[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011011661A - Shock absorbing member - Google Patents

Shock absorbing member Download PDF

Info

Publication number
JP2011011661A
JP2011011661A JP2009158289A JP2009158289A JP2011011661A JP 2011011661 A JP2011011661 A JP 2011011661A JP 2009158289 A JP2009158289 A JP 2009158289A JP 2009158289 A JP2009158289 A JP 2009158289A JP 2011011661 A JP2011011661 A JP 2011011661A
Authority
JP
Japan
Prior art keywords
absorbing member
tapered
tube portion
shock absorbing
cylindrical portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009158289A
Other languages
Japanese (ja)
Inventor
Kazutaka Doiyoshi
一剛 土井良
Masashi Naito
正志 内藤
Makoto Kimura
良 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009158289A priority Critical patent/JP2011011661A/en
Publication of JP2011011661A publication Critical patent/JP2011011661A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shock absorbing member capable of attaining buckling deformation in a stable state as well as a large amount of energy absorption upon collision.SOLUTION: The shock absorbing member 2 is a cylindrical member that absorbs shock energy by collapse deformation using a load W working upon collision of an automobile. The shock absorbing member 2 has: a straight cylindrical portion 21 with an inside diameter Dof which is formed to be substantially uniform; a tapered cylindrical portion 22 formed in a tapered shape, an end of which has an outside diameter Ddifferent from an outside diameter Dof the other end; and an intermediate cylindrical portion 23 that is interposed between the other ends of the straight cylindrical portion 21 and the tapered cylindrical portion 22 so that both thereof are coaxially connected to each other. The inside diameter D, the outside diameter Dand the outside diameter Dare formed to have a relationship of D<D<D.

Description

本発明は、自動車の衝突時の衝突エネルギーを吸収する衝撃吸収部材に関する。   The present invention relates to an impact absorbing member that absorbs collision energy at the time of automobile collision.

従来、自動車の衝突時に作用する荷重によって軸方向に圧潰変形することにより、衝突エネルギーを吸収する筒状の衝撃吸収部材を車体フレームに設けたものが知られている(例えば、特許文献1及び特許文献2参照)。   2. Description of the Related Art Conventionally, a vehicle body frame is known in which a cylindrical shock absorbing member that absorbs collision energy by being crushed and deformed in the axial direction by a load acting during a car collision (for example, Patent Document 1 and Patents). Reference 2).

特許文献1に記載の衝撃吸収部材(衝突エネルギー吸収構造体)は、小さな外径で一定に形成されたストレートの円筒状の第1筒状部材と、大きな外径で一定に形成されたストレートの円筒状の第2筒状部材と、第2筒状部材の端部を軸心側にリング状に折曲し、第1筒状部材及び第2筒状部材の端部をアーク溶接で接合して同軸的に一体化した段差部と、から構成された段付きの円筒体からなる。
この衝突エネルギー吸収構造体は、衝突時に、段差部の小径の部分が衝突荷重によって外側にカールし、大径の部分が内側にカールすることにより、連続的な塑性変形をすることで衝突エネルギーを吸収している。
The impact absorbing member (collision energy absorbing structure) described in Patent Document 1 is a straight cylindrical first cylindrical member formed constant with a small outer diameter and a straight cylindrical member formed constant with a large outer diameter. The cylindrical second cylindrical member and the end of the second cylindrical member are bent in a ring shape on the axial center side, and the ends of the first cylindrical member and the second cylindrical member are joined by arc welding. And a stepped cylindrical body composed of a stepped portion integrated coaxially.
In the collision energy absorbing structure, at the time of collision, the small diameter portion of the stepped portion is curled outward by the collision load, and the large diameter portion is curled inward, so that the collision energy is reduced by continuous plastic deformation. Absorbs.

特許文献2に記載の筒状エネルギー管理システムは、大径の第1筒部と、この第1筒部より小径の第2筒部と、第1筒部と第2筒部とを一体に接続する中間筒部と、を熱処理可能な鋼等で連続形成された衝撃吸収部材(エネルギー管理筒)からなる。
その衝撃吸収部材は、バンパシステムが長手方向に衝撃を受けたときに、第1円筒部及び第2筒部が予測可能な一定のロール潰れにより入れ子式に圧壊するようになっている。
The cylindrical energy management system described in Patent Document 2 integrally connects a large-diameter first tubular portion, a second tubular portion having a smaller diameter than the first tubular portion, and the first tubular portion and the second tubular portion. And an impact absorbing member (energy management cylinder) continuously formed of heat-treatable steel or the like.
When the bumper system receives an impact in the longitudinal direction, the impact absorbing member is crushed in a nested manner by a certain roll crush that can be predicted by the first cylindrical portion and the second cylindrical portion.

特開2001−241478(段落0007,0008、図1及び図3)JP 2001-241478 (paragraphs 0007, 0008, FIG. 1 and FIG. 3) 特表2007−503561(特許請求の範囲、図1〜図3)Special table 2007-503561 (Claims, FIGS. 1 to 3)

特許文献1,2に記載の衝撃吸収部材は、いずれも、外径が異なるストレートの筒状部材の2つの端部を段差状に繋いだ形状に形成されている。このため、それらの衝撃吸収部材は、軸方向に圧潰させる軸圧潰荷重を安定させることができるという効果がある。
しかしながら、それらの衝撃吸収部材は、1つのストレートの筒部からなる単なる筒体を圧潰したときよりも、小さい荷重で圧潰されるようになる。
そのため、衝突の際に、安定した状態に座屈変形させることと、衝突の際の圧潰荷重を上昇させて、エネルギー吸収量を増加させることを両立させることが望まれていた。
Each of the impact absorbing members described in Patent Literatures 1 and 2 is formed in a shape in which two end portions of straight cylindrical members having different outer diameters are connected in a stepped shape. For this reason, those impact-absorbing members have the effect of being able to stabilize the axial crushing load that is crushed in the axial direction.
However, these shock absorbing members are crushed with a smaller load than when a simple cylinder consisting of one straight cylinder is crushed.
For this reason, it has been desired that both the buckling deformation in a stable state at the time of the collision and the increase in the energy absorption amount by increasing the crushing load at the time of the collision are desired.

そこで、本発明は、前記問題点を解決するために創案されたものであり、衝突の際に、安定した状態に座屈変形すると共に、衝突の際のエネルギー吸収量が大きい衝撃吸収部材を提供することを課題とする。   Therefore, the present invention has been developed to solve the above-described problems, and provides an impact absorbing member that buckles and deforms in a stable state in the event of a collision and that has a large amount of energy absorption in the event of a collision. The task is to do.

前記課題を解決するために、請求項1に記載の衝撃吸収部材の発明は、自動車の衝突時に作用する荷重によって圧潰変形することにより衝突エネルギーを吸収する筒状の衝撃吸収部材であって、内径Dが略一定に形成されたストレート筒部と、一端部の外径Dと他端部の外径Dとが相違するテーパ状に形成されたテーパ状筒部と、前記ストレート筒部と前記テーパ状筒部の他端部との間に介在されて前記ストレート筒部と前記テーパ状筒部とを同軸上に連結する中間筒部と、を有し、前記内径D、前記外径D、前記外径Dは、D<D<Dの長さに形成されていることを特徴とする。 In order to solve the above-mentioned problem, the invention of the impact absorbing member according to claim 1 is a cylindrical impact absorbing member that absorbs collision energy by being crushed and deformed by a load acting during a collision of an automobile, and has an inner diameter. a straight tubular portion D 1 is formed in a substantially constant, the tapered cylinder portion formed in a tapered shape in which the outer diameter D 3 of outer diameter D 2 and the other end portion of the one end portion are different, the straight tube portion And an intermediate tube portion that is interposed between the other end portion of the tapered tube portion and coaxially connects the straight tube portion and the tapered tube portion, the inner diameter D 1 , The diameter D 2 and the outer diameter D 3 are formed to have a length of D 3 <D 1 <D 2 .

