[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011014403A - Transfer sheet, polymer electrolyte fuel cell member, and methods of manufacturing polymer electrolyte fuel cell member and electrode-electrolyte membrane lamination with edge seal - Google Patents

Transfer sheet, polymer electrolyte fuel cell member, and methods of manufacturing polymer electrolyte fuel cell member and electrode-electrolyte membrane lamination with edge seal Download PDF

Info

Publication number
JP2011014403A
JP2011014403A JP2009157991A JP2009157991A JP2011014403A JP 2011014403 A JP2011014403 A JP 2011014403A JP 2009157991 A JP2009157991 A JP 2009157991A JP 2009157991 A JP2009157991 A JP 2009157991A JP 2011014403 A JP2011014403 A JP 2011014403A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
transfer sheet
edge seal
catalyst layer
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009157991A
Other languages
Japanese (ja)
Other versions
JP5581618B2 (en
Inventor
Kasumi Oi
香澄 大井
Yasuki Yoshida
安希 吉田
Rei Hiromitsu
礼 弘光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2009157991A priority Critical patent/JP5581618B2/en
Publication of JP2011014403A publication Critical patent/JP2011014403A/en
Application granted granted Critical
Publication of JP5581618B2 publication Critical patent/JP5581618B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transfer sheet or the like which can prevent an electrolyte membrane from being thin locally.SOLUTION: The transfer sheet includes a base material 71, an edge seal 72 formed on the base material 71 and having an opening, and a catalyst layer 73 formed on the base material 71 in the opening.

Description

本発明は、転写シート及び固体高分子形燃料電池用部材、並びに、固体高分子形燃料電池用部材及びエッジシール付き電極−電解質膜積層体の製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a transfer sheet, a polymer electrolyte fuel cell member, and a method for producing a polymer electrolyte fuel cell member and an electrode-electrolyte membrane laminate with an edge seal.

固体高分子形燃料電池は、作動温度が低く電解質膜の抵抗が少ないことに加え、活性の高い触媒を用いるため、小型でも高出力を得ることができ、家庭用コージェネレーションシステム等として早期の実用化が見込まれている。この固体高分子形燃料電池は、電解質膜の両面に電極が形成された電極−電解質膜積層体にガスケットを取り付け、これを両面からセパレータで挟持する構成を取っているが、電解質膜の破れを防止するなどの目的からエッジシールが取り付けられたものが提案されている。   The polymer electrolyte fuel cell has a low operating temperature and low resistance of the electrolyte membrane, and uses a highly active catalyst, so it can obtain high output even with a small size. Is expected. This polymer electrolyte fuel cell has a configuration in which a gasket is attached to an electrode-electrolyte membrane laminate in which electrodes are formed on both sides of the electrolyte membrane, and this is sandwiched by separators from both sides. For the purpose of preventing this, a device with an edge seal attached has been proposed.

このエッジシールを取り付ける方法として、例えば、特許文献1の図4には、長尺の電解質膜上に複数の触媒層が形成された触媒層−電解質膜積層体の両面に、開口部を有する長尺のエッジシールを接着させる方法が開示されている。   As a method of attaching this edge seal, for example, FIG. 4 of Patent Document 1 shows a long structure having openings on both surfaces of a catalyst layer-electrolyte membrane laminate in which a plurality of catalyst layers are formed on a long electrolyte membrane. A method of adhering a scale edge seal is disclosed.

特開2007−180031号公報JP 2007-180031 A

しかしながら、上述した方法は、エッジシールの開口部よりも触媒層の方を大きくしていたため、触媒層−電解質膜積層体とエッジシールとを重ねたときに、エッジシールの開口部周縁領域と触媒層の外周縁部とが重なる部分がある。この重なる部分は、触媒層−電解質膜積層体とエッジシールとをドラムでプレスするときに応力が集中してしまい、この部分に対応する電解質膜が他の部分に比べて薄くなってしまうという問題がある。そこで、本発明は、電解質膜が局所的に薄くなってしまうことを低減することのできる方法を提供することを課題とする。   However, in the above-described method, since the catalyst layer is larger than the opening of the edge seal, when the catalyst layer-electrolyte membrane laminate and the edge seal are overlapped, the edge peripheral region of the opening of the edge seal and the catalyst There is a portion where the outer peripheral edge of the layer overlaps. In this overlapping portion, stress is concentrated when the catalyst layer-electrolyte membrane laminate and the edge seal are pressed with a drum, and the electrolyte membrane corresponding to this portion becomes thinner than the other portions. There is. Then, this invention makes it a subject to provide the method which can reduce that electrolyte membrane becomes thin locally.

本発明に係る第1の転写シートは、基材と、前記基材上に形成されており、開口部を有するエッジシールと、前記開口部内において前記基材上に形成された触媒層と、を備えている。   The first transfer sheet according to the present invention comprises a base material, an edge seal formed on the base material, having an opening, and a catalyst layer formed on the base material in the opening. I have.

この転写シートは、電解質膜と重ね合わせて圧力を掛けることによって、その触媒層及びエッジシールを電解質膜に転写させてエッジシール付き触媒層−電解質膜積層体を作製する。この転写において、この触媒層及びエッジシールは、互いに重なり合っていないため、電解質膜には均一に圧力が掛かり、電解質膜が局所的に薄くなってしまうことを防止することができる。そして、このように電解質膜の厚みが均一であると、電池性能の長期的な安定化に繋がる。   This transfer sheet is superposed on the electrolyte membrane and applied with pressure to transfer the catalyst layer and the edge seal to the electrolyte membrane to produce a catalyst layer-electrolyte membrane laminate with an edge seal. In this transfer, since the catalyst layer and the edge seal do not overlap each other, it is possible to prevent the electrolyte membrane from being locally thinned by applying a uniform pressure to the electrolyte membrane. And when the thickness of the electrolyte membrane is uniform in this way, it leads to long-term stabilization of battery performance.

本発明に係る第2の転写シートは長尺の基材と、前記基材上に形成されており、前記基材の長さ方向に並ぶ複数の開口部を有するエッジシールと、前記各開口部内において前記基材上に形成された触媒層と、を備えている。   The second transfer sheet according to the present invention is a long base material, an edge seal formed on the base material, and having a plurality of openings arranged in the length direction of the base material; And a catalyst layer formed on the substrate.

この転写シートも同様に触媒層とエッジシールとが重なり合っていないため、上述したのと同様の効果を奏することができる。また、この転写シートは長尺となっているため、この転写シートからエッジシール付き触媒層−電解質膜積層体を作製する際の生産性を向上させることができる。   Similarly, since this transfer sheet does not overlap the catalyst layer and the edge seal, the same effect as described above can be obtained. Moreover, since this transfer sheet is long, productivity when producing a catalyst layer-electrolyte membrane laminate with an edge seal from this transfer sheet can be improved.

また、本発明に係る第1の固体高分子形燃料電池用部材は、電解質膜と、前記電解質膜の少なくとも一方面に接着された上記いずれかの転写シートと、を備え、前記転写シートは、前記触媒層及びエッジシールが前記電解質膜に接着している。これによれば、上記いずれかの転写シートを備えているため、電解質膜が局所的に薄くなってしまうことを防止することができ、ひいてはこの固体高分子形燃料電池用部材を使用した固体高分子形燃料電池の電池性能の長期安定化を図ることができる。   The first member for a polymer electrolyte fuel cell according to the present invention comprises an electrolyte membrane, and any one of the above transfer sheets bonded to at least one surface of the electrolyte membrane, and the transfer sheet includes: The catalyst layer and the edge seal are adhered to the electrolyte membrane. According to this, since any one of the above transfer sheets is provided, it is possible to prevent the electrolyte membrane from being locally thinned. As a result, it is possible to reduce the solid height using the solid polymer fuel cell member. Long-term stabilization of the cell performance of the molecular fuel cell can be achieved.

また、本発明に係る第2の固体高分子形燃料電池用部材は、電解質膜と、前記電解質膜の両面に接着された上記いずれかの転写シートと、を備え、前記各転写シートは、前記触媒層及びエッジシールが前記電解質膜に接着しており、前記各転写シートは、その触媒層の大きさが互いに異なる。この固体高分子形燃料電池用部材は、上記いずれかの転写シートを備えているため、電解質膜が局所的に薄くなってしまうことを防止することができる。また、各触媒層の大きさが互いに異なっているため、例えばアノード触媒層の大きさをカソード触媒層よりも大きくすることで位置ずれなどが生じた場合でも、厚み方向でカソード触媒層が電解質膜を介してアノード触媒層がない領域をなくすことができるためカソード触媒層のカーボン腐食を防止できる。   The second polymer electrolyte fuel cell member according to the present invention includes an electrolyte membrane and any one of the transfer sheets bonded to both surfaces of the electrolyte membrane, and each of the transfer sheets includes the A catalyst layer and an edge seal are adhered to the electrolyte membrane, and the sizes of the catalyst layers of the respective transfer sheets are different from each other. Since this solid polymer fuel cell member includes any one of the above transfer sheets, the electrolyte membrane can be prevented from becoming locally thin. In addition, since the sizes of the catalyst layers are different from each other, for example, even when positional deviation occurs due to the size of the anode catalyst layer being larger than that of the cathode catalyst layer, the cathode catalyst layer is in the thickness direction. Since the region without the anode catalyst layer can be eliminated through the cathode, carbon corrosion of the cathode catalyst layer can be prevented.

また、本発明に係る第1の固体高分子形燃料電池用部材の製造方法は、電解質膜を供給する電解質膜供給工程と、開口部を有するエッジシールが基材上に接着された転写シートであって、前記開口部内において前記基材上に触媒層が形成された前記転写シートを供給する転写シート供給工程と、前記エッジシール及び触媒層が前記電解質膜と対向するように前記転写シートを前記電解質膜の少なくとも一方面上に配置し、前記転写シートのエッジシール及び触媒層が前記電解質膜に接着するよう圧力を掛けるプレス工程と、を含む。   The first method for producing a polymer electrolyte fuel cell member according to the present invention includes an electrolyte membrane supplying step for supplying an electrolyte membrane, and a transfer sheet in which an edge seal having an opening is bonded to a substrate. A transfer sheet supplying step for supplying the transfer sheet having a catalyst layer formed on the substrate in the opening, and the transfer sheet is placed so that the edge seal and the catalyst layer face the electrolyte membrane. And a pressing step that is disposed on at least one surface of the electrolyte membrane and applies pressure so that the edge seal of the transfer sheet and the catalyst layer adhere to the electrolyte membrane.

この固体高分子形燃料電池用部材の製造方法によれば、基材上に形成されたエッジシールと触媒層とは互いに重なり合っていないため、この転写シートと電解質膜とを重ねて圧力を掛けても電解質膜に均一に圧力を掛けることができ、ひいては電解質膜が局所的に薄くなってしまうことを防止できる。   According to this method for producing a polymer electrolyte fuel cell member, since the edge seal and the catalyst layer formed on the base material do not overlap each other, the transfer sheet and the electrolyte membrane are overlapped and pressure is applied. However, it is possible to apply a uniform pressure to the electrolyte membrane, and consequently to prevent the electrolyte membrane from being locally thinned.

また、本発明に係る第2の固体高分子形燃料電池用部材の製造方法は、長尺の電解質膜を供給する電解質膜供給工程と、長手方向に並ぶ複数の開口部が形成された長尺のエッジシールが長尺の基材上に接着された転写シートであって、前記各開口部内において前記基材上に触媒層が形成された前記転写シートを供給する転写シート供給工程と、前記エッジシール及び各触媒層が前記電解質膜に対向するように前記転写シートを前記電解質膜の少なくとも一方面上に配置し、前記転写シートのエッジシール及び触媒層が前記電解質膜に接着するよう圧力を掛けるプレス工程と、を含む。   Further, the second method for producing a polymer electrolyte fuel cell member according to the present invention includes an electrolyte membrane supplying step for supplying a long electrolyte membrane, and a long length formed with a plurality of openings aligned in the longitudinal direction. And a transfer sheet supplying step of supplying the transfer sheet in which a catalyst layer is formed on the base material in each opening, and the edge seal The transfer sheet is disposed on at least one surface of the electrolyte membrane so that the seal and each catalyst layer face the electrolyte membrane, and pressure is applied so that the edge seal and the catalyst layer of the transfer sheet adhere to the electrolyte membrane. And a pressing process.

この固体高分子形燃料電池用部材の製造方法も、上記製造方法と同様に、転写シートと電解質膜とを重ねて圧力を掛けても電解質膜に均一に圧力を掛けることができ、ひいては電解質膜が局所的に薄くなってしまうことを防止できる。   Similarly to the above-described manufacturing method, the method for producing the solid polymer fuel cell member can apply pressure evenly to the electrolyte membrane even when the transfer sheet and the electrolyte membrane are overlaid. Can be prevented from becoming locally thin.

