[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011010486A - Control device for permanent-magnet synchronous machine - Google Patents

Control device for permanent-magnet synchronous machine Download PDF

Info

Publication number
JP2011010486A
JP2011010486A JP2009152470A JP2009152470A JP2011010486A JP 2011010486 A JP2011010486 A JP 2011010486A JP 2009152470 A JP2009152470 A JP 2009152470A JP 2009152470 A JP2009152470 A JP 2009152470A JP 2011010486 A JP2011010486 A JP 2011010486A
Authority
JP
Japan
Prior art keywords
synchronous machine
magnetic flux
equation
magnet
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009152470A
Other languages
Japanese (ja)
Inventor
Yasuyuki Noto
泰之 能登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2009152470A priority Critical patent/JP2011010486A/en
Publication of JP2011010486A publication Critical patent/JP2011010486A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To estimate the magnet magnetic flux of a permanent-magnet synchronous machine, without being affected by a calculation error of the magnetic pole position.SOLUTION: A permanent-magnet synchronous machine includes an observer that supplies a voltage of a variable voltage and frequency to a motor by a power conversion device so as to detect and estimate a motor current. The permanent-magnet synchronous machine estimates the rotational speed and the magnetic pole position of the motor, by using the detected motor current detection value, at a position sensorless control method for the permanent magnet synchronous machine, the magnet-magnetic flux is estimated, on the basis of an inverse matrix of a transfer function matrix in a range from an error of the magnetic pole position and an error of the magnet magnetic flux which are obtained from a deviation between the motor current detection value and a current estimated value estimated by the observer, up to a deviation between the current detection value and the current estimated value.

Description

本発明は、永久磁石同期機の位置センサレス制御時の磁石磁束オンラインチューニングに関する。   The present invention relates to on-line magnet magnetic flux tuning during position sensorless control of a permanent magnet synchronous machine.

永久磁石同期機位置センサレス制御において、温度変化により変動する磁石磁束の設定誤差によりトルク制御精度が悪化する。そのため、磁石磁束のオンラインチューニング技術が提案されている。温度センサを用いない、永久磁石同期機位置センサレス制御時の磁石磁束オンラインチューニングの技術として、特許文献1に記載の技術がある。   In the permanent magnet synchronous machine position sensorless control, the torque control accuracy deteriorates due to the setting error of the magnet magnetic flux that fluctuates due to the temperature change. Therefore, on-line tuning technology for magnet magnetic flux has been proposed. As a technique of magnet magnetic flux online tuning at the time of permanent magnet synchronous machine position sensorless control without using a temperature sensor, there is a technique described in Patent Document 1.

