JP2011010486A - Control device for permanent-magnet synchronous machine - Google Patents
Control device for permanent-magnet synchronous machine Download PDFInfo
- Publication number
- JP2011010486A JP2011010486A JP2009152470A JP2009152470A JP2011010486A JP 2011010486 A JP2011010486 A JP 2011010486A JP 2009152470 A JP2009152470 A JP 2009152470A JP 2009152470 A JP2009152470 A JP 2009152470A JP 2011010486 A JP2011010486 A JP 2011010486A
- Authority
- JP
- Japan
- Prior art keywords
- synchronous machine
- magnetic flux
- equation
- magnet
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
- Control Of Electric Motors In General (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
Description
本発明は、永久磁石同期機の位置センサレス制御時の磁石磁束オンラインチューニングに関する。 The present invention relates to on-line magnet magnetic flux tuning during position sensorless control of a permanent magnet synchronous machine.
永久磁石同期機位置センサレス制御において、温度変化により変動する磁石磁束の設定誤差によりトルク制御精度が悪化する。そのため、磁石磁束のオンラインチューニング技術が提案されている。温度センサを用いない、永久磁石同期機位置センサレス制御時の磁石磁束オンラインチューニングの技術として、特許文献1に記載の技術がある。 In the permanent magnet synchronous machine position sensorless control, the torque control accuracy deteriorates due to the setting error of the magnet magnetic flux that fluctuates due to the temperature change. Therefore, on-line tuning technology for magnet magnetic flux has been proposed. As a technique of magnet magnetic flux online tuning at the time of permanent magnet synchronous machine position sensorless control without using a temperature sensor, there is a technique described in Patent Document 1.
特許文献1に記載の技術を用いて構成した位置センサレス制御磁石磁束オンラインチューニングシステムのシステム構成を図2に示す。
このシステムは、永久磁石同期機(以下PMSM)1と、 負荷2と、電流検出手段3と、 電力変換装置4と、回転二相/三相座標変換手段5と、三相/回転二相座標変換手段6と、電流制御手段7と、電流指令値演算手段8と、速度PID 調節器9と、速度推定器10と、モータ軸推定器11と、逆起電圧定数同定器12と、積分手段13と、ローパスフィルタ14と、を備える。
三相/回転二相座標変換手段6は、電流検出手段3が出力する三相の電流値iua,iva,iwaをα,β軸の固定二相変換した後、積分手段13が出力している角度の回転座標変換を行い、二軸の量であるγ,δ軸電流iγa,iδaに変換する。
なお、磁石の磁極に平行な方向と推定している軸をγ軸, それに直交する方向をδ軸としている。
また、回転二相/三相座標変換手段5では、積分手段13が出力している角度θ#を用いて、γ,δ軸電圧指令値vγa *,vδa *を逆回転変換し、固定二相の値に変換した後、二相三相変換を行って三相電圧指令値vua *,vva *,vwa *を出力する。この電圧指令値vua *,vva *,vwa *は電力変換装置4に入力される。電力変換装置4 は電圧指令値vua *,vva *,vwa *に基づいて、可変周波数・可変電圧の電圧電流をモータに供給する電源装置である。
速度PID 調節器9は、速度指令値(電気角)ω*と速度推定器10が出力するモータの推定速度(電気角)ω#の推定値の偏差がゼロになるよう、偏差にPID 演算を行った値をトルク指令値Te *として出力する。
電流指令値演算手段8は、速度PID 調節器9から受けたトルク指令値に基づき、γ,δ軸電流指令値iγa *,iδa *を作成する。
電流制御手段7は、電流指令値演算手段8から受けたγ,δ軸電流指令値iγa *,iδa *と、三相/回転二相座標変換手段6から受けたγ,δ軸電流iγa,iδaがそれぞれ一致するようにγ,δ軸電圧指令値vγa *,vδa *を制御する。
速度推定器10では、速度指令値(電気角) ω*とδ 軸電流iδaとから速度を推定し推定速度(電気角) ω#を得る。回転二相/三相座標変換手段5および三相/回転二相座標変換手段6にて使用する座標変換角度θ#は,推定速度(電気角) ω#を積分手段13により積分することによって得る。
FIG. 2 shows a system configuration of a position sensorless control magnet magnetic flux online tuning system configured using the technique described in Patent Document 1.