この第2の固体高分子形燃料電池用部材の製造方法は、電解質膜供給工程において電解質膜を長手方向に搬送し、転写シート供給工程において転写シートを電解質膜と同一方向に搬送し、プレス工程において、搬送中の前記電解質膜と転写シートとを一対のローラで挟むことにより転写シートを電解質膜に接着させるような方法とすることが好ましい。   In this second method for producing a polymer electrolyte fuel cell member, the electrolyte membrane is conveyed in the longitudinal direction in the electrolyte membrane supply step, the transfer sheet is conveyed in the same direction as the electrolyte membrane in the transfer sheet supply step, and the pressing step It is preferable that the transfer sheet is adhered to the electrolyte membrane by sandwiching the electrolyte membrane being transferred and the transfer sheet between a pair of rollers.

また、転写シートが接着された長尺の電解質膜を、各開口部の間において切断する工程をさらに含んでいてもよい。   Moreover, the process of further cutting | disconnecting the elongate electrolyte membrane to which the transfer sheet was adhere | attached between each opening part may be included.

本発明に係るエッジシール付き電極−電解質膜積層体の製造方法は、上記いずれかの固体高分子形燃料電池用部材の製造方法と、前記転写基材の基材を剥離する工程と、前記触媒層上に導電性多孔質基材を積層する工程と、を含む。この方法では、上記いずれかの固体高分子形燃料電池用部材の製造方法を採用しているため、電解質膜が局所的に薄くなることを防止できる。   The method for producing an electrode-electrolyte membrane laminate with an edge seal according to the present invention includes any one of the above-described methods for producing a polymer electrolyte fuel cell member, a step of peeling the base material of the transfer substrate, and the catalyst. Laminating a conductive porous substrate on the layer. In this method, since any one of the above-described methods for producing a polymer electrolyte fuel cell member is employed, it is possible to prevent the electrolyte membrane from being locally thinned.

また、本発明に係る固体高分子形燃料電池の製造方法は、上記エッジシール付き電極−電解質膜積層体の製造方法と、前記エッジシール上にガスケットを設置する工程と、前記ガスケットが設置されたエッジシール付き電極−電解質膜積層体をセパレータによって両側から挟持する工程と、を含む。この方法は、上記エッジシール付き電極−電解質膜積層体の製造方法を含んでいるため、電解質膜が局所的に薄くなることを防止できる。   Further, a method for producing a polymer electrolyte fuel cell according to the present invention includes a method for producing the electrode-electrolyte membrane laminate with an edge seal, a step of installing a gasket on the edge seal, and the gasket is installed. Sandwiching the electrode-electrolyte membrane laminate with edge seal from both sides with a separator. Since this method includes the manufacturing method of the electrode-electrolyte membrane laminate with the edge seal, it is possible to prevent the electrolyte membrane from being locally thinned.

また、本発明に係る固体高分子形燃料電池用部材の製造装置は、長尺の電解質膜を供給する電解質膜供給部と、長手方向に並ぶ複数の開口部が形成された長尺のエッジシールが長尺の基材上に接着された転写シートであって、前記各開口部内において前記基材上に触媒層が形成された前記転写シートを供給する転写シート供給部と、前記エッジシール及び各触媒層が前記電解質膜に対向するように前記転写シートを前記電解質膜の少なくとも一方面上に配置した状態で、前記電解質膜と転写シートとを挟んで圧力を掛ける加圧部と、を備えている。   The apparatus for producing a polymer electrolyte fuel cell member according to the present invention includes an electrolyte membrane supply unit that supplies a long electrolyte membrane and a long edge seal formed with a plurality of openings arranged in the longitudinal direction. Is a transfer sheet adhered on a long base material, and a transfer sheet supply section for supplying the transfer sheet having a catalyst layer formed on the base material in each opening, the edge seal, and each A pressurizing unit that applies pressure across the electrolyte membrane and the transfer sheet in a state where the transfer sheet is disposed on at least one surface of the electrolyte membrane so that the catalyst layer faces the electrolyte membrane. Yes.

この製造装置によれば、基材上に形成されたエッジシールと触媒層とは互いに重なり合っていないため、この転写シートと電解質膜とを重ねて加圧部にて圧力を掛けても電解質膜に対して均一に圧力を掛けることができ、ひいては電解質膜が局所的に薄くなることを防止できる。   According to this manufacturing apparatus, since the edge seal and the catalyst layer formed on the base material do not overlap each other, even if this transfer sheet and the electrolyte membrane are overlapped and pressure is applied at the pressurizing portion, the electrolyte membrane is applied. On the other hand, it is possible to apply pressure uniformly, and as a result, it is possible to prevent the electrolyte membrane from being locally thinned.

本発明によれば、電解質膜が局所的に薄くなることを防止でき、ひいては固体高分子形燃料電池の電池性能の長期安定化を図ることができる。   According to the present invention, it is possible to prevent the electrolyte membrane from being locally thinned, and thus to stabilize the battery performance of the polymer electrolyte fuel cell for a long period of time.

図1は本実施形態に係る固体高分子形燃料電池用部材の製造装置を示す概略側面図である。FIG. 1 is a schematic side view showing an apparatus for producing a polymer electrolyte fuel cell member according to this embodiment. 図2は本実施形態に係る転写シートを示す平面図である。FIG. 2 is a plan view showing a transfer sheet according to the present embodiment. 図3は図2のA−A線断面図である。3 is a cross-sectional view taken along line AA in FIG. 図4は本実施形態に係る固体高分子形燃料電池用部材の側面断面図である。FIG. 4 is a side cross-sectional view of the polymer electrolyte fuel cell member according to this embodiment. 図5は本実施形態に係る長尺の固体高分子形燃料電池用部材から固体高分子形燃料電池を製造する方法を示す説明図である。FIG. 5 is an explanatory view showing a method for producing a polymer electrolyte fuel cell from a long polymer electrolyte fuel cell member according to this embodiment. 図6は別の実施形態に係る転写シートの製造方法を示す説明図である。FIG. 6 is an explanatory view showing a transfer sheet manufacturing method according to another embodiment. 図7は別の実施形態に係る転写シートを示す平面図である。FIG. 7 is a plan view showing a transfer sheet according to another embodiment.

以下、本発明に係る固体高分子形燃料電池用部材の製造装置の実施形態について図面を参照しつつ説明する。なお、図1の右側を下流、左側を上流と称して説明する。また、各図中の矢印Yは、電解質膜や、転写シート、固体高分子形燃料電池用部材などの進行方向を示している。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of an apparatus for producing a polymer electrolyte fuel cell member according to the present invention will be described with reference to the drawings. In the following description, the right side of FIG. 1 is referred to as downstream and the left side is referred to as upstream. Moreover, the arrow Y in each figure has shown the advancing direction of an electrolyte membrane, a transfer sheet, a member for a polymer electrolyte fuel cell, etc.

図1に示すように、固体高分子形燃料電池用部材の製造装置1は、長尺の電解質膜6を供給する電解質膜供給部2と、長尺の転写シート7を供給する転写シート供給部3と、電解質膜6と転写シート7とを仮着させる加圧部4と、電解質膜6に転写シート7が仮着された固体高分子形燃料電池用部材8をロール状に巻き取る巻取部5と、を備えている。   As shown in FIG. 1, the solid polymer fuel cell member manufacturing apparatus 1 includes an electrolyte membrane supply unit 2 that supplies a long electrolyte membrane 6 and a transfer sheet supply unit that supplies a long transfer sheet 7. 3, a pressure unit 4 for temporarily attaching the electrolyte membrane 6 and the transfer sheet 7, and a winding for winding up the polymer electrolyte fuel cell member 8 having the transfer sheet 7 temporarily attached to the electrolyte membrane 6 in a roll shape Part 5.

電解質膜供給部2は、ロール状に巻かれた電解質膜6がセットされた第1回転軸21と、この第1回転軸21を回転させる第1駆動機構(図示省略)を備えている。第1駆動機構は、この第1回転軸21を回転させることでこの第1回転軸にセットされた電解質膜6を下流に送り出すように構成されている。この電解質膜6の搬送速度は、特に限定されるものではないが、0.1〜5m/minとすることが好ましい。   The electrolyte membrane supply unit 2 includes a first rotating shaft 21 in which the electrolyte membrane 6 wound in a roll shape is set, and a first drive mechanism (not shown) that rotates the first rotating shaft 21. The first drive mechanism is configured to send the electrolyte membrane 6 set on the first rotation shaft downstream by rotating the first rotation shaft 21. Although the conveyance speed of this electrolyte membrane 6 is not specifically limited, It is preferable to set it as 0.1-5 m / min.

転写シート供給部3は、ロール状に巻かれた転写シート7がセットされた第2回転軸31と、この第2回転軸31を回転させる第2駆動機構(図示省略)を備えている。第2駆動機構は、この第2回転軸31を回転させることでこの第2回転軸31にセットされた転写シート7を下流に送り出すように構成されている。この転写シート7の搬送速度は、特に限定されるものではないが、電解質膜6の搬送速度とほぼ同じとすることが好ましい。このロール状に巻かれた転写シート7は、図2及び図3に示すように、まず長尺の基材71を有しており、この基材71上にエッジシール72が接着している。このエッジシール72は間隔dを開けて長手方向に並ぶ複数の開口部が形成されており、各開口部内において基材71上に触媒層73が形成されている。 The transfer sheet supply unit 3 includes a second rotating shaft 31 on which the transfer sheet 7 wound in a roll shape is set, and a second drive mechanism (not shown) that rotates the second rotating shaft 31. The second drive mechanism is configured to send the transfer sheet 7 set on the second rotation shaft 31 downstream by rotating the second rotation shaft 31. The transfer speed of the transfer sheet 7 is not particularly limited, but is preferably substantially the same as the transfer speed of the electrolyte membrane 6. As shown in FIGS. 2 and 3, the transfer sheet 7 wound in a roll shape has a long base 71, and an edge seal 72 is bonded to the base 71. The edge seal 72 has a plurality of openings arranged in the longitudinal direction at intervals d 1 , and a catalyst layer 73 is formed on the base material 71 in each opening.

加圧部4は、上述したように電解質膜供給部2と転写シート供給部3とから送り出された電解質膜6と転写シート7とを上下から挟むように設置された一対の加圧ローラ41から構成されている。この加圧ローラ41によって電解質膜6と転写シート7とを加圧し転写シート7を電解質膜6に仮着させることで固体高分子形燃料電池用部材8を作製する。また、この加圧ローラ41は例えば内部に熱媒が流れることなどによって電解質膜6と転写シート7とを加熱してもよく、このときの加圧ローラ41の温度は、200度以下が好ましく、180度以下とすることがより好ましい。なお加圧ローラ41内を流れる熱媒体としては好ましくは水やオイルなどを使用できる。   As described above, the pressure unit 4 includes a pair of pressure rollers 41 installed so as to sandwich the electrolyte film 6 and the transfer sheet 7 fed from the electrolyte film supply unit 2 and the transfer sheet supply unit 3 from above and below. It is configured. The electrolyte membrane 6 and the transfer sheet 7 are pressed by the pressure roller 41, and the transfer sheet 7 is temporarily attached to the electrolyte membrane 6, thereby producing the polymer electrolyte fuel cell member 8. In addition, the pressure roller 41 may heat the electrolyte membrane 6 and the transfer sheet 7 by, for example, a heating medium flowing therein, and the temperature of the pressure roller 41 at this time is preferably 200 degrees or less. More preferably, it is 180 degrees or less. As the heat medium flowing through the pressure roller 41, water, oil, or the like can be preferably used.

巻取部5は、固体高分子形燃料電池用部材8をロール状に巻き取るための第3回転軸51と、この第3回転軸51を回転させる第3駆動機構とを備えている。   The winding unit 5 includes a third rotating shaft 51 for winding the polymer electrolyte fuel cell member 8 in a roll shape, and a third drive mechanism for rotating the third rotating shaft 51.

次にこのように構成された固体高分子形燃料電池用部材の製造装置を用いた固体高分子形燃料電池用部材の製造方法について説明する。   Next, a method for producing a polymer electrolyte fuel cell member using the thus constructed apparatus for producing a polymer electrolyte fuel cell member will be described.

まず、図1に示すように、電解質膜供給部2から電解質膜6を巻き出すとともに、各転写シート供給部3から転写シート7を巻き出す。このとき、各転写シート7は、エッジシール72及び触媒層73が電解質膜6と対向するような向きであり、また、電解質膜6を介して上側に配置された転写シート7の触媒層73と下側に配置された転写シート7の触媒層73との位置が一致するように配置されている。このように巻き出された電解質膜6と転写シート7とは、転写シート7、電解質膜6、転写シート7の順で重なった状態で、一対の加圧ローラ41の間を通過することで加圧ローラ41によって加圧される。これによって各転写シート7が電解質膜6に仮着し、固体高分子形燃料電池用部材8が形成される。なお、このときの圧力は、エッジシール72自体が有する粘着力によって転写シート7が電解質膜6に仮着する程度の圧力であれば特に限定されるものではないが、0.5〜20MPa程度とすることが好ましく、1〜10MPa程度とすることがより好ましい。なお、このとき加圧ローラ41を加熱してもよく、この場合は加圧ローラ41の表面温度が200度程度以下とすることが好ましく、180度程度以下とすることがさらに好ましい。   First, as shown in FIG. 1, the electrolyte membrane 6 is unwound from the electrolyte membrane supply unit 2, and the transfer sheet 7 is unwound from each transfer sheet supply unit 3. At this time, each transfer sheet 7 is oriented so that the edge seal 72 and the catalyst layer 73 face the electrolyte membrane 6, and the catalyst layer 73 of the transfer sheet 7 disposed on the upper side through the electrolyte membrane 6 It arrange | positions so that the position with the catalyst layer 73 of the transfer sheet 7 arrange | positioned on the lower side may correspond. The electrolyte membrane 6 and the transfer sheet 7 unwound in this manner are added by passing between the pair of pressure rollers 41 in a state where the transfer sheet 7, the electrolyte membrane 6 and the transfer sheet 7 overlap in this order. Pressure is applied by the pressure roller 41. As a result, each transfer sheet 7 is temporarily attached to the electrolyte membrane 6 to form a polymer electrolyte fuel cell member 8. The pressure at this time is not particularly limited as long as the pressure is such that the transfer sheet 7 is temporarily attached to the electrolyte membrane 6 by the adhesive force of the edge seal 72 itself, but is about 0.5 to 20 MPa. It is preferable that the pressure is about 1 to 10 MPa. At this time, the pressure roller 41 may be heated. In this case, the surface temperature of the pressure roller 41 is preferably about 200 degrees or less, and more preferably about 180 degrees or less.