特許文献1に記載の技術を用いて構成した位置センサレス制御磁石磁束オンラインチューニングシステムのシステム構成を図2に示す。
このシステムは、永久磁石同期機(以下PMSM)1と、 負荷2と、電流検出手段3と、 電力変換装置4と、回転二相/三相座標変換手段5と、三相/回転二相座標変換手段6と、電流制御手段7と、電流指令値演算手段8と、速度PID 調節器9と、速度推定器10と、モータ軸推定器11と、逆起電圧定数同定器12と、積分手段13と、ローパスフィルタ14と、を備える。
三相/回転二相座標変換手段6は、電流検出手段3が出力する三相の電流値iua,iva,iwaをα,β軸の固定二相変換した後、積分手段13が出力している角度の回転座標変換を行い、二軸の量であるγ,δ軸電流iγa,iδaに変換する。
なお、磁石の磁極に平行な方向と推定している軸をγ軸, それに直交する方向をδ軸としている。
また、回転二相/三相座標変換手段5では、積分手段13が出力している角度θ#を用いて、γ,δ軸電圧指令値vγa *,vδa *を逆回転変換し、固定二相の値に変換した後、二相三相変換を行って三相電圧指令値vua *,vva *,vwa *を出力する。この電圧指令値vua *,vva *,vwa *は電力変換装置4に入力される。電力変換装置4 は電圧指令値vua *,vva *,vwa *に基づいて、可変周波数・可変電圧の電圧電流をモータに供給する電源装置である。
速度PID 調節器9は、速度指令値(電気角)ω*と速度推定器10が出力するモータの推定速度(電気角)ω#の推定値の偏差がゼロになるよう、偏差にPID 演算を行った値をトルク指令値Te *として出力する。
電流指令値演算手段8は、速度PID 調節器9から受けたトルク指令値に基づき、γ,δ軸電流指令値iγa *,iδa *を作成する。
電流制御手段7は、電流指令値演算手段8から受けたγ,δ軸電流指令値iγa *,iδa *と、三相/回転二相座標変換手段6から受けたγ,δ軸電流iγa,iδaがそれぞれ一致するようにγ,δ軸電圧指令値vγa *,vδa *を制御する。
速度推定器10では、速度指令値(電気角) ω*とδ 軸電流iδaとから速度を推定し推定速度(電気角) ω#を得る。回転二相/三相座標変換手段5および三相/回転二相座標変換手段6にて使用する座標変換角度θ#は,推定速度(電気角) ω#を積分手段13により積分することによって得る。
FIG. 2 shows a system configuration of a position sensorless control magnet magnetic flux online tuning system configured using the technique described in Patent Document 1.
This system includes a permanent magnet synchronous machine (hereinafter referred to as PMSM) 1, a load 2, a current detection means 3, a power conversion device 4, a rotating two-phase / three-phase coordinate converting means 5, and a three-phase / rotating two-phase coordinate. Conversion means 6, current control means 7, current command value calculation means 8, speed PID adjuster 9, speed estimator 10, motor shaft estimator 11, counter electromotive voltage constant identifier 12, and integration means 13 and a low-pass filter 14.
The three-phase / rotational two-phase coordinate conversion means 6 performs the fixed two-phase conversion of the three-phase current values i ua , i va , i wa output from the current detection means 3 on the α and β axes, and then the output from the integration means 13. Rotational coordinate conversion of the angle is performed and converted into γ and δ axis currents iγ a and iδ a which are biaxial quantities.
The axis estimated to be parallel to the magnetic pole of the magnet is the γ-axis, and the direction orthogonal to it is the δ-axis.
Further, the rotating two-phase / three-phase coordinate converting means 5 uses the angle θ # output from the integrating means 13 to reversely convert the γ and δ-axis voltage command values vγ a * and v δ a * to be fixed. After conversion to a two-phase value, two-phase three-phase conversion is performed to output three-phase voltage command values v ua * , v va * , and v wa * . The voltage command values v ua * , v va * and v wa * are input to the power converter 4. The power conversion device 4 is a power supply device that supplies a voltage current of variable frequency / variable voltage to the motor based on the voltage command values v ua * , v va * , v wa * .
The speed PID controller 9 performs PID calculation on the deviation so that the deviation between the speed command value (electrical angle) ω * and the estimated value of the estimated motor speed (electrical angle) ω # output from the speed estimator 10 becomes zero. The performed value is output as a torque command value Te * .
Current command value calculating unit 8, based on the torque command value received from the speed PID controller 9, gamma, [delta] -axis current value i? A *, created a i? A *.
Current control means 7, gamma received from the current command value computing means 8, [delta] -axis current value iγ a *, a * and, gamma received from the three-phase / rotation two-phase coordinate conversion unit 6, [delta] -axis current i? a, gamma as i? a match respectively, [delta] -axis voltage value v? a *, and controls the v? a *.
The speed estimator 10, the speed command value (electric angle) omega * and δ-axis current i? A and the estimated speed from the estimated speed (electrical angle) to obtain the omega #. The coordinate conversion angle θ # used in the rotating two-phase / three-phase coordinate converting means 5 and the three-phase / rotating two-phase coordinate converting means 6 is obtained by integrating the estimated speed (electrical angle) ω # by the integrating means 13. .