かかる構成によれば、衝撃吸収部材は、内径Dのストレート筒部と、一端部が内径Dより大きい外径D、他端部が内径Dより小さい外径Dのテーパ状筒部と、中間筒部とを有することにより、圧潰変形時にストレート筒部の内側にテーパ状筒部が入り込むように変形する。テーパ状筒部がストレート筒部の内面に入り込んだ際には、中間筒部が折り返すように変形すると共に、テーパ状筒部の小径側の部分がストレート筒部の端部内面に当接しながら圧潰変形することにより、圧潰荷重が上昇するため、エネルギー吸収量を増加させることができる。また、衝撃吸収部材は、中間筒部に変形を集中させ、大きな歪みを発生させることによって、前述した特許文献1,2に記載の従来の構造よりも、材料の持つ延性をより効果的に活用することができる。さらに、衝撃吸収部材は、エネルギー吸収能を向上させて、衝突の際に座屈変形する部分のクラッシュストロークをショートストローク化することができると共に、衝突の際に、安定した状態に座屈変形するようにさせることができる。 According to such a configuration, the impact absorbing member includes a straight tubular portion of the inner diameter D 1, one end inner diameter D 1 greater than the outside diameter D 2, the tapered tube of the other end inner diameter D 1 smaller outer diameter D 3 By having the portion and the intermediate tube portion, the taper-shaped tube portion is deformed so as to enter inside the straight tube portion during crushing deformation. When the tapered cylindrical portion enters the inner surface of the straight cylindrical portion, the intermediate cylindrical portion is deformed so as to be folded back, and the portion on the small diameter side of the tapered cylindrical portion is crushed while being in contact with the inner surface of the end portion of the straight cylindrical portion. By deforming, the crushing load increases, so that the amount of energy absorption can be increased. In addition, the shock absorbing member concentrates the deformation on the intermediate cylinder portion and generates a large strain, thereby more effectively utilizing the ductility of the material than the conventional structures described in Patent Documents 1 and 2 described above. can do. Furthermore, the impact absorbing member can improve the energy absorbing ability, shorten the crash stroke of the portion that buckles and deforms in the collision, and buckles and deforms in a stable state in the event of the collision. Can be made to

請求項2に記載の衝撃吸収部材の発明は、自動車の衝突時に作用する荷重によって圧潰変形することにより衝突エネルギーを吸収する筒状の衝撃吸収部材であって、外径D10が略一定に形成されたストレート筒部と、一端部の内径D20と他端部の外径D30とが相違するテーパ状に形成されたテーパ状筒部と、前記ストレート筒部と前記テーパ状筒部の他端部との間に介在されて両者が同軸上に連結された中間筒部と、を有し、前記外径D10、前記内径D20、前記外径D30は、D20<D10<D30の長さに形成されていることを特徴とする。 Invention of the shock-absorbing member according to claim 2 is a cylindrical impact absorbing member for absorbing a collision energy by crushing deformed by load acting upon vehicle collision, forming an outer diameter D 10 of substantially constant a straight tubular portion which is a tapered cylindrical portion and the outer diameter D 30 is formed in a tapered shape having different inner diameter D 20 and the other end portion of the one end, the other of the straight tubular portion the tapered tubular portion And an intermediate cylinder portion that is interposed between the end portions and coaxially connected to each other, and the outer diameter D 10 , the inner diameter D 20 , and the outer diameter D 30 are D 20 <D 10 < characterized in that it is formed to a length of D 30.

かかる構成によれば、衝撃吸収部材は、内径D10のストレート筒部と、一端部が内径D10より小さい外径D20、他端部が内径D10より大きい外径D30のテーパ状筒部と、中間筒部とを有することにより、圧潰変形時にストレート筒部の外側にテーパ状筒部が押し出されるように変形する。テーパ状筒部がストレート筒部の外面に押し出される際には、括れ状の中間筒部が折り返すように変形すると共に、テーパ状筒部の大径側の部分がストレート筒部の端部外面に当接しながら圧潰変形することにより、圧潰荷重が上昇するため、エネルギー吸収量を増加させることができる。このため、請求項2の発明は、前記請求項1と同様な作用効果を得ることができる。 According to such a configuration, the impact absorbing member includes a straight tubular portion of the inner diameter D 10, one end inner diameter D 10 is smaller than outer diameter D 20, the tapered tube of the other end inner diameter D 10 is greater than the outside diameter D 30 By having the part and the intermediate cylinder part, the taper-shaped cylinder part is deformed so as to be pushed out of the straight cylinder part during crushing deformation. When the tapered tube portion is pushed out to the outer surface of the straight tube portion, the constricted intermediate tube portion is deformed so as to be folded back, and the large diameter side portion of the tapered tube portion is formed on the outer surface of the end portion of the straight tube portion. By crushing and deforming while abutting, the crushing load increases, so that the amount of energy absorption can be increased. For this reason, the invention of claim 2 can obtain the same effect as that of claim 1.

請求項3に記載の衝撃吸収部材の発明は、請求項1または請求項2の衝撃吸収部材であって、前記ストレート筒部と前記テーパ状筒部の少なくとも一方は、板厚の増加、焼き入れ、あるいは、材質の変更のいずれかによって、前記中間筒部より高強度に形成されていることを特徴とする。   The invention according to claim 3 is the impact absorbing member according to claim 1 or 2, wherein at least one of the straight tube portion and the tapered tube portion is increased in thickness and quenched. Alternatively, it is characterized in that it is formed with higher strength than the intermediate cylinder part by either changing the material.

かかる構成によれば、ストレート筒部とテーパ状筒部の少なくとも一方は、中間筒部より高強度に形成されていることによって、衝撃吸収部材に軸方向の衝撃荷重が負荷された際に、中間筒部がより集中して座屈変形するようになる。   According to this configuration, at least one of the straight tube portion and the tapered tube portion is formed to have a higher strength than the intermediate tube portion, so that when an impact load in the axial direction is applied to the shock absorbing member, The tube portion is more concentrated and buckled.

請求項4に記載の衝撃吸収部材の発明は、請求項1ないし請求項3のいずれか1項に記載の衝撃吸収部材は、前記ストレート筒部及び前記テーパ状筒部は、断面が略多角形状に形成され、前記テーパ状筒部は、前記中間筒部側へ向かって近付くのに連れて、その断面形状が徐々に円形になるように形成されていることを特徴とする。   According to a fourth aspect of the present invention, there is provided the shock absorbing member according to any one of the first to third aspects, wherein the straight tube portion and the tapered tube portion are substantially polygonal in cross section. The tapered cylindrical portion is formed such that its cross-sectional shape gradually becomes circular as it approaches the intermediate cylindrical portion side.

かかる構成によれば、ストレート筒部及びテーパ状筒部は、断面が略多角形状に形成され、テーパ状筒部は、中間筒部側へ向かって近付くのに連れてその断面形状が徐々に円形になるように形成されていることによって、テーパ状筒部の連結側端部が座屈変形の際に、ストレート筒部内に入り込み易くすることができる。このため、軸方向の衝撃荷重を受けた際に、中間筒部が局部的に変形し易くなり、集中して座屈変形するようになる。   According to this configuration, the cross section of the straight tube portion and the tapered tube portion is formed in a substantially polygonal shape, and the cross-sectional shape of the taper tube portion gradually becomes circular toward the intermediate tube portion side. In this way, the connecting side end of the tapered cylindrical portion can easily enter the straight cylindrical portion during buckling deformation. For this reason, when receiving an impact load in the axial direction, the intermediate tube portion is likely to be locally deformed and concentratedly buckled and deformed.

本発明に係る衝撃吸収部材によれば、衝突の際のエネルギー吸収量を大きくして、座屈変形する部分のクラッシュストロークをショートストローク化することができると共に、衝突の際に、安定した状態に座屈変形するようにさせることができる。また、衝撃吸収部材は、この材料の持つ延性をより効果的に活用して、エネルギー吸収能を向上させることができる。   According to the impact absorbing member of the present invention, the amount of energy absorption at the time of collision can be increased, and the crash stroke of the buckled deformation portion can be shortened, and at the time of the collision, a stable state can be obtained. It can be made to buckle and deform. Moreover, the impact absorbing member can improve the energy absorbing ability by more effectively utilizing the ductility of the material.