以上のように形成された固体高分子形燃料電池用部材8は、図4に示すように、長尺の電解質膜6の上面及び下面のそれぞれに転写シート7が仮着されることで構成されている。このように構成された固体高分子形燃料電池用部材8が巻取部5に巻き取られることでロール状となっている。   As shown in FIG. 4, the solid polymer fuel cell member 8 formed as described above is configured by temporarily attaching a transfer sheet 7 to each of an upper surface and a lower surface of a long electrolyte membrane 6. ing. The polymer electrolyte fuel cell member 8 configured in this way is rolled up by being wound around the winding unit 5.

続いて、ロール状に形成された固体高分子形燃料電池用部材8から固体高分子形燃料電池を形成する方法を図5に基づいて説明する。まず、ロール状の固体高分子形燃料電池用部材8を巻取部5から取り出し、公知の切断装置にて、各触媒層73間で切断して単セル毎の固体高分子形燃料電池用部材8’を作製する(図5(a))。そして、この単セル毎の固体高分子形燃料電池用部材8’をホットプレス機にて加熱及び加圧することにより電解質膜6にエッジシール72及び触媒層73を転写させる。このときのホットプレスの条件として、加圧レベルは、転写不良を避けるために0.5〜20MPa程度とすることが好ましく、1〜10MPa程度とすることがさらに好ましい。また、加熱温度は、電解質膜の破損や変形等を避けるために約200℃以下にすることが好ましく、約150℃以下にすることがさらに好ましい。なお、この切断工程とホットプレスの順序は逆であってもよい。   Next, a method of forming a polymer electrolyte fuel cell from the polymer electrolyte fuel cell member 8 formed in a roll shape will be described with reference to FIG. First, the roll-shaped polymer electrolyte fuel cell member 8 is taken out from the winding unit 5 and is cut between the catalyst layers 73 by a known cutting device to form a polymer electrolyte fuel cell member for each single cell. 8 ′ is produced (FIG. 5A). Then, the solid polymer fuel cell member 8 ′ for each single cell is heated and pressurized by a hot press machine to transfer the edge seal 72 and the catalyst layer 73 to the electrolyte membrane 6. As a condition for hot pressing at this time, the pressure level is preferably about 0.5 to 20 MPa, more preferably about 1 to 10 MPa in order to avoid transfer failure. The heating temperature is preferably about 200 ° C. or less, and more preferably about 150 ° C. or less in order to avoid breakage or deformation of the electrolyte membrane. In addition, the order of this cutting process and hot pressing may be reversed.

このように形成された固体高分子形燃料電池用部材8’から基材71を剥離してエッジシール付き触媒層−電解質膜積層体10を形成する(図5(b))。そして、このエッジシール付き触媒層−電解質膜積層体10の各触媒層73上に導電性多孔質基材9を積層してエッジシール付き電極−電解質膜積層体20を形成する(図5(c))。なお、この導電性多孔質基材9は、積層される触媒層73と同じ大きさとすることが好ましい。また、導電性多孔質基材9を積層する直前まで基材71を剥離しないことにより、この基材71にてエッジシール付き触媒層−電解質膜積層体10を保護することができる。   The base material 71 is peeled from the solid polymer fuel cell member 8 ′ thus formed to form the edge-sealed catalyst layer-electrolyte membrane laminate 10 (FIG. 5B). Then, the conductive porous base material 9 is laminated on each catalyst layer 73 of the catalyst layer-electrolyte membrane laminate 10 with edge seal to form the electrode-electrolyte membrane laminate 20 with edge seal (FIG. 5 (c). )). The conductive porous substrate 9 is preferably the same size as the catalyst layer 73 to be laminated. Moreover, the catalyst layer-electrolyte membrane laminate 10 with an edge seal can be protected by the substrate 71 by not peeling the substrate 71 until immediately before the conductive porous substrate 9 is laminated.

最後に、エッジシール72上に導電性多孔質基材9を囲うように枠状のガスケット11を配置し、ガス流路121が形成されたセパレータ12を上下から挟むように配置して固体高分子形燃料電池30が完成する(図5(d))。   Finally, a frame-like gasket 11 is arranged on the edge seal 72 so as to surround the conductive porous substrate 9, and a separator 12 in which a gas flow path 121 is formed is arranged so as to be sandwiched from above and below to form a solid polymer. The fuel cell 30 is completed (FIG. 5D).

次に、上述した固体高分子形燃料電池の各要素の材質について説明する。   Next, the material of each element of the polymer electrolyte fuel cell described above will be described.

電解質膜6は、例えば、基材上に水素イオン伝導性高分子電解質を含有する溶液を塗工し、乾燥することにより形成される。水素イオン伝導性高分子電解質としては、例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂、より具体的には、炭化水素系イオン交換膜のC−H結合をフッ素で置換したパーフルオロカーボンスルホン酸系ポリマー(PFS系ポリマー)等が挙げられる。電気陰性度の高いフッ素原子を導入することで、化学的に非常に安定し、スルホン酸基の解離度が高く、高いイオン伝導性が実現できる。このような水素イオン伝導性高分子電解質の具体例としては、デュポン社製の「Nafion」(登録商標)、旭硝子(株)製の「Flemion」(登録商標)、旭化成(株)製の「Aciplex」(登録商標)、ゴア(Gore)社製の「Gore Select」(登録商標)等が挙げられる。水素イオン伝導性高分子電解質含有溶液中に含まれる水素イオン伝導性高分子電解質の濃度は、通常5〜60重量%程度、好ましくは20〜40重量%程度である。なお、上記の水素イオン伝導性高分子電解質からなる電解質膜以外にも、アニオン導電性高分子電解質膜や液状物質含浸膜も挙げられる。アニオン導電性高分子電解質膜は、基材上にアニオン伝導性高分子電解質を含有する溶液を塗工し乾燥することで形成されたものであり、このアニオン伝導性高分子電解質としては炭化水素系樹脂又はフッ素系樹脂等が挙げられ、具体例としては炭化水素系樹脂としては、旭化成(株)製のAciplex(登録商標)A201,211,221や、トクヤマ(株)製のネオセプタ(登録商標)AM−1,AHA等が挙げられ、フッ素系樹脂としては、東ソー(株)製のトスフレックス(登録商標)IE−SF34等が挙げられる。また液状物質含浸膜としては、例えばリン酸を含浸したポリベンゾイミダゾール(PBI)等が挙げられる。   The electrolyte membrane 6 is formed, for example, by applying a solution containing a hydrogen ion conductive polymer electrolyte on a substrate and drying it. Examples of the hydrogen ion conductive polymer electrolyte include a perfluorosulfonic acid-based fluorine ion exchange resin, more specifically, a perfluorocarbonsulfonic acid-based resin in which the C—H bond of a hydrocarbon ion-exchange membrane is substituted with fluorine. Examples include polymers (PFS polymers). By introducing a fluorine atom having high electronegativity, it is chemically very stable, the dissociation degree of the sulfonic acid group is high, and high ion conductivity can be realized. Specific examples of such a hydrogen ion conductive polymer electrolyte include “Nafion” (registered trademark) manufactured by DuPont, “Flemion” (registered trademark) manufactured by Asahi Glass Co., Ltd., and “Aciplex” manufactured by Asahi Kasei Corporation. ”(Registered trademark),“ Gore Select ”(registered trademark) manufactured by Gore, and the like. The concentration of the hydrogen ion conductive polymer electrolyte contained in the hydrogen ion conductive polymer electrolyte-containing solution is usually about 5 to 60% by weight, preferably about 20 to 40% by weight. In addition to the above electrolyte membrane made of a hydrogen ion conductive polymer electrolyte, an anion conductive polymer electrolyte membrane and a liquid substance-impregnated membrane can also be mentioned. An anion conductive polymer electrolyte membrane is formed by applying a solution containing an anion conductive polymer electrolyte on a substrate and drying, and this anion conductive polymer electrolyte is a hydrocarbon-based one. Examples of the hydrocarbon-based resin include Aciplex (registered trademark) A201, 211,221 manufactured by Asahi Kasei Corporation, and Neocepta (registered trademark) manufactured by Tokuyama Corporation. AM-1, AHA, and the like, and examples of the fluorine-based resin include Tosflex (registered trademark) IE-SF34 manufactured by Tosoh Corporation. Examples of the liquid substance-impregnated film include polybenzimidazole (PBI) impregnated with phosphoric acid.

転写シート7の基材71としては、シート状或いはフィルム状のものであれば、特に限定されないが、例えば、金属箔、高分子フィルム等が挙げられる。これらの他、アート紙,コート紙,軽量コート紙等の塗工紙,ノート用紙,コピー用紙等の非塗工紙等であってもよい。また、エッジシール72や触媒層73からの剥離性を向上させるため、離型層等を設けてもよい。離型層としては、例えば、基材71の表面に、公知のワックスから構成されたものやフッ素樹脂をコーティングで設けることもできるが、ケイ素酸化物等からなる蒸着層を離型層として設けることが望ましい。なお、高分子フィルムとしては、ポリイミド,ポリエチレンテレフタレート(PET),ポリパルバン酸アラミド,ポリアミド(ナイロン),ポリサルホン,ポリエーテルサルホン,ポリフェニレンサルファイド,ポリエーテル・エーテルケトン,ポリエーテルイミド,ポリアリレート,ポリエチレンナフタレート等が挙げられる。また、他にもポリエチレンテトラフルオロエチレン共重合体(ETFE),テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等の耐熱性フッ素樹脂を用いることもできる。この基材71の厚さは、取り扱い性及び経済性の観点から通常6〜100μm程度、好ましくは10〜30μm程度とするのがよい。このような基材71としては、安価で入手が容易な高分子フィルムが好ましく、ポリエチレンテレフタレート等がより好ましい。   The substrate 71 of the transfer sheet 7 is not particularly limited as long as it is in the form of a sheet or film, and examples thereof include a metal foil and a polymer film. In addition to these, coated paper such as art paper, coated paper, and light coated paper, and non-coated paper such as notebook paper and copy paper may be used. Moreover, in order to improve the peelability from the edge seal 72 or the catalyst layer 73, a release layer or the like may be provided. As the release layer, for example, a surface composed of a known wax or a fluororesin can be provided on the surface of the base 71 by coating, but a vapor deposition layer made of silicon oxide or the like is provided as a release layer. Is desirable. Polymer films include polyimide, polyethylene terephthalate (PET), polyparvanic acid aramid, polyamide (nylon), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, polyethylene naphthalate. A phthalate etc. are mentioned. In addition, polyethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE) It is also possible to use a heat-resistant fluororesin such as The thickness of the substrate 71 is usually about 6 to 100 μm, preferably about 10 to 30 μm, from the viewpoints of handleability and economy. As such a base material 71, a polymer film which is inexpensive and easily available is preferable, and polyethylene terephthalate or the like is more preferable.