This system includes a permanent magnet synchronous machine (hereinafter referred to as PMSM) 1, a load 2, a current detection means 3, a power conversion device 4, a rotating two-phase / three-phase coordinate converting means 5, and a three-phase / rotating two-phase coordinate. Conversion means 6, current control means 7, current command value calculation means 8, speed PID adjuster 9, speed estimator 10, motor shaft estimator 11, counter electromotive voltage constant identifier 12, and integration means 13 and a low-pass filter 14.
The three-phase / rotational two-phase coordinate conversion means 6 performs the fixed two-phase conversion of the three-phase current values i ua , i va , i wa output from the current detection means 3 on the α and β axes, and then the output from the integration means 13. Rotational coordinate conversion of the angle is performed and converted into γ and δ axis currents iγ a and iδ a which are biaxial quantities.
The axis estimated to be parallel to the magnetic pole of the magnet is the γ-axis, and the direction orthogonal to it is the δ-axis.
Further, the rotating two-phase / three-phase coordinate converting means 5 uses the angle θ # output from the integrating means 13 to reversely convert the γ and δ-axis voltage command values vγ a * and v δ a * to be fixed. After conversion to a two-phase value, two-phase three-phase conversion is performed to output three-phase voltage command values v ua * , v va * , and v wa * . The voltage command values v ua * , v va * and v wa * are input to the power converter 4. The power conversion device 4 is a power supply device that supplies a voltage current of variable frequency / variable voltage to the motor based on the voltage command values v ua * , v va * , v wa * .
The speed PID controller 9 performs PID calculation on the deviation so that the deviation between the speed command value (electrical angle) ω * and the estimated value of the estimated motor speed (electrical angle) ω # output from the speed estimator 10 becomes zero. The performed value is output as a torque command value Te * .
Current command value calculating unit 8, based on the torque command value received from the speed PID controller 9, gamma, [delta] -axis current value i? A *, created a i? A *.
Current control means 7, gamma received from the current command value computing means 8, [delta] -axis current value iγ a *, iδ a * and, gamma received from the three-phase / rotation two-phase coordinate conversion unit 6, [delta] -axis current i? a, gamma as i? a match respectively, [delta] -axis voltage value v? a *, and controls the v? a *.
The speed estimator 10, the speed command value (electric angle) omega * and δ-axis current i? A and the estimated speed from the estimated speed (electrical angle) to obtain the omega #. The coordinate conversion angle θ # used in the rotating two-phase / three-phase coordinate converting means 5 and the three-phase / rotating two-phase coordinate converting means 6 is obtained by integrating the estimated speed (electrical angle) ω # by the integrating means 13. .
推定座標であるγδ座標の回転角速度はω# (電気角)、γ軸はu相軸からθ#(電気角)の位相角上にあり、磁石の磁極に平行な軸(d軸)よりΔθ (電気角)だけ遅れているものとする。γδ座標でのPMSMの電圧方程式は(数1)のように表される。 The rotational angular velocity of the estimated γδ coordinate is ω # (electrical angle), the γ axis is on the phase angle of θ # (electrical angle) from the u phase axis, and Δθ from the axis parallel to the magnetic pole of the magnet (d axis) It is assumed that it is delayed by (electrical angle). The voltage equation of PMSM in γδ coordinates is expressed as (Equation 1).
vγa,vδa:γ,δ軸電圧,iγa,iδa:γ,δ軸電流,ω:回転角速度( 電気角) ,
P:微分演算子
(数1)において、
vγ a, vδ a: γ, δ -axis voltage, iγ a, iδ a: γ , δ -axis current, omega: rotational angular velocity (electrical angle),
P: Differential operator
In (Equation 1),
(数7)で求めたφ#をローパスフィルタ14へ入力し、その出力φf#を電流制御手段7 と、電流指令値演算手段8に入力する。
Φ # obtained in (Equation 7) is input to the low-pass filter 14, and its output φ f # is input to the current control means 7 and the current command value calculation means 8.