推定座標であるγδ座標の回転角速度はω# (電気角)、γ軸はu相軸からθ#(電気角)の位相角上にあり、磁石の磁極に平行な軸(d軸)よりΔθ (電気角)だけ遅れているものとする。γδ座標でのPMSMの電圧方程式は(数1)のように表される。 The rotational angular velocity of the estimated γδ coordinate is ω # (electrical angle), the γ axis is on the phase angle of θ # (electrical angle) from the u phase axis, and Δθ from the axis parallel to the magnetic pole of the magnet (d axis) It is assumed that it is delayed by (electrical angle). The voltage equation of PMSM in γδ coordinates is expressed as (Equation 1).

ここで、 here,

a:電機子巻線抵抗,Ld,Lq: d,q軸インダクタンス,φf:磁石磁束,
vγa,vδa:γ,δ軸電圧,iγa,iδa:γ,δ軸電流,ω:回転角速度( 電気角) ,
P:微分演算子

(数1)において、
R a : Armature winding resistance, L d , L q : d, q axis inductance, φ f : Magnet flux,
vγ a, vδ a: γ, δ -axis voltage, iγ a, iδ a: γ , δ -axis current, omega: rotational angular velocity (electrical angle),
P: Differential operator

In (Equation 1),

とすると、PMSMの電圧方程式は(数5)のように表される。 Then, the voltage equation of PMSM is expressed as (Equation 5).

モータ軸推定器11では、(数5)よりモータの軸誤差を(数6)で推定する。 The motor shaft estimator 11 estimates the shaft error of the motor from (Equation 5) using (Equation 6).

逆起電圧定数同定器12では、(数6)で求めた(Δθ)#を用いて磁石磁束を(数7)で推定する。 In the counter electromotive voltage constant identifier 12, the magnetic flux is estimated by (Equation 7) using (Δθ) # obtained by (Equation 6).

ここで、 here,

なお、電圧検出器を使用し、(数6)及び(数7)中でγ,δ軸電圧指令値に変えてγ,δ軸電圧検出値を用い、推定精度の向上を図ることも可能である。
(数7)で求めたφ#をローパスフィルタ14へ入力し、その出力φf#を電流制御手段7 と、電流指令値演算手段8に入力する。
It is also possible to improve the estimation accuracy by using a voltage detector and using γ, δ-axis voltage detection values instead of γ, δ-axis voltage command values in (Equation 6) and (Equation 7). is there.
Φ # obtained in (Equation 7) is input to the low-pass filter 14, and its output φ f # is input to the current control means 7 and the current command value calculation means 8.

特開2004−7924号公報JP 2004-7924 A

しかしながら、この特許文献1に記載の永久磁石同期機位置センサレス制御時の磁石磁束オンラインチューニング技術では、加減速時等磁極位置演算誤差(Δθー(Δθ)#)が0でない場合に、磁石磁束推定誤差が生じるという問題がある。
そのため、磁石磁束推定誤差によりトルク制御精度が悪化する。
However, in the magnetic flux online tuning technique at the time of permanent magnet synchronous machine position sensorless control described in Patent Document 1, when the magnetic pole position calculation error (Δθ− (Δθ) # ) is not zero during acceleration / deceleration, the magnetic flux estimation is performed. There is a problem that an error occurs.
Therefore, torque control accuracy is deteriorated due to a magnet magnetic flux estimation error.

そこで、本発明は、磁極位置演算誤差の影響を受けることなく、永久磁石同期機の磁石磁束を推定することを目的としている。   Accordingly, an object of the present invention is to estimate the magnetic flux of a permanent magnet synchronous machine without being affected by a magnetic pole position calculation error.