また、触媒層73は、触媒粒子を担持させた炭素粒子と、水素イオン伝導性高分子電解質とを含有するものが挙げられる。水素イオン伝導性高分子電解質としては、上記電解質膜6の電解質と同様のデュポン社製の「Nafion」(登録商標)、旭硝子(株)製の「Flemion」(登録商標)、旭化成(株)製の「Aciplex」(登録商標)、ゴア(Gore)社製の「Gore Select」(登録商標)等が挙げられる。水素イオン伝導性高分子電解質含有溶液中に含まれる水素イオン伝導性高分子電解質の濃度は、通常5〜60重量%程度、好ましくは20〜40重量%程度である。なお、上記の水素イオン伝導性高分子電解質以外には、アニオン導電性高分子電解質も挙げられる。アニオン伝導性高分子電解質としては炭化水素系樹脂又はフッ素系樹脂等が挙げられ、具体例としては炭化水素系樹脂としては、旭化成(株)製のAciplex(登録商標)A201,211,221や、トクヤマ(株)製のネオセプタ(登録商標)AM−1,AHA等が挙げられ、フッ素系樹脂としては、東ソー(株)製のトスフレックス(登録商標)IE−SF34等が挙げられる。また、触媒粒子としては、例えば、白金や白金化合物等が挙げられる。白金化合物としては、例えば、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄等からなる群から選ばれる少なくとも1種の金属と、白金との合金等が挙げられる。なお、通常は、カソード触媒層に含まれる触媒粒子は白金であり、アノード触媒層に含まれる触媒粒子は前記金属と白金との合金である。炭素粒子は、導電性を有しているものであれば限定的ではなく、公知又は市販のものを広く使用できる。例えば、カーボンブラックや、黒鉛、活性炭等を1種又は2種以上で用いることができる。カーボンブラックの例としては、チャンネルブラック、ファーネスブラック、ケッチェンブラック、アセチレンブラック、ランプブラック等を挙げることができる。炭素粒子の算術平均粒子径は通常5nm〜200nm程度、好ましくは20〜80nm程度である。この炭素粒子の平均粒子径は、例えば、粒子径分布測定装置LA−920:(株)堀場製作所製等により測定できる。   Examples of the catalyst layer 73 include those containing carbon particles carrying catalyst particles and a hydrogen ion conductive polymer electrolyte. As the hydrogen ion conductive polymer electrolyte, “Nafion” (registered trademark) manufactured by DuPont, the same as the electrolyte of the electrolyte membrane 6, “Flemion” (registered trademark) manufactured by Asahi Glass Co., Ltd., manufactured by Asahi Kasei Co., Ltd. "Aciplex" (registered trademark), "Gore Select" (registered trademark) manufactured by Gore, Inc., and the like. The concentration of the hydrogen ion conductive polymer electrolyte contained in the hydrogen ion conductive polymer electrolyte-containing solution is usually about 5 to 60% by weight, preferably about 20 to 40% by weight. In addition to the hydrogen ion conductive polymer electrolyte, an anion conductive polymer electrolyte is also included. Examples of the anion conductive polymer electrolyte include hydrocarbon resins and fluorine resins. Specific examples of the hydrocarbon resins include Aciplex (registered trademark) A201, 2111, 221 manufactured by Asahi Kasei Corporation, Examples include Neocepta (registered trademark) AM-1, AHA manufactured by Tokuyama Corporation, and examples of the fluorine-based resin include Tosflex (registered trademark) IE-SF34 manufactured by Tosoh Corporation. Moreover, as a catalyst particle, platinum, a platinum compound, etc. are mentioned, for example. Examples of the platinum compound include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron and the like. In general, the catalyst particles contained in the cathode catalyst layer are platinum, and the catalyst particles contained in the anode catalyst layer are an alloy of the metal and platinum. The carbon particles are not limited as long as they have electrical conductivity, and known or commercially available carbon particles can be widely used. For example, carbon black, graphite, activated carbon, or the like can be used alone or in combination. Examples of carbon black include channel black, furnace black, ketjen black, acetylene black, and lamp black. The arithmetic average particle diameter of the carbon particles is usually about 5 nm to 200 nm, preferably about 20 to 80 nm. The average particle size of the carbon particles can be measured by, for example, a particle size distribution measuring device LA-920: manufactured by Horiba, Ltd.

エッジシール72の材料としては、ポリオレフィン系樹脂が好ましく、例えば、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、エチレン−α・オレフィン共重合体、ポリプロピレン、ポリブテン、ポリイソブテン、ポエイソブチレン、ポリブタジエン、ポリイソプレン、エチレン−メタクリル酸共重合体、あるいはエチレン−アクリル酸共重合体等のエチレンと不飽和カルボン酸との共重合体、エチレン−アクリル酸エチル共重合体、アイオノマー樹脂、エチレン−酢酸ビニル共重合体等を使用することができる。またそれらを変性した酸変性ポリオレフィン系樹脂、シラン変性ポリオレフィン系樹脂を使用することができ、その中でも不飽和カルボン酸でグラフト変性したポリプロピレンもしくは不飽和カルボン酸で変性したポリエチレンを使用することが絶縁性、耐熱性、及び基材71と弱粘着する観点から好ましい。また、その他にもパーフルオロカーボンスルホン酸系のフッ素イオン交換樹脂といったような上記電解質膜6と同様の材料を挙げることができ、具体的には、デュポン社製の「Nafion」(登録商標)、旭硝子(株)製の「Flemion」(登録商標)、旭化成(株)製の「Aciplex」(登録商標)、ゴア(Gore)社製の「Gore Select」(登録商標)等を挙げることができる。このエッジシール72の製造方法の一例について説明すると、上述した材料を溶融した状態にし、これを溶融押し出し法によって押し出し、さらに所望の開口部を設けることでエッジシール72を作製することができる。開口部の形成法は限定されないがトムソン刃などを使用した切り抜き加工などにより形成できる。なお、エッジシール72の表面には、必要に応じて電解質膜6や基材71との密着性を高めるための公知の易接着処理や、公知の接着剤層を設けてもよい。   The material of the edge seal 72 is preferably a polyolefin resin, for example, medium density polyethylene, high density polyethylene, linear low density polyethylene, ethylene-α / olefin copolymer, polypropylene, polybutene, polyisobutene, poisobutylene, polybutadiene, Polyisoprene, ethylene-methacrylic acid copolymer, ethylene-unsaturated carboxylic acid copolymer such as ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, ionomer resin, ethylene-vinyl acetate copolymer A polymer etc. can be used. In addition, acid-modified polyolefin resins and silane-modified polyolefin resins modified with them can be used. Among them, it is insulating to use polypropylene modified with unsaturated carboxylic acid or polyethylene modified with unsaturated carboxylic acid. From the viewpoint of heat resistance and weak adhesion to the substrate 71. In addition, other materials similar to the electrolyte membrane 6 such as perfluorocarbon sulfonic acid-based fluorine ion exchange resin can be mentioned. Specifically, “Nafion” (registered trademark) manufactured by DuPont, Asahi Glass Co., Ltd. “Flemion” (registered trademark) manufactured by Asahi Kasei Co., Ltd., “Aciplex” (registered trademark) manufactured by Asahi Kasei Co., Ltd., “Gore Select” (registered trademark) manufactured by Gore, Inc., and the like. An example of a manufacturing method of the edge seal 72 will be described. The edge seal 72 can be manufactured by bringing the above-described material into a molten state, extruding the material by a melt extrusion method, and providing a desired opening. The method for forming the opening is not limited, but the opening can be formed by cutting using a Thomson blade or the like. In addition, you may provide the well-known easy-adhesion process for improving the adhesiveness with the electrolyte membrane 6 or the base material 71, and a well-known adhesive layer on the surface of the edge seal 72 as needed.

ここで、上記転写シート7の製造方法について説明するが、下記に記述した方法に限定されない。まず、基材71上に、触媒層73を形成する。具体的には上述した触媒粒子を担持させた炭素粒子及び水素イオン伝導性高分子電解質を適当な溶剤に混合、分散して触媒ペーストを作製する。そして、この触媒ペーストを、形成される触媒層が所望の膜厚、所望の形状になるよう、基材71上に塗工・乾燥して触媒層73を形成する。なお、所望の形状の開口部が形成されたマスクを介して塗工したり、パターン塗工を行うことで触媒層73を所望の形状にすることができる。必要に応じて離型層を介して各触媒ペーストを基材71上に塗工する。これにより基材71の触媒層73からの離型性を一層向上させることができる。また、触媒ペーストの塗工方法としては、スクリーン印刷や、スプレーコーティング、ダイコーティング、ナイフコーティングなどの公知の塗工方法を挙げることができる。触媒ペーストを塗工した後、所定の温度及び時間で乾燥することにより基材71上に触媒層73が形成される。乾燥温度は、通常40〜100℃程度、好ましくは60〜80℃程度である。乾燥時間は、乾燥温度にもよるが、通常5分〜2時間程度、好ましくは10分〜1時間程度である。なお、上記触媒ペーストに使用される溶剤としては、各種アルコール類、各種エーテル類、各種ジアルキルスルホキシド類、水またはこれらの混合物等が挙げられ、これらの中でもアルコール類が好ましい。アルコール類としては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、tert−ブタノール、等の炭素数1〜4の一価アルコール、各種の多価アルコール等が挙げられる。このように触媒層73が形成された基材71上に、触媒層73と同じ形状の開口部が形成されたエッジシール72を接着させる。このとき、開口部内に触媒層73が収まるようにエッジシール72を基材71上に接着させる。なお、この接着はエッジシール72自体の粘着性によるものとすることができる。   Here, although the manufacturing method of the said transfer sheet 7 is demonstrated, it is not limited to the method described below. First, the catalyst layer 73 is formed on the base material 71. Specifically, the above-described carbon particles supporting the catalyst particles and the hydrogen ion conductive polymer electrolyte are mixed and dispersed in an appropriate solvent to prepare a catalyst paste. Then, the catalyst layer 73 is formed by coating and drying the catalyst paste on the base material 71 so that the formed catalyst layer has a desired film thickness and a desired shape. In addition, the catalyst layer 73 can be made into a desired shape by performing coating through a mask in which openings having a desired shape are formed or by performing pattern coating. If necessary, each catalyst paste is applied onto the base material 71 through a release layer. Thereby, the releasability from the catalyst layer 73 of the base material 71 can be further improved. Moreover, as a coating method of a catalyst paste, well-known coating methods, such as screen printing, spray coating, die coating, knife coating, can be mentioned. After applying the catalyst paste, the catalyst layer 73 is formed on the substrate 71 by drying at a predetermined temperature and time. A drying temperature is about 40-100 degreeC normally, Preferably it is about 60-80 degreeC. Although depending on the drying temperature, the drying time is usually about 5 minutes to 2 hours, preferably about 10 minutes to 1 hour. In addition, as a solvent used for the said catalyst paste, various alcohols, various ethers, various dialkyl sulfoxides, water, or these mixtures etc. are mentioned, Among these, alcohol is preferable. Examples of alcohols include monohydric alcohols having 1 to 4 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol, and tert-butanol, and various polyhydric alcohols. On the base material 71 on which the catalyst layer 73 is thus formed, an edge seal 72 having an opening having the same shape as the catalyst layer 73 is adhered. At this time, the edge seal 72 is bonded onto the base material 71 so that the catalyst layer 73 is accommodated in the opening. This adhesion can be based on the adhesiveness of the edge seal 72 itself.

なお、触媒層73とエッジシール72の厚みはほぼ同じであることが好ましく、具体的にはエッジシール72の厚みを100%としたときにエッジシール72と触媒層73の厚みの差の割合が±20%以内であることが好ましく、±5%以内であることがより好ましい。触媒層73とエッジシール72との厚みをほぼ同じに揃えることにより、上述した転写シート7と電解質膜6とのホットプレスの工程において電解質膜6の膜やせやしわ発生を防止することができる。また、触媒層73とエッジシール72との間には隙間がないことが好ましい。触媒層73とエッジシール72の形成時の精度により隙間が生じる場合でもホットプレスによりエッジシール72が溶融して触媒層73と結着する程度であることが好ましく、具体的には隙間は約2mm以内であることが好ましく、更には約1mm以内であることがより好ましい。   The thickness of the catalyst layer 73 and the edge seal 72 is preferably substantially the same. Specifically, when the thickness of the edge seal 72 is 100%, the ratio of the difference in thickness between the edge seal 72 and the catalyst layer 73 is It is preferably within ± 20%, and more preferably within ± 5%. By making the thicknesses of the catalyst layer 73 and the edge seal 72 substantially the same, it is possible to prevent the membrane of the electrolyte membrane 6 from being thin and wrinkled in the above-described hot pressing step between the transfer sheet 7 and the electrolyte membrane 6. Further, it is preferable that there is no gap between the catalyst layer 73 and the edge seal 72. Even when a gap is generated due to the accuracy in forming the catalyst layer 73 and the edge seal 72, it is preferable that the edge seal 72 is melted and bonded to the catalyst layer 73 by hot pressing. Specifically, the gap is about 2 mm. Is preferably within 1 mm, and more preferably within about 1 mm.

導電性多孔質基材9は、燃料である燃料ガス及び酸化剤ガスを効率よく触媒層に供給するために多孔質の導電性基材から構成されたものであり、このような導電性多孔質基材9としては、公知であり、アノード(燃料極)、カソードを構成する各種の導電性多孔質基材を使用できる。このような導電性多孔質基材9としては、例えば、カーボンペーパーやカーボンクロス等が挙げられる。   The conductive porous substrate 9 is composed of a porous conductive substrate in order to efficiently supply fuel gas and oxidant gas as fuel to the catalyst layer. Such a conductive porous substrate 9 As the base material 9, it is well-known and the various electroconductive porous base materials which comprise an anode (fuel electrode) and a cathode can be used. Examples of such a conductive porous substrate 9 include carbon paper and carbon cloth.

ガスケット11としては、熱プレスに耐えうる強度を保ち、かつ、外部に燃料及び酸化剤を漏出しない程度のガスバリア性を有しているものを使用することができ、例えば、ポリエチレンテレフタレートシートやテフロン(登録商標)シート、シリコンゴムシート等を例示することができる。   As the gasket 11, it is possible to use a gasket that has a strength sufficient to withstand hot pressing and has a gas barrier property that does not leak fuel and oxidant to the outside. For example, a polyethylene terephthalate sheet or Teflon ( (Registered trademark) sheet, silicon rubber sheet, and the like.