本発明の実施形態に係る衝撃吸収部材の設置状態の一例を示す車体フレームの斜視図である。It is a perspective view of the body frame which shows an example of the installation state of the impact-absorbing member which concerns on embodiment of this invention. 本発明の実施形態に係る衝撃吸収部材を示す図であり、(a)は正面図、(b)は平面図である。It is a figure which shows the impact-absorbing member which concerns on embodiment of this invention, (a) is a front view, (b) is a top view. (a)、(c)、(e)、(g)、(i)は衝撃吸収部材が荷重を受けて変形する状態を示す中央断面図、(b)、(d)、(f)、(h)、(j)はA部、B部、C部、D部、E部の拡大図である。(A), (c), (e), (g), (i) is a central sectional view showing a state in which the shock absorbing member is deformed by receiving a load, (b), (d), (f), ( h) and (j) are enlarged views of A part, B part, C part, D part and E part. 本発明の実施形態に係る衝撃吸収部材の変形量と荷重との関係を示すグラフである。It is a graph which shows the relationship between the deformation of the impact-absorbing member which concerns on embodiment of this invention, and a load. 本発明の実施形態に係る衝撃吸収部材のエネルギー吸収量と、八角形断面及び比較例1,2のエネルギー吸収量とをそれぞれ示す棒グラフである。It is a bar graph which shows the energy absorption amount of the impact-absorbing member which concerns on embodiment of this invention, and the energy absorption amount of an octagonal cross section and Comparative Examples 1 and 2, respectively. 本発明の実施形態に係る衝撃吸収部材、八角形断面及び比較例1,2における荷重と変形量との関係を示すグラフである。It is a graph which shows the relationship between the load in the impact-absorbing member which concerns on embodiment of this invention, an octagonal cross section, and Comparative Examples 1 and 2 and a deformation amount. 塑性変形した衝撃吸収部材の歪みの分布図である。It is a distribution map of distortion of a plastically deformed shock absorbing member. 各種材料の応力−塑性ひずみ特性を表すグラフある。It is a graph showing the stress-plastic strain characteristic of various materials. 各種の材料で形成した本発明の衝撃吸収部材の歪みと、各種の材料で形成した八角形断面の衝撃吸収部材の歪みとの違いを表した棒グラフである。It is a bar graph showing the difference between the distortion of the shock absorbing member of the present invention formed of various materials and the distortion of the octagonal cross-section shock absorbing member formed of various materials. 本発明に係る衝撃吸収部材の第1変形例を示す断面図である。It is sectional drawing which shows the 1st modification of the impact-absorbing member which concerns on this invention. 本発明の実施形態に係る衝撃吸収部材のエネルギー吸収量と、第2変形例の十二角筒形の衝撃吸収部材及び円筒形の衝撃吸収部材のエネルギー吸収量とを示す棒グラフである。It is a bar graph which shows the energy absorption amount of the impact-absorbing member which concerns on embodiment of this invention, and the energy absorption amount of the dodecagonal cylindrical impact-absorbing member and cylindrical impact-absorbing member of a 2nd modification. 本発明の実施形態に係る衝撃吸収部材、第2変形例の十二角筒形の衝撃吸収部材及び円筒形の衝撃吸収部材における荷重と変形量との関係を示すグラフである。It is a graph which shows the relationship between the load and deformation | transformation amount in the impact-absorbing member which concerns on embodiment of this invention, the impact absorber of the 12th cylinder shape of a 2nd modification, and a cylindrical impact-absorbing member. 本発明に係る衝撃吸収部材の第3変形例を示す図であり、(a)は平面図、(b)は(a)のF−F断面図、(c)は(b)のH部拡大図、(d)はテーパ状筒部と中間筒部との連結部の部分拡大図である。It is a figure which shows the 3rd modification of the impact-absorbing member which concerns on this invention, (a) is a top view, (b) is FF sectional drawing of (a), (c) is the H section expansion of (b). FIG. 4D is a partially enlarged view of the connecting portion between the tapered cylindrical portion and the intermediate cylindrical portion. 本発明の衝撃吸収部材の第4変形例を示す図であり、(a)は平面図、(b)は(a)のG−G断面図、(c)は(b)のI部拡大図である。It is a figure which shows the 4th modification of the impact-absorbing member of this invention, (a) is a top view, (b) is GG sectional drawing of (a), (c) is the I section enlarged view of (b). It is. 本発明に係る衝撃吸収部材の第5変形例を示す図であり、(a)は中央断面図、(b)は衝撃吸収部材が圧潰変形した状態を示す中央断面図である。It is a figure which shows the 5th modification of the impact-absorbing member which concerns on this invention, (a) is center sectional drawing, (b) is a center sectional view which shows the state which the impact-absorbing member was crushed and deformed.

まず、添付図面を参照して、本発明の実施形態に係る衝撃吸収部材を説明する。以下、便宜上、自動車1の進行方向を「前」、後退方向を「後」として説明する。その衝撃吸収部材2を説明する前に、衝撃吸収部材2が搭載される自動車1について説明する。   First, an impact absorbing member according to an embodiment of the present invention will be described with reference to the accompanying drawings. Hereinafter, for convenience, the traveling direction of the automobile 1 will be described as “front” and the backward direction as “rear”. Before describing the shock absorbing member 2, the automobile 1 on which the shock absorbing member 2 is mounted will be described.

≪自動車の構成≫
図1に示すように、自動車1は、車体の下部に、車体の骨格を形成する車体フレーム10が搭載されている。自動車1は、車体フレーム10を有するものであればよく、その形式及び種類は特に限定されない。以下、FRの乗用車の場合を例に挙げて本発明を説明する。
≪Automobile composition≫
As shown in FIG. 1, a vehicle 1 has a vehicle body frame 10 that forms a skeleton of a vehicle body mounted on a lower portion of the vehicle body. The automobile 1 only needs to have the body frame 10, and the type and type thereof are not particularly limited. Hereinafter, the present invention will be described by taking the case of an FR passenger car as an example.

<車体フレームの構成>
車体フレーム10は、車体前後方向に延びる左右一対のサイドフレーム11,11と、このサイドフレーム11,11の間に車幅方向に沿って架設される複数のクロスメンバ12,…と、が一体に溶接結合されて構成されている。車体フレーム10は、例えば、板厚が厚く高強度の鋼材あるいはアルミニウム合金からなる。
<Body frame configuration>
The vehicle body frame 10 includes a pair of left and right side frames 11 and 11 extending in the longitudinal direction of the vehicle body, and a plurality of cross members 12 that are installed between the side frames 11 and 11 along the vehicle width direction. It is constructed by welding. The body frame 10 is made of, for example, a high-strength steel material or aluminum alloy having a large plate thickness.

サイドフレーム11,11は、前側から後方に向かってフロントサイドフレーム13,13、フロアフレーム14,14、リヤサイドフレーム15,15が連設されてなる。左右のサイドフレーム11,11(フロントサイドフレーム13,13)の前端部には、前面衝突の際の衝撃を吸収する衝撃吸収部材2,2をそれぞれ介在してフロントバンパビーム16が架設されている。左右のサイドフレーム11,11(リヤサイドフレーム15,15)の後端部には、追突の際の衝撃を吸収する衝撃吸収部材2,2をそれぞれ介在してリヤバンパビーム17が架設されている。
このため、サイドフレーム11は、衝撃吸収部材2,2によって自動車1が重度の正面衝突及び追突をした場合に、押し潰されて変形し衝突エネルギーを吸収するクラッシュストロークを有する構造になっている。
The side frames 11 and 11 are formed by connecting front side frames 13 and 13, floor frames 14 and 14, and rear side frames 15 and 15 from the front side to the rear side. A front bumper beam 16 is installed at the front end portions of the left and right side frames 11 and 11 (front side frames 13 and 13) through shock absorbing members 2 and 2 that absorb shocks at the time of a frontal collision. . Rear bumper beams 17 are installed at rear end portions of the left and right side frames 11 and 11 (rear side frames 15 and 15) with impact absorbing members 2 and 2 for absorbing impacts at the time of rear-end collision, respectively.
For this reason, the side frame 11 has a structure having a crash stroke that is crushed and deformed to absorb the collision energy when the automobile 1 makes a severe frontal collision and rear-end collision by the impact absorbing members 2 and 2.

≪衝撃吸収部材の構成≫
図2(a)、(b)に示すように、前記衝撃吸収部材2は、自動車1(図1参照)の衝突時に作用する荷重Wによって圧潰変形することにより衝突エネルギーを吸収する筒状の部材であり、クラッシュボックスの機能を有する。衝撃吸収部材2は、例えば、厚さが均一な八角形の筒体からなり、780T鋼(780MPa級加工誘起変態型複合組織高強度鋼)、590R鋼(590MPa級析出強化型鋼)、TWIP(Twining Induced Plasticity(双晶誘起塑性))鋼等の高強度な高張力鋼によって形成されている。衝撃吸収部材2は、内径Dが略一定に形成されたストレート筒部21と、一端部の外径Dと他端部の外径Dとが相違するテーパ状に形成されたテーパ状筒部22と、ストレート筒部21とテーパ状筒部22との間に連結された中間筒部23と、を一体形成してなる。
車体の前側に設置される衝撃吸収部材2は、テーパ状筒部22を前側(荷重Wを受ける側)にして配置される。車体の後側に設置される衝撃吸収部材2は、車体の前側用のものと同一形状であり、テーパ状筒部22を後側(荷重Wを受ける側)にして配置される。
≪Configuration of shock absorbing member≫
As shown in FIGS. 2A and 2B, the shock absorbing member 2 is a cylindrical member that absorbs collision energy by being crushed and deformed by a load W acting upon a collision of the automobile 1 (see FIG. 1). And has a crash box function. The shock absorbing member 2 is made of, for example, an octagonal cylinder having a uniform thickness, and is made of 780T steel (780 MPa class processing-induced transformation type composite structure high strength steel), 590R steel (590 MPa class precipitation strengthened steel), TWIP (Twining). Induced Plasticity (twinning induced plasticity) steel and other high strength steel. Impact absorbing member 2 includes a straight tubular portion 21 of the inner diameter D 1 is formed in a substantially constant, tapered to the outer diameter D 3 of outer diameter D 2 and the other end portion of the one end portion is formed in a tapered shape which differs A cylindrical portion 22 and an intermediate cylindrical portion 23 connected between the straight cylindrical portion 21 and the tapered cylindrical portion 22 are integrally formed.
The shock absorbing member 2 installed on the front side of the vehicle body is arranged with the tapered cylindrical portion 22 on the front side (side receiving the load W). The shock absorbing member 2 installed on the rear side of the vehicle body has the same shape as that for the front side of the vehicle body, and is disposed with the tapered cylindrical portion 22 on the rear side (side receiving the load W).

衝撃吸収部材2は、ストレート筒部21の内径D、テーパ状筒部22の開口端22aの外径D、中間筒部23の外径Dが、
<D<D
の長さに形成されている。
The shock absorbing member 2 has an inner diameter D 1 of the straight tube portion 21, an outer diameter D 2 of the opening end 22 a of the tapered tube portion 22, and an outer diameter D 3 of the intermediate tube portion 23.
D 3 <D 1 <D 2
It is formed in the length.

<ストレート筒部の構成>
ストレート筒部21は、開口端21aが、サイドフレーム11の前端部または後端部に軸心を一致させて溶接されている。ストレート筒部21は、開口端21aから中間筒部23側にわたって内径Dが一定に形成されている。
<Configuration of straight tube section>
The straight tube portion 21 is welded so that the opening end 21 a is aligned with the front end portion or the rear end portion of the side frame 11 in the axial center. Straight tubular portion 21 has an inner diameter D 1 over intermediate tubular portion 23 side is formed to be constant from the opening end 21a.

<テーパ状筒部の構成>
テーパ状筒部22は、開口端22aが、フロントバンパビーム16またはリヤバンパビーム17に溶接されている(図1参照)。つまり、車体の前側に設置された衝撃吸収部材2のテーパ状筒部22は、正面衝突の際に、荷重Wが開口端22aにかかるように、開口端22aを前側にして配置される。そして、車体の後側に設置された衝撃吸収部材2のテーパ状筒部22は、追突の際に、荷重Wが開口端22aにかかるように、開口端22aを後側にして配置される。テーパ状筒部22は、開口端21aから中間筒部23側にわたってテーパ状に縮径されて形成されている。テーパ状筒部22は、連結側端部22bの外径Dが開口端21aの外径D、及び、ストレート筒部21の内径Dより小径に形成されている。
<Configuration of tapered cylindrical portion>
The tapered end portion 22a of the tapered cylindrical portion 22 is welded to the front bumper beam 16 or the rear bumper beam 17 (see FIG. 1). That is, the tapered cylindrical portion 22 of the shock absorbing member 2 installed on the front side of the vehicle body is arranged with the opening end 22a on the front side so that the load W is applied to the opening end 22a in the case of a frontal collision. The tapered cylindrical portion 22 of the shock absorbing member 2 installed on the rear side of the vehicle body is disposed with the opening end 22a on the rear side so that the load W is applied to the opening end 22a during the rear-end collision. The tapered cylindrical portion 22 is formed with a reduced diameter in a tapered shape from the opening end 21a to the intermediate cylindrical portion 23 side. The tapered cylindrical portion 22 is formed such that the outer diameter D 3 of the connecting side end portion 22 b is smaller than the outer diameter D 2 of the opening end 21 a and the inner diameter D 1 of the straight cylindrical portion 21.

<中間筒部の構成>
中間筒部23は、ストレート筒部21とテーパ状筒部22とを連結していることにより、ストレート筒部21側が内径Dに形成され、テーパ状筒部22側が外径Dに形成されている。このため、中間筒部23は、テーパ状筒部22側からストレート筒部21側に拡径した状態に形成されている。
<Configuration of intermediate cylinder>
Intermediate tubular portion 23, by connecting the straight tubular portion 21 and the tapered cylinder portion 22, the straight tube portion 21 side is formed on the inner diameter D 1, tapered cylinder portion 22 side is formed on the outer diameter D 3 ing. For this reason, the intermediate | middle cylinder part 23 is formed in the state expanded from the taper-shaped cylinder part 22 side to the straight cylinder part 21 side.

≪衝撃吸収部材の作用≫
次に、図1〜図9を参照しながら本発明の実施形態に係る衝撃吸収部材2の作用を、自動車1が他車と重度の正面衝突(前面衝突)した場合を例に挙げて説明する。
なお、車両の前側に配置される衝撃吸収部材2と車両の後側に配置される衝撃吸収部材2は、荷重Wを受けた際に、同じ作用効果がある。以下、車両の前側に配置される衝撃吸収部材2のみ説明して、車両の後側に配置される衝撃吸収部材2の説明は省略する。
≪Operation of shock absorbing member≫
Next, the operation of the shock absorbing member 2 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 9 by taking as an example a case where the automobile 1 has a severe frontal collision (frontal collision) with another vehicle. .
The impact absorbing member 2 disposed on the front side of the vehicle and the impact absorbing member 2 disposed on the rear side of the vehicle have the same effects when receiving the load W. Hereinafter, only the shock absorbing member 2 disposed on the front side of the vehicle will be described, and description of the shock absorbing member 2 disposed on the rear side of the vehicle will be omitted.

<衝撃吸収部材の変形について>
まず、図1及び図3を参照して衝突時の衝撃吸収部材2の変形を時系列的に説明する。
図1に示すように、自動車1が走行中に、例えば、他車と重度の正面衝突をした場合は、自動車1の前部に設置されたフロントバンパ(図示せず)及びフロントバンパビーム16が他車によって後側方向に押圧されて、フロントバンパビーム16を介して衝撃吸収部材2,2のテーパ状筒部22の前端部(開口端22a)が押圧される。
<About deformation of shock absorbing member>
First, the deformation of the shock absorbing member 2 at the time of collision will be described in time series with reference to FIGS.
As shown in FIG. 1, when the automobile 1 is traveling, for example, when a severe frontal collision occurs with another vehicle, a front bumper (not shown) and a front bumper beam 16 installed at the front of the automobile 1 are The front end portion (opening end 22 a) of the tapered cylindrical portion 22 of the shock absorbing member 2, 2 is pressed through the front bumper beam 16 by being pressed rearward by another vehicle.

図3(a)に示すように、衝撃吸収部材2に加わった荷重(軸圧潰荷重)Wは、テーパ状筒部22の開口端22aを押圧する。すると、テーパ状筒部22は、中間筒部23を押圧して、図3(c)、(e)、(g)、(i)に示すように中間筒部23を集中的に座屈変形させる。   As shown in FIG. 3A, the load (axial crushing load) W applied to the shock absorbing member 2 presses the open end 22 a of the tapered cylindrical portion 22. Then, the tapered cylindrical portion 22 presses the intermediate cylindrical portion 23 to intensively buckle and deform the intermediate cylindrical portion 23 as shown in FIGS. 3 (c), (e), (g), and (i). Let

つまり、テーパ状筒部22の中間筒部23側の連結側端部22bの外径Dは、ストレート筒部21の内径Dよりも小さく形成されている。このため、衝撃吸収部材2は、テーパ状筒部22の連結側端部22bが、ストレート筒部21内に入り込んで侵入するように移動しながら変形するので、中間筒部23が折り返すように安定した状態で座屈変形すると共に、テーパ状筒部22の連結側端部22b寄りの外周面が、ストレート筒部21の荷重負荷側端部21bの内面を中間筒部23を介して押圧しながら変形することにより、圧潰荷重が上昇する。このため、エネルギー吸収量を増加させることができる。
さらに、図3(g)、(h)、(i)、(j)に示すように、衝撃吸収部材2は、テーパ状筒部22の連結側端部22bが、ストレート筒部21の荷重負荷側端部21bをストレート筒部21内に引っ張りながらストレート筒部21内に大きく入り込むと、中間筒部23及びストレート筒部21の荷重負荷側端部21bを、ストレート筒部21内に引き込んで停止する。衝突荷重(軸圧潰荷重)Wは、中間筒部23及びストレート筒部21の荷重負荷側端部21bが座屈変形することによって吸収される。
That is, the outer diameter D 3 of the connection side end 22 b on the intermediate cylinder portion 23 side of the tapered cylinder portion 22 is formed to be smaller than the inner diameter D 1 of the straight cylinder portion 21. For this reason, the shock absorbing member 2 is deformed while the connecting side end portion 22b of the tapered cylindrical portion 22 moves so as to enter and enter the straight cylindrical portion 21, so that the intermediate cylindrical portion 23 is stably folded back. In this state, the outer peripheral surface near the connection side end 22b of the tapered cylindrical portion 22 presses the inner surface of the load load side end 21b of the straight cylindrical portion 21 via the intermediate cylindrical portion 23. By deforming, the crushing load increases. For this reason, the amount of energy absorption can be increased.
3 (g), (h), (i), and (j), the shock absorbing member 2 is configured such that the connecting side end portion 22b of the tapered cylindrical portion 22 has a load applied to the straight cylindrical portion 21. When the side end 21b is pulled into the straight tube portion 21 while being pulled into the straight tube portion 21, the load end side portion 21b of the intermediate tube portion 23 and the straight tube portion 21 is pulled into the straight tube portion 21 and stopped. To do. The collision load (axial crushing load) W is absorbed by buckling deformation of the load-load side end portion 21b of the intermediate tube portion 23 and the straight tube portion 21.

これにより、図1に示す左右のサイドフレーム11は、自動車1が正面衝突の際に、衝撃吸収部材2,2の中間筒部23に変形を集中させて、大きな歪みを発生させることによって、エネルギー吸収能を向上させて、衝突の際に座屈変形する部分のクラッシュストロークをショートストローク化することができる。   Accordingly, the left and right side frames 11 shown in FIG. 1 concentrate energy on the intermediate cylinder portion 23 of the shock absorbing members 2 and 2 and generate a large distortion when the automobile 1 is in a frontal collision, thereby generating energy. The absorption capacity can be improved, and the crash stroke of the portion that buckles and deforms in the event of a collision can be shortened.

そして、衝撃吸収部材2,2は、衝突の際に押し潰されるクラッシャブルゾーンを、サイドフレーム11,11の前端部に設置することができるので、車体フレーム10の前端部で衝突時の衝突エネルギーを吸収して、その衝撃を局部的に受け止めることができる。このため、衝撃吸収部材2,2は、この衝撃吸収部材2,2より車体後方へ衝撃が伝達されるのを抑制することができる。また、衝撃吸収部材2,2は、中間筒部23より車両後方にある部材にかかる衝撃を緩和させて、衝突時の荷重Wにより衝撃吸収部材2,2の後方にある部材が変形したり、破壊したりするのを抑えることができる。   Since the shock absorbing members 2 and 2 can install a crushable zone that is crushed in the event of a collision at the front end portion of the side frames 11 and 11, the collision energy at the time of the collision at the front end portion of the body frame 10. Can be absorbed and the impact can be received locally. For this reason, the impact absorbing members 2 and 2 can suppress the impact from being transmitted to the rear of the vehicle body from the impact absorbing members 2 and 2. Further, the shock absorbing members 2 and 2 relieve the impact applied to the members located behind the vehicle from the intermediate cylinder 23, and the members located behind the shock absorbing members 2 and 2 are deformed by the load W at the time of collision. It can suppress destruction.

なお、図1に示す自動車1に他車が追突した場合にも、車体の後部に配置した衝撃吸収部材2,2が、正面衝突の場合と同様に、追突荷重を吸収する。   Even when another vehicle collides with the automobile 1 shown in FIG. 1, the impact absorbing members 2 and 2 arranged at the rear part of the vehicle body absorb the rear-end collision load as in the case of a frontal collision.

<変形量と荷重との関係について>
次に、図3及び図4を参照しながら衝撃吸収部材2が変形する際の変形量と荷重との関係を説明する。図4は、本発明の実施形態に係る衝撃吸収部材の変形量と荷重との関係を示すグラフである。
<Relationship between deformation and load>
Next, the relationship between the amount of deformation and the load when the shock absorbing member 2 is deformed will be described with reference to FIGS. 3 and 4. FIG. 4 is a graph showing the relationship between the amount of deformation and the load of the shock absorbing member according to the embodiment of the present invention.

図4に示すように、自動車1が正面衝突して軸方向の荷重Wによって衝撃吸収部材2が変形し始めるときは、a部に示すように、衝撃吸収部材2に大きな荷重Wが負荷される。衝撃吸収部材2が変形し始めると、a部より弱い荷重Wによって、テーパ状筒部22の連結側端部22bが中間筒部23を押圧して座屈させながらストレート筒部21内に入り込む(図3の(c)、(d)の状態)。   As shown in FIG. 4, when the automobile 1 collides head-on and the shock absorbing member 2 starts to deform due to the axial load W, a large load W is applied to the shock absorbing member 2 as shown in part a. . When the shock absorbing member 2 starts to deform, the connection side end portion 22b of the tapered cylindrical portion 22 enters the straight cylindrical portion 21 while pressing and buckling the intermediate cylindrical portion 23 with a load W weaker than the a portion ( (States (c) and (d) in FIG. 3).

テーパ状筒部22の連結側端部22bは、さらに、ストレート筒部21内に入り込むと、ストレート筒部21の内壁に当接する。すると、荷重Wがb部から上昇し始める(図3の(e)、(f)の状態)。   When the connection side end portion 22 b of the tapered cylindrical portion 22 further enters the straight cylindrical portion 21, it contacts the inner wall of the straight cylindrical portion 21. Then, the load W starts to rise from the portion b (states (e) and (f) in FIG. 3).

さらに、ストレート筒部21の荷重負荷側端部21bが座屈変形してストレート筒部21内に引き込まれると、テーパ状筒部22による楔効果により、変形量がc部からd部にかけて上昇すると共に、荷重Wも上昇する(図3の(g)、(h)、(i)、(j)の状態)。つまり、衝撃吸収部材2のエネルギー吸収効率が上昇する。
そして、衝撃吸収部材2は、e部まで変形量が増加したときに、ストレート筒部21の座屈変形が始まり、荷重が大きくなる。
Further, when the load-load side end portion 21b of the straight tube portion 21 is buckled and pulled into the straight tube portion 21, the amount of deformation increases from the c portion to the d portion due to the wedge effect by the tapered tube portion 22. At the same time, the load W increases (states (g), (h), (i), and (j) in FIG. 3). That is, the energy absorption efficiency of the shock absorbing member 2 is increased.
Then, when the amount of deformation of the shock absorbing member 2 increases to the e portion, buckling deformation of the straight tube portion 21 starts and the load increases.

<エネルギー吸収量について>
次に、図5及び図6を参照しながら衝撃吸収部材2のエネルギー吸収量について、従来の衝撃吸収部材と比較して説明する。図5は、本発明の衝撃吸収部材のエネルギー吸収量と、八角形断面及び比較例1,2のエネルギー吸収量とをそれぞれ示す棒グラフである。図6は、本発明の衝撃吸収部材、八角形断面及び比較例1,2における荷重Wと変形量との関係を示すグラフである。
<About energy absorption>
Next, the energy absorption amount of the shock absorbing member 2 will be described in comparison with a conventional shock absorbing member with reference to FIGS. FIG. 5 is a bar graph showing the energy absorption amount of the shock absorbing member of the present invention, and the energy absorption amounts of the octagonal cross section and Comparative Examples 1 and 2, respectively. FIG. 6 is a graph showing the relationship between the load W and the amount of deformation in the impact absorbing member, octagonal cross section, and comparative examples 1 and 2 of the present invention.

図5に示すように、本発明の衝撃吸収部材2は、八角形断面のストレートの衝撃吸収部材100、中間部201が段差状の八角筒体200の比較例1、及び、傾斜した中間筒部301を有する八角筒体300の比較例2と比較して、エネルギー吸収量が大きいという実験結果が得られた。本発明の衝撃吸収部材2のエネルギー吸収量は、図5に示すように、同等重量の八角形断面の衝撃吸収部材100と比較して、L(1.6kJ)大きい。   As shown in FIG. 5, the shock absorbing member 2 of the present invention includes a straight shock absorbing member 100 having an octagonal cross section, a comparative example 1 of an octagonal tubular body 200 having a stepped intermediate portion 201, and an inclined intermediate tubular portion. Compared with the comparative example 2 of the octagonal cylinder 300 having 301, an experimental result that the amount of energy absorption is large was obtained. As shown in FIG. 5, the energy absorption amount of the shock absorbing member 2 of the present invention is larger by L (1.6 kJ) than the shock absorbing member 100 having an octagonal cross section of the same weight.

また、図6に示すように、本発明の衝撃吸収部材2において、前述したテーパ状筒部22の中間筒部23側がストレート筒部21内に入り込んで中間筒部23及びストレート筒部21の荷重負荷側端部21bが座屈変形する際の変形量に対する荷重Wは、八角形断面の衝撃吸収部材100及び比較例1,2と比較して全体的に大きくなっている。   Further, as shown in FIG. 6, in the shock absorbing member 2 of the present invention, the intermediate tube portion 23 side of the tapered tube portion 22 described above enters the straight tube portion 21 and the load on the intermediate tube portion 23 and the straight tube portion 21. The load W with respect to the deformation amount when the load side end portion 21b is buckled and deformed is larger as a whole than the impact absorbing member 100 having the octagonal cross section and the comparative examples 1 and 2.

<塑性変形した衝撃吸収部材の歪みについて>
次に、図7を参照して塑性変形した衝撃吸収部材2の歪みについて説明する。図7は、塑性変形した衝撃吸収部材2の歪みの分布図である。
図7に示すように、衝撃吸収部材2は、自動車1(図1参照)が正面衝突してテーパ状筒部22の連結側端部22bがストレート筒部21内に食い込むことによって、ストレート筒部21の荷重負荷側端部21bが周方向に引張力を受けて均一な歪みが発生する。そして、断面八角筒状の衝撃吸収部材2の歪みは、括れた形状の中間筒部23の角綾部2aに集中して高くなる。このように、衝撃吸収部材2は、中間筒部23に大きな歪みが集中して座屈変形することにより、ストレート筒部21の大部分に歪みが発生せず、変形量が小さいため、ショートストローク化が可能である。
<Distortion of plastically deformed impact absorbing member>
Next, the distortion of the impact absorbing member 2 plastically deformed will be described with reference to FIG. FIG. 7 is a strain distribution diagram of the impact-absorbing member 2 plastically deformed.
As shown in FIG. 7, the shock absorbing member 2 has a straight cylindrical portion when the automobile 1 (see FIG. 1) collides front and the connection side end portion 22 b of the tapered cylindrical portion 22 bites into the straight cylindrical portion 21. The load-load side end 21b 21 receives a tensile force in the circumferential direction, and a uniform distortion occurs. Then, the distortion of the shock absorbing member 2 having an octagonal cross section in the cross section is concentrated on the corner portion 2a of the concentric intermediate tube portion 23 and becomes high. Thus, since the shock absorbing member 2 is buckled and deformed with a large strain concentrated on the intermediate tube portion 23, most of the straight tube portion 21 is not distorted and the deformation amount is small. Is possible.

<材料特性による歪みの違い>
次に、図8及び図9を参照して衝撃吸収部材2に使用する材料特性による歪みの違いについて説明する。図8は、各種材料の応力−塑性ひずみ特性を表すグラフある。図9は、各種の材料で形成した本発明の衝撃吸収部材の吸収エネルギー量と、各種の材料で形成した八角形断面の衝撃吸収部材吸収エネルギー量との違いを表した棒グラフである。
<Difference in strain due to material properties>
Next, with reference to FIG.8 and FIG.9, the difference in the distortion by the material characteristic used for the impact-absorbing member 2 is demonstrated. FIG. 8 is a graph showing stress-plastic strain characteristics of various materials. FIG. 9 is a bar graph showing the difference between the absorbed energy amount of the shock absorbing member of the present invention formed of various materials and the absorbed energy amount of the octagonal cross section formed of various materials.

本発明の衝撃吸収部材2と八角形断面の衝撃吸収部材100(図5参照)とを、780T鋼(f)、590R鋼(g)及びTWIP鋼(h)でそれぞれ形成した場合の応力に対する塑性歪みは、図8に示すようになる。図8から、それらの材料の中で衝撃吸収部材2をTWIP鋼(h)で形成した場合の応力が一番高く、780T鋼(f)で形成した場合の応力が一番低いという結果になった。
このように、衝撃吸収部材2は、高強度及び高延性を有するTWIP鋼(h)で形成することによって、さらに、大きな荷重Wで圧潰されるようにすることができる。
Plasticity against stress when the shock absorbing member 2 of the present invention and the shock absorbing member 100 having an octagonal cross section (see FIG. 5) are formed of 780T steel (f), 590R steel (g), and TWIP steel (h), respectively. The distortion is as shown in FIG. FIG. 8 shows that among these materials, the stress when the shock absorbing member 2 is formed of TWIP steel (h) is the highest, and the stress when formed of 780T steel (f) is the lowest. It was.
Thus, the impact absorbing member 2 can be further crushed with a large load W by being formed of TWIP steel (h) having high strength and high ductility.

また、図9に示すように、本発明の衝撃吸収部材2と八角形断面の衝撃吸収部材100(図5参照)とを、780T鋼(f)、590R鋼(g)及びTWIP鋼(h)でそれぞれ形成した場合のエネルギー吸収量(kJ)を比較すると、本発明の衝撃吸収部材2のエネルギー吸収量が八角形断面の衝撃吸収部材100(図5参照)より、全ての材料で大きいという実験結果が得られた。
特に、TWIP鋼(h)で衝撃吸収部材2の全体を形成した場合は、エネルギー吸収量が大きく、エネルギー吸収能の向上が顕著に現れた。衝撃吸収部材2は、前述したように括れた形状のテーパ状筒部22で高い歪みが発生するので、TWIP鋼(h)のような高歪み領域での強度が高く、高延性の材料を用いることによって、さらに、エネルギー吸収効果を向上させることができる。
Further, as shown in FIG. 9, the shock absorbing member 2 of the present invention and the shock absorbing member 100 having an octagonal cross section (see FIG. 5) are made of 780T steel (f), 590R steel (g), and TWIP steel (h). When the energy absorption amount (kJ) in the case of each of the materials is compared, the energy absorption amount of the shock absorbing member 2 of the present invention is larger in all materials than the shock absorbing member 100 having an octagonal cross section (see FIG. 5). Results were obtained.
In particular, when the entire shock absorbing member 2 is formed of TWIP steel (h), the energy absorption amount is large, and the energy absorption ability is significantly improved. Since the shock absorbing member 2 generates high strain in the tapered cylindrical portion 22 having the constricted shape as described above, a material having high strength and high ductility in a high strain region such as TWIP steel (h) is used. As a result, the energy absorption effect can be further improved.

[変形例]
なお、本発明は、前記実施形態に限定されるものではなく、その技術的思想の範囲内で種々の改造及び変更が可能であり、本発明はこれら改造及び変更された発明にも及ぶことは勿論である。
[Modification]
The present invention is not limited to the above-described embodiment, and various modifications and changes can be made within the scope of the technical idea. The present invention extends to these modifications and changes. Of course.

≪第1変形例≫
図10は、本発明に係る衝撃吸収部材の第1変形例を示す断面図である。
前記実施形態では、図2に示すように、衝撃吸収部材2の一例として、テーパ状に拡開して衝撃吸収部材2における外径Dが最大なテーパ状筒部22の開口端22a側を荷重Wが負荷される側にして配置したものを説明したが、これに限定されるものではない。例えば、図10に示す衝撃吸収部材3のように、ストレート筒部31と、テーパ状筒部32と中間筒部33とを有する筒体であればよい。
≪First modification≫
FIG. 10 is a cross-sectional view showing a first modification of the shock absorbing member according to the present invention.
In the embodiment, as shown in FIG. 2, as an example of the impact absorbing member 2, the opening end 22 a side of the tapered cylindrical portion 22 that expands in a tapered shape and has the largest outer diameter D 2 in the impact absorbing member 2 is used. Although what was arrange | positioned on the side to which the load W is loaded was demonstrated, it is not limited to this. For example, as in the impact absorbing member 3 shown in FIG. 10, any cylindrical body having a straight cylindrical portion 31, a tapered cylindrical portion 32, and an intermediate cylindrical portion 33 may be used.

衝撃吸収部材3は、外径D10が略一定に形成されたストレート筒部31と、荷重Wが負荷される開口端32a側(一端部)の内径D20と連結側端部32b(他端部)の外径D30とが相違するテーパ状に形成されたテーパ状筒部32と、前記ストレート筒部31とテーパ状筒部32の連結側端部32b(他端部)との間に介在されて両者が同軸上に連結された中間筒部33と、を有して一体形成されている。
前記外径D10、内径D20、外径D30は、
20<D10<D30
の長さになるように形成してもよい。
つまり、テーパ状筒部32は、荷重Wがかかる側が縮径されて細く、中間筒部33側の連結側端部32bが最大の外径D30になるように形成されている。
Impact-absorbing member 3 has a straight tubular portion 31 having an outer diameter D 10 of which is formed in a substantially constant, connecting-side end portion 32 b (the other end to the inner diameter D 20 of the opening end 32a side of the load W is loaded (one end) a tapered tubular portion 32 and the outer diameter D 30 is tapered to different parts), between the connecting-side end portion 32b of the straight tubular portion 31 and the tapered cylinder portion 32 (the other end) And an intermediate cylinder portion 33 that is interposed and coaxially connected to each other.
The outer diameter D 10 , inner diameter D 20 , and outer diameter D 30 are:
D 20 <D 10 <D 30
You may form so that it may become.
That is, the tapered cylinder portion 32, thin side load W is applied is reduced in diameter, the connecting-side end portion 32b of the intermediate cylinder portion 33 side is formed to be the maximum outer diameter D 30.

衝撃吸収部材3は、このように形成されたことによって、テーパ状筒部32の開口端32aに過大な荷重Wが負荷されると、連結側端部32bが中間筒部33の外周からストレート筒部31の外周側へ押し出されて、中間筒部33が折り返すように変形すると共に、
テーパ状筒部32の連結側端部32b寄りの内面が、中間筒部33を介してストレート筒部31の荷重負荷側端部31bの外面を押圧しながら座屈変形することにより、圧潰荷重が上昇する。このため、第1変形例の場合も、前記実施形態と同様に、エネルギー吸収量を増加させることができるという効果がある。
By forming the shock absorbing member 3 in this manner, when an excessive load W is applied to the opening end 32a of the tapered cylindrical portion 32, the connecting side end portion 32b extends from the outer periphery of the intermediate cylindrical portion 33 to the straight cylinder. While being pushed out to the outer peripheral side of the part 31 and deforming so that the intermediate cylinder part 33 is folded back,
The inner surface of the tapered cylindrical portion 32 near the connection side end portion 32b is buckled and deformed while pressing the outer surface of the load loading side end portion 31b of the straight cylindrical portion 31 via the intermediate cylindrical portion 33, so that the crushing load is reduced. To rise. For this reason, also in the case of a 1st modification, there exists an effect that the amount of energy absorption can be increased similarly to the said embodiment.

≪第2変形例≫
図11は、本発明の実施形態に係る衝撃吸収部材のエネルギー吸収量と、第2変形例の十二角筒形の衝撃吸収部材及び円筒形の衝撃吸収部材のエネルギー吸収量とを示す棒グラフである。図12は、本発明の衝撃吸収部材、第2変形例の十二角筒形の衝撃吸収部材及び円筒形の衝撃吸収部材における荷重と変形量との関係を示すグラフである。
≪Second modification≫
FIG. 11 is a bar graph showing the energy absorption amount of the shock absorbing member according to the embodiment of the present invention and the energy absorption amount of the twelve-cylindrical shock absorbing member and the cylindrical shock absorbing member of the second modified example. is there. FIG. 12 is a graph showing the relationship between the load and the amount of deformation in the shock absorbing member of the present invention, the twelve-cornered shock absorbing member of the second modified example, and the cylindrical shock absorbing member.

前記実施形態及び第1変形例では、八角筒形状の衝撃吸収部材2,3を説明したが、衝撃吸収部材2,3は、図11に示すように、十二角筒形状の衝撃吸収部材4や、円筒形状の衝撃吸収部材5であっても構わない。つまり、衝撃吸収部材4,5は、軸直交方向の断面の形状が筒状であればよく、角筒体でも円筒体でもよい。   In the embodiment and the first modified example, the octagonal cylindrical shock absorbing members 2 and 3 have been described. However, the shock absorbing members 2 and 3 are, as shown in FIG. Alternatively, it may be a cylindrical shock absorbing member 5. In other words, the impact absorbing members 4 and 5 may be cylindrical as long as the shape of the cross section in the direction perpendicular to the axis is cylindrical.

この場合、図11に示す十二角筒形状の衝撃吸収部材4は、前記実施形態の衝撃吸収部材2よりもエネルギー吸収量が大きいという実験結果が得られた。また、円筒形状の衝撃吸収部材5は、前記実施形態の衝撃吸収部材2と略同等のエネルギー吸収量が得られた。十二角筒形状の衝撃吸収部材4は、括れ形状の中間筒部43に角綾部4aを有することによって、その中間筒部43で歪みが大きく、数多く出て、その歪みの生じる領域も増加するため、エネルギー吸収量が大きくなっていると考えられる。   In this case, an experimental result was obtained that the impact absorption member 4 having a dodecagonal tube shape shown in FIG. 11 has a larger energy absorption amount than the impact absorption member 2 of the above embodiment. Moreover, the cylindrical-shaped impact-absorbing member 5 obtained the energy absorption amount substantially equivalent to the impact-absorbing member 2 of the said embodiment. The twelve-corner-shaped shock absorbing member 4 has a square twill portion 4a in the constricted intermediate tube portion 43, so that the intermediate tube portion 43 has a large distortion, and a large number of distortions occur and the region where the distortion occurs increases. Therefore, it is considered that the amount of energy absorption is increasing.

また、図12に示すように、十二角筒形状の衝撃吸収部材4及び円筒形状の衝撃吸収部材5は、前述した本発明の衝撃吸収部材2と略同様に、圧潰変形させる荷重Wが大きいという実験結果が得られた。   As shown in FIG. 12, the impact absorbing member 4 and the impact absorbing member 5 having a cylindrical shape have a large load W to be crushed and deformed in substantially the same manner as the impact absorbing member 2 of the present invention described above. The experimental results were obtained.

≪第3変形例≫
図13は、本発明に係る衝撃吸収部材の第3変形例を示す図であり、(a)は平面図、(b)は(a)のF−F断面図、(c)は(b)のH部拡大図、(d)はテーパ状筒部と中間筒部との連結部の部分拡大図である。
図13(a)〜(d)に示すように、衝撃吸収部材6は、テーパ状筒部62の角綾部6aのアールR2を、ストレート筒部61の角綾部6aのアールR1より大きくして、円弧状に形成してもよい。衝撃吸収部材2は、このように、テーパ状筒部62の角綾部6aのアールR2を大きくすることによって、ストレート筒部61の角綾部6aとテーパ状筒部62の連結側端部62bの角綾部6aとのオフセット量S(内径Dと外径Dとの差)が大きくなる。衝撃吸収部材は、このように形成することにより、圧潰変形時に、ストレート筒部61の角綾部6aとテーパ状筒部62の連結側端部62bの角綾部6aとが干渉し難くなる。そのため、テーパ状筒部62は、圧潰変形する際に、ストレート筒部61内に入り込み易くなり、安定して圧潰される。
<< Third Modification >>
13A and 13B are views showing a third modification of the shock absorbing member according to the present invention, in which FIG. 13A is a plan view, FIG. 13B is a sectional view taken along line FF in FIG. 13A, and FIG. (D) is the elements on larger scale of the connection part of a taper-shaped cylinder part and an intermediate | middle cylinder part.
As shown in FIGS. 13A to 13D, the shock absorbing member 6 has a radius R2 of the corner portion 6a of the tapered tubular portion 62 larger than a radius R1 of the corner portion 6a of the straight tubular portion 61, and You may form in circular arc shape. As described above, the shock absorbing member 2 increases the radius R2 of the corner portion 6a of the tapered cylindrical portion 62, thereby increasing the corners of the corner portion 6a of the straight cylindrical portion 61 and the connecting side end portion 62b of the tapered cylindrical portion 62. offset S between Ayabe 6a (the difference between the inner diameter D 1 and an outer diameter D 3) increases. By forming the shock absorbing member in this manner, the corner portion 6a of the straight tube portion 61 and the corner portion 6a of the connecting side end portion 62b of the tapered tube portion 62 are less likely to interfere with each other during crushing deformation. For this reason, the tapered cylindrical portion 62 easily enters the straight cylindrical portion 61 when being crushed and is stably crushed.

≪第4変形例≫
図14は、本発明に係る衝撃吸収部材の第4変形例を示す図であり、(a)は平面図、(b)は(a)のG−G断面図、(c)は(b)のI部拡大図である。
図14(a)〜(c)に示すように、衝撃吸収部材7は、テーパ状筒部72を、中間筒部73側へ向かって近付くのに連れて、その断面形状が略八角形状(略多角形状)から徐々に円形になるように形成してもよい。つまり、テーパ状筒部72の連結側端部72bは、角綾部7aが無くなり、アールR4が円形になるように形成する。このため、そのアールR4は、ストレート筒部71の角綾部7aのアールR3より大きくなる。
このようにしても、前記第3変形例の衝撃吸収部材6と同様な作用効果を得られる。
<< Fourth Modification >>
14A and 14B are views showing a fourth modification of the shock absorbing member according to the present invention, in which FIG. 14A is a plan view, FIG. 14B is a sectional view taken along line GG in FIG. 14A, and FIG. FIG.
As shown in FIGS. 14A to 14C, as the shock absorbing member 7 approaches the tapered cylindrical portion 72 toward the intermediate cylindrical portion 73, the cross-sectional shape thereof is a substantially octagonal shape (substantially). You may form so that it may become circular gradually from a polygonal shape. That is, the connection side end portion 72b of the tapered cylindrical portion 72 is formed such that the corner portion 7a is eliminated and the round R4 is circular. For this reason, the radius R4 is larger than the radius R3 of the corner portion 7a of the straight tube portion 71.
Even if it does in this way, the effect similar to the impact-absorbing member 6 of the said 3rd modification can be acquired.

≪第5変形例≫
図15は、本発明に係る衝撃吸収部材の第5変形例を示す図であり、(a)は中央断面図、(b)は衝撃吸収部材が圧潰変形した状態を示す中央断面図である。
図15(a)、(b)に示すように、衝撃吸収部材8は、ストレート筒部81とテーパ状筒部82の少なくとも一方の板厚t1,t2を、中間筒部73の板厚t3よりも大きくすることによって、ストレート筒部81またはテーパ状筒部82の強度を中間筒部73より高強度にすることができる。
<< Fifth Modification >>
15A and 15B are views showing a fifth modification of the impact absorbing member according to the present invention, in which FIG. 15A is a central sectional view, and FIG. 15B is a central sectional view showing a state where the impact absorbing member is crushed and deformed.
As shown in FIGS. 15A and 15B, the shock absorbing member 8 has a thickness t1, t2 of at least one of the straight cylindrical portion 81 and the tapered cylindrical portion 82 that is greater than the thickness t3 of the intermediate cylindrical portion 73. Also, the strength of the straight tube portion 81 or the tapered tube portion 82 can be made higher than that of the intermediate tube portion 73.

このようにすれば、衝撃吸収部材8に圧潰荷重Wが負荷された際に、括れ形状の中間筒部73に歪みが集中するようにさせることができる。つまり、テーパ状筒部82とストレート筒部81とを強化して衝突の際の変形を抑制することによって、図15(b)に示すように、中間筒部83を折り返すように変形させて、テーパ状筒部82に引張荷重が作用して中間筒部83に分散するため、さらに、中間筒部83に集中して歪みが発生する。
その結果、衝撃吸収部材8に圧潰荷重Wが負荷された際に、不容易にテーパ状筒部82及びストレート筒部81が座屈するのを抑制することができる。
In this way, when the crushing load W is applied to the impact absorbing member 8, the strain can be concentrated on the constricted intermediate tube portion 73. That is, by reinforcing the tapered cylindrical portion 82 and the straight cylindrical portion 81 and suppressing deformation at the time of collision, as shown in FIG. Since a tensile load acts on the tapered cylindrical portion 82 and is dispersed in the intermediate cylindrical portion 83, the strain is concentrated on the intermediate cylindrical portion 83 and further generated.
As a result, when the crushing load W is applied to the impact absorbing member 8, it is possible to prevent the tapered cylindrical portion 82 and the straight cylindrical portion 81 from being buckled easily.

なお、テーパ状筒部82及びストレート筒部81は、前記板厚t1,t2,t3を相違させることに代えて、焼き入れよって強度を変更したり、あるいは、強度の相違する材質に変更したりすることよって、中間筒部83よりも高強度になるように形成してもよい。この場合も、前記第5変形例と同様な効果を得ることができる。   The tapered cylindrical portion 82 and the straight cylindrical portion 81 may be changed in strength by quenching instead of changing the plate thicknesses t1, t2, and t3, or may be changed to materials having different strengths. Accordingly, the intermediate cylinder portion 83 may be formed to have a higher strength. Also in this case, the same effect as the fifth modified example can be obtained.

1 自動車
2,3,4,5,6,7,8 撃吸収部材
21,31,61,71,81 ストレート筒部
22,32,62,72,82 テーパ状筒部
23,33,43,63,73,83 中間筒部
,D20 内径
,D,D10,D30 外径
t1,t2,t3 板厚
W 荷重
1 Automobile 2, 3, 4, 5, 6, 7, 8 Strike absorbing member 21, 31, 61, 71, 81 Straight tube portion 22, 32, 62, 72, 82 Tapered tube portion 23, 33, 43, 63 , 73 and 83 intermediate tubular portion D 1, D 20 inner diameter D 2, D 3, D 10 , D 30 outer diameter t1, t2, t3 thickness W load

Claims (4)

自動車の衝突時に作用する荷重によって圧潰変形することにより衝突エネルギーを吸収する筒状の衝撃吸収部材であって、
内径Dが略一定に形成されたストレート筒部と、
一端部の外径Dと他端部の外径Dとが相違するテーパ状に形成されたテーパ状筒部と、
前記ストレート筒部と前記テーパ状筒部の他端部との間に介在されて前記ストレート筒部と前記テーパ状筒部とを同軸上に連結する中間筒部と、を有し、
前記内径D、前記外径D、前記外径Dは、
<D<D
の長さに形成されていることを特徴とする衝撃吸収部材。
A cylindrical shock absorbing member that absorbs collision energy by being crushed and deformed by a load acting during a car collision,
A straight tubular portion inner diameter D 1 is formed in a substantially constant,
A tapered cylindrical portion and the outer diameter D 3 of outer diameter D 2 and the other end portion of the one end portion is formed in a tapered shape which differs,
An intermediate tube portion that is interposed between the straight tube portion and the other end portion of the tapered tube portion and coaxially connects the straight tube portion and the tapered tube portion;
The inner diameter D 1 , the outer diameter D 2 , and the outer diameter D 3 are
D 3 <D 1 <D 2
An impact-absorbing member characterized by being formed to a length of
自動車の衝突時に作用する荷重によって圧潰変形することにより衝突エネルギーを吸収する筒状の衝撃吸収部材であって、
外径D10が略一定に形成されたストレート筒部と、
一端部の内径D20と他端部の外径D30とが相違するテーパ状に形成されたテーパ状筒部と、
前記ストレート筒部と前記テーパ状筒部の他端部との間に介在されて両者が同軸上に連結された中間筒部と、を有し、
前記外径D10、前記内径D20、前記外径D30は、
20<D10<D30
の長さに形成されていることを特徴とする衝撃吸収部材。
A cylindrical shock absorbing member that absorbs collision energy by being crushed and deformed by a load acting during a car collision,
A straight tubular portion having an outer diameter D 10 of which is formed in a substantially constant,
A tapered cylindrical portion and the outer diameter D 30 of the inner diameter D 20 and the other end portion of the one end portion is formed in a tapered shape which differs,
An intermediate tube portion interposed between the straight tube portion and the other end portion of the tapered tube portion and connected on the same axis; and
The outer diameter D 10 , the inner diameter D 20 , and the outer diameter D 30 are
D 20 <D 10 <D 30
An impact-absorbing member characterized by being formed to a length of
前記ストレート筒部と前記テーパ状筒部の少なくとも一方は、
板厚の増加、焼き入れ、あるいは、材質の変更のいずれかによって、前記中間筒部より高強度に形成されていることを特徴とする請求項1または請求項2の衝撃吸収部材。
At least one of the straight tube portion and the tapered tube portion is
The impact absorbing member according to claim 1 or 2, wherein the impact absorbing member is formed to have a higher strength than the intermediate tube portion by increasing the plate thickness, quenching, or changing the material.
前記ストレート筒部及び前記テーパ状筒部は、断面が略多角形状に形成され、
前記テーパ状筒部は、前記中間筒部側へ向かって近付くのに連れて、その断面形状が徐々に円形になるように形成されていることを特徴とする請求項1ないし請求項3のいずれか1項に記載の衝撃吸収部材。

The straight tube portion and the tapered tube portion are formed in a substantially polygonal cross section,
4. The taper-shaped cylindrical portion is formed so that its cross-sectional shape gradually becomes circular as it approaches toward the intermediate cylindrical portion. The impact absorbing member according to claim 1.

JP2009158289A 2009-07-02 2009-07-02 Shock absorbing member Pending JP2011011661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158289A JP2011011661A (en) 2009-07-02 2009-07-02 Shock absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158289A JP2011011661A (en) 2009-07-02 2009-07-02 Shock absorbing member

Publications (1)

Publication Number Publication Date
JP2011011661A true JP2011011661A (en) 2011-01-20

Family

ID=43590962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158289A Pending JP2011011661A (en) 2009-07-02 2009-07-02 Shock absorbing member

Country Status (1)

Country Link
JP (1) JP2011011661A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133822A1 (en) * 2011-03-30 2012-10-04 新日本製鐵株式会社 Metallic hollow column-like member
JP2021085462A (en) * 2019-11-27 2021-06-03 学校法人明治大学 Impact absorbing material and manufacturing method for impact absorbing material
EP3858684A1 (en) * 2020-01-28 2021-08-04 Outokumpu Oyj Expanded tube for a motor vehicle crash box and manufacturing method for it

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133822A1 (en) * 2011-03-30 2012-10-04 新日本製鐵株式会社 Metallic hollow column-like member
JP5418724B2 (en) * 2011-03-30 2014-02-19 新日鐵住金株式会社 Metal hollow columnar member
US8783721B2 (en) 2011-03-30 2014-07-22 Nippon Steel & Sumitomo Metal Corporation Metallic hollow columnar member
JP2021085462A (en) * 2019-11-27 2021-06-03 学校法人明治大学 Impact absorbing material and manufacturing method for impact absorbing material
JP7281814B2 (en) 2019-11-27 2023-05-26 学校法人明治大学 Shock absorber and method for manufacturing shock absorber
EP3858684A1 (en) * 2020-01-28 2021-08-04 Outokumpu Oyj Expanded tube for a motor vehicle crash box and manufacturing method for it
WO2021152015A1 (en) * 2020-01-28 2021-08-05 Outokumpu Oyj Expanded tube for a motor vehicle crash box and manufacturing method for it
JP2023509623A (en) * 2020-01-28 2023-03-09 オウトクンプ オサケイティオ ユルキネン Expanded tube for automobile crash box and manufacturing method thereof
JP7464722B2 (en) 2020-01-28 2024-04-09 オウトクンプ オサケイティオ ユルキネン Expanded tube for automobile crash box and its manufacturing method

Similar Documents

Publication Publication Date Title
US10604092B2 (en) Bumper beam structure
EP3056391B1 (en) Crush box and method for producing the same
JP4733702B2 (en) Vehicle crash box
JP7181165B2 (en) car body structure
JP6631560B2 (en) Automotive collision energy absorbing parts
JP5883720B2 (en) Car body rear structure
JP2012107660A (en) Energy absorber, collision energy absorbing structure having the same, and railroad vehicle having the collision energy absorbing structure
JP7181799B2 (en) car body structure
JP2008189233A (en) Vehicle front part structure
JP2010111239A (en) Collision energy absorbing member
JP2011011661A (en) Shock absorbing member
US11052848B2 (en) Energy absorbing device
JP2006207725A (en) Shock absorbing member
JP5283405B2 (en) Automotive reinforcement
JP2010089783A (en) Bumper structure for passenger car
GB2547772A (en) Sequentially buckling vehicle crush can
JP4039032B2 (en) Impact energy absorbing member
US20030072900A1 (en) Impact energy absorbing structure
JP2012166645A (en) Die-cast aluminum alloy crash can
JP5875449B2 (en) Bumper member for vehicles
JP5180950B2 (en) Bumper structure
JP6565291B2 (en) Shock absorbing member, vehicle body and shock absorbing method
JP6211502B2 (en) Vehicle front structure
JP2022043911A (en) Vehicle body rear part structure
JP4706656B2 (en) Bumpy stay