しかしながら、この特許文献1に記載の永久磁石同期機位置センサレス制御時の磁石磁束オンラインチューニング技術では、加減速時等磁極位置演算誤差(Δθー(Δθ)#)が0でない場合に、磁石磁束推定誤差が生じるという問題がある。
そのため、磁石磁束推定誤差によりトルク制御精度が悪化する。
However, in the magnetic flux online tuning technique at the time of permanent magnet synchronous machine position sensorless control described in Patent Document 1, when the magnetic pole position calculation error (Δθ− (Δθ) # ) is not zero during acceleration / deceleration, the magnetic flux estimation is performed. There is a problem that an error occurs.
Therefore, torque control accuracy is deteriorated due to a magnet magnetic flux estimation error.
そこで、本発明は、磁極位置演算誤差の影響を受けることなく、永久磁石同期機の磁石磁束を推定することを目的としている。 Accordingly, an object of the present invention is to estimate the magnetic flux of a permanent magnet synchronous machine without being affected by a magnetic pole position calculation error.
上記目的を達成するために、請求項1に係る発明では、電力変換装置によりモータに可変電圧可変周波数の電圧を与え、モータ電流を検出し、モータ電流を推定するオブザーバとを備え、検出したモータ電流検出値を用いて、モータの回転速度および磁極位置を推定する永久磁石同期機の位置センサレス制御方法において、
モータ電流検出値と、オブザーバにて推定される電流推定値との偏差から得られる磁極位置誤差及び磁石磁束誤差から、電流検出値と電流推定値の偏差までの伝達関数行列の逆行列を用いて磁石磁束推定を行うことを特徴とする。
In order to achieve the above object, the invention according to claim 1 includes an observer that applies a variable voltage variable frequency voltage to the motor by the power conversion device, detects the motor current, and estimates the motor current. In the position sensorless control method of the permanent magnet synchronous machine that estimates the rotational speed and magnetic pole position of the motor using the current detection value,
Using the inverse matrix of the transfer function matrix from the magnetic pole position error and magnet magnetic flux error obtained from the deviation between the motor current detection value and the current estimation value estimated by the observer to the deviation between the current detection value and the current estimation value Magnet magnetic flux estimation is performed.
本発明の磁石磁束推定器では, 磁極位置演算誤差と独立に磁石磁束を推定することができる。従って磁極位置演算誤差がある場合でも磁石磁束を高精度に推定することができ、これにより高精度なトルク制御が可能である。 The magnet flux estimator of the present invention can estimate the magnet flux independently of the magnetic pole position calculation error. Therefore, even when there is a magnetic pole position calculation error, the magnetic flux of the magnet can be estimated with high accuracy, thereby enabling highly accurate torque control.
以下、本発明の実施の形態を図面に基づいて説明する。
図1に、この発明の第1の実施例を示す。
この図において、図2に示した従来例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。
図1と図2に示した従来例と異なる点は、速度推定器10と、モータ軸推定器11と、 逆起電圧定数同定器12と、積分手段13と、ローパスフィルタ14とに代え、電流オブザーバ21と、磁石磁束推定器22と、磁極位置・回転速度推定器23とを用いていることである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of the present invention.
In this figure, components having the same functions as those in the conventional configuration shown in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted here.
The difference from the conventional example shown in FIGS. 1 and 2 is that the speed estimator 10, the motor shaft estimator 11, the counter electromotive voltage constant identifier 12, the integrating means 13, and the low-pass filter 14 are replaced with a current. That is, an observer 21, a magnetic flux estimator 22, and a magnetic pole position / rotation speed estimator 23 are used.
γ,δ軸電流を推定する電流オブザーバ21 は、(数9)のものを用いる。 The current observer 21 for estimating the γ and δ axis currents is the one of (Equation 9).
また、オブザーバゲインは(数10)のように設定する。
Further, the observer gain is set as shown in (Equation 10).
電流オブザーバ21 の特性方程式は(数11)のようになるため、
Since the characteristic equation of the current observer 21 is as shown in (Equation 11),
次に、磁石磁束推定器22の動作を説明する。磁石磁束推定器22 は(数12)を演算する。
Next, the operation of the magnet magnetic flux estimator 22 will be described. The magnet flux estimator 22 calculates (Equation 12).