セパレータ12としては、公知であり、燃料電池内の環境においても安定な導電性板であればよく、一般的には、カーボン板にガス流路を形成したものが用いられる。また、セパレータをステンレス等の金属により構成し、金属の表面にクロム、白金族金属又はその酸化物、導電性ポリマーなどの導電性材料からなる被膜を形成したものや、同様にセパレータを金属によって構成し、該金属の表面に銀、白金族の複合酸化物、窒化クロム等の材料によるメッキ処理を施したもの等も使用可能である。   The separator 12 is known and may be any conductive plate that is stable even in the environment inside the fuel cell. In general, a carbon plate in which a gas flow path is formed is used. In addition, the separator is made of a metal such as stainless steel, and the surface of the metal is formed with a coating made of a conductive material such as chromium, a platinum group metal or oxide thereof, or a conductive polymer, and the separator is also made of a metal. In addition, it is also possible to use a metal surface plated with a material such as silver, a platinum group composite oxide, or chromium nitride.

以上、本実施形態によれば、基材71上のエッジシール72と触媒層73とは互いに重なっていないため、この転写シート7と電解質膜6とを重ねて圧力を掛けても、電解質膜6に掛かる圧力は均一であり、電解質膜6が局所的に薄くなってしまうことを防止することができる。また、エッジシール72は開口部が形成されているため、このエッジシール72にテンションを掛けると、形状が捩れたり、局所的に延びてしまって変形してしまうなどといった問題がありエッジシール72を単体で取り扱うことは困難であるが、上記実施形態では、エッジシール72は基材71で支持されているため、その取り扱いを容易にすることができる。   As described above, according to the present embodiment, since the edge seal 72 and the catalyst layer 73 on the base material 71 do not overlap each other, even if the transfer sheet 7 and the electrolyte membrane 6 are overlapped and pressure is applied, the electrolyte membrane 6 The pressure applied to is uniform, and the electrolyte membrane 6 can be prevented from becoming thin locally. Further, since the edge seal 72 has an opening, there is a problem that when the edge seal 72 is tensioned, the shape is twisted or locally extended and deformed. Although it is difficult to handle alone, in the above embodiment, since the edge seal 72 is supported by the base material 71, the handling can be facilitated.

以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible unless it deviates from the meaning of this invention.

例えば、上記実施形態において作製した固体高分子形燃料電池は、長尺の固体高分子形燃料電池用部材がロール状に巻かれたものを用いているが、特にこれに限定されるものではなく、例えば枚葉シート状のものとすることもできる。この場合は、枚葉シート状の電解質膜6と2枚の転写シート7とを用意し、各転写シート7の触媒層73やエッジシール72が電解質膜6側を向くように、転写シート7、電解質膜6、転写シート7の順でこれらを重ね合わせる。そして、ホットプレス機によって上記実施形態と同様にホットプレスを行う。これ以降は、上記実施形態と同様の方法で固体高分子形燃料電池を作製することができる。   For example, the polymer electrolyte fuel cell produced in the above embodiment uses a long polymer electrolyte fuel cell member wound in a roll shape, but is not particularly limited to this. For example, it may be a sheet-like sheet. In this case, the sheet-like electrolyte membrane 6 and the two transfer sheets 7 are prepared, and the transfer sheet 7, the catalyst layer 73 and the edge seal 72 of each transfer sheet 7 are directed to the electrolyte membrane 6 side, These are overlaid in the order of the electrolyte membrane 6 and the transfer sheet 7. And hot press is performed by the hot press machine similarly to the said embodiment. Thereafter, the polymer electrolyte fuel cell can be produced by the same method as in the above embodiment.

また、上記実施形態では、触媒層はカソード側とアノード側とを同じ大きさとしていたが、これを異なる大きさとすることもでき、この場合はアノード側の触媒層をカソード側の触媒層よりも大きくすることが好ましい。なお、この場合も、触媒層73とエッジシール72は隙間なく接している。このようにアノード側の触媒層を大きく形成することで、位置ずれなどが生じた場合でもカソード側の触媒層には電解質膜を介して確実にアノード側の触媒層が対向している状態とすることができる。このため電位によるカソード側の触媒層の腐食を防止することができる。また、電解質膜の劣化を防止することができる。また、エッジシールと触媒層は重ならず且つ隙間なく接しているので位置ずれなどが生じた場合でもカソードに供給されるO2がアノードに直接クロスリークすることがなくアノードでの過酸化水素の生成を有意に抑えることができるため電解質膜劣化を防止できる。   In the above embodiment, the catalyst layer has the same size on the cathode side and the anode side. However, the catalyst layer can have different sizes. In this case, the catalyst layer on the anode side is more than the catalyst layer on the cathode side. It is preferable to enlarge it. In this case as well, the catalyst layer 73 and the edge seal 72 are in contact with each other without a gap. By forming the anode-side catalyst layer large in this way, the anode-side catalyst layer is surely opposed to the cathode-side catalyst layer via the electrolyte membrane even when misalignment occurs. be able to. For this reason, corrosion of the catalyst layer on the cathode side due to the potential can be prevented. Moreover, deterioration of the electrolyte membrane can be prevented. In addition, since the edge seal and the catalyst layer do not overlap and are in contact with each other without any gaps, even if misalignment occurs, O2 supplied to the cathode does not directly cross leak to the anode, and hydrogen peroxide is generated at the anode. Can be suppressed significantly, and deterioration of the electrolyte membrane can be prevented.

また、上記実施形態では、転写シート7を作製する際に、基材71に触媒層73を形成してからエッジシール72を接着しているが、この逆であってもよい。すなわち、まず、基材71上に、開口部が形成されたエッジシール72を接着させ、次にこのエッジシール72の開口部を介して基材71上に触媒ペーストを塗工・乾燥して触媒層73を形成することによって転写シート7を作製してもよい。より具体的には、図6に示すように、剥離層741とマスク本体742とから構成されたマスク74を準備し(図6(a))、このマスク74にエッジシール72を接着させてマスク付きエッジシール75を作製する(図6(b))。そして、このマスク付きエッジシール75に開口部751を形成し(図6(c))、エッジシール72側に基材71を接着させる(図6(d))。そして、このマスク付きエッジシール75が接着した基材71に対して、触媒ペーストをマスク74側から塗工し、乾燥させた後(図6(e))、マスク74を剥離して転写シート7が完成する(図6(f))。なお、この触媒ペーストは、マスク74側から全体に塗工してもよいし、開口部751を狙ってパターン塗工を行うこともできる。また、その他にも、マスク74自体を使用せずに、基材71上に開口部が形成されたエッジシール72を形成し、このエッジシール72の開口部から露出した基材71上に、間欠塗工で触媒層73を形成することもできる。   Further, in the above embodiment, when the transfer sheet 7 is produced, the edge seal 72 is adhered after the catalyst layer 73 is formed on the base material 71, but this may be reversed. That is, first, an edge seal 72 having an opening formed thereon is bonded onto the base material 71, and then a catalyst paste is applied and dried onto the base material 71 through the opening of the edge seal 72 to form a catalyst. The transfer sheet 7 may be produced by forming the layer 73. More specifically, as shown in FIG. 6, a mask 74 composed of a release layer 741 and a mask main body 742 is prepared (FIG. 6A), and an edge seal 72 is bonded to the mask 74 to mask it. The attached edge seal 75 is produced (FIG. 6B). And the opening part 751 is formed in this edge seal 75 with a mask (FIG.6 (c)), and the base material 71 is adhere | attached on the edge seal 72 side (FIG.6 (d)). Then, after applying the catalyst paste from the mask 74 side to the base material 71 to which the edge seal 75 with the mask is adhered and drying it (FIG. 6E), the mask 74 is peeled off and the transfer sheet 7 is peeled off. Is completed (FIG. 6F). In addition, this catalyst paste may be applied to the whole from the mask 74 side, or pattern coating can be performed aiming at the opening 751. In addition, an edge seal 72 having an opening formed on the base 71 is formed without using the mask 74 itself, and intermittently formed on the base 71 exposed from the opening of the edge seal 72. The catalyst layer 73 can also be formed by coating.

また、上記実施形態では、転写シート7は、触媒層73を長手方向に一列に並べて形成しているが、図7に示すように、複数列に並べて形成することもできる。   Further, in the above embodiment, the transfer sheet 7 is formed by arranging the catalyst layers 73 in a line in the longitudinal direction. However, as shown in FIG.

また、上記実施形態では、加圧部4で加圧することで電解質膜6に転写シート7を仮着し、これを巻取部5にて一旦巻き取った後、ホットプレスを行うことにより電解質膜6に転写シート7のエッジシール72と触媒層73とを転写させているが、例えば、加圧部4においてホットプレスを行うことにより、電解質膜6に転写シート7のエッジシール72と触媒層73とを転写させることもできる。   Further, in the above embodiment, the transfer sheet 7 is temporarily attached to the electrolyte membrane 6 by pressurization by the pressurization unit 4, and after winding it once by the winding unit 5, the electrolyte membrane is performed by hot pressing. 6, the edge seal 72 and the catalyst layer 73 of the transfer sheet 7 are transferred to the electrolyte film 6, for example, by performing hot pressing in the pressurizing unit 4. Can also be transferred.

また、上記実施形態では、電解質膜6の両面に転写シート7を仮着させているが、電解質膜6の一方面のみに転写シート7を形成することもできる。   In the above embodiment, the transfer sheet 7 is temporarily attached to both surfaces of the electrolyte membrane 6. However, the transfer sheet 7 can be formed only on one surface of the electrolyte membrane 6.

また、上記実施形態では、電解質膜6は、第1駆動機構によって第1回転軸21を回転させることで送り出されるとともに、巻取部5の第3駆動機構によって第3回転軸51を回転させることで巻き取られていることによって搬送されているが、この電解質膜6の搬送方法はこれに限定されるものではない。例えば、第1駆動機構を省略して第1回転軸21を自由に回転するように構成し、第3駆動機構による第3回転軸51の回転による巻き取りのみによって電解質膜6を搬送するような構成とすることもできる。これと同様に、転写シート7の搬送も、第2駆動機構を省略して第2回転軸を自由に回転するように構成し、第3駆動機構による第3回転軸51の回転による巻き取りのみによって行うこともできる。   Further, in the above embodiment, the electrolyte membrane 6 is sent out by rotating the first rotating shaft 21 by the first driving mechanism, and rotates the third rotating shaft 51 by the third driving mechanism of the winding unit 5. However, the method of transporting the electrolyte membrane 6 is not limited to this. For example, the first driving mechanism is omitted and the first rotating shaft 21 is configured to freely rotate, and the electrolyte membrane 6 is transported only by winding by the rotation of the third rotating shaft 51 by the third driving mechanism. It can also be configured. Similarly, the transfer sheet 7 is also transported by omitting the second drive mechanism and freely rotating the second rotation shaft, and only winding by rotation of the third rotation shaft 51 by the third drive mechanism. Can also be done.

以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。なお、本発明は、下記実施例に限定されるものではない。   The present invention will be described more specifically with reference to the following examples and comparative examples. In addition, this invention is not limited to the following Example.

(実施例1)
電解質膜6は、63×63mmの大きさに切断された膜厚53μmのNRE212CS
(Dupont社製)を使用した。
Example 1
The electrolyte membrane 6 is an NRE212CS having a film thickness of 53 μm cut to a size of 63 × 63 mm.
(Dupont) was used.

次に、転写シート7を次の要領で作製した。まず、白金触媒担持カーボン(白金担持量:45.7wt%、田中貴金属社製、TEC10E50E)2gに、1−ブタノール10g、3−ブタノール10g、フッ素樹脂(5wt%ナフィオンバインダー、デュポン社製)20g及び水6gを加え、これらを分散機にて攪拌混合することにより、触媒ペーストを調製した。   Next, the transfer sheet 7 was produced in the following manner. First, platinum catalyst-supported carbon (platinum supported amount: 45.7 wt%, Tanaka Kikinzoku Co., Ltd., TEC10E50E) 2 g, 1-butanol 10 g, 3-butanol 10 g, fluororesin (5 wt% Nafion binder, manufactured by DuPont) 20 g and 6 g of water was added, and these were stirred and mixed with a disperser to prepare a catalyst paste.

次に、基材71としてケイ素酸化物から成る蒸着層を設けたポリエステルフィルムを準備し、この基材71上に、50×50mmの開口部を持つポリエステルフィルムのマスクを載せた。そして、触媒層乾燥後の触媒層厚さが20μmとなるように上記触媒ペーストをマスクの開口部を介して基材71上に塗工、乾燥し、マスクを剥離して、基材71上に触媒層73を作製した。   Next, a polyester film provided with a vapor deposition layer made of silicon oxide was prepared as the base material 71, and a polyester film mask having an opening of 50 × 50 mm was placed on the base material 71. Then, the catalyst paste is coated and dried on the base material 71 through the opening of the mask so that the thickness of the catalyst layer after drying the catalyst layer becomes 20 μm, and the mask is peeled off. A catalyst layer 73 was produced.