上記目的を達成するために、請求項1に係る発明では、電力変換装置によりモータに可変電圧可変周波数の電圧を与え、モータ電流を検出し、モータ電流を推定するオブザーバとを備え、検出したモータ電流検出値を用いて、モータの回転速度および磁極位置を推定する永久磁石同期機の位置センサレス制御方法において、
モータ電流検出値と、オブザーバにて推定される電流推定値との偏差から得られる磁極位置誤差及び磁石磁束誤差から、電流検出値と電流推定値の偏差までの伝達関数行列の逆行列を用いて磁石磁束推定を行うことを特徴とする。
In order to achieve the above object, the invention according to claim 1 includes an observer that applies a variable voltage variable frequency voltage to the motor by the power conversion device, detects the motor current, and estimates the motor current. In the position sensorless control method of the permanent magnet synchronous machine that estimates the rotational speed and magnetic pole position of the motor using the current detection value,
Using the inverse matrix of the transfer function matrix from the magnetic pole position error and magnet magnetic flux error obtained from the deviation between the motor current detection value and the current estimation value estimated by the observer to the deviation between the current detection value and the current estimation value Magnet magnetic flux estimation is performed.

本発明の磁石磁束推定器では, 磁極位置演算誤差と独立に磁石磁束を推定することができる。従って磁極位置演算誤差がある場合でも磁石磁束を高精度に推定することができ、これにより高精度なトルク制御が可能である。   The magnet flux estimator of the present invention can estimate the magnet flux independently of the magnetic pole position calculation error. Therefore, even when there is a magnetic pole position calculation error, the magnetic flux of the magnet can be estimated with high accuracy, thereby enabling highly accurate torque control.

本発明による実施形態を示す構成図である。It is a block diagram which shows embodiment by this invention. 従来技術を示す構成図である。It is a block diagram which shows a prior art.

以下、本発明の実施の形態を図面に基づいて説明する。
図1に、この発明の第1の実施例を示す。
この図において、図2に示した従来例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。
図1と図2に示した従来例と異なる点は、速度推定器10と、モータ軸推定器11と、 逆起電圧定数同定器12と、積分手段13と、ローパスフィルタ14とに代え、電流オブザーバ21と、磁石磁束推定器22と、磁極位置・回転速度推定器23とを用いていることである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of the present invention.
In this figure, components having the same functions as those in the conventional configuration shown in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted here.
The difference from the conventional example shown in FIGS. 1 and 2 is that the speed estimator 10, the motor shaft estimator 11, the counter electromotive voltage constant identifier 12, the integrating means 13, and the low-pass filter 14 are replaced with a current. That is, an observer 21, a magnetic flux estimator 22, and a magnetic pole position / rotation speed estimator 23 are used.

γ,δ軸電流を推定する電流オブザーバ21 は、(数9)のものを用いる。   The current observer 21 for estimating the γ and δ axis currents is the one of (Equation 9).

なお、#付きの電流及びパラメータは推定値を表す。推定値を採用するパラメータはθ#,ω#,φf#である。また、g11,g12,g21,g22はオブザーバゲインである。なお、電圧検出器を使用し、(数9)中でγ,δ軸電圧指令値に変えてγ,δ軸電圧検出値を用い、推定精度の向上を図ることも可能である。
また、オブザーバゲインは(数10)のように設定する。
The current and parameters with # represent estimated values. The parameters that employ the estimated values are θ # , ω # , and φf # . G 11 , g 12 , g 21 , and g 22 are observer gains. It is also possible to improve the estimation accuracy by using a voltage detector and using the detected γ and δ-axis voltage values instead of the γ and δ-axis voltage command values in (Equation 9).
Further, the observer gain is set as shown in (Equation 10).

ここで,ga,gb,gc,gdはオブザーバゲインの極を決める制御変数である。
電流オブザーバ21 の特性方程式は(数11)のようになるため、
Here, g a , g b , g c , and g d are control variables that determine the poles of the observer gain.
Since the characteristic equation of the current observer 21 is as shown in (Equation 11),

オブザーバゲイン中の制御変数ga,gb,gc,gdは(数11)が安定条件を満たすように設定すればよい。なお、右下付き添字0は平衡点を表す。
次に、磁石磁束推定器22の動作を説明する。磁石磁束推定器22 は(数12)を演算する。
Control variables g a , g b , g c , and g d in the observer gain may be set so that (Equation 11) satisfies the stability condition. The subscript 0 at the lower right indicates the equilibrium point.
Next, the operation of the magnet magnetic flux estimator 22 will be described. The magnet flux estimator 22 calculates (Equation 12).