(数1)を変形すると、(数14)が得られる。
By transforming (Equation 1), (Equation 14) is obtained.
cosΔθ=cos2Δθ=1、sinΔθ=Δθ、sin2Δθ=2Δθ
とそれぞれ近似し、平衡点近傍で線形化すると次の線形化誤差状態方程式(数15)が得られる。ここで,Δω=sΔθと置いて整理している。また,磁極位置,回転速度,磁石磁束以外のパラメータの誤差は無視している。また、vγa *−vγa=0,vδa *ーvδa=0としている。なお,sはラプラス演算子である。
cosΔθ = cos2Δθ = 1, sinΔθ = Δθ, sin2Δθ = 2Δθ
And linearizing near the equilibrium point, the following linearization error state equation (Equation 15) is obtained. Here, Δω = sΔθ is put in order. In addition, errors in parameters other than the magnetic pole position, rotational speed, and magnet magnetic flux are ignored. Further, vγ a * −vγ a = 0 and vδ a * −vδ a = 0. Note that s is a Laplace operator.
磁極位置・回転速度推定器23 は、例えば以下の推定器を用いる。
磁極位置,回転速度の推定器を次式(数20)、(数21)とする。
The magnetic pole position / rotation speed estimator 23 uses, for example, the following estimator.
The magnetic pole position and rotational speed estimators are represented by the following equations (Equation 20) and (Equation 21).
オブザーバゲイン中の制御変数gb,gcを、
Control variables g b and g c in the observer gain
また、このときω#とΔω,Δφfの関係は,(数12)、(数21)より(数24)のようになる。
The relationship between the time omega # and [Delta] [omega, [Delta] [phi f is as (Expression 12), (Expression 21) from equation (24).
推定器ゲインKθ1,Kθ2は,(数23)、(数24)より磁極位置・回転速度推定系の応答に応じて設定する。
なお、磁極位置及び回転速度の推定は、他の方式を用いてもよい。
また、この位置センサレス制御時の磁石磁束オンラインチューニング技術は、Ld≠Lqの埋め込み磁石形永久磁石同期機及びLd=Lqの表面磁石形永久磁石同期機の双方に適用可能である。
The estimator gains Kθ 1 and Kθ 2 are set according to the response of the magnetic pole position / rotation speed estimation system from (Equation 23) and (Equation 24).
In addition, you may use another system for estimation of a magnetic pole position and a rotational speed.
Further, the magnet magnetic flux online tuning technology at the time of position sensorless control can be applied to both an embedded magnet type permanent magnet synchronous machine with L d ≠ L q and a surface magnet type permanent magnet synchronous machine with L d = L q .
1…直流電源、2…電力変換装置、3…正側給電回路、4…負側給電回路、5…基準電圧設定回路、6…電圧比較回路、7…間欠信号発振回路、8…E/O変換回路、9…光ケーブル、10…O/E変換回路、11…制御回路、GR1…第1の抵抗素子群、GR2…第2の抵抗素子群、GR3…第3の抵抗素子群、R1P,R2P,R1N,R2N…分圧抵抗、G1G,R2G…接地抵抗 DESCRIPTION OF SYMBOLS 1 ... DC power supply, 2 ... Power converter, 3 ... Positive side feeding circuit, 4 ... Negative side feeding circuit, 5 ... Reference voltage setting circuit, 6 ... Voltage comparison circuit, 7 ... Intermittent signal oscillation circuit, 8 ... E / O Conversion circuit, 9 ... optical cable, 10 ... O / E conversion circuit, 11 ... control circuit, GR1 ... first resistance element group, GR2 ... second resistance element group, GR3 ... third resistance element group, R1P, R2P , R1N, R2N ... voltage dividing resistors, G1G, R2G ... grounding resistors
Claims (1)
モータ電流を検出し、
モータ電流を推定するオブザーバとを備え、
検出したモータ電流検出値を用いて、モータの回転速度および磁極位置を推定する永久磁石同期機の位置センサレス制御方法において、
モータ電流検出値と、オブザーバにて推定される電流推定値との偏差から得られる磁極位置誤差及び磁石磁束誤差から、電流検出値と電流推定値の偏差までの伝達関数行列の逆行列に基づいて磁石磁束推定を行うことを特徴とする永久磁石同期機の制御方法。 A voltage of variable voltage and variable frequency is given to the motor by the power converter,
Detect motor current,
An observer for estimating the motor current,
In the position sensorless control method of the permanent magnet synchronous machine for estimating the rotation speed and the magnetic pole position of the motor using the detected motor current detection value,
Based on the inverse matrix of the transfer function matrix from the magnetic pole position error and the magnetic flux error obtained from the deviation between the motor current detection value and the current estimation value estimated by the observer to the deviation between the current detection value and the current estimation value A method of controlling a permanent magnet synchronous machine, wherein magnet magnetic flux estimation is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009152470A JP2011010486A (en) | 2009-06-26 | 2009-06-26 | Control device for permanent-magnet synchronous machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009152470A JP2011010486A (en) | 2009-06-26 | 2009-06-26 | Control device for permanent-magnet synchronous machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011010486A true JP2011010486A (en) | 2011-01-13 |