続いて、溶融押出し法により、不飽和カルボン酸グラフト変性ポリプロピレンを20μmの厚さで押し出し、エッジシール72を形成した。このエッジシール72を63×63mmの大きさに切断し、その中央部に50×50mmの大きさの開口部を形成した。そして、エッジシール72を開口部内に触媒層73が収まるように基材71上に配置し、転写シート7を作製した。   Subsequently, the unsaturated carboxylic acid graft-modified polypropylene was extruded at a thickness of 20 μm by a melt extrusion method, and an edge seal 72 was formed. The edge seal 72 was cut to a size of 63 × 63 mm, and an opening having a size of 50 × 50 mm was formed at the center. And the edge seal 72 was arrange | positioned on the base material 71 so that the catalyst layer 73 might be settled in an opening part, and the transfer sheet 7 was produced.

この転写シート7を、電解質膜6の両面それぞれに触媒層73及びエッジシール72が電解質膜6側を向くように配置し、各転写シート7の触媒層が電解質膜6を介して合致するように整列させた。そして、135℃、5.0MPa、150秒の条件で熱プレスすることで、電解質膜6の両面に触媒層73を形成し、エッジシール付き触媒層−電解質膜積層体10を作製した。   The transfer sheet 7 is arranged on both surfaces of the electrolyte membrane 6 so that the catalyst layer 73 and the edge seal 72 face the electrolyte membrane 6 side, and the catalyst layers of the transfer sheets 7 are aligned via the electrolyte membrane 6. Aligned. And the catalyst layer 73 was formed on both surfaces of the electrolyte membrane 6 by heat-pressing on conditions of 135 degreeC, 5.0 Mpa, and 150 second, and the catalyst layer-electrolyte membrane laminated body 10 with an edge seal was produced.

さらに続いて、開口部から露出している触媒層73上に、導電性多孔質基材9として、50×50mmの大きさに切断されたカーボンペーパー(東レ社製、TGP−H−090、厚さ280μm)を積層し、エッジシール付き電極−電解質膜積層体20を形成した。   Subsequently, carbon paper (TGP-H-090, manufactured by Toray Industries Inc., thickness) cut into a size of 50 × 50 mm as the conductive porous substrate 9 on the catalyst layer 73 exposed from the opening. 280 μm) was laminated to form an electrode-electrolyte membrane laminate 20 with edge seal.

(実施例2)
電解質膜6は、63×63mmの大きさに切断された膜厚53μmのNRE212CS(Dupont社製)を使用した。
(Example 2)
As the electrolyte membrane 6, NRE212CS (manufactured by Dupont) having a film thickness of 53 μm cut to a size of 63 × 63 mm was used.

次に、転写シート7を次の要領で作製した。なお、転写シート7として、アノード用転写シート7aとカソード用転写シート7bの2種類を作製した。   Next, the transfer sheet 7 was produced in the following manner. Two types of transfer sheets 7 were prepared: an anode transfer sheet 7a and a cathode transfer sheet 7b.

まず、アノード用転写シート7aについて説明する。基材71aとしてポリエステルフィルムを準備し、この基材71a上に50×50mmの開口部を持つポリエステルフィルムのマスクを載せた。そして、触媒層乾燥後の触媒層厚さが16μmとなるように上記実施例1と同じ触媒ペーストをマスクの開口部を介して基材71a上に塗工、乾燥し、マスクを剥離し、アノード触媒層73aを作製した。そして、溶融押出し法により、不飽和カルボン酸グラフト変性ポリエチレンを20μmの厚さで押し出し、エッジシール72aを形成した。このエッジシール72aを63×63mmの大きさに切断し、その中央部に50×50mmの大きさの開口部を形成した。このエッジシール72aを開口部内に触媒層73aが収まるように基材71a上に接着させて、アノード用転写シート7aを作製した。   First, the anode transfer sheet 7a will be described. A polyester film was prepared as the substrate 71a, and a polyester film mask having an opening of 50 × 50 mm was placed on the substrate 71a. Then, the same catalyst paste as in Example 1 was applied onto the base material 71a through the opening of the mask so that the catalyst layer thickness after drying of the catalyst layer was 16 μm, dried, the mask was peeled off, and the anode A catalyst layer 73a was produced. Then, an unsaturated carboxylic acid graft-modified polyethylene was extruded at a thickness of 20 μm by a melt extrusion method to form an edge seal 72a. This edge seal 72a was cut into a size of 63 × 63 mm, and an opening with a size of 50 × 50 mm was formed at the center. This edge seal 72a was adhered onto the base material 71a so that the catalyst layer 73a was accommodated in the opening, thereby producing an anode transfer sheet 7a.

続いて、カソード用転写シート7bを作製した。基材71bとしてポリエステルフィルムを準備し、この基材71b上に48×48mmの開口部を持つポリエステルフィルムのマスクを載せた。そして、触媒層乾燥後の触媒層厚さが16μmとなるように触媒ペーストをマスクの開口部を介して基材71b上に塗工、乾燥し、マスクを剥離し、カソード触媒層73bを作製した。また、アノード用転写シート7aのエッジシール72aと同様のエッジシール72bを63×63mmの大きさに切断し、その中央部に48×48mmの大きさの開口部を形成した。そして、エッジシール72bを開口部内に触媒層73bが収まるように基材71b上に接着させてカソード用転写シート7bを作製した。   Subsequently, a cathode transfer sheet 7b was produced. A polyester film was prepared as the substrate 71b, and a polyester film mask having a 48 × 48 mm opening was placed on the substrate 71b. Then, the catalyst paste was applied onto the base material 71b through the opening of the mask so that the catalyst layer thickness after drying of the catalyst layer was 16 μm, dried, the mask was peeled off, and the cathode catalyst layer 73b was produced. . Further, an edge seal 72b similar to the edge seal 72a of the anode transfer sheet 7a was cut to a size of 63 × 63 mm, and an opening of a size of 48 × 48 mm was formed at the center. Then, the edge seal 72b was adhered onto the base material 71b so that the catalyst layer 73b was accommodated in the opening, thereby preparing the cathode transfer sheet 7b.

これらアノード用転写シート7a及びカソード用転写シート7bを電解質膜の両面それぞれに触媒層73が電解質膜6側を向くよう配置し、各転写シート7の触媒層73が電解質膜6を介して合致するように整列させた。そして、135℃、5.0MPa、150秒の条件で熱プレスすることで、電解質膜6の一方面にアノード触媒層73aを、他方面にカソード触媒層73bを形成し、エッジシール付き触媒層−電解質膜積層体10を作製した。なお、このエッジシール付き触媒層−電解質膜積層体は、アノード触媒層73aの方がカソード触媒層73bよりも大きく形成されている。   The anode transfer sheet 7 a and the cathode transfer sheet 7 b are arranged on both surfaces of the electrolyte membrane so that the catalyst layer 73 faces the electrolyte membrane 6, and the catalyst layers 73 of the transfer sheets 7 are aligned via the electrolyte membrane 6. Aligned. Then, the anode catalyst layer 73a is formed on one surface of the electrolyte membrane 6 and the cathode catalyst layer 73b is formed on the other surface by hot pressing under conditions of 135 ° C., 5.0 MPa, and 150 seconds. An electrolyte membrane laminate 10 was produced. In the catalyst layer-electrolyte membrane laminate with edge seal, the anode catalyst layer 73a is formed larger than the cathode catalyst layer 73b.

さらに続いて、開口部から露出しているアノード触媒層73a上に、アノード用導電性多孔質基材9aとして、50×50mmの大きさに切断されたカーボンペーパー(東レ社製、TGP−H−090、厚さ280μm)を積層した。また、開口部から露出しているカソード触媒層73b上には、カソード用導電性多孔質基材9bとして、48×48mmの大きさに切断されたカーボンペーパー(東レ社製、TGP−H−090、厚さ280μm)を積層して、エッジシール付き電極−電解質膜積層体20を形成した。   Furthermore, carbon paper (manufactured by Toray Industries, Inc., TGP-H-) was cut as a conductive porous substrate 9a for the anode onto the anode catalyst layer 73a exposed from the opening. 090, thickness 280 μm). On the cathode catalyst layer 73b exposed from the opening, carbon paper (TGP-H-090, manufactured by Toray Industries, Inc.) cut into a size of 48 × 48 mm is formed as the conductive porous substrate 9b for the cathode. , Thickness 280 μm) was laminated to form an electrode-electrolyte membrane laminate 20 with edge seal.

(実施例3)
電解質膜6として、ロール状に巻かれた幅63mm、長さ60m、膜厚53μmのNRE212CS(Dupont社製)を使用した。
(Example 3)
As the electrolyte membrane 6, NRE212CS (manufactured by Dupont) having a width of 63 mm, a length of 60 m, and a film thickness of 53 μm wound in a roll shape was used.

次に転写シート7を以下の要領で作製した。まず、図6に示すように、ケイ素酸化物からなる蒸着層741と、ポリエステルフィルムからなるマスク本体742とから構成されたマスク74を準備した(図6(a))。なお、このマスク74は幅63mm、長さ60mである。このマスク74の蒸着層741側に、不飽和カルボン酸グラフト変性ポリプロピレンを溶融押出し法により25μmの厚さのエッジシール72を形成した(図6(b))。そして、このマスク付きエッジシール75の幅方向中央において、長手方向に13mmの間隔dをあけて、50×50mmの大きさの開口部751を複数形成した(図6(c))。
次に、基材71として幅63mm×長さ60mのロール状に巻かれたポリエステルフィルムを準備し、上記マスク付エッジシール75のエッジシール72側が基材71と接合するようにロール加圧接合を行った(図6(d))。そして、実施例1と同じ要領で調整した触媒ペーストを、基材71上に接合されたマスク付きエッジシール75のマスク74側から乾燥後の厚さが20μmとなるように塗工、乾燥し(図6(e))、その後、マスク74を剥がし、転写シート7を作製した(図6(f))。
Next, the transfer sheet 7 was produced in the following manner. First, as shown in FIG. 6, the mask 74 comprised from the vapor deposition layer 741 which consists of silicon oxides, and the mask main body 742 which consists of a polyester film was prepared (FIG. 6 (a)). The mask 74 has a width of 63 mm and a length of 60 m. An edge seal 72 having a thickness of 25 μm was formed on the mask 74 on the vapor deposition layer 741 side by melt extrusion of an unsaturated carboxylic acid graft-modified polypropylene (FIG. 6B). A plurality of openings 751 each having a size of 50 × 50 mm were formed at the center in the width direction of the edge seal 75 with the mask, with a distance d 1 of 13 mm in the longitudinal direction (FIG. 6C).
Next, a polyester film wound in a roll shape having a width of 63 mm and a length of 60 m is prepared as the base material 71, and roll pressure bonding is performed so that the edge seal 72 side of the edge seal with mask 75 is bonded to the base material 71. This was done (FIG. 6 (d)). Then, the catalyst paste prepared in the same manner as in Example 1 is applied and dried from the mask 74 side of the edge seal 75 with mask joined on the base 71 so that the thickness after drying becomes 20 μm ( After that, the mask 74 was peeled off to produce a transfer sheet 7 (FIG. 6F).

以上のように作製した転写シート7をロール状にし、図1に示すように、ロール状の転写シート7を転写シート供給部3の第2回転軸31にセットするとともに、電解質膜6を電解質膜供給部2の第1回転軸21にセットした。そして、第1駆動機構及び第2駆動機構によって第1及び第2回転軸21,31を回転させて電解質膜6と転写シート7とを巻出し、そして、各触媒層73の中心が合うように各転写シート7を配置し、ロールで送り出した。そして110度に熱した加圧ロール41で加熱加圧接合を行い、電解質膜6の両面に転写シート7を接着させ、固体高分子形燃料電池用部材8を作製した。このときの圧力は3MPaとした。   The transfer sheet 7 produced as described above is formed into a roll shape, and the roll-shaped transfer sheet 7 is set on the second rotating shaft 31 of the transfer sheet supply unit 3 as shown in FIG. The first rotating shaft 21 of the supply unit 2 was set. Then, the first and second rotating shafts 21 and 31 are rotated by the first driving mechanism and the second driving mechanism to unwind the electrolyte membrane 6 and the transfer sheet 7 so that the centers of the catalyst layers 73 are aligned. Each transfer sheet 7 was placed and sent out by a roll. Then, heat and pressure bonding was performed with a pressure roll 41 heated to 110 ° C., and the transfer sheet 7 was adhered to both surfaces of the electrolyte membrane 6 to produce a solid polymer fuel cell member 8. The pressure at this time was 3 MPa.

続いて、上記で作製した長尺の固体高分子形燃料電池用部材8を、各触媒層73の間で63mm毎に切断し、枚葉シート状の固体高分子形燃料電池用部材8’を作製した。この枚葉シート状の固体高分子形燃料電池用部材8’を両面から135℃、5.0MPa、150秒の条件で熱プレスすることで、電解質膜6の両面にエッジシール72及び触媒層73を転写形成した。   Subsequently, the long polymer electrolyte fuel cell member 8 produced as described above is cut at intervals of 63 mm between the catalyst layers 73 to obtain a sheet-like solid polymer fuel cell member 8 ′. Produced. The sheet-like solid polymer fuel cell member 8 ′ is hot-pressed from both sides under the conditions of 135 ° C., 5.0 MPa, and 150 seconds, whereby the edge seal 72 and the catalyst layer 73 are formed on both sides of the electrolyte membrane 6. Was transferred and formed.