ここで、Kφ,x1,x0は推定器ゲインであり、 Where Kφ, x 1 , x 0 are estimator gains,

である。
(数1)を変形すると、(数14)が得られる。
It is.
By transforming (Equation 1), (Equation 14) is obtained.

(数9)、(数10)、(数14)より、
cosΔθ=cos2Δθ=1、sinΔθ=Δθ、sin2Δθ=2Δθ
とそれぞれ近似し、平衡点近傍で線形化すると次の線形化誤差状態方程式(数15)が得られる。ここで,Δω=sΔθと置いて整理している。また,磁極位置,回転速度,磁石磁束以外のパラメータの誤差は無視している。また、vγa *−vγa=0,vδa *ーvδa=0としている。なお,sはラプラス演算子である。
From (Equation 9), (Equation 10), and (Equation 14),
cosΔθ = cos2Δθ = 1, sinΔθ = Δθ, sin2Δθ = 2Δθ
And linearizing near the equilibrium point, the following linearization error state equation (Equation 15) is obtained. Here, Δω = sΔθ is put in order. In addition, errors in parameters other than the magnetic pole position, rotational speed, and magnet magnetic flux are ignored. Further, vγ a * −vγ a = 0 and vδ a * −vδ a = 0. Note that s is a Laplace operator.

ここで、 here,

(数15)より、uを入力,eiaを出力とする線形化誤差伝達関数行列P0(s)は次式(数17)となる。 From (Equation 15), the linearization error transfer function matrix P 0 (s) with u as input and e ia as output is expressed by the following equation (Equation 17).

このとき、(数12)及び(数17)より、 At this time, from (Equation 12) and (Equation 17),

ここで、 here,

が得られる。(数12)の推定器において、線形化誤差伝達関数行列の逆行列の分子を用いているため、(数18)右辺の1行2列行列の1行1列目が0となっている。従って、φf#は磁極位置演算誤差Δθの影響を受けずに推定することができる。推定器ゲインKφ,x1,x0は,(数18)より磁石磁束推定系の応答に応じて設定する。
磁極位置・回転速度推定器23 は、例えば以下の推定器を用いる。
磁極位置,回転速度の推定器を次式(数20)、(数21)とする。
Is obtained. Since the numerator of the inverse matrix of the linearization error transfer function matrix is used in the estimator of (Equation 12), the 1st row and 1st column of the 1 × 2 matrix on the right side is (0). Therefore, φ f # can be estimated without being affected by the magnetic pole position calculation error Δθ. The estimator gains Kφ, x 1 and x 0 are set according to the response of the magnetic flux estimation system from (Equation 18).
The magnetic pole position / rotation speed estimator 23 uses, for example, the following estimator.
The magnetic pole position and rotational speed estimators are represented by the following equations (Equation 20) and (Equation 21).

ここで、Kθ1,Kθ2は推定器ゲインである。
オブザーバゲイン中の制御変数gb,gcを、
Here, Kθ 1 and Kθ 2 are estimator gains.
Control variables g b and g c in the observer gain

のように選ぶことで、θ#とΔθ,Δφfの関係は,(数12)及び(数20)より、(数23)となる。 By so choosing it as, theta # and [Delta] [theta], the relationship of [Delta] [phi f, from (Equation 12) and (Expression 20), the equation (23).

ここで、PD0=s2+(ga0+gb0)s+(ga0b0ーgc0d0)となる。(数23)より、磁極位置の推定は、磁石磁束誤差の影響を受けるが、磁石磁束推定が磁極位置誤差、回転速度誤差に独立に行えるため、磁石磁束推定が収束している状態では、磁石磁束誤差の影響を無視することができる。
また、このときω#とΔω,Δφfの関係は,(数12)、(数21)より(数24)のようになる。
Here, P D0 = s 2 + (g a0 + g b0 ) s + (g a0 g b0 −g c0 g d0 ). From (Equation 23), the estimation of the magnetic pole position is affected by the magnet magnetic flux error. However, since the magnet magnetic flux estimation can be performed independently of the magnetic pole position error and the rotation speed error, The influence of magnetic flux error can be ignored.
The relationship between the time omega # and [Delta] [omega, [Delta] [phi f is as (Expression 12), (Expression 21) from equation (24).

(数24)より、回転速度の推定は,磁石磁束誤差の影響を受けるが、磁石磁束推定が磁極位置誤差、回転速度誤差に独立に行えるため、磁石磁束推定が収束している状態では、磁石磁束誤差の影響を無視することができる。
推定器ゲインKθ1,Kθ2は,(数23)、(数24)より磁極位置・回転速度推定系の応答に応じて設定する。
なお、磁極位置及び回転速度の推定は、他の方式を用いてもよい。
また、この位置センサレス制御時の磁石磁束オンラインチューニング技術は、Ld≠Lqの埋め込み磁石形永久磁石同期機及びLd=Lqの表面磁石形永久磁石同期機の双方に適用可能である。
From (Equation 24), the estimation of the rotational speed is affected by the magnet magnetic flux error. However, since the magnet magnetic flux estimation can be performed independently of the magnetic pole position error and the rotational speed error, the magnet magnetic flux estimation is converged. The influence of magnetic flux error can be ignored.
The estimator gains Kθ 1 and Kθ 2 are set according to the response of the magnetic pole position / rotation speed estimation system from (Equation 23) and (Equation 24).
In addition, you may use another system for estimation of a magnetic pole position and a rotational speed.
Further, the magnet magnetic flux online tuning technology at the time of position sensorless control can be applied to both an embedded magnet type permanent magnet synchronous machine with L d ≠ L q and a surface magnet type permanent magnet synchronous machine with L d = L q .

1…直流電源、2…電力変換装置、3…正側給電回路、4…負側給電回路、5…基準電圧設定回路、6…電圧比較回路、7…間欠信号発振回路、8…E/O変換回路、9…光ケーブル、10…O/E変換回路、11…制御回路、GR1…第1の抵抗素子群、GR2…第2の抵抗素子群、GR3…第3の抵抗素子群、R1P,R2P,R1N,R2N…分圧抵抗、G1G,R2G…接地抵抗   DESCRIPTION OF SYMBOLS 1 ... DC power supply, 2 ... Power converter, 3 ... Positive side feeding circuit, 4 ... Negative side feeding circuit, 5 ... Reference voltage setting circuit, 6 ... Voltage comparison circuit, 7 ... Intermittent signal oscillation circuit, 8 ... E / O Conversion circuit, 9 ... optical cable, 10 ... O / E conversion circuit, 11 ... control circuit, GR1 ... first resistance element group, GR2 ... second resistance element group, GR3 ... third resistance element group, R1P, R2P , R1N, R2N ... voltage dividing resistors, G1G, R2G ... grounding resistors

Claims (1)

電力変換装置によりモータに可変電圧可変周波数の電圧を与え、
モータ電流を検出し、
モータ電流を推定するオブザーバとを備え、
検出したモータ電流検出値を用いて、モータの回転速度および磁極位置を推定する永久磁石同期機の位置センサレス制御方法において、
モータ電流検出値と、オブザーバにて推定される電流推定値との偏差から得られる磁極位置誤差及び磁石磁束誤差から、電流検出値と電流推定値の偏差までの伝達関数行列の逆行列に基づいて磁石磁束推定を行うことを特徴とする永久磁石同期機の制御方法。
A voltage of variable voltage and variable frequency is given to the motor by the power converter,
Detect motor current,
An observer for estimating the motor current,
In the position sensorless control method of the permanent magnet synchronous machine for estimating the rotation speed and the magnetic pole position of the motor using the detected motor current detection value,
Based on the inverse matrix of the transfer function matrix from the magnetic pole position error and the magnetic flux error obtained from the deviation between the motor current detection value and the current estimation value estimated by the observer to the deviation between the current detection value and the current estimation value A method of controlling a permanent magnet synchronous machine, wherein magnet magnetic flux estimation is performed.
JP2009152470A 2009-06-26 2009-06-26 Control device for permanent-magnet synchronous machine Withdrawn JP2011010486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009152470A JP2011010486A (en) 2009-06-26 2009-06-26 Control device for permanent-magnet synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009152470A JP2011010486A (en) 2009-06-26 2009-06-26 Control device for permanent-magnet synchronous machine

Publications (1)

Publication Number Publication Date
JP2011010486A true JP2011010486A (en) 2011-01-13

Family

ID=43566468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009152470A Withdrawn JP2011010486A (en) 2009-06-26 2009-06-26 Control device for permanent-magnet synchronous machine

Country Status (1)

Country Link
JP (1) JP2011010486A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112217428A (en) * 2020-09-18 2021-01-12 江苏科技大学 Underwater robot propulsion system position-sensor-free control method
CN113328664A (en) * 2020-02-28 2021-08-31 南京理工大学 Strong tracking UKF asynchronous motor rotating speed identification method based on fading factor matrix

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004135458A (en) * 2002-10-11 2004-04-30 Yaskawa Electric Corp Control method for ipm motor and control device
JP2009060688A (en) * 2007-08-30 2009-03-19 Fuji Electric Systems Co Ltd Controller for synchronous motors
JP2009095135A (en) * 2007-10-09 2009-04-30 Fuji Electric Systems Co Ltd Controller of synchronous electric motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004135458A (en) * 2002-10-11 2004-04-30 Yaskawa Electric Corp Control method for ipm motor and control device
JP2009060688A (en) * 2007-08-30 2009-03-19 Fuji Electric Systems Co Ltd Controller for synchronous motors
JP2009095135A (en) * 2007-10-09 2009-04-30 Fuji Electric Systems Co Ltd Controller of synchronous electric motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328664A (en) * 2020-02-28 2021-08-31 南京理工大学 Strong tracking UKF asynchronous motor rotating speed identification method based on fading factor matrix
CN112217428A (en) * 2020-09-18 2021-01-12 江苏科技大学 Underwater robot propulsion system position-sensor-free control method

Similar Documents

Publication Publication Date Title
JP5130031B2 (en) Position sensorless control device for permanent magnet motor
JP5693652B2 (en) Synchronous machine controller
JP5198332B2 (en) Torque control device for permanent magnet synchronous motor
KR101927693B1 (en) Sensorless controlling apparatus and method for motor
RU2664782C1 (en) Control device for a rotating ac vehicle
TWI525981B (en) System, method and apparatus of sensor-less field oriented control for permanent magnet motor
JP5223109B2 (en) Control device for permanent magnet type synchronous motor
JP6361450B2 (en) Induction motor control device
JP2009095135A (en) Controller of synchronous electric motor
JP5321792B2 (en) Control device for permanent magnet type synchronous motor
JP2009060688A (en) Controller for synchronous motors
JP2014225993A (en) Synchronous machine controller
JP2010200430A (en) Drive controller for motors
JP5074318B2 (en) Rotor position estimation device for synchronous motor
JP5743344B2 (en) Control device for synchronous motor
JP2010035352A (en) Device for estimating rotor position of synchronous electric motor
JP2009290962A (en) Controller of permanent magnet type synchronous motor
JP2009273283A (en) Controller for permanent magnet type synchronous motor
JP2019193532A (en) Motor system, motor control device, and motor rotation speed detection method
JPH1118499A (en) Sensorless revolution control method for permanent magnet type synchronous motor and step-out detection method for the same
JP2011010486A (en) Control device for permanent-magnet synchronous machine
JP6032047B2 (en) Motor control device
JP4273775B2 (en) Magnetic pole position estimation method and control device for permanent magnet type synchronous motor
JP5768255B2 (en) Control device for permanent magnet synchronous motor
JP3692085B2 (en) Motor control method and apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130918

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20131010