Family
ID=43566468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009152470A Withdrawn JP2011010486A (en) | 2009-06-26 | 2009-06-26 | Control device for permanent-magnet synchronous machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011010486A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112217428A (en) * | 2020-09-18 | 2021-01-12 | 江苏科技大学 | Underwater robot propulsion system position-sensor-free control method |
CN113328664A (en) * | 2020-02-28 | 2021-08-31 | 南京理工大学 | Strong tracking UKF asynchronous motor rotating speed identification method based on fading factor matrix |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004135458A (en) * | 2002-10-11 | 2004-04-30 | Yaskawa Electric Corp | Control method for ipm motor and control device |
JP2009060688A (en) * | 2007-08-30 | 2009-03-19 | Fuji Electric Systems Co Ltd | Controller for synchronous motors |
JP2009095135A (en) * | 2007-10-09 | 2009-04-30 | Fuji Electric Systems Co Ltd | Controller of synchronous electric motor |
-
2009
- 2009-06-26 JP JP2009152470A patent/JP2011010486A/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004135458A (en) * | 2002-10-11 | 2004-04-30 | Yaskawa Electric Corp | Control method for ipm motor and control device |
JP2009060688A (en) * | 2007-08-30 | 2009-03-19 | Fuji Electric Systems Co Ltd | Controller for synchronous motors |
JP2009095135A (en) * | 2007-10-09 | 2009-04-30 | Fuji Electric Systems Co Ltd | Controller of synchronous electric motor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113328664A (en) * | 2020-02-28 | 2021-08-31 | 南京理工大学 | Strong tracking UKF asynchronous motor rotating speed identification method based on fading factor matrix |
CN112217428A (en) * | 2020-09-18 | 2021-01-12 | 江苏科技大学 | Underwater robot propulsion system position-sensor-free control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5130031B2 (en) | Position sensorless control device for permanent magnet motor | |
JP5693652B2 (en) | Synchronous machine controller | |
JP5198332B2 (en) | Torque control device for permanent magnet synchronous motor | |
KR101927693B1 (en) | Sensorless controlling apparatus and method for motor | |
RU2664782C1 (en) | Control device for a rotating ac vehicle | |
TWI525981B (en) | System, method and apparatus of sensor-less field oriented control for permanent magnet motor | |
JP5223109B2 (en) | Control device for permanent magnet type synchronous motor | |
JP6361450B2 (en) | Induction motor control device | |
JP2009095135A (en) | Controller of synchronous electric motor | |
JP5321792B2 (en) | Control device for permanent magnet type synchronous motor | |
JP2009060688A (en) | Controller for synchronous motors | |
JP2014225993A (en) | Synchronous machine controller | |
JP2010200430A (en) | Drive controller for motors | |
JP5074318B2 (en) | Rotor position estimation device for synchronous motor | |
JP5743344B2 (en) | Control device for synchronous motor | |
JP2010035352A (en) | Device for estimating rotor position of synchronous electric motor | |
JP2009290962A (en) | Controller of permanent magnet type synchronous motor | |
JP2009273283A (en) | Controller for permanent magnet type synchronous motor | |
JP2019193532A (en) | Motor system, motor control device, and motor rotation speed detection method | |
JPH1118499A (en) | Sensorless revolution control method for permanent magnet type synchronous motor and step-out detection method for the same | |
JP2011010486A (en) | Control device for permanent-magnet synchronous machine | |
JP6032047B2 (en) | Motor control device | |
JP4273775B2 (en) | Magnetic pole position estimation method and control device for permanent magnet type synchronous motor | |
JP5768255B2 (en) | Control device for permanent magnet synchronous motor | |
JP3692085B2 (en) | Motor control method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20110422 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120614 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130918 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20131010 |