そして、この固体高分子形燃料電池用部材8’から基材71を剥離し、開口部から露出している触媒層73上に、導電性多孔質基材9として、50×50mmの大きさに切断されたカーボンペーパー(東レ社製、TGP−H−090、厚さ280μm)を積層し、エッジシール付き電極−電解質膜積層体20を形成した。   Then, the base material 71 is peeled from the solid polymer fuel cell member 8 ′, and the conductive porous base material 9 is formed in a size of 50 × 50 mm on the catalyst layer 73 exposed from the opening. Cut carbon paper (manufactured by Toray Industries, Inc., TGP-H-090, thickness 280 μm) was laminated to form an electrode-electrolyte membrane laminate 20 with an edge seal.

(実施例4)
触媒ペーストの塗工方法が異なる以外は実施例3と同様の方法でエッジシール付き電極−電解質膜積層体20を形成した。なお、触媒ペーストは、基材71上に接合されたマスク付きエッジシール75のマスク74側から、開口部から露出する基材71上にのみ乾燥後の厚さが20μmとなるようにパターン塗工した。
Example 4
An electrode-electrolyte membrane laminate 20 with an edge seal was formed in the same manner as in Example 3 except that the coating method of the catalyst paste was different. The catalyst paste was applied in a pattern from the mask 74 side of the edge seal 75 with a mask joined on the base material 71 so that the thickness after drying was only 20 μm on the base material 71 exposed from the opening. did.

(実施例5)
電解質膜6として、ロール状に巻かれた幅63mm、長さ60m、膜厚53μmのNRE212CS(Dupont社製)を使用した。
(Example 5)
As the electrolyte membrane 6, NRE212CS (manufactured by Dupont) having a width of 63 mm, a length of 60 m, and a film thickness of 53 μm wound in a roll shape was used.

次に転写シート7を以下の要領で作製した。なお、転写シート7はアノード用転写シート7aとカソード用転写シート7bの2種類を作成した。   Next, the transfer sheet 7 was produced in the following manner. Two types of transfer sheets 7 were prepared: an anode transfer sheet 7a and a cathode transfer sheet 7b.

まず、アノード用転写シート7aについて説明する。なお、このアノード用転写シート7aは、エッジシール72aの厚さが21μmである点、基材71aとしてマットポリエステルフィルム(ルミラーX44、東レ社製)を使用する点以外は、実施例3の転写シート7と同様に作製した。また、カソード用転写シート7bは、エッジシール72bの厚さが21μmである点、エッジシール72bの開口部の大きさ委が48×48mmである点、基材71bとしてマットポリエステルフィルム(ルミラーX44、東レ社製)を使用する点以外は、実施例3の転写シート7と同様に作製した。   First, the anode transfer sheet 7a will be described. The anode transfer sheet 7a is the transfer sheet of Example 3 except that the thickness of the edge seal 72a is 21 μm and a mat polyester film (Lumirror X44, manufactured by Toray Industries, Inc.) is used as the base material 71a. 7 was produced in the same manner. The cathode transfer sheet 7b has a point that the thickness of the edge seal 72b is 21 μm, the size of the opening of the edge seal 72b is 48 × 48 mm, and a mat polyester film (Lumirror X44, It was produced in the same manner as the transfer sheet 7 of Example 3 except that Toray Industries, Inc. was used.

以上の電解質膜6と、転写シート7とから実施例3と同様にエッジシール付き電極−電解質膜積層体20を作製した。なお、カソード側のエッジシール72bの開口部の大きさが48×48mmであるため、カソード側の触媒層73bと導電性多孔質基材9bの大きさは48×48mmである。   An electrode-electrolyte membrane laminate 20 with an edge seal was produced from the electrolyte membrane 6 and the transfer sheet 7 in the same manner as in Example 3. Since the size of the opening of the cathode side edge seal 72b is 48 × 48 mm, the size of the cathode side catalyst layer 73b and the conductive porous substrate 9b is 48 × 48 mm.

(比較例1)
エッジシールの開口部を60×60mmとした点、及び基材71上に接合されたマスク付きエッジシール75のマスク74側から実施例1と同じ要領で調整した触媒ペーストを触媒層の大きさが50×50mm、乾燥後の厚さが20μmとなるように間欠塗工により塗工、乾燥した点以外は実施例3と同様にしてエッジシール付き膜電極接合体を形成した。
(Comparative Example 1)
The size of the catalyst layer is a catalyst paste adjusted in the same manner as in Example 1 from the point that the opening of the edge seal is 60 × 60 mm and the mask 74 side of the edge seal 75 with mask joined on the base 71. A membrane electrode assembly with an edge seal was formed in the same manner as in Example 3 except that the coating was dried by intermittent coating so that the thickness after drying was 50 μm and 20 μm.

(評価方法)
実施例1〜5及び比較例1のエッジシール付き電極−電解質膜積層体について、ガスケット11及びセパレータ12を設置して固体高分子形燃料電池30をそれぞれ作製して負荷変動サイクル試験を実施した。このときの測定条件は、セル温度80℃、燃料利用率70%、酸化剤利用率40%、加湿温度50℃とした。また、負荷変動サイクル試験は、電流密度0.3A/cm2にて1分間発電した後、電流密度0.01A/cm2にて1分間発電するサイクルを繰返した。この負荷変動サイクル試験の結果、実施例1〜5の燃料電池セルは1500時間経過しても電圧が低下することはなかった。また、この負荷変動サイクル試験後に電解質膜を確認したところ、全ての実施例において電解質膜の破損は見られなかった。これに対して比較例1の固体高分子形燃料電池は300時間経過した段階で電圧が低下し、また、この電解質膜を確認したところ破損が確認された。
(Evaluation methods)
About the electrode-electrolyte membrane laminated body with an edge seal | sticker of Examples 1-5 and the comparative example 1, the gasket 11 and the separator 12 were installed, the polymer electrolyte fuel cell 30 was each produced, and the load fluctuation cycle test was implemented. The measurement conditions at this time were a cell temperature of 80 ° C., a fuel utilization rate of 70%, an oxidant utilization rate of 40%, and a humidification temperature of 50 ° C. In the load fluctuation cycle test, a cycle in which power was generated for 1 minute at a current density of 0.3 A / cm 2 and then power was generated for 1 minute at a current density of 0.01 A / cm 2 was repeated. As a result of the load fluctuation cycle test, the voltage of the fuel cells of Examples 1 to 5 did not decrease even after 1500 hours. Moreover, when the electrolyte membrane was confirmed after this load fluctuation | variation cycle test, the damage of the electrolyte membrane was not seen in all the Examples. On the other hand, in the polymer electrolyte fuel cell of Comparative Example 1, the voltage dropped when 300 hours passed, and the electrolyte membrane was confirmed to be broken.

1 固体高分子形燃料電池用部材の製造装置
2 電解質膜供給部
3 転写シート供給部
4 加圧部
6 電解質膜
7 転写シート
71 基材
72 エッジシール
73 触媒層
8 固体高分子形燃料電池用部材
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of member for polymer electrolyte fuel cells 2 Electrolyte membrane supply part 3 Transfer sheet supply part 4 Pressurization part 6 Electrolyte film 7 Transfer sheet 71 Base material 72 Edge seal 73 Catalyst layer 8 Member for polymer electrolyte fuel cell

Claims (11)

基材と、
前記基材上に形成されており、開口部を有するエッジシールと、
前記開口部内において前記基材上に形成された触媒層と、
を備えた、転写シート
A substrate;
An edge seal formed on the substrate and having an opening;
A catalyst layer formed on the substrate in the opening;
Transfer sheet with
長尺の基材と、
前記基材上に形成されており、前記基材の長さ方向に並ぶ複数の開口部を有するエッジシールと、
前記各開口部内において前記基材上に形成された触媒層と、
を備えた、転写シート。
A long substrate;
An edge seal formed on the substrate and having a plurality of openings arranged in the length direction of the substrate;
A catalyst layer formed on the substrate in each opening;
A transfer sheet comprising
電解質膜と、
前記電解質膜の少なくとも一方面に接着された請求項1又は2に記載の転写シートと、を備え、
前記転写シートは、前記触媒層及びエッジシールが前記電解質膜に接着している、固体高分子形燃料電池用部材。
An electrolyte membrane;
The transfer sheet according to claim 1 or 2 adhered to at least one surface of the electrolyte membrane,
The transfer sheet is a member for a polymer electrolyte fuel cell, wherein the catalyst layer and an edge seal are adhered to the electrolyte membrane.
電解質膜と、
前記電解質膜の両面に接着された請求項1又は2に記載の転写シートと、を備え、
前記各転写シートは、前記触媒層及びエッジシールが前記電解質膜に接着しており、
前記各転写シートは、その触媒層の大きさが互いに異なる、固体高分子形燃料電池用部材。
An electrolyte membrane;
The transfer sheet according to claim 1 or 2 adhered to both surfaces of the electrolyte membrane,
Each of the transfer sheets has the catalyst layer and the edge seal adhered to the electrolyte membrane,
Each of the transfer sheets is a member for a polymer electrolyte fuel cell in which the catalyst layers have different sizes.
電解質膜を供給する電解質膜供給工程と、
開口部を有するエッジシールが基材上に接着された転写シートであって、前記開口部内において前記基材上に触媒層が形成された前記転写シートを供給する転写シート供給工程と、
前記エッジシール及び触媒層が前記電解質膜と対向するように前記転写シートを前記電解質膜の少なくとも一方面上に配置し、前記転写シートのエッジシール及び触媒層が前記電解質膜に接着するよう圧力を掛けるプレス工程と、
を含む、固体高分子形燃料電池用部材の製造方法。
An electrolyte membrane supplying step for supplying an electrolyte membrane;
A transfer sheet in which an edge seal having an opening is bonded onto a substrate, and the transfer sheet supplying step of supplying the transfer sheet in which a catalyst layer is formed on the substrate in the opening;
The transfer sheet is disposed on at least one surface of the electrolyte membrane so that the edge seal and the catalyst layer face the electrolyte membrane, and pressure is applied so that the edge seal and the catalyst layer of the transfer sheet adhere to the electrolyte membrane. The pressing process,
A method for producing a member for a polymer electrolyte fuel cell, comprising:
長尺の電解質膜を供給する電解質膜供給工程と、
長手方向に並ぶ複数の開口部が形成された長尺のエッジシールが長尺の基材上に接着された転写シートであって、前記各開口部内において前記基材上に触媒層が形成された前記転写シートを供給する転写シート供給工程と、
前記エッジシール及び各触媒層が前記電解質膜に対向するように前記転写シートを前記電解質膜の少なくとも一方面上に配置し、前記転写シートのエッジシール及び触媒層が前記電解質膜に接着するよう圧力を掛けるプレス工程と、
を含む、固体高分子形燃料電池用部材の製造方法。
An electrolyte membrane supplying step for supplying a long electrolyte membrane;
A transfer sheet in which a long edge seal formed with a plurality of openings arranged in the longitudinal direction is bonded onto a long base material, and a catalyst layer is formed on the base material in each of the openings A transfer sheet supplying step for supplying the transfer sheet;
The transfer sheet is disposed on at least one surface of the electrolyte membrane so that the edge seal and each catalyst layer face the electrolyte membrane, and pressure is applied so that the edge seal and catalyst layer of the transfer sheet adhere to the electrolyte membrane. Pressing process,
A method for producing a member for a polymer electrolyte fuel cell, comprising:
前記電解質膜供給工程において、前記電解質膜を長手方向に搬送し、
前記転写シート供給工程において、前記転写シートを前記電解質膜と同一方向に搬送し、
前記プレス工程において、搬送中の前記電解質膜と転写シートとを一対のローラで挟むことにより前記転写シートを前記電解質膜に接着させる、請求項6に記載の固体高分子形燃料電池用部材の製造方法。
In the electrolyte membrane supply step, the electrolyte membrane is conveyed in the longitudinal direction,
In the transfer sheet supply step, the transfer sheet is conveyed in the same direction as the electrolyte membrane,
7. The member for a polymer electrolyte fuel cell according to claim 6, wherein in the pressing step, the transfer sheet is adhered to the electrolyte membrane by sandwiching the electrolyte membrane being transferred and the transfer sheet between a pair of rollers. Method.
前記転写シートが接着された長尺の電解質膜を、各開口部の間において切断する工程をさらに含む、請求項6又は7に記載の固体高分子形燃料電池用部材の製造方法。   The method for producing a member for a polymer electrolyte fuel cell according to claim 6 or 7, further comprising a step of cutting the long electrolyte membrane to which the transfer sheet is bonded between the openings. 請求項5又は8に記載の固体高分子形燃料電池用部材の製造方法と、
前記転写基材の基材を剥離する工程と、
前記触媒層上に導電性多孔質基材を積層する工程と、
を含む、エッジシール付き電極−電解質膜積層体の製造方法。
A method for producing a polymer electrolyte fuel cell member according to claim 5 or 8,
Peeling the substrate of the transfer substrate;
Laminating a conductive porous substrate on the catalyst layer;
The manufacturing method of the electrode-electrolyte membrane laminated body with an edge seal | sticker containing this.
請求項9に記載のエッジシール付き電極−電解質膜積層体の製造方法と、
前記エッジシール上にガスケットを設置する工程と、
前記ガスケットが設置されたエッジシール付き電極−電解質膜積層体をセパレータによって両側から挟持する工程と、
を含む、固体高分子形燃料電池の製造方法。
A method for producing an electrode-electrolyte membrane laminate with an edge seal according to claim 9,
Installing a gasket on the edge seal;
Sandwiching the electrode-electrolyte membrane laminate with an edge seal provided with the gasket from both sides with a separator;
A method for producing a polymer electrolyte fuel cell, comprising:
長尺の電解質膜を供給する電解質膜供給部と、
長手方向に並ぶ複数の開口部が形成された長尺のエッジシールが長尺の基材上に接着された転写シートであって、前記各開口部内において前記基材上に触媒層が形成された前記転写シートを供給する転写シート供給部と、
前記エッジシール及び各触媒層が前記電解質膜に対向するように前記転写シートを前記電解質膜の少なくとも一方面上に配置した状態で、前記電解質膜と転写シートとを挟んで圧力を掛ける加圧部と、
を備えた、固体高分子形燃料電池用部材の製造装置。
An electrolyte membrane supply section for supplying a long electrolyte membrane;
A transfer sheet in which a long edge seal formed with a plurality of openings arranged in the longitudinal direction is bonded onto a long base material, and a catalyst layer is formed on the base material in each of the openings A transfer sheet supply unit for supplying the transfer sheet;
A pressurizing unit that applies pressure with the electrolyte membrane and the transfer sheet sandwiched in a state where the transfer sheet is disposed on at least one surface of the electrolyte membrane so that the edge seal and each catalyst layer face the electrolyte membrane When,
An apparatus for producing a polymer electrolyte fuel cell member, comprising:
JP2009157991A 2009-07-02 2009-07-02 Solid polymer fuel cell member, catalyst layer with an edge seal-electrolyte membrane laminate, electrode with edge seal-electrolyte membrane laminate, and method for producing a polymer electrolyte fuel cell Expired - Fee Related JP5581618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157991A JP5581618B2 (en) 2009-07-02 2009-07-02 Solid polymer fuel cell member, catalyst layer with an edge seal-electrolyte membrane laminate, electrode with edge seal-electrolyte membrane laminate, and method for producing a polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157991A JP5581618B2 (en) 2009-07-02 2009-07-02 Solid polymer fuel cell member, catalyst layer with an edge seal-electrolyte membrane laminate, electrode with edge seal-electrolyte membrane laminate, and method for producing a polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2011014403A true JP2011014403A (en) 2011-01-20
JP5581618B2 JP5581618B2 (en) 2014-09-03

