer employs a value obtained by a heat flux differential scanning calorimetry (DSC method) based on JIS K 7122 (1987).

又、芯層のポリプロピレン系樹脂の部分熱量を算出するDSC吸熱曲線、及び被覆層のポリプロピレン系樹脂の部分熱量を算出するDSC吸熱曲線は、上記した芯層のポリプロピレン系樹脂の融点の測定方法と同様にして得られる2回目の昇温時のDSC吸熱曲線を用いる。   Further, the DSC endothermic curve for calculating the partial heat quantity of the polypropylene resin of the core layer and the DSC endothermic curve for calculating the partial heat quantity of the polypropylene resin of the coating layer are the methods for measuring the melting point of the polypropylene resin of the core layer described above. A DSC endothermic curve at the second temperature increase obtained in the same manner is used.

(b)の要件は、前記芯層を形成しているポリプロピレン系樹脂の曲げ弾性率:Mc(MPa)と被覆層を形成しているポリプロピレン系樹脂の曲げ弾性率:Ms(MPa)との差が500MPa以下であることを要する。該McとMsの差が大きすぎると、発泡粒子の芯層部と被覆層部との間に剥離が生じる虞がある。芯層部と被覆層部に剥離が生じた場合には、成形圧の低減が可能である発泡粒子を得ることができなくなる虞がある。また、成形時に剥離した被覆層が成形金型に付着するなど成形加工性が低下する。更に、得られる型内発泡成形体は、表面平滑性が劣るものとなる虞がある。一方、剥離が見られない場合においても、曲げ弾性率の差が大きい樹脂を使用した発泡粒子は、成形時における融着性と2次発泡性のバランスが悪くなり、2次発泡性が低下した発泡粒子となる虞がある。 The requirement (b) is the difference between the flexural modulus of the polypropylene resin forming the core layer: Mc (MPa) and the flexural modulus of the polypropylene resin forming the coating layer: Ms (MPa). Is required to be 500 MPa or less. When the difference between Mc and Ms is too large, there is a possibility that peeling occurs between the core layer portion and the coating layer portion of the expanded particles. When peeling occurs between the core layer portion and the coating layer portion, there is a possibility that it is impossible to obtain foamed particles capable of reducing the molding pressure. In addition, molding processability is deteriorated, for example, a coating layer peeled off at the time of molding adheres to a molding die. Furthermore, the obtained in-mold foam molded article may be inferior in surface smoothness. On the other hand, even in the case where no peeling is observed, the expanded particles using a resin having a large difference in flexural modulus have a poor balance between the fusion property and the secondary foamability at the time of molding, and the secondary foamability is lowered. There is a risk of forming foamed particles.

被覆層を形成しているポリプロピレン系樹脂の曲げ弾性率:Msは、芯層を形成している樹脂の曲げ弾性率と被覆層を形成している樹脂の曲げ弾性率の差:Mc−Msが500以下となるように適宜選択される。該曲げ弾性率の差:Mc−Msが500を超える場合には前述したように発泡粒子の被覆層と芯層の剥離や、発泡粒子成形体の表面平滑性、可撓性の点で問題が生じる虞がある。   The bending elastic modulus of the polypropylene resin forming the coating layer: Ms is the difference between the bending elastic modulus of the resin forming the core layer and the bending elastic modulus of the resin forming the coating layer: Mc−Ms It is appropriately selected so as to be 500 or less. Difference in flexural modulus: When Mc-Ms exceeds 500, as described above, there are problems in terms of peeling of the coating layer and the core layer of the foamed particles, surface smoothness and flexibility of the foamed particle molded body. May occur.

前記曲げ弾性率の差:Mc−Msは280MPa以下であることが好ましい。上記範囲内であれば、被覆層と芯層を形成している樹脂の、発泡成形時における融着性と2次発泡性のバランスが良好であり、成形体表面の粒子間隙をより少なくすることができる。   The difference in flexural modulus: Mc-Ms is preferably 280 MPa or less. Within the above range, the resin forming the coating layer and the core layer has a good balance between the fusibility during foam molding and the secondary foamability, and the number of particle gaps on the surface of the molded body should be reduced. Can do.

(c)の要件は、前記芯層を形成しているポリプロピレン系樹脂の曲げ弾性率:Mc(MPa)が1100MPa以下であることを要する。前記芯層を形成しているポリプロピレン系樹脂の曲げ弾性率:Mcが高すぎる場合には、低いスチーム圧で成形すると、発泡粒子相互間の融着性は良好であっても、芯層部を形成しているポリプロピレン系樹脂の曲げ弾性率が高いために可撓性に優れる成形体が得られない虞がある。前記曲げ弾性率は、好ましくは1000MPa以下のものが用いられる。 The requirement (c) requires that the flexural modulus: Mc (MPa) of the polypropylene resin forming the core layer be 1100 MPa or less. When the flexural modulus of the polypropylene resin forming the core layer: Mc is too high, the core layer portion is formed by molding at a low steam pressure, even if the fusion between the foamed particles is good. Since the formed polypropylene resin has a high flexural modulus, there is a possibility that a molded article having excellent flexibility cannot be obtained. The bending elastic modulus is preferably 1000 MPa or less.

尚、上記の曲げ弾性率は、JIS K 7171(1994年)に記載の測定法に準拠して測定される。
上記曲げ弾性率は、厚み4mm×幅10mm×長さ80mmの試験片を、室温23℃、湿度50%の恒温室内に24時間以上放置後、支点間距離64mm、圧子の半径Rが5.0mm、支持台の半径Rが5.0mm、試験速度が2mm/min、室温23℃、湿度50%の条件で、オートグラフAGS−10kNG(島津製作所製)試験機により測定され、算出された値の算術平均値(5点以上)を採用する。
In addition, said bending elastic modulus is measured based on the measuring method as described in JISK7171 (1994).
The flexural modulus was as follows: a test piece having a thickness of 4 mm, a width of 10 mm, and a length of 80 mm was left in a thermostatic chamber at room temperature of 23 ° C. and a humidity of 50% for 24 hours or more, and then the fulcrum distance was 64 mm and the indenter radius R 1 was 5. It was measured and calculated by an autograph AGS-10kNG (manufactured by Shimadzu Corporation) tester under the conditions of 0 mm, radius R 2 of the support base of 5.0 mm, test speed of 2 mm / min, room temperature of 23 ° C. and humidity of 50%. The arithmetic average value (5 points or more) is adopted.

本発明の多層樹脂粒子の芯層を形成しているポリプロピレン系樹脂は、例えば、プロピレン単独重合体、またはプロピレン成分単位60モル%以上、好ましくは80モル%以上含有するプロピレンと他のコモノマーとの共重合体のいずれか、あるいはこれらの重合体の中から選ばれる2種以上の混合物が挙げられる。   The polypropylene resin forming the core layer of the multilayer resin particle of the present invention is, for example, a propylene homopolymer or a propylene component unit of 60 mol% or more, preferably 80 mol% or more of propylene and another comonomer. One of the copolymers, or a mixture of two or more selected from these polymers may be mentioned.

上記のプロピレン成分単位60モル%以上を含有するプロピレンと他のコモノマーとの共重合体としては、例えば、プロピレン−エチレンランダム共重合体、プロピレン−エチレンブロック共重合体、プロピレン−ブテンランダム共重合体、プロピレン−エチレン−ブテンランダム共重合体などが例示される。   Examples of the copolymer of propylene containing 60 mol% or more of the propylene component and other comonomers include, for example, propylene-ethylene random copolymer, propylene-ethylene block copolymer, propylene-butene random copolymer. And propylene-ethylene-butene random copolymer.

前記芯層を形成しているポリプロピレン系樹脂には、本発明の所期の効果を損わない範囲内において、ポリプロピレン系樹脂以外の合成樹脂、及び/又は合成ゴム、及び/又はエラストマー等を添加することができる。ポリプロピレン系樹脂以外の合成樹脂、合成ゴム、エラストマーの合計添加量は、ポリプロピレン系樹脂100重量部に対して、35重量部以下であることが好ましく、より好ましくは25重量部以下、更に好ましくは10重量部以下、5重量部以下であることがより好ましい。   To the polypropylene resin forming the core layer, a synthetic resin other than the polypropylene resin and / or a synthetic rubber and / or an elastomer is added within a range not impairing the intended effect of the present invention. can do. The total amount of synthetic resin other than polypropylene resin, synthetic rubber, and elastomer is preferably 35 parts by weight or less, more preferably 25 parts by weight or less, and still more preferably 10 parts with respect to 100 parts by weight of polypropylene resin. More preferably, it is 5 parts by weight or less.

前記のポリプロピレン系樹脂以外の合成樹脂としては、例えば、高密度ポリエチレン、中密度ポリエチレン低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル共重合体、エチレン‐メタクリル酸エステル共重合体等のエチレン系樹脂、あるいはポリスチレン、スチレン−無水マレイン酸共重合体等のスチレン系樹脂等が挙げられる。   Examples of the synthetic resin other than the polypropylene resin include high-density polyethylene, medium-density polyethylene low-density polyethylene, linear low-density polyethylene, linear ultra-low-density polyethylene, ethylene-vinyl acetate copolymer, ethylene- Examples thereof include ethylene resins such as acrylic acid copolymers, ethylene-acrylic acid ester copolymers, and ethylene-methacrylic acid ester copolymers, and styrene resins such as polystyrene and styrene-maleic anhydride copolymers.

前記の合成ゴムとしては、エチレン−プロピレンゴム、エチレン−1−ブテンゴム、プロピレン−1−ブテンゴム、スチレン−ブタジエンゴムやその水添物、イソプレンゴム、ネオプレンゴム、ニトリルゴム等が例示される。前記のエラストマーとしては、スチレン−ブタジエンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体やその水添物等が例示される。   Examples of the synthetic rubber include ethylene-propylene rubber, ethylene-1-butene rubber, propylene-1-butene rubber, styrene-butadiene rubber and hydrogenated products thereof, isoprene rubber, neoprene rubber, and nitrile rubber. Examples of the elastomer include a styrene-butadiene block copolymer, a styrene-isoprene-styrene block copolymer, and hydrogenated products thereof.

前記芯層のポリプロピレン系樹脂中には、所望に応じて各種の添加剤を含有させることができる。このような添加剤としては、例えば、酸化防止剤、紫外線防止剤、帯電防止剤、難燃剤、金属不活性剤、顔料、染料、核剤、あるいは気泡調整剤等が挙げられる。気泡調整剤としては、例えば、ホウ酸亜鉛、タルク、炭酸カルシウム、ホウ砂、水酸化アルミニウムなどの無機粉体が例示される。   In the polypropylene resin of the core layer, various additives can be contained as desired. Examples of such additives include antioxidants, ultraviolet light inhibitors, antistatic agents, flame retardants, metal deactivators, pigments, dyes, nucleating agents, and bubble regulators. Examples of the air conditioner include inorganic powders such as zinc borate, talc, calcium carbonate, borax, and aluminum hydroxide.

これらの添加剤の含有量は、芯層を形成しているポリプロピレン系樹脂100重量部に対し20重量部以下、好ましくは15重量部以下、より好ましくは10重量部以下、更には5重量部以下であることが好ましい。特に気泡調整剤の含有量は、発泡粒子の平均気泡径を20μm〜300μmとする上で0.005〜1重量部であることが好ましい。   The content of these additives is 20 parts by weight or less, preferably 15 parts by weight or less, more preferably 10 parts by weight or less, and further 5 parts by weight or less based on 100 parts by weight of the polypropylene resin forming the core layer. It is preferable that In particular, the content of the air conditioner is preferably 0.005 to 1 part by weight when the average cell diameter of the expanded particles is 20 μm to 300 μm.

本発明の多層樹脂粒子の被覆層を形成しているポリプロピレン系樹脂は、上述した要件を満足するものとなるようにポリプロピレン系樹脂を選択すること以外は芯層を形成しているポリプロピレン系樹脂と同じものが例示される。   The polypropylene resin forming the coating layer of the multilayer resin particles of the present invention is a polypropylene resin that forms a core layer except that the polypropylene resin is selected so as to satisfy the above-mentioned requirements. The same is illustrated.

被覆層を形成しているプロピレン系樹脂中には、芯層のポリプロピレン系樹脂と同様に、必要に応じて芯層に添加される添加剤と同様の添加剤を含有させることができる。その含有量は、被覆層の樹脂100重量部に対し、おおよそ30重量部以下、好ましくは15重量部以下、より好ましくは10重量部以下、特に5重量部以下であることが好ましい。添加量の下限はおおよそ0.01重量部である。   In the propylene-based resin forming the coating layer, the same additive as the additive added to the core layer can be contained as necessary, like the polypropylene-based resin of the core layer. The content thereof is approximately 30 parts by weight or less, preferably 15 parts by weight or less, more preferably 10 parts by weight or less, and particularly preferably 5 parts by weight or less with respect to 100 parts by weight of the resin of the coating layer. The lower limit of the addition amount is approximately 0.01 parts by weight.

前記芯層を形成しているプロピレン系樹脂の融点は、発泡粒子の加熱成形時の加熱スチームを低いスチーム圧力で芯層の2次発泡を行わせることが可能であり、可撓性を有し、表面平滑性に優れた発泡成形体を得るという観点から、150℃以下であることが好ましく、135〜145℃であることが好ましい。
一方、芯層を形成しているポリプロピレン系樹脂の融点の下限は、被覆層を形成している樹脂を考慮して、発泡粒子表面の軟化、融解性の観点から115℃以上であることが望ましい。
The melting point of the propylene-based resin forming the core layer is such that it is possible to cause the secondary foaming of the core layer to be performed at a low steam pressure during heating molding of the foamed particles, and has flexibility. From the viewpoint of obtaining a foam molded article having excellent surface smoothness, it is preferably 150 ° C. or lower, and preferably 135 to 145 ° C.
On the other hand, the lower limit of the melting point of the polypropylene-based resin forming the core layer is preferably 115 ° C. or higher from the viewpoint of softening and melting of the surface of the expanded particles in consideration of the resin forming the coating layer. .

本発明の発泡粒子の芯層部の軟化点:Nc(℃)は、前記発泡粒子の被覆層部の軟化点:Ns(℃)よりも高いことが好ましい。上述の場合には、発泡粒子相互間の融着性や2次発泡性が良好となり、前記発泡粒子を型内成形した成形体がさらに可撓性、表面平滑性に優れた発泡粒子成形体となる。また、被覆層部の軟化点温度が相対的に高くなると、得られる発泡粒子の融着性が低下したものとなり、樹脂の軟化が過度に進行するため、型内成形時に成型金型表面への樹脂付着が生じる虞がある。   The softening point of the core layer portion of the foamed particle of the present invention: Nc (° C.) is preferably higher than the softening point of the coating layer portion of the foamed particle: Ns (° C.). In the case described above, the fusion property between the foamed particles and the secondary foamability are improved, and the molded product obtained by molding the foamed particles in a mold is further excellent in flexibility and surface smoothness. Become. Further, when the softening point temperature of the coating layer portion is relatively high, the fusion property of the obtained foamed particles is lowered, and the softening of the resin proceeds excessively. Resin adhesion may occur.

さらに、前記芯層部と被覆層部の軟化点は、次式(8)
(数11)
Nc−Ns≦70℃・・・(8)
の関係を満たすことが好ましく、上記範囲内であれば、前記発泡粒子の芯層部と被覆層部の物性のバランスがとれ、発泡粒子の融着性や2次発泡性がより良好となる。
Further, the softening point of the core layer portion and the covering layer portion is expressed by the following formula (8).
(Equation 11)
Nc-Ns ≦ 70 ° C. (8)
It is preferable that the above relationship is satisfied, and if it is within the above range, the physical properties of the core layer portion and the coating layer portion of the expanded particles are balanced, and the fusibility and secondary expandability of the expanded particles become better.

前記発泡粒子の芯層部の軟化点:Ncは170℃以下であることが好ましい。該芯層部の軟化点が170℃以下であれば、従来のポリプロピレン系樹脂発泡粒子を成形する耐圧性の高い成形機によらず、低いスチーム圧力で芯層部の2次発泡を十分に行わせることが可能であり、より粒子相互間の融着性に優れる発泡粒子が得られる。さらに、前記発泡粒子から得られた発泡成形体表面の粒子間には空隙が生じることがなく、可撓性を有し、表面平滑性に優れた発泡成形体となる。   The softening point of the core layer portion of the expanded particles: Nc is preferably 170 ° C. or lower. If the softening point of the core layer portion is 170 ° C. or lower, the secondary foaming of the core layer portion is sufficiently performed with a low steam pressure, regardless of a conventional pressure-resistant molding machine for molding polypropylene resin foam particles. It is possible to obtain expanded particles that are more excellent in fusion between particles. Furthermore, there is no space between the particles on the surface of the foamed molded product obtained from the foamed particles, and the foamed molded product has flexibility and excellent surface smoothness.

本発明において多層発泡粒子の被覆層部の軟化点は80℃以上であることが好ましい。上記範囲であれば、ポリプロピレン系樹脂発泡粒子全体としての本来の耐熱性を大幅に損ねることがない発泡粒子成形体を得ることができる。   In the present invention, the softening point of the coating layer portion of the multilayer expanded particle is preferably 80 ° C. or higher. If it is the said range, the foamed particle molded object which does not impair the original heat resistance as the whole polypropylene resin foam particle can be obtained.

前記軟化点の測定方法は、マイクロ熱機械測定(以下、μTAということがある)、ティ・エイ・インスツルメント・ジャパン社のマイクロ熱分析システム「2990型マイクロサーマルアナライザー」を使用し、25℃から250℃まで昇温速度10℃/秒の条件にて測定することとする。   The softening point was measured using a micro thermo mechanical measurement (hereinafter sometimes referred to as μTA), a micro thermal analysis system “2990 type micro thermal analyzer” manufactured by T.A. From 250 to 250 ° C. under a temperature rising rate of 10 ° C./second.

発泡粒子の被覆層部に対する上記マイクロ熱機械測定は、発泡粒子(1個の発泡粒子がそのままでは大きすぎる場合は例えば半分に切断する等して適当な大きさにしたもの)または発泡粒子成形体から切り出した試験片を装置のサンプルステージに固定し、次いで、発泡粒子または発泡粒子成形体を構成している発泡粒子の表面において無作為に選択した箇所に向けて、プローブチップ(発泡粒子の被覆層部に接触させる部分は縦横各0.2μmの先端部を持つ)を下降させて発泡粒子に接触させた状態で実施される。そして、被覆層にプローブチップが接触し、昇温されて被覆層の軟化点が測定される。その後、被覆層部は融解してしまうが、プローブチップはさらに昇温されて芯層部に到達し、芯層部の軟化点が測定される。   The micro-thermo-mechanical measurement for the coating layer portion of the expanded particles is performed by measuring expanded particles (if one expanded particle is too large as it is, for example, by cutting it into half, etc.) The test piece cut out from the sample is fixed to the sample stage of the apparatus, and then the probe tip (covering the expanded particles) is directed toward a randomly selected location on the surface of the expanded particles constituting the expanded particles or the expanded particle molded body. The portion to be brought into contact with the layer portion has a tip portion of 0.2 μm in length and width) and is brought into contact with the expanded particles. Then, the probe tip comes into contact with the coating layer, the temperature is raised, and the softening point of the coating layer is measured. Thereafter, the coating layer portion melts, but the probe tip is further heated to reach the core layer portion, and the softening point of the core layer portion is measured.

図2は発泡粒子または発泡粒子成形体を構成している発泡粒子の被覆層部と芯層部のμTA曲線の一例を示すものであり、これらの図を使用して該発泡粒子の被覆層部の結晶の軟化に由来する急峻な変曲点の求め方を説明する。   FIG. 2 shows an example of the μTA curve of the coating layer portion and the core layer portion of the foam particles constituting the foam particles or the foam particle molded body, and using these drawings, the coating layer portion of the foam particles A method for obtaining a steep inflection point derived from the softening of the crystal will be described.

図2において、曲線Cmが多層発泡粒子に対するμTA曲線の一例である。曲線Cmは、低温側に被覆層部に由来する変位量の急峻な領域(Cm1)と、高温側に芯層部に由来する変位量の急峻な領域(Cm2)の少なくとも2つの急激な変位量を示す領域を有する。Cm1、Cm2夫々の領域において、変位量の急峻な温度の前後での曲線Cmに対する接線を二本作成し、それぞれ接線BLと接線TLとする。変曲点Nはこれら接線BLと接線TLとの交点である。この交点を軟化点Nとした。
尚、前記マイクロ熱機械測定による変曲点は、装置の測定温度を一定速度の10℃/秒で昇温して測定する。変曲点の温度は、結晶の軟化による変位量と温度の曲線において、結晶の軟化に由来する変位量の急峻な前後の領域の下降位置の接線の交点とする。
In FIG. 2, a curve Cm is an example of a μTA curve for multilayer expanded particles. The curve Cm shows at least two steep displacement amounts (Cm1) having a steep displacement amount originating from the coating layer portion on the low temperature side and steep regions (Cm2) having a steep displacement amount originating from the core layer portion on the high temperature side. It has the field which shows. In each of the Cm1 and Cm2 regions, two tangents to the curve Cm before and after the temperature with a steep displacement are created, which are defined as a tangent BL and a tangent TL, respectively. The inflection point N is an intersection of the tangent line BL and the tangent line TL. This intersection was defined as a softening point N.
The inflection point by the micro thermomechanical measurement is measured by increasing the measurement temperature of the apparatus at a constant rate of 10 ° C./second. The temperature of the inflection point is the intersection of the tangents of the descending positions of the regions before and after the steep amount of displacement due to the softening of the crystal in the curve of the displacement and temperature due to the softening of the crystal.

本発明において発泡粒子の熱流束示差走査熱量測定によって得られるDSC曲線は、ポリプロピレン系樹脂に固有の吸熱曲線ピーク(以下、「固有ピーク」という)と、該吸熱曲線ピークよりも高温側の吸熱曲線ピーク(以下、[高温ピーク]という)とを少なくとも示し、且つ該高温側の吸熱曲線ピークの熱量が1J/g以上、40J/g以下であることが好ましく、更に3J/g〜35J/g、特に5J/g〜30J/gあることが好ましい。かかる発泡粒子は、加熱成形に好適な発泡粒子である。   In the present invention, the DSC curve obtained by heat flux differential scanning calorimetry of the expanded particles includes an endothermic curve peak inherent to the polypropylene resin (hereinafter referred to as “inherent peak”) and an endothermic curve on the higher temperature side than the endothermic curve peak. A peak (hereinafter referred to as [high temperature peak]), and the heat quantity of the endothermic curve peak on the high temperature side is preferably 1 J / g or more and 40 J / g or less, and more preferably 3 J / g to 35 J / g, In particular, it is preferably 5 J / g to 30 J / g. Such expanded particles are suitable expanded particles for thermoforming.

上記した高温ピークの熱量が小さすぎる場合は、成形する際のスチーム圧力を低くできるものの、得られる発泡粒子成形体の圧縮強度、エネルギー吸熱量などが低下する虞がある。一方、高温ピークの熱量が大きすぎる場合は、目標とする発泡倍率の発泡粒子が得られなかったり、成形時の2次発泡性が抑制されて成形圧を高くしなければ成形体が得られなくなったりする虞がある。   If the amount of heat at the high temperature peak is too small, the steam pressure at the time of molding can be lowered, but the compression strength and energy endotherm of the resulting foamed particle molded body may be reduced. On the other hand, if the amount of heat at the high temperature peak is too large, expanded particles with the target expansion ratio cannot be obtained, or the secondary foamability during molding is suppressed, and a molded body cannot be obtained unless the molding pressure is increased. There is a risk that.

なお、高温ピークの熱量は全ての吸熱曲線ピークの熱量の合計に対して3%以上、更に5%以上、更に8%以上、特に10%以上が好ましい。また、その上限値は、70%以下、更に60%以下、特に50%以下が好ましい。   The amount of heat at the high temperature peak is preferably 3% or more, more preferably 5% or more, further 8% or more, and particularly preferably 10% or more with respect to the total amount of heat of all endothermic curve peaks. Further, the upper limit is preferably 70% or less, more preferably 60% or less, and particularly preferably 50% or less.

また、本発明における発泡粒子の全ての吸熱曲線ピークの熱量の合計(全熱量)は、40〜100J/gであることが好ましい。該熱量が小さすぎる場合は、圧縮などの物性が低下する虞がある。一方、該熱量が大きすぎる場合は、成形する際の2次発泡性が悪く隙間の多い発泡粒子成形体となる虞がある。   Moreover, it is preferable that the sum total (total calorie | heat amount) of all the endothermic curve peaks of the expanded particle in this invention is 40-100 J / g. If the amount of heat is too small, physical properties such as compression may be reduced. On the other hand, when the amount of heat is too large, there is a possibility that the foamed particle molded body has a poor secondary foaming property during molding and has many gaps.

吸熱曲線ピークの全熱量と、高温ピークの熱量測定は、JIS K7122(1987年)に準拠する測定方法により次のように行う。
まず、発泡粒子2〜10mgを採取し、熱流束示差走査熱量計によって室温(10〜40℃)から220℃まで10℃/分で昇温して測定を行う。かかる測定により得られた1回目のDSC曲線の一例を図3に示す。
The total calorific value of the endothermic curve peak and the calorific value of the high temperature peak are measured as follows by a measuring method based on JIS K7122 (1987).
First, 2 to 10 mg of foamed particles are collected, and the temperature is increased from room temperature (10 to 40 ° C.) to 220 ° C. at a rate of 10 ° C./minute using a heat flux differential scanning calorimeter. An example of the first DSC curve obtained by such measurement is shown in FIG.

図3のDSC曲線には、発泡粒子を構成するポリプロピレン系樹脂に由来する固有ピークaと、高温ピークbが現れ、高温ピークbの熱量はそのピーク面積に相当するものであり、具体的には次のようにして求めることができる。   In the DSC curve of FIG. 3, an intrinsic peak a derived from the polypropylene resin constituting the expanded particles and a high temperature peak b appear, and the amount of heat of the high temperature peak b corresponds to the peak area. It can be obtained as follows.

まず、DSC曲線上の80℃に相当する点αと、発泡粒子の融解終了温度Tに相当するDSC曲線上の点βとを結ぶ直線(α−β)を引く。尚、上記融解終了温度Tは、高温ピークbの高温側におけるDSC曲線と高温側ベースラインとの交点と対応する温度である。   First, a straight line (α−β) connecting a point α corresponding to 80 ° C. on the DSC curve and a point β on the DSC curve corresponding to the melting end temperature T of the expanded particles is drawn. The melting end temperature T is a temperature corresponding to the intersection of the DSC curve on the high temperature side of the high temperature peak b and the high temperature side baseline.

次に上記の固有ピークaと高温ピークbとの間の谷部に当るDSC曲線上の点γからグラフの縦軸と平行な直線を引き、上記直線(α−β)と交わる点をσとする。高温ピークbの面積は、DSC曲線の高温ピークb部分の曲線と、線分(σ−β)と、線分(γ−σ)とによって囲まれる部分(図3において斜線を付した部分)の面積であり、これが高温ピークの熱量に相当する。
また、本明細書における全ての吸熱曲線ピークの熱量の合計は、図3のDSC曲線と直線(α−β)とによって囲まれる部分の面積にて表わされ、これが吸熱曲線ピークの全熱量に相当する。
Next, a straight line parallel to the vertical axis of the graph is drawn from the point γ on the DSC curve corresponding to the valley between the intrinsic peak a and the high temperature peak b, and the point intersecting the straight line (α−β) is represented by σ. To do. The area of the high-temperature peak b is the portion surrounded by the curve of the high-temperature peak b portion of the DSC curve, the line segment (σ-β), and the line segment (γ-σ) (the portion hatched in FIG. 3). Area, which corresponds to the amount of heat at the high temperature peak.
In addition, the total heat amount of all endothermic curve peaks in this specification is represented by the area of the portion surrounded by the DSC curve and the straight line (α-β) in FIG. 3, and this is the total heat amount of the endothermic curve peak. Equivalent to.

尚、高温ピークbは、上記のようにして測定した第1回目のDSC曲線には認められるが、第2回目のDSC曲線には認められない。第2回目のDSC曲線には、図4に示すように、発泡粒子を構成するポリプロピレン系樹脂に固有の吸熱曲線ピーク(固有ピークa)のみが認められる。なお、第2回目のDSC曲線とは、熱流束示差走査熱量測定において、第1回目のDSC曲線を得た後、40℃まで10℃/分で降温して、再度220℃まで10℃/分で昇温してした際に得られるDSC曲線のことである。   The high temperature peak b is observed in the first DSC curve measured as described above, but not in the second DSC curve. In the second DSC curve, as shown in FIG. 4, only an endothermic curve peak (inherent peak a) unique to the polypropylene resin constituting the expanded particles is recognized. In the second DSC curve, in the heat flux differential scanning calorimetry, after obtaining the first DSC curve, the temperature was lowered to 40 ° C. at 10 ° C./min, and again to 220 ° C. at 10 ° C./min. It is a DSC curve obtained when the temperature is raised at.

本発明の芯層と被覆層とからなる多層樹脂粒子は、それ自体公知の方法、例えば、特公昭41−16125号公報、特公昭43−23858号公報、特公昭44−29522号公報、特開昭60−185816号公報等に記載された共押出法により製造することができる。一般的には、芯層形成用押出機と被覆層形成用押出機を用い、共押出ダイに連結する。芯層形成用押出機で所要の樹脂成分と、必要に応じて添加剤とを溶融混練すると共に、被覆層形成用押出機においても所要の樹脂成分と、必要に応じて添加剤とを溶融混練する。それぞれの溶融混練物を前記ダイ内で合流させて円柱状の芯層と、芯層の外側表面を被覆する被覆層とからなる多層構造として、押出機先端のダイ出口に付設された口金の細孔からストランド状に押出し、ペレタイザーで樹脂粒子の重量が所定重量にとなるように切断することにより多層樹脂粒子が製造される。   The multilayer resin particles comprising the core layer and the coating layer of the present invention are known per se, for example, Japanese Patent Publication No. 41-16125, Japanese Patent Publication No. 43-23858, Japanese Patent Publication No. 44-29522, JP, It can be produced by a coextrusion method described in Japanese Patent Laid-Open No. 60-185816. In general, a core layer forming extruder and a coating layer forming extruder are used and connected to a coextrusion die. Melting and kneading the required resin components and additives as necessary in the core layer forming extruder, and melt kneading the required resin components and additives as necessary in the coating layer forming extruder To do. Each melt-kneaded product is merged in the die to form a multilayer structure comprising a cylindrical core layer and a coating layer covering the outer surface of the core layer. Multi-layer resin particles are produced by extruding into strands from the holes and cutting with a pelletizer such that the weight of the resin particles becomes a predetermined weight.

本発明において用いる多層樹脂粒子の形状としては、例えば、円柱状、ラグビーボール状、球状などが挙げられる。かかる多層樹脂粒子を発泡して得られる発泡粒子は、発泡前の樹脂粒子形状に応じて円柱状、ラグビーボール状、球状となる。   Examples of the shape of the multilayer resin particles used in the present invention include a columnar shape, a rugby ball shape, and a spherical shape. Foamed particles obtained by foaming such multilayer resin particles have a columnar shape, a rugby ball shape, or a spherical shape according to the shape of the resin particles before foaming.

多層樹脂粒子の1個当たりの平均重量は0.01〜10.0mg、特に0.1〜5.0mgであることが好ましい。なお、発泡粒子の平均重量は、発泡粒子を得るための樹脂粒子の1個当たりの平均重量を目的とする発泡粒子の1個当たりの平均重量に合わせることにより調整することができる。発泡粒子の1個当たりの平均重量が小さすぎると発泡効率が悪くなるため、発泡粒子の1個当たりの平均重量も、0.01〜10.0mg、特に0.1〜5.0mgであることが好ましい。   The average weight per multilayer resin particle is preferably 0.01 to 10.0 mg, particularly preferably 0.1 to 5.0 mg. The average weight of the expanded particles can be adjusted by adjusting the average weight per one resin particle for obtaining the expanded particles to the average weight per one expanded foam particle. If the average weight per one of the foamed particles is too small, the foaming efficiency is deteriorated. Therefore, the average weight per one of the foamed particles is also 0.01 to 10.0 mg, particularly 0.1 to 5.0 mg. Is preferred.

本発明の多層樹脂粒子は、芯層を形成している樹脂と被覆層を形成している樹脂とが重量比で99.5:0.5〜80:20であり、好ましくは96:4〜90:10であることが望ましい。多層樹脂粒子の被覆層を形成している樹脂の重量比が小さすぎると、発泡粒子の被覆層部の厚みが薄すぎ、融着性改善の効果が得られず、発泡粒子間の融着が不十分となり易くなる虞がある。一方、被覆層を形成している樹脂の重量比が大きすぎると、被覆層を形成している樹脂が発泡し易くなる虞がある。更には、融点や曲げ弾性率の低い樹脂成分の割合が増加することから、発泡粒子成形体の機械的物性が低下し易くなる虞がある。従って、多層樹脂粒子の芯層(すなわち発泡粒子の芯層部)を形成している樹脂と被覆層(すなわち発泡粒子の被覆層部)を形成している樹脂との重量比が前記範囲内にあることにより、発泡粒子間の融着界面付近に気泡が存在することなく、発泡粒子間の融着強度が強くなることから、機械的強度に優れた発泡粒子成形体となる。   In the multilayer resin particles of the present invention, the resin forming the core layer and the resin forming the coating layer are in a weight ratio of 99.5: 0.5 to 80:20, preferably 96: 4 to 90:10 is desirable. If the weight ratio of the resin forming the coating layer of the multilayer resin particles is too small, the thickness of the coating layer portion of the foamed particles is too thin, and the effect of improving the fusion property cannot be obtained, and the fusion between the foamed particles is not achieved. There is a risk of becoming insufficient. On the other hand, if the weight ratio of the resin forming the coating layer is too large, the resin forming the coating layer may easily foam. Furthermore, since the ratio of the resin component having a low melting point and low flexural modulus increases, the mechanical properties of the foamed particle molded body may be easily lowered. Therefore, the weight ratio of the resin forming the core layer of the multilayer resin particles (that is, the core layer portion of the expanded particles) and the resin forming the coating layer (that is, the coated layer portion of the expanded particles) is within the above range. As a result, there is no air bubble in the vicinity of the fusion interface between the expanded particles, and the fusion strength between the expanded particles is increased, so that the expanded molded article is excellent in mechanical strength.

本発明の多層樹脂粒子の被覆層の厚みについては、多層樹脂粒子を発泡させたときに被覆層部に気泡が生じ難くなり、また、発泡成形体の強度との観点から、厚みが薄い方が好ましいが、あまりに薄すぎる場合には発泡粒子同士の融着性改善効果が期待できず、芯層部の被覆を十分に行うことが難しくなる。従って、多層樹脂粒子の被覆層の厚みは5〜500μmであることが望ましく、10〜100μmがより好ましい。また、発泡粒子の被覆層部の厚みは0.1〜200μmが望ましく、好ましくは0.5〜50μmであることがより好ましい。   Regarding the thickness of the coating layer of the multilayer resin particles of the present invention, when the multilayer resin particles are foamed, bubbles are less likely to be generated in the coating layer portion, and from the viewpoint of the strength of the foamed molded product, the thinner one is preferable. Although it is preferable, if it is too thin, the effect of improving the fusing property between the expanded particles cannot be expected, and it becomes difficult to sufficiently cover the core layer portion. Therefore, the thickness of the coating layer of the multilayer resin particles is desirably 5 to 500 μm, and more preferably 10 to 100 μm. In addition, the thickness of the coating layer portion of the expanded particles is desirably 0.1 to 200 μm, and more preferably 0.5 to 50 μm.

前記多層樹脂粒子の被覆層の厚みは以下により測定される。多層樹脂粒子を二等分し、その断面を顕微鏡下に断面が全て入るように拡大し、二等分した垂直断面において被覆層の全周を光学顕微鏡にて撮影した写真により測定される。具体的には、写真上で断面が凡そ二等分となるように直線を引き、さらにその直線に直角となるように直線を引き、これらの直線と被覆層部とが接する4箇所の長さを求め、その平均を一つの多層樹脂粒子の被覆層の厚さとする。この作業を合わせて10個の多層樹脂粒子で測定し、相加平均した値を多層樹脂粒子における被覆層の厚みとする。発泡粒子の被覆層部の厚みにおいても、同様の方法で測定する。
尚、多層樹脂粒子の被覆層の厚みが分かり難いときには、予め被覆層を構成する樹脂に着色剤を添加して多層樹脂粒子を製造することが好ましい。
The thickness of the coating layer of the multilayer resin particles is measured as follows. The multilayer resin particles are divided into two equal parts, and the cross section thereof is enlarged so that the entire cross section enters under the microscope, and the entire circumference of the coating layer is measured by a photograph taken with an optical microscope in the bisecting vertical cross section. Specifically, a straight line is drawn on the photograph so that the cross section is approximately bisected, and a straight line is drawn so as to be perpendicular to the straight line. The average is taken as the thickness of the coating layer of one multilayer resin particle. These operations are combined and measured with 10 multilayer resin particles, and the arithmetic average value is taken as the thickness of the coating layer in the multilayer resin particles. The thickness of the coating layer portion of the expanded particles is also measured by the same method.
In addition, when it is difficult to understand the thickness of the coating layer of the multilayer resin particles, it is preferable to produce the multilayer resin particles by previously adding a colorant to the resin constituting the coating layer.

本発明の発泡粒子は、前記の芯層と被覆層とからなる多層樹脂粒子を、加圧可能な密閉容器(例えばオートクレーブ)中で水性媒体(通常は水)中に分散させ、所望により分散剤を添加し、所要量の発泡剤を圧入し、加温下で撹拌して樹脂粒子に発泡剤を含浸させた後、加圧容器中から水性媒体と共に内容物を容器内圧よりも低圧域(大気圧下)に放出して発泡させることにより製造される(この方法を、以下、分散媒放出発泡方法という)。この放出時に容器内に背圧をかけて放出することが好ましい。   In the foamed particles of the present invention, the multilayer resin particles comprising the core layer and the coating layer are dispersed in an aqueous medium (usually water) in a pressurized container (for example, an autoclave), and if desired, a dispersant. After adding a required amount of foaming agent and stirring under heating to impregnate the resin particles with the foaming agent, the contents together with the aqueous medium from the pressurized container are lower than the internal pressure of the container (larger (This method is hereinafter referred to as a dispersion medium releasing foaming method). It is preferable to release by applying back pressure in the container at the time of this release.

また、特に高発泡倍率の発泡粒子を得るに際しては、上記の方法で得られた発泡粒子を通常行われる大気圧下での養生した後、加圧可能な密閉容器に充填し、空気などの不活性気体により加圧処理して発泡粒子の内圧を高める操作を行った後、該発泡粒子を該容器内から取り出し、スチームや熱風を用いて加熱することにより、高い発泡倍率の発泡粒子を得ることができる(これを以下二段発泡という)。   In particular, when obtaining expanded particles with a high expansion ratio, the expanded particles obtained by the above-described method are cured under normal atmospheric pressure, and then filled into a pressurizable sealed container so that air or the like can be removed. After performing an operation of increasing the internal pressure of the expanded particles by pressurizing with an active gas, the expanded particles are taken out from the container and heated with steam or hot air to obtain expanded particles with a high expansion ratio. (This is hereinafter referred to as two-stage foaming).

本発明において発泡剤は物理発泡剤が用いられ、特に制限されないが、例えば、n−ブタン、i−ブタンおよびこれらの混合物、n−ペンタン、i−ペンタン、n−ヘキサン等の脂肪族炭化水素類、トリクロロフルオリメタン、ジクロロフルオロメタン、テトラコロロジフルオロエタン、ジコロロメタン等のハロゲン化炭化水素等の有機系物理発泡剤、二酸化炭素、窒素、空気等の無機ガスを、単独で、または2種以上を混合して用いることができる。これらの発泡剤のうち、二酸化炭素、窒素、空気等の無機ガスを主成分とする発泡剤を用いることが好ましく、より好ましくは二酸化炭素が用いられる。本発明において、上記無機ガスを主成分とするとは、全物理発泡剤100モル中に無機ガス発泡剤が50モル%以上、好ましくは70モル%以上、より好ましくは90モル%以上含有していることを意味する。その他有機系物理発泡剤を使用する場合には、ポリオレフィン系樹脂との相溶性、発泡性の観点から、n−ブタン、i−ブタン、n−ペンタン、i−ペンタンを使用することが好ましい。   In the present invention, a physical foaming agent is used as the foaming agent and is not particularly limited. For example, aliphatic hydrocarbons such as n-butane, i-butane and a mixture thereof, n-pentane, i-pentane, n-hexane and the like. , Organic physical foaming agents such as halogenated hydrocarbons such as trichlorofluormethane, dichlorofluoromethane, tetracolorofluoroethane, and dichloromethane, and inorganic gases such as carbon dioxide, nitrogen, and air, or a mixture of two or more. Can be used. Among these foaming agents, it is preferable to use a foaming agent mainly composed of an inorganic gas such as carbon dioxide, nitrogen, or air, and more preferably carbon dioxide. In the present invention, the above-mentioned inorganic gas as a main component means that the inorganic gas blowing agent is contained in 50 mol% or more, preferably 70 mol% or more, more preferably 90 mol% or more in 100 mol of the total physical blowing agent. Means that. In addition, when using an organic physical foaming agent, it is preferable to use n-butane, i-butane, n-pentane, and i-pentane from the viewpoint of compatibility with the polyolefin resin and foamability.

上記の物理発泡剤の添加量は、ポリプロピレン系樹脂の種類や発泡剤の種類、目的とする発泡粒子の見かけ密度(発泡倍率)等に応じて適宜選択されるもので一概には特定することはできないが、例えば、物理発泡剤として二酸化炭素を用いた場合、ポリプロピレン系樹脂100重量部に対して0.1〜30重量部、好ましくは0.5〜15重量部、より好ましくは1〜10重量部が使用される。   The amount of the above physical foaming agent added is appropriately selected according to the type of polypropylene resin, the type of foaming agent, the apparent density (expanding ratio) of the target foamed particles, etc. For example, when carbon dioxide is used as a physical foaming agent, 0.1 to 30 parts by weight, preferably 0.5 to 15 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the polypropylene resin. Part is used.

また分散剤としては、酸化アルミニウム、第三リン酸カルシウム、ピロリン酸マグネシウム、酸化亜鉛、カオリン、マイカなどの水に難溶性の無機物質、
ポリビニルピロリドン、ポリビニルアルコール、メチルセルロースなどの水溶性高分子系保護コロイド剤等が挙げられる。またドデシルベンゼンスルホン酸ナトリウム、アルカンスルホン酸ナトリウム等のアニオン系界面活性剤などを使用することができる。
In addition, as a dispersant, inorganic substances that are hardly soluble in water such as aluminum oxide, tricalcium phosphate, magnesium pyrophosphate, zinc oxide, kaolin, mica,
Examples thereof include water-soluble polymeric protective colloid agents such as polyvinylpyrrolidone, polyvinyl alcohol, and methylcellulose. Anionic surfactants such as sodium dodecylbenzenesulfonate and sodium alkanesulfonate can also be used.

上記分散媒放出発泡方法における高温ピークの具体的な調節方法としては、多層樹脂粒子を水性媒体に分散させて加熱する際に、芯層のポリプロピレン系樹脂の融解終了温度(Tce)以上とならないように昇温し、該樹脂の融点(Tc)より20℃以上低い温度以上、融解終了温度(Tce)未満の範囲内の任意の温度(Ta)で止めてその温度(Ta)で十分な時間、好ましくは10〜60分程度保持し、その後、融点(Tc)より15℃低い温度から融解終了温度(Tce)+10℃の範囲の任意の温度(Tb)に加熱し、その温度で止め、当該温度でさらに十分な時間、好ましくは10〜60分程度、保持してから多層樹脂粒子を密閉容器内から低圧下に放出して発泡させることが好ましい。   As a specific method for adjusting the high temperature peak in the dispersion medium releasing foaming method, when the multilayer resin particles are dispersed in an aqueous medium and heated, the melting end temperature (Tce) of the polypropylene resin in the core layer is not exceeded. To a temperature lower than the melting point (Tc) of the resin by 20 ° C. or more and stopped at an arbitrary temperature (Ta) within the range of less than the melting end temperature (Tce), and a sufficient time at the temperature (Ta), Preferably, the temperature is maintained for about 10 to 60 minutes, and then heated to a temperature (Tb) within the range of 15 ° C. lower than the melting point (Tc) to the melting end temperature (Tce) + 10 ° C., and stopped at that temperature. It is preferable that the multilayer resin particles are released from the inside of the sealed container under a low pressure and foamed after being held for a sufficient time, preferably about 10 to 60 minutes.

分散媒放出発泡方法において、温度Ta、Tb、及び保持時間を上記のように設定することが好ましいのは、発泡粒子の高温ピークの大小が、主として、発泡粒子を製造する際の樹脂粒子に対する上記温度Taと該温度における保持時間および上記温度Tbと該温度における保持時間、ならびに昇温速度に依存するからである。   In the dispersion medium releasing foaming method, it is preferable to set the temperatures Ta and Tb and the holding time as described above, because the size of the high temperature peak of the foamed particles is mainly the above for the resin particles when the foamed particles are produced. This is because it depends on the temperature Ta, the holding time at the temperature, the temperature Tb, the holding time at the temperature, and the rate of temperature increase.

一般的に、発泡粒子の上記高温ピークの熱量は、温度Ta又はTbが上記温度範囲内において低い程、保持時間が長い程、大きくなる傾向を示す。通常、前記発泡工程における昇温速度は0.5〜5℃/分が採用される。これらの点を考慮して予備実験を繰り返すことにより、所望の高温ピーク熱量を示す発泡粒子の製造条件を容易にかつ正確に知ることができる。   In general, the amount of heat at the high temperature peak of the expanded particles tends to increase as the temperature Ta or Tb decreases within the above temperature range or as the holding time increases. Usually, 0.5-5 degreeC / min is employ | adopted for the temperature increase rate in the said foaming process. By repeating the preliminary experiment in consideration of these points, it is possible to easily and accurately know the production conditions of the expanded particles exhibiting a desired high temperature peak heat quantity.

尚、以上説明した樹脂粒子の発泡時の温度調整範囲は、発泡剤として無機系物理発泡剤を使用した場合の適切な温度範囲である。有機系物理発泡剤が併用された場合には、その種類や使用量に応じてその適切な温度範囲は上記温度範囲よりもそれぞれ低温側にシフトする傾向がある。   In addition, the temperature adjustment range at the time of foaming of the resin particle demonstrated above is a suitable temperature range at the time of using an inorganic type physical foaming agent as a foaming agent. When an organic physical foaming agent is used in combination, the appropriate temperature range tends to shift to a lower temperature side than the above temperature range depending on the type and amount of use.

上記の方法により得られる本発明の発泡粒子は、微細な気泡を有する発泡状態の芯層部と、その表面に実質的に非発泡状態の被覆層部が形成された多層構造を有する。前記発泡粒子は見かけ密度が18〜80g/Lであることが、発泡成形体の物性等の面から好ましい。   The foamed particles of the present invention obtained by the above method have a multilayer structure in which a foamed core layer portion having fine bubbles and a substantially non-foamed coating layer portion are formed on the surface thereof. The above-mentioned expanded particles preferably have an apparent density of 18 to 80 g / L from the viewpoint of physical properties of the expanded molded article.

前記発泡粒子の見かけ密度は下記により測定される。水を入れたメスシリンダー内に重量W(g)の発泡粒子群を、金網などを使用して沈め、水位の上昇分から発泡粒子群の体積V(L)を求め、発泡粒子群の重量を発泡粒子群の体積で除す(W/V)ことにより求められる値をg/Lに単位換算して求められる。   The apparent density of the expanded particles is measured as follows. A foamed particle group with a weight W (g) is submerged in a graduated cylinder containing water using a wire mesh, and the volume V (L) of the foamed particle group is obtained from the rise in the water level, and the weight of the foamed particle group is foamed. The value obtained by dividing by the volume of the particle group (W / V) is obtained by converting the unit to g / L.

本発明の発泡粒子の平均気泡径は、50〜900μmであることが、発泡粒子の2次発泡性、金型転写性などの観点から好ましい。更には、平均気泡径は20μm以上であることが好ましく、より好ましくは25μm以上、30μm以上であることがさらに好ましい。一方、その上限は得られる発泡成形品の圧縮応力に対する強度、外観平滑性などの観点から300μm以下が好ましく、250μm以下がより好ましく、さらには200μm以下が好ましい。   The average cell diameter of the foamed particles of the present invention is preferably 50 to 900 μm from the viewpoints of secondary foamability and mold transferability of the foamed particles. Furthermore, the average bubble diameter is preferably 20 μm or more, more preferably 25 μm or more and 30 μm or more. On the other hand, the upper limit is preferably 300 μm or less, more preferably 250 μm or less, and even more preferably 200 μm or less, from the viewpoint of the strength against compression stress and the appearance smoothness of the foamed molded product to be obtained.

発泡粒子の平均気泡径の測定は、発泡粒子を二等分した断面を顕微鏡下にて断面全体が入るように拡大して断面を撮影する。撮影された写真上で断面が凡そ二等分となるように直線を引き、直線の長さを直線に接する全ての気泡の数で除した値を一つの発泡粒子の平均気泡径とし、同様にして20個の発泡粒子について測定し、その相加平均値を発泡粒子の平均気泡径とした。   The average cell diameter of the expanded particles is measured by enlarging a section obtained by dividing the expanded particles into two equal parts under the microscope so that the entire section is included, and photographing the section. On the photograph taken, draw a straight line so that the cross section is approximately bisected, and the value obtained by dividing the length of the straight line by the number of all the bubbles in contact with the straight line is the average bubble diameter of one foamed particle. 20 foamed particles were measured, and the arithmetic average value was taken as the average cell diameter of the foamed particles.

本発明の発泡粒子を型内成形した発泡成形体の製造方法は、それ自体公知の型内成形方法により製造することができる。
例えば、従来の発泡粒子を型内成形する一対の成形型を用い、大気圧下又は減圧下で発泡粒子を成形型キャビティ内に充填し、型閉めして成形型キャビティ体積を5〜70%減少するように圧縮し、ついで型内にスチーム等の熱媒を供給して加熱し、発泡粒子を加熱融着させる減圧成形法による方法(例えば、特公昭46−38359号公報)。また、発泡粒子を空気等の加圧気体により予め加圧処理して発泡粒子内の圧力を高めて、発泡粒子の2次発泡性を高めて2次発泡性を維持しつつ、大気圧下又は減圧下で発泡粒子を成形型キャビティ内に充填し型閉めし、ついで型内にスチーム等の加熱媒体を供給して発泡粒子を加熱融着させる加圧成形法(例えば、特公昭51−22951号公報)などにより成形することができる。又、圧縮ガスにより大気圧以上に加圧したキャビティ内に、当該圧力以上に加圧した発泡粒子を充填した後、キャビティ内にスチーム等の加熱媒体を供給して発泡粒子を加熱融着させる圧縮充填成形法(例えば、特公平4−46217号公報)により成形することもできる。その他に、2次発泡性の高い発泡粒子を、大気圧下又は減圧下の一対の成形型のキャビティ内に充填した後、ついでスチーム等の加熱媒体を供給して加熱し発泡粒子を加熱融着させる常圧充填成形法(例えば、特公平6−49795号公報)、または上記の方法を組合わせた方法(例えば、特公平6−22919号公報)などによっても成形することができる。
The method for producing a foamed molded article obtained by molding the foamed particles of the present invention into a mold can be produced by a known in-mold molding method.
For example, using a pair of conventional molds for molding expanded particles in a mold, filling the expanded mold cavity with expanded particles under atmospheric pressure or reduced pressure, and closing the mold to reduce the mold cavity volume by 5 to 70% Then, a method using a reduced pressure molding method (for example, Japanese Examined Patent Publication No. Sho 46-38359) in which a heating medium such as steam is supplied into the mold and heated to heat and expand the foamed particles. In addition, the foamed particles are pre-pressurized with a pressurized gas such as air to increase the pressure in the foamed particles, and the secondary foamability of the foamed particles is increased to maintain the secondary foamability. A pressure molding method (for example, Japanese Patent Publication No. 51-22951) in which foamed particles are filled in a mold cavity under reduced pressure, the mold is closed, and then a heating medium such as steam is supplied into the mold to heat-fuse the foamed particles. Etc.). In addition, after filling foamed particles pressurized above the pressure into a cavity pressurized above the atmospheric pressure with compressed gas, a heating medium such as steam is supplied into the cavity to heat-fuse the foamed particles. It can also be molded by a filling molding method (for example, Japanese Patent Publication No. 4-46217). In addition, after filling foam particles with high secondary foamability into a pair of mold cavities under atmospheric pressure or reduced pressure, a heating medium such as steam is supplied and heated to heat-fuse the foam particles. It can also be molded by a normal pressure filling molding method (for example, Japanese Patent Publication No. 6-49795) or a method combining the above methods (for example, Japanese Patent Publication No. 6-22919).

本発明の発泡粒子で製造される発泡粒子成形体の密度は目的によって任意に設定できるが、可撓性を有する発泡成形体であるという観点からは、12g/L〜50g/Lの範囲であることが好ましく、より好ましくは12g/L〜30g/Lである。
尚、発泡粒子成形体の密度は、該成形体から切り出した試験片の重量(g)を該試験片の外形寸法から求められる体積(L)で除すことにより算出される。
The density of the foamed particle molded body produced from the foamed particles of the present invention can be arbitrarily set depending on the purpose, but from the viewpoint of being a foamed molded body having flexibility, it is in the range of 12 g / L to 50 g / L. It is preferably 12 g / L to 30 g / L.
The density of the foamed particle molded body is calculated by dividing the weight (g) of the test piece cut out from the molded body by the volume (L) obtained from the outer dimension of the test piece.

以下本発明について実施例、比較例を挙げ説明する。   Hereinafter, the present invention will be described with reference to examples and comparative examples.

実施例および比較例に使用したポリプロピレン系樹脂を下記表1に示す。 The polypropylene resins used in the examples and comparative examples are shown in Table 1 below.

Figure 2011016914
Figure 2011016914

上記メルトフローレイト(MFR)は、JIS K7210(1976年)に準拠して、230℃、荷重21.17Nの条件で測定した。尚、ポリエチレン系樹脂の場合には、190℃、荷重21.17Nの条件で測定した。   The melt flow rate (MFR) was measured under conditions of 230 ° C. and a load of 21.17 N in accordance with JIS K7210 (1976). In the case of a polyethylene resin, the measurement was performed under the conditions of 190 ° C. and a load of 21.17 N.

実施例1
内径65mmの芯層形成用押出機および内径30mmの被覆層形成用押出機の出口側に多層ストランド形成用ダイを付設した押出機を用いた。
芯層形成用押出機および被覆層形成用押出機に、それぞれ表1に示す芯層および被覆層を形成するプロピレン系樹脂を、それぞれ表2に示す割合で、夫々の押出機に供給し、溶融混練した。その溶融混練物を前記の多層ストランド形成用ダイに導入してダイ内で合流して押出機先端に取り付けた口金の細孔から、2層(被覆層/芯層構造)に形成されたストランドとして押出し、押出されたストランドを水冷し、ペレタイザーで重量が略1mgとなるように切断し、乾燥して多層樹脂粒子を得た。
なお、芯層のポリプロピレン系樹脂には気泡調整剤としてホウ酸亜鉛を含有量が1000重量ppmとなるように供給した。
Example 1
An extruder in which a die for forming a multilayer strand was attached to the outlet side of a core layer forming extruder having an inner diameter of 65 mm and a coating layer forming extruder having an inner diameter of 30 mm was used.
The core layer forming extruder and the coating layer forming extruder are each supplied with the propylene-based resin for forming the core layer and the coating layer shown in Table 1 at the ratio shown in Table 2, and melted. Kneaded. The melt-kneaded product is introduced into the above-mentioned multilayer strand forming die, joined in the die, and formed into two layers (coating layer / core layer structure) from the pores of the die attached to the tip of the extruder The extruded strand was cooled with water, cut with a pelletizer to a weight of approximately 1 mg, and dried to obtain multilayer resin particles.
In addition, zinc borate was supplied to the polypropylene-based resin of the core layer so that the content of zinc borate was 1000 ppm by weight as a bubble regulator.

得られた多層樹脂粒子1kgを、分散媒の水3Lと共に、5Lの密閉容器内に仕込み、多層樹脂粒子100重量部に対して、分散剤としてカオリン0.3重量部、界面活性剤(商品名:ネオゲン、第一工業製薬株式会社製、ドデシルベンゼンスルホン酸ナトリウム)0.2重量部(有効成分として)、および硫酸アルミニウム0.01重量部をそれぞれ添加し、密閉容器内に発泡剤として二酸化炭素を圧入し、撹拌下で表2に示す発泡温度まで加熱昇温して、同温度で15分間保持して高温ピーク熱量(DSC測定による吸熱曲線から得られる)を調整した。その後、容器内容物を大気圧下に水とともに一気に放出して見かけ密度60g/Lの発泡粒子を得た。なお、高発泡倍率(低密度)の発泡粒子は、2段発泡法を採用して表2の条件で製造した。すなわち、まず見かけ密度72g/Lの発泡粒子を得た後、該発泡粒子を別の密閉容器に充填し加圧工程後スチームで加熱して、見かけ密度29g/Lの多層発泡粒子を得た。   1 kg of the obtained multilayer resin particles are charged into a 5 L sealed container together with 3 L of water as a dispersion medium, and 0.3 parts by weight of kaolin as a dispersant and a surfactant (trade name) with respect to 100 parts by weight of the multilayer resin particles. : Neogen, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., sodium dodecylbenzenesulfonate) 0.2 parts by weight (as an active ingredient) and 0.01 parts by weight of aluminum sulfate were added, and carbon dioxide as a blowing agent in a sealed container. And heated to the foaming temperature shown in Table 2 under stirring, and maintained at that temperature for 15 minutes to adjust the high-temperature peak calorific value (obtained from the endothermic curve by DSC measurement). Thereafter, the contents of the container were discharged together with water under atmospheric pressure to obtain expanded particles having an apparent density of 60 g / L. The high expansion ratio (low density) expanded particles were produced under the conditions shown in Table 2 using a two-stage expansion method. That is, first, foamed particles with an apparent density of 72 g / L were obtained, and then the foamed particles were filled into another sealed container and heated with steam after the pressurizing step to obtain multilayer foamed particles with an apparent density of 29 g / L.

得られた多層発泡粒子を縦250mm×横200mm×厚さ50mmの平板成形型に充填し、スチーム加熱による加圧成形により型内成形を行なって板状発泡粒子成形体を得た。加熱方法は両面の型のドレン弁を開放した状態でスチームを5秒間供給して予備加熱(排気工程)を行ったのち、本加熱圧力より0.04MPa(G)低い圧力で一方加熱を行い、さらに本加熱圧力より0.02MPa(G)低い圧力で逆方向から一方加熱を行った後、表2に示す最低成形スチーム圧力(尚、最低成形スチーム圧とは、発泡粒子を型内に充填してスチームで加熱する際に、発泡粒子相互が型内で2次発泡して融着し、表面平滑で可撓性に優れる発泡成形体が得られる最低のスチーム圧力をいう)で加熱した。加熱終了後、放圧し、成形体の発泡力による表面圧力が0.04MPa(G)になるまで水冷したのち、型を開放し成形体を型から取り出した。得られた成形体は80℃のオーブンにて12時間養生後、室温まで徐冷してポリプロピレン系樹脂発泡成形体を得た。発泡成形体の物性を評価し、その結果を表2に示した。   The obtained multilayer foamed particles were filled into a flat plate mold having a length of 250 mm, a width of 200 mm, and a thickness of 50 mm, and subjected to in-mold molding by pressure molding by steam heating to obtain a plate-like foamed particle compact. In the heating method, steam is supplied for 5 seconds with the drain valves on both sides open, and after preliminary heating (exhaust process), one heating is performed at a pressure 0.04 MPa (G) lower than the main heating pressure, Further, after one-way heating in the opposite direction at a pressure lower than the main heating pressure by 0.02 MPa (G), the minimum molding steam pressure shown in Table 2 (note that the minimum molding steam pressure refers to filling the mold with foam particles). When heated with steam, the foamed particles are heated at the lowest steam pressure at which a foamed molded product having a smooth surface and excellent flexibility can be obtained by secondary foaming and fusion within the mold. After the heating was completed, the pressure was released, and water cooling was performed until the surface pressure due to the foaming force of the molded body became 0.04 MPa (G), and then the mold was opened and the molded body was taken out from the mold. The obtained molded body was cured in an oven at 80 ° C. for 12 hours and then gradually cooled to room temperature to obtain a polypropylene resin foam molded body. The physical properties of the foamed molded product were evaluated, and the results are shown in Table 2.

実施例2,3
芯層を形成するポリプロピレン系樹脂を表2に示す樹脂に替えた以外は実施例1と同様の操作により多層樹脂粒子を製造し、この樹脂粒子を実施例1と同様にして発泡粒子、および発泡成形体を得た。その物性を表2に示す。
Examples 2 and 3
Multilayer resin particles are produced in the same manner as in Example 1 except that the polypropylene resin forming the core layer is replaced with the resin shown in Table 2. The resin particles are expanded in the same manner as in Example 1 and expanded. A molded body was obtained. The physical properties are shown in Table 2.

実施例4
被覆層を形成するポリプロピレン系樹脂を表2に示す樹脂に替えた以外は実施例1と同様の操作により多層樹脂粒子を製造し、この樹脂粒子を実施例1と同様にして発泡粒子、および発泡成形体を得た。その物性を表2に示す。
Example 4
Multilayer resin particles were produced in the same manner as in Example 1 except that the polypropylene resin forming the coating layer was changed to the resin shown in Table 2, and the resin particles were expanded in the same manner as in Example 1 and expanded. A molded body was obtained. The physical properties are shown in Table 2.

実施例5
被覆層を形成するポリプロピレン系樹脂を表2に示す樹脂に替えた以外は実施例1と同様の操作により多層樹脂粒子を製造し、この樹脂粒子を実施例1と同様にして発泡粒子、および発泡成形体を得た。その物性を表2に示す。
多層樹脂粒子を形成しているプロピレン系樹脂の曲げ弾性率差が300MPaであり、発泡粒子間の間隙が僅かに認められる成形体となったが、本発明の目的は達成されるものであった。
Example 5
Multilayer resin particles were produced in the same manner as in Example 1 except that the polypropylene resin forming the coating layer was changed to the resin shown in Table 2, and the resin particles were expanded in the same manner as in Example 1 and expanded. A molded body was obtained. The physical properties are shown in Table 2.
The difference in flexural modulus of the propylene-based resin forming the multilayer resin particles was 300 MPa, and a molded body in which the gaps between the foamed particles were slightly recognized was obtained, but the object of the present invention was achieved. .

実施例6
被覆層を形成するポリプロピレン系樹脂を表2に示す樹脂に替えた以外は実施例1と同様の操作により多層樹脂粒子を製造し、この樹脂粒子を実施例1と同様にして発泡粒子、および発泡成形体を得た。その物性を表2に示す。
多層樹脂粒子を形成しているプロピレン系樹脂の融解差が6℃であり、実施例1の発泡粒子に比べて融着性が若干低下し、また、試験片を90度曲げても割れを生じないが、180度曲げた場合には割れを生じる成形体となったものの、本発明の目的は達成されるものであった。
Example 6
Multilayer resin particles were produced in the same manner as in Example 1 except that the polypropylene resin forming the coating layer was changed to the resin shown in Table 2, and the resin particles were expanded in the same manner as in Example 1 and expanded. A molded body was obtained. The physical properties are shown in Table 2.
The difference in melting of the propylene-based resin forming the multilayer resin particles is 6 ° C., the fusing property is slightly lower than that of the foamed particles of Example 1, and cracking occurs even when the test piece is bent 90 degrees. Although not formed into a molded product that cracks when bent 180 degrees, the object of the present invention was achieved.

実施例7
被覆層を形成するポリプロピレン系樹脂を表2に示す樹脂に替えた以外は実施例1と同様の操作により多層樹脂粒子を製造し、この樹脂粒子を実施例1と同様にして発泡粒子、および発泡成形体を得た。その物性を表2に示す。
多層樹脂粒子を形成しているプロピレン系樹脂の融点差が大きく、成形時、金型に樹脂が稀に付着していたが、本発明の目的は達成されるものであった。
Example 7
Multilayer resin particles were produced in the same manner as in Example 1 except that the polypropylene resin forming the coating layer was changed to the resin shown in Table 2, and the resin particles were expanded in the same manner as in Example 1 and expanded. A molded body was obtained. The physical properties are shown in Table 2.
The propylene-based resin forming the multilayer resin particles has a large melting point difference, and the resin rarely adhered to the mold during molding, but the object of the present invention was achieved.

実施例8
被覆層と芯層との比率を表2に示すように変更した以外は実施例1と同様の操作により多層樹脂粒子を製造し、この樹脂粒子を実施例1と同様にして発泡粒子、および発泡成形体を得た。その物性を表2に示す。
被覆層の重量比率が多いため、成形時、金型に樹脂が稀に付着していたが、本発明の目的は達成されるものであった。
Example 8
Except for changing the ratio between the coating layer and the core layer as shown in Table 2, multilayer resin particles were produced in the same manner as in Example 1, and the resin particles were expanded in the same manner as in Example 1 and expanded. A molded body was obtained. The physical properties are shown in Table 2.
Since the weight ratio of the coating layer is large, the resin rarely adhered to the mold during molding, but the object of the present invention was achieved.

実施例9
実施例1と同様にして表2の条件で得た発泡粒子の二段発泡処理を行わずそのまま型内成形に供して発泡成形体を得た。その物性を表2に示す。
成形体の発泡倍率が低いため、試験片を90度曲げても割れを生じないが、180度曲げた場合には割れを生じる成形体となったものの、本発明の目的は達成されるものであった。
Example 9
In the same manner as in Example 1, the foamed particles obtained under the conditions shown in Table 2 were subjected to in-mold molding as they were without carrying out the two-stage foaming treatment to obtain a foam molded article. The physical properties are shown in Table 2.
Since the foaming ratio of the molded body is low, cracking does not occur even if the test piece is bent 90 degrees, but when it is bent 180 degrees, the molded body has cracked, but the object of the present invention is achieved. there were.

実施例10
被覆層と芯層との比率を表2に示すように変更した以外は、実施例8と同様の操作により多層樹脂粒子を製造し、この樹脂粒子を実施例1と同様にして発泡粒子、および発泡成形品を得た。その物性を表2に示す。
Example 10
Except for changing the ratio between the coating layer and the core layer as shown in Table 2, multilayer resin particles were produced in the same manner as in Example 8, and the resin particles were expanded as in Example 1, and A foam molded product was obtained. The physical properties are shown in Table 2.

比較例1
実施例の芯層に対して被覆層の融点が高く、Es値の大きい樹脂を使用した以外は実施例1と同様の操作により多層樹脂粒子を製造し、この多層樹脂粒子を実施例1と同様の操作により発泡粒子および発泡成形体を得た。物性の評価結果を表3に示す。
得られた発泡成形体は、芯層及び被覆層を形成する樹脂の融点差や部分融解熱量比が満足しないことから、非発泡の被覆層部の樹脂の融着性が不十分で可撓性に劣る成形体であった。
Comparative Example 1
A multilayer resin particle was produced in the same manner as in Example 1 except that a resin having a high melting point of the coating layer and a large Es value was used with respect to the core layer of the example. The expanded particles and the expanded molded body were obtained by the above operations. Table 3 shows the evaluation results of physical properties.
The resulting foamed molded article is not flexible because the melting point difference of the resin forming the core layer and the coating layer and the partial melting calorie ratio are not satisfactory, and the resin fusion property of the non-foamed coating layer is insufficient. The molded product was inferior to.

比較例2
実施例4に使用された芯層部を形成するポリプロピレン系樹脂よりも曲げ弾性率の高い樹脂を使用した以外は、実施例1と同様の操作により多層樹脂粒子、発泡粒子、及び発泡成形体を得た。物性の評価を表3に示す。
得られた発泡成形体の剛性が高くなり、可撓性の点において劣るものであった。さらに、芯層の曲げ弾性率が高いために従来のポリプロピレン系樹脂発泡粒子の成形に使用される成形機の耐圧性能(0.40MPa)以下では成形体表面の外観は低下した。
Comparative Example 2
The multilayer resin particles, the expanded particles, and the expanded molded body were obtained by the same operation as in Example 1 except that a resin having a higher flexural modulus than that of the polypropylene resin used for forming the core layer portion used in Example 4 was used. Obtained. Table 3 shows the evaluation of physical properties.
The obtained foamed molded article had high rigidity and was inferior in flexibility. Furthermore, since the bending elastic modulus of the core layer is high, the appearance of the surface of the molded body was lowered below the pressure resistance (0.40 MPa) of the molding machine used for molding the conventional polypropylene resin foam particles.

比較例3
比較例2において成形時のスチーム圧力を上げて成形を行ったところ、発泡粒子間相互の融着性や表面平滑性は満足できるものとなったが、芯層を形成する樹脂の剛性が高いことから、発泡成形体の可撓性の点において劣るものであった。
Comparative Example 3
In Comparative Example 2, when the steam pressure during molding was increased and molding was performed, the mutual fusion property and surface smoothness between the expanded particles were satisfactory, but the rigidity of the resin forming the core layer was high. Therefore, the flexibility of the foamed molded product was inferior.

比較例4
実施例7に使用された芯層を形成するポリプロピレン系樹脂よりも曲げ弾性率の高い樹脂を使用した以外は、実施例1と同様の操作により多層樹脂粒子、発泡粒子、発泡成形品を得た。物性の評価を表3に示す。
被覆層と芯層間の融点差が大きいため、高い成形圧が必要であり、成形時に樹脂が金型へ付着し易く、成形加工性に劣るものであった。
Comparative Example 4
Multilayer resin particles, expanded particles, and expanded molded articles were obtained by the same operation as in Example 1 except that a resin having a higher flexural modulus than that of the polypropylene resin used to form the core layer used in Example 7 was used. . Table 3 shows the evaluation of physical properties.
Since the melting point difference between the coating layer and the core layer is large, a high molding pressure is required, the resin easily adheres to the mold during molding, and the molding processability is poor.

比較例5
実施例1の被覆層をポリエチレン系樹脂に変更した以外は実施例1と同様の操作により発泡粒子、発泡成形体を得た。その物性の評価を表3に示す。
また、芯層と被覆層を形成する樹脂の曲げ弾性率の差が大きく、表面平滑性に劣るものであった。また、鞘芯間の融点差が大きいために成形時に樹脂が金型へ付着し易く、成形加工性に劣るものであった。
Comparative Example 5
Foamed particles and a foamed molded article were obtained by the same operation as in Example 1 except that the coating layer of Example 1 was changed to a polyethylene resin. Table 3 shows the evaluation of the physical properties.
Moreover, the difference in the flexural modulus of the resin forming the core layer and the coating layer was large, and the surface smoothness was poor. Further, since the melting point difference between the sheath cores is large, the resin easily adheres to the mold during molding, and the molding processability is poor.

比較例6
比較例4における被覆層を形成する樹脂を表3に示す樹脂に変えた以外は比較例4と同様にして発泡粒子、および発泡成形体を得た。その物性評価を表3に示す。
芯層を形成する樹脂の曲げ弾性率が高いため可撓性に劣り、さらに被覆層と芯層との曲げ弾性率の差も大きいため、表面平滑性にも劣るものであった。また、鞘芯間の融点差が大きいために成形時に樹脂が金型へ付着し易く、成形加工性に劣るものであった。
Comparative Example 6
Expanded particles and a foamed molded article were obtained in the same manner as in Comparative Example 4 except that the resin forming the coating layer in Comparative Example 4 was changed to the resin shown in Table 3. The physical property evaluation is shown in Table 3.
Since the resin forming the core layer has a high flexural modulus, it is inferior in flexibility. Further, since the difference in flexural modulus between the coating layer and the core layer is large, the surface smoothness is also inferior. Further, since the melting point difference between the sheath cores is large, the resin easily adheres to the mold during molding, and the molding processability is poor.

比較例7
実施例2における被覆層を形成する樹脂を表3に示す樹脂に変えた以外は実施例2と同様にして、多層樹脂粒子、発泡粒子、発泡成形体を得た。その物性評価を表3に示す。
芯層と被服層を形成する樹脂の曲げ弾性率の差が大きく、成形体の表面平滑性が劣り、可撓性の劣るものであった。
Comparative Example 7
Multilayer resin particles, foamed particles, and foamed molded articles were obtained in the same manner as in Example 2 except that the resin forming the coating layer in Example 2 was changed to the resin shown in Table 3. The physical property evaluation is shown in Table 3.
The difference in the flexural modulus of the resin forming the core layer and the clothing layer was large, the surface smoothness of the molded product was inferior, and the flexibility was inferior.

発泡成形体の評価は下記により行った。   The foamed molded product was evaluated as follows.

(表面平滑性)
発泡粒子成形体の外観を目視により下記の基準にて評価した。
◎:成形体の表面が平滑であり、発泡粒子間の融着が良好で粒子間の間隙が殆どない。
○:成形体の表面が平滑であるが、発泡粒子間の間隙が僅かに認められる。
△:成形体の表面は平滑であるが、発泡粒子間の間隙が目立つ。
×:成形体の表面の平滑性に欠け、発泡粒子間の間隙が目立つ、または間隙の間の融着が不十分である。
(Surface smoothness)
The appearance of the foamed particle molded body was visually evaluated according to the following criteria.
(Double-circle): The surface of a molded object is smooth, the melt | fusion between foamed particles is favorable, and there is almost no space | gap between particles.
A: The surface of the molded body is smooth, but a slight gap between the expanded particles is observed.
(Triangle | delta): The surface of a molded object is smooth, but the space | gap between expanded particles is conspicuous.
X: The smoothness of the surface of a molded object is lacking, the space | interval between expanded particles is conspicuous, or the fusion | melting between space | gap is inadequate.

(可撓性)
発泡粒子成形体の中央部分から縦195×横50×厚み10mmの試験片を切り出し、該試験片を厚み方向に略等分となるように折り曲げたときの割れ性を評価した。
◎:180度曲げても割れを生じない
○:90度曲げても割れを生じない。
△:90度曲げても割れないがヒビが入る。
×:90度曲げると割れる。
(Flexibility)
A test piece having a length of 195 × width 50 × thickness 10 mm was cut out from the central portion of the foamed particle molded body, and the crackability when the test piece was bent so as to be substantially equally divided in the thickness direction was evaluated.
(Double-circle): Even if it bends 180 degree | times, it does not produce a crack (circle): It does not produce a crack even if it bends 90 degree | times.
Δ: Even if bent 90 degrees, it does not crack but cracks.
X: It cracks when bent 90 degrees.

(金型への付着性)
表3に記載の条件で成形を行った後の金型に、樹脂が付着しているかどうかで判定した。
◎:付着が認められない。
○:稀に付着が認められる。
△:部分的に付着が認められる。
×:付着する。
(Adhesion to mold)
Judgment was made based on whether or not the resin adhered to the mold after molding under the conditions described in Table 3.
A: Adhesion is not recognized.
○: Adhesion is rarely observed.
Δ: Partial adhesion is observed.
X: Adhere.

Figure 2011016914
Figure 2011016914

Figure 2011016914
Figure 2011016914

Cm マイクロ熱機械測定による曲線
Cm1 被覆層部に由来する変位量の急峻な領域
Cm2 芯層部に由来する変位量の急峻な領域
BL、TL 接線
Ns 被覆層の軟化点
Nc 芯層の軟化点
a DSC曲線上の固有ピーク
b DSC曲線上の高温ピーク
α DSC曲線上の80℃に相当する点
β 融解終了温度に相当する点
γ DSC曲線上の固有ピークと高温ピークとの谷部
δ 直線α−βとの交点
T 融解終了温度
Tm 融点
Te 融解終了温度
Curves from Cm micro thermomechanical measurements
Cm1 Steep region of displacement derived from the coating layer
Cm2 Steep region of displacement derived from the core layer
BL, TL tangent
Softening point of Ns coating layer
Nc Core layer softening point a Inherent peak on DSC curve b High temperature peak on DSC curve α Point corresponding to 80 ° C on DSC curve β Point corresponding to melting end temperature γ Intrinsic peak and high temperature peak on DSC curve Valley δ Intersection with straight line α-β T Melting end temperature Tm Melting point Te Melting end temperature

Claims (3)

ポリプロピレン系樹脂で形成される芯層と被覆層とからなり前記芯層と被覆層の重量比率が99.5:0.5〜80:20である多層樹脂粒子を、発泡してなる多層発泡粒子であって、下記(a−1)及び/又は(a−2)と、(b)と(c)の要件を満足することを特徴とするポリプロピレン系樹脂発泡粒子。
(a−1)
前記芯層を形成しているポリプロピレン系樹脂の樹脂融点Tc(℃)と、前記被覆層を形成しているポリプロピレン系樹脂の樹脂融点Ts(℃)が、下記式(1)を満足する。
(数1)
1.5≦Tc−Ts≦30(℃)・・・(1)
(a−2)
前記芯層を形成しているポリプロピレン系樹脂の熱流束示差走査熱量測定によって得られるDSC吸熱曲線における、前記芯層の樹脂融点(Tc)以上の温度範囲の部分融解熱量をEc(J/g)とし、前記被覆層を形成しているポリプロピレン系樹脂の熱流束示差走査熱量測定によって得られるDSC吸熱曲線における、前記芯層の樹脂融点(Tc)以上の温度範囲の部分融解熱量をEs(J/g)としたとき、EcとEsとが下記式(2)を満足する。
(数2)
0≦Es/Ec≦0.7・・・(2)
(b)前記芯層を形成しているポリプロピレン系樹脂の曲げ弾性率:Mc(MPa)と、前記被覆層を形成しているポリプロピレン系樹脂の曲げ弾性率:Ms(MPa)とが、下記式(3)を満足する。
(数3)
Mc−Ms≦500(MPa)・・・・(3)
(c)前記芯層を形成しているポリプロピレン系樹脂の曲げ弾性率:Mc(MPa)が1100MPa以下である。
Multilayer foamed particles obtained by foaming multilayer resin particles comprising a core layer and a coating layer formed of a polypropylene resin and having a weight ratio of the core layer to the coating layer of 99.5: 0.5 to 80:20 The expanded polypropylene resin particles satisfy the following requirements (a-1) and / or (a-2), and (b) and (c).
(A-1)
The resin melting point Tc (° C.) of the polypropylene resin forming the core layer and the resin melting point Ts (° C.) of the polypropylene resin forming the coating layer satisfy the following formula (1).
(Equation 1)
1.5 ≦ Tc−Ts ≦ 30 (° C.) (1)
(A-2)
In the DSC endothermic curve obtained by heat flux differential scanning calorimetry of the polypropylene resin forming the core layer, Ec (J / g) is a partial melting heat amount in a temperature range equal to or higher than the resin melting point (Tc) of the core layer. In the DSC endothermic curve obtained by heat flux differential scanning calorimetry of the polypropylene resin forming the coating layer, the partial melting heat amount in the temperature range equal to or higher than the resin melting point (Tc) of the core layer is Es (J / When g), Ec and Es satisfy the following formula (2).
(Equation 2)
0 ≦ Es / Ec ≦ 0.7 (2)
(B) The bending elastic modulus of the polypropylene resin forming the core layer: Mc (MPa) and the bending elastic modulus of the polypropylene resin forming the coating layer: Ms (MPa) Satisfy (3).
(Equation 3)
Mc-Ms ≦ 500 (MPa) (3)
(C) The bending modulus of elasticity of the polypropylene resin forming the core layer: Mc (MPa) is 1100 MPa or less.
前記芯層を形成しているポリプロピレン系樹脂の樹脂融点:Tc(℃)が150℃以下であることを特徴とする請求項1に記載のポリプロピレン系樹脂発泡粒子。
The polypropylene resin expanded particles according to claim 1, wherein the polypropylene resin forming the core layer has a resin melting point: Tc (° C) of 150 ° C or less.
請求項1又は2に記載の発泡粒子を成形金型内に充填し加熱成形して得られる、見かけ密度が12g/L〜50g/Lであることを特徴とする発泡粒子成形体。   An expanded particle molded body having an apparent density of 12 g / L to 50 g / L, which is obtained by filling the expanded particles according to claim 1 or 2 in a molding die and heat molding.
JP2009162271A 2009-07-08 2009-07-08 Polypropylene resin foamed particles and foamed particle molded body comprising the foamed particles Active JP5399146B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009162271A JP5399146B2 (en) 2009-07-08 2009-07-08 Polypropylene resin foamed particles and foamed particle molded body comprising the foamed particles
CN2010102262833A CN101948585A (en) 2009-07-08 2010-07-08 Polypropylene resin foam particle and the expanded particle formed body that comprises this expanded particle
CN201510472025.6A CN105131325A (en) 2009-07-08 2010-07-08 Foamed polypropylene resin particle and molded product of foamed particle made of the foamed particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009162271A JP5399146B2 (en) 2009-07-08 2009-07-08 Polypropylene resin foamed particles and foamed particle molded body comprising the foamed particles

Publications (2)

Publication Number Publication Date
JP2011016914A true JP2011016914A (en) 2011-01-27
JP5399146B2 JP5399146B2 (en) 2014-01-29

Family

ID=43452222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009162271A Active JP5399146B2 (en) 2009-07-08 2009-07-08 Polypropylene resin foamed particles and foamed particle molded body comprising the foamed particles

Country Status (2)

Country Link
JP (1) JP5399146B2 (en)
CN (2) CN101948585A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709509A (en) * 2013-12-17 2014-04-09 浙江普利特新材料有限公司 Expandable microsphere filling modified polypropylene composite material and preparation method thereof
WO2015107847A1 (en) * 2014-01-17 2015-07-23 株式会社ジェイエスピー Propylene-based resin foam particle and foam particle molded body
EP3023454A4 (en) * 2014-03-27 2016-06-29 Jsp Corp Polyolefin resin foam particles, foam-particle moulded body, and composite stacked body including said moulded body
WO2016111017A1 (en) * 2015-01-09 2016-07-14 株式会社ジェイエスピー Propylene resin foam particles and foam particle molded article
JP2017069400A (en) * 2015-09-30 2017-04-06 株式会社ジェイエスピー Foamed particle molding and radio wave absorptive material using the same
WO2017142273A1 (en) * 2016-02-17 2017-08-24 주식회사 엘지화학 High-stiffness and energy-reducing polypropylene for foaming
US10487188B2 (en) 2015-07-15 2019-11-26 Jsp Corporation Propylene resin foamed particle and foamed particle molded body
WO2021182008A1 (en) 2020-03-11 2021-09-16 株式会社ジェイエスピー Polypropylene-based resin foamed particle molded body, polypropylene-based resin foamed particle, and method for producing same
CN113502025A (en) * 2021-08-05 2021-10-15 无锡会通轻质材料股份有限公司 EPO (erythropoietin) foamed bead and preparation method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103042647B (en) * 2012-11-08 2015-05-20 江苏微赛新材料科技有限公司 Method for producing polypropylene micro-porous foamed thick board
EP3269761B1 (en) * 2015-03-13 2019-08-28 Kaneka Corporation Polypropylene resin foamed particles and method for producing same
CN106317438A (en) * 2016-08-19 2017-01-11 深圳唯创微波技术有限公司 Fire-retardant polypropylene foam wave-absorbing composite material and method for preparing same
CN106317447A (en) * 2016-08-19 2017-01-11 深圳唯创微波技术有限公司 Fire-retardant polypropylene foam wave absorbing composite material and method for preparing same
CN106336522A (en) * 2016-08-31 2017-01-18 无锡会通轻质材料股份有限公司 Preparation method for multilayer gradient porous polypropylene beads
CN106674583B (en) * 2017-01-18 2019-04-30 中广核博繁新材料(苏州)有限公司 A kind of expanded polypropylene beads and preparation method thereof
CN109679227B (en) * 2018-12-31 2021-07-30 无锡会通轻质材料股份有限公司 Method for shortening EPP bead forming period
JP7326023B2 (en) * 2019-05-17 2023-08-15 株式会社ジェイエスピー Thermoplastic elastomer foamed particles and molded products thereof
CN110394936A (en) * 2019-07-31 2019-11-01 太仓富宇塑胶科技有限公司 This preparation of the EPP of automotive sunshade panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145739A (en) * 1982-02-25 1983-08-30 Japan Styrene Paper Co Ltd Expanded polypropylene particle
JP2004068016A (en) * 2002-07-22 2004-03-04 Jsp Corp Method for manufacturing foamed polypropylene resin particle, and formed polypropylene resin particle
JP2007063537A (en) * 2005-08-03 2007-03-15 Sekisui Chem Co Ltd Foamed olefin-based resin sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE423160T1 (en) * 2002-05-13 2009-03-15 Jsp Corp EXPANDABLE POLYPROPLYENE RESIN PARTICLES AND MOLDED BODIES OBTAINED THEREFROM BY MOLDING IN THE MOLDING MOLD
US7259189B2 (en) * 2003-06-12 2007-08-21 Jsp Corporation Expanded polypropylene resin beads and process for the production thereof
US20090169895A1 (en) * 2007-12-27 2009-07-02 Jsp Corporation Foamed polyolefin resin beads

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145739A (en) * 1982-02-25 1983-08-30 Japan Styrene Paper Co Ltd Expanded polypropylene particle
JP2004068016A (en) * 2002-07-22 2004-03-04 Jsp Corp Method for manufacturing foamed polypropylene resin particle, and formed polypropylene resin particle
JP2007063537A (en) * 2005-08-03 2007-03-15 Sekisui Chem Co Ltd Foamed olefin-based resin sheet

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709509A (en) * 2013-12-17 2014-04-09 浙江普利特新材料有限公司 Expandable microsphere filling modified polypropylene composite material and preparation method thereof
WO2015107847A1 (en) * 2014-01-17 2015-07-23 株式会社ジェイエスピー Propylene-based resin foam particle and foam particle molded body
JP5927343B2 (en) * 2014-01-17 2016-06-01 株式会社ジェイエスピー Propylene-based resin expanded particles and expanded molded articles
US10385178B2 (en) 2014-01-17 2019-08-20 Jsp Corporation Propylene-based resin foam particle and foam particle molded body
EP3023454A4 (en) * 2014-03-27 2016-06-29 Jsp Corp Polyolefin resin foam particles, foam-particle moulded body, and composite stacked body including said moulded body
JPWO2016111017A1 (en) * 2015-01-09 2017-10-19 株式会社ジェイエスピー Propylene-based resin expanded particles and expanded molded articles
US10336880B2 (en) 2015-01-09 2019-07-02 Jsp Corporation Propylene resin foam particles and foam particle molded article
WO2016111017A1 (en) * 2015-01-09 2016-07-14 株式会社ジェイエスピー Propylene resin foam particles and foam particle molded article
US10487188B2 (en) 2015-07-15 2019-11-26 Jsp Corporation Propylene resin foamed particle and foamed particle molded body
JP2017069400A (en) * 2015-09-30 2017-04-06 株式会社ジェイエスピー Foamed particle molding and radio wave absorptive material using the same
WO2017142273A1 (en) * 2016-02-17 2017-08-24 주식회사 엘지화학 High-stiffness and energy-reducing polypropylene for foaming
KR20170096862A (en) * 2016-02-17 2017-08-25 주식회사 엘지화학 Polypropylene having high rigidity and for reducing energy in foaming
KR101969123B1 (en) 2016-02-17 2019-08-20 주식회사 엘지화학 Polypropylene having high rigidity and for reducing energy in foaming
US10889667B2 (en) 2016-02-17 2021-01-12 Lg Chem, Ltd. High-stiffness and energy-reducing polypropylene for foaming
WO2021182008A1 (en) 2020-03-11 2021-09-16 株式会社ジェイエスピー Polypropylene-based resin foamed particle molded body, polypropylene-based resin foamed particle, and method for producing same
US11904579B2 (en) 2020-03-11 2024-02-20 Jsp Corporation Molded article of polypropylene-based resin foamed particle molded body, polypropylene-based resin foamed particle, and method for producing same
CN113502025A (en) * 2021-08-05 2021-10-15 无锡会通轻质材料股份有限公司 EPO (erythropoietin) foamed bead and preparation method thereof

Also Published As

Publication number Publication date
CN101948585A (en) 2011-01-19
JP5399146B2 (en) 2014-01-29
CN105131325A (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5399146B2 (en) Polypropylene resin foamed particles and foamed particle molded body comprising the foamed particles
JP5512672B2 (en) Polypropylene resin expanded particles and expanded molded articles
JP5498162B2 (en) Polypropylene resin foamed particles and molded articles thereof
JP5727210B2 (en) Method for producing polyolefin resin expanded particle molded body, and polyolefin resin expanded resin molded body
JP6620387B2 (en) Propylene-based resin expanded particles and expanded molded articles
JP5927343B2 (en) Propylene-based resin expanded particles and expanded molded articles
WO2017010494A1 (en) Propylene resin foamed particle and foamed particle molded body
JP2009144096A (en) Polypropylenic resin foamed particles and molded article from foamed particles
JP5314411B2 (en) Method for producing polypropylene resin expanded particle molded body, and molded body
JP2023025507A (en) Polypropylene resin foamed particle, method for producing polypropylene resin foamed particle, and molded body of polypropylene resin foamed particle
JP6817034B2 (en) Foamed particle molded product and its manufacturing method
TWI850522B (en) Polypropylene-based resin expanded beads and molded article of the polypropylene-based resin expanded beads
JP7553403B2 (en) Multi-layer foam particles
JP2014040507A (en) Polyolefinic resin foam particles and molded artifact of the same
JP6233927B2 (en) Polystyrene resin foam sheet for thermoforming
JPWO2020090335A1 (en) Effervescent particles
WO2023063258A1 (en) Polypropylene resin foam particles
JP7369066B2 (en) Olefinic thermoplastic elastomer expanded particles and olefinic thermoplastic elastomer expanded particle molded articles
JP7519323B2 (en) Expanded bead molding
JP7164660B2 (en) Core material
JP2023024138A (en) Polypropylene resin foam particle, and production method thereof
TWI667273B (en) Propylene-based resin foamed particles and foamed particles molded body
JP2009001674A (en) Thermoplastic resin composition foamed body and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131023

R150 Certificate of patent or registration of utility model

Ref document number: 5399146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250