Family

ID=43593084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157991A Expired - Fee Related JP5581618B2 (en) 2009-07-02 2009-07-02 Solid polymer fuel cell member, catalyst layer with an edge seal-electrolyte membrane laminate, electrode with edge seal-electrolyte membrane laminate, and method for producing a polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5581618B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU92051B1 (en) * 2012-07-25 2014-01-27 Univ Luxembourg Membrane assembly
JP2014216053A (en) * 2013-04-22 2014-11-17 凸版印刷株式会社 Transfer sheet with mask film/base film, method of producing transfer sheet with mask film/base film, method of producing catalyst layer sheet, catalyst layer sheet and solid polymer fuel cell
WO2015053304A1 (en) * 2013-10-09 2015-04-16 日東電工株式会社 Method for manufacturing fuel-cell membrane electrode assembly
WO2015147098A1 (en) * 2014-03-25 2015-10-01 凸版印刷株式会社 Method for manufacturing membrane electrode assembly, membrane electrode assembly, and solid polymer fuel cell
WO2015145876A1 (en) * 2014-03-24 2015-10-01 株式会社Screenホールディングス Catalytic-layer formation method and catalytic-layer formation device
JP2016201219A (en) * 2015-04-08 2016-12-01 凸版印刷株式会社 Catalyst layer transfer base material, manufacturing method for membrane electrode assembly, and membrane electrode assembly
JP2020533735A (en) * 2018-01-22 2020-11-19 エルジー・ケム・リミテッド Manufacturing method of membrane electrode assembly and laminate
JP2021018832A (en) * 2019-07-17 2021-02-15 株式会社Screenホールディングス Manufacturing method of membrane electrode assembly with sub-gasket, manufacturing apparatus thereof, and sub-gasket substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286430A (en) * 2005-04-01 2006-10-19 Dainippon Printing Co Ltd Electrolyte membrane-electrode conjugate with gasket for solid polymer fuel cell and its manufacturing method
JP2007141674A (en) * 2005-11-18 2007-06-07 Nissan Motor Co Ltd Manufacturing method of membrane-electrode assembly and method of assembling fuel cell
JP2007214101A (en) * 2005-05-31 2007-08-23 Nissan Motor Co Ltd Electrolyte membrane-electrode assembly and its manufacturing method
JP2009134953A (en) * 2007-11-29 2009-06-18 Toyota Motor Corp Membrane electrode assembly with frame, and method of continuously manufacturing fuel battery cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286430A (en) * 2005-04-01 2006-10-19 Dainippon Printing Co Ltd Electrolyte membrane-electrode conjugate with gasket for solid polymer fuel cell and its manufacturing method
JP2007214101A (en) * 2005-05-31 2007-08-23 Nissan Motor Co Ltd Electrolyte membrane-electrode assembly and its manufacturing method
JP2007141674A (en) * 2005-11-18 2007-06-07 Nissan Motor Co Ltd Manufacturing method of membrane-electrode assembly and method of assembling fuel cell
JP2009134953A (en) * 2007-11-29 2009-06-18 Toyota Motor Corp Membrane electrode assembly with frame, and method of continuously manufacturing fuel battery cell

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014016379A1 (en) * 2012-07-25 2014-01-30 Universite Du Luxembourg Membrane assembly
LU92051B1 (en) * 2012-07-25 2014-01-27 Univ Luxembourg Membrane assembly
JP2014216053A (en) * 2013-04-22 2014-11-17 凸版印刷株式会社 Transfer sheet with mask film/base film, method of producing transfer sheet with mask film/base film, method of producing catalyst layer sheet, catalyst layer sheet and solid polymer fuel cell
WO2015053304A1 (en) * 2013-10-09 2015-04-16 日東電工株式会社 Method for manufacturing fuel-cell membrane electrode assembly
WO2015145876A1 (en) * 2014-03-24 2015-10-01 株式会社Screenホールディングス Catalytic-layer formation method and catalytic-layer formation device
JPWO2015147098A1 (en) * 2014-03-25 2017-04-13 凸版印刷株式会社 Membrane electrode assembly manufacturing method, membrane electrode assembly, and polymer electrolyte fuel cell
CN106104885A (en) * 2014-03-25 2016-11-09 凸版印刷株式会社 The manufacture method of membrane-electrode assembly, membrane-electrode assembly and solid macromolecule formula fuel cell
WO2015147098A1 (en) * 2014-03-25 2015-10-01 凸版印刷株式会社 Method for manufacturing membrane electrode assembly, membrane electrode assembly, and solid polymer fuel cell
EP3125345A4 (en) * 2014-03-25 2018-03-07 Toppan Printing Co., Ltd. Method for manufacturing membrane electrode assembly, membrane electrode assembly, and solid polymer fuel cell
JP2016201219A (en) * 2015-04-08 2016-12-01 凸版印刷株式会社 Catalyst layer transfer base material, manufacturing method for membrane electrode assembly, and membrane electrode assembly
JP2020533735A (en) * 2018-01-22 2020-11-19 エルジー・ケム・リミテッド Manufacturing method of membrane electrode assembly and laminate
US11424467B2 (en) 2018-01-22 2022-08-23 Lg Chem, Ltd. Method for manufacturing membrane electrode assembly, and stack
JP2021018832A (en) * 2019-07-17 2021-02-15 株式会社Screenホールディングス Manufacturing method of membrane electrode assembly with sub-gasket, manufacturing apparatus thereof, and sub-gasket substrate
KR20220035028A (en) * 2019-07-17 2022-03-21 가부시키가이샤 스크린 홀딩스 A method for manufacturing a sub-gasket-forming membrane electrode assembly, an apparatus for manufacturing a sub-gasket-forming membrane electrode assembly, and a sub-gasket base material
JP7258683B2 (en) 2019-07-17 2023-04-17 株式会社Screenホールディングス MEMBRANE ELECTRODE ASSEMBLY WITH SUBGASKET, MANUFACTURING APPARATUS AND SUBGASKET BASE MATERIAL
KR102564101B1 (en) 2019-07-17 2023-08-04 가부시키가이샤 스크린 홀딩스 Method for manufacturing a membrane electrode assembly with a sub-gasket, apparatus for manufacturing a membrane-electrode assembly with a sub-gasket, and substrate for a sub-gasket

Also Published As

Publication number Publication date
JP5581618B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5581618B2 (en) Solid polymer fuel cell member, catalyst layer with an edge seal-electrolyte membrane laminate, electrode with edge seal-electrolyte membrane laminate, and method for producing a polymer electrolyte fuel cell
JP5552766B2 (en) Edge-sealed catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, polymer electrolyte fuel cell, catalyst layer-electrolyte membrane laminate production method, and edge-sealed catalyst layer-electrolyte membrane laminate production method
JP2011065877A (en) Manufacturing method and manufacturing device of member for solid polymer fuel cell
JP2011165460A (en) Method of manufacturing membrane-catalyst layer assembly
JP5338998B2 (en) Electrolyte membrane-electrode assembly and solid polymer fuel cell using the same
JP5533134B2 (en) Catalyst layer-electrolyte membrane laminate, catalyst layer with edge seal-electrolyte membrane laminate, membrane-electrode assembly, membrane-electrode assembly with edge seal, and production method thereof
JP5277792B2 (en) Electrolyte membrane-electrode assembly with auxiliary membrane, and polymer electrolyte fuel cell using the same
JP6120674B2 (en) Solid polymer fuel cell and manufacturing method thereof
US20230411660A1 (en) Membrane electrode assembly combined roll, membrane electrode assembly, and polymer electrolyte fuel cell
JP5533131B2 (en) Edge-sealed catalyst layer-electrolyte membrane laminate, edge-sealed membrane-electrode assembly, and polymer electrolyte fuel cell
JP6024398B2 (en) REINFORCED CATALYST LAYER-ELECTROLYTE MEMBRANE LAMINATE, SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING REINFORCING CATALYST LAYER-ELECTROLYTE MEMBRANE
JP5853194B2 (en) Membrane-catalyst layer assembly manufacturing method and manufacturing apparatus thereof
JP5581938B2 (en) Catalyst layer with protective sheet-electrolyte membrane laminate, catalyst layer with protective sheet-electrolyte membrane laminate intermediate, membrane with protective sheet-electrode assembly, and catalyst layer with protective sheet-electrolyte membrane laminate manufacturing method
JP2011065876A (en) Catalyst layer-electrolyte membrane laminate with edge sealing, membrane electrode assembly with edge seal, and solid polymer fuel cell
JP2011060665A (en) Method and apparatus for manufacturing member for polymer electrolyte fuel cell
JP5887692B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane-electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and production method thereof
JP4810841B2 (en) Method and apparatus for producing electrolyte membrane-catalyst layer assembly for polymer electrolyte fuel cell
JP6085935B2 (en) REINFORCED CATALYST LAYER-ELECTROLYTE MEMBRANE LAMINATE, SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING REINFORCING CATALYST LAYER-ELECTROLYTE MEMBRANE
JP5699348B2 (en) Manufacturing apparatus and manufacturing method for membrane catalyst layer assembly, and manufacturing apparatus and manufacturing method for membrane electrode assembly
JP6163812B2 (en) Manufacturing method of electrolyte membrane with supporting substrate, manufacturing apparatus of electrolyte membrane with supporting substrate, manufacturing method of catalyst layer-electrolyte membrane laminate using electrolyte membrane with supporting substrate, and electrolyte membrane with supporting substrate Catalyst layer-electrolyte membrane laminate manufacturing apparatus
JP2010021023A (en) Catalyst layer transfer sheet, method of manufacturing catalyst layer-electrolyte film laminate using same, method of manufacturing electrode-electrolyte film laminate, and method of manufacturing solid polymer fuel cell
JP2011159458A (en) Catalyst layer-electrolyte film laminate, membrane-electrode assembly, polymer electrolyte fuel cell, and method of manufacturing catalyst layer-electrolyte film laminate
JP5544781B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and reinforcing membrane
JP2014194853A (en) Manufacturing device for electrolyte membrane with gasket, manufacturing method for electrolyte membrane with gasket, and electrolyte membrane with gasket
JP5791222B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane electrode assembly with reinforcing membrane, and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5581618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees