[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011000548A - Gas adsorbing agent - Google Patents

Gas adsorbing agent Download PDF

Info

Publication number
JP2011000548A
JP2011000548A JP2009146166A JP2009146166A JP2011000548A JP 2011000548 A JP2011000548 A JP 2011000548A JP 2009146166 A JP2009146166 A JP 2009146166A JP 2009146166 A JP2009146166 A JP 2009146166A JP 2011000548 A JP2011000548 A JP 2011000548A
Authority
JP
Japan
Prior art keywords
gas
voc
silica
desorption
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009146166A
Other languages
Japanese (ja)
Inventor
Katsunori Kosuge
勝典 小菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009146166A priority Critical patent/JP2011000548A/en
Publication of JP2011000548A publication Critical patent/JP2011000548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas adsorbing agent which is incombustible and excellent in adsorptivity, in which an adsorbed gas molecule is diffused easily, which can be regenerated excellently by purging/desorbing the gas adsorbed on the gas adsorbing agent by using an inert gas under normal pressure or in vacuum without heating the gas-adsorbed gas adsorbing agent, the absorption/desorption capacity of which are restrained from being deteriorated even in the coexistence of steam and consequently which can be applied to various purposes.SOLUTION: The gas adsorbing agent characterized in that ≥85% of the amount of a volatile organic compound (VOC) gas to be adsorbed can be desorbed is obtained, in porous silica which has connected micropores and mesopores in a primary particle thereof, by high temperature aging at synthesis or heat treatment after synthesis to enhance the hydrophobicity of the surfaces of these pores, and by circulating the inert gas at ≤35°C under normal pressure, after the VOC gas breaks and reaches a saturated/adsorbed state in a dynamic breakthrough curve measurement of the VOC gas.

Description

本発明は、1次粒子内に存在する細孔表面が疎水化されたマイクロ孔とメソ孔に起因する2元細孔構造に基づく揮発性有機化合物(VOC)ガスに対する吸脱着能を利用したガス吸着剤に関し、更に詳しくは、細孔表面の化学的性質の制御により、常圧不活性ガスパージ下において高脱着能を有するガス吸着剤に関する。   The present invention is a gas that utilizes adsorption / desorption ability to a volatile organic compound (VOC) gas based on a binary pore structure caused by micropores and mesopores in which the pore surfaces present in primary particles are hydrophobized. More particularly, the present invention relates to a gas adsorbent having a high desorption ability under a normal pressure inert gas purge by controlling the chemical properties of the pore surface.

揮発性有機化合物(VOC)ガスは環境汚染物質として近年クローズアップされ、その排出削減対策が緊急の課題となっている(以下、揮発性有機化合物(VOC)ガスを、単に「VOC」と略記する)。特に、1999年「特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律」(PRTR法)が公布され、事業所単位でVOCを含む有害化学物質などの取扱量や排出量の報告が義務づけられた。さらに、VOC排出に対しては法規制することが検討されており、その排出抑制技術は緊急の課題となってきている。   In recent years, volatile organic compound (VOC) gas has been closed up as an environmental pollutant, and emission reduction measures have become an urgent issue (hereinafter, volatile organic compound (VOC) gas is simply abbreviated as “VOC”). ). In particular, the 1999 Act on the Promotion of Improvements in Management and Management of Specific Chemical Substances to the Environment (PRTR Law) was promulgated, and the handling amount and discharge of hazardous chemical substances including VOCs at each business site. Volume reporting is required. Furthermore, it is considered to regulate the VOC emission, and the emission control technology has become an urgent issue.

このVOC除去プロセスは、対象とする物質や濃度範囲によって、それぞれ適したものを選定する必要があるが、通常、燃焼法と吸着法の2つの方法に大別され、前者では、直接燃焼、蓄熱燃焼、触媒燃焼が良く知られている。
近年、CO排出に伴う地球温暖化問題の観点から、燃焼法に代わり、吸着法が注目されている。吸着法は、活性炭、シリカゲル、ゼオライト等の吸着剤を使用して、排ガス中のVOCを除去するものである。
吸着法は、吸着剤の再生時、脱着されるVOCを回収・再利用できることが大きな特徴であり、再生方式には、熱によるもの(TSA)と減圧による方法(PSA)、及びこの両者を組み合わせた方式がある。一般に、再生操作は吸着と再生を交互に切り替えながら行うため、吸着剤には、高い吸着能と同時に迅速に脱着できることが、VOC除去並びに回収システムの構築に当たっては要求される。
For this VOC removal process, it is necessary to select a suitable one depending on the target substance and concentration range, but it is generally divided into two methods, the combustion method and the adsorption method. Combustion and catalytic combustion are well known.
In recent years, the adsorption method has attracted attention in place of the combustion method from the viewpoint of the global warming problem associated with CO 2 emissions. The adsorption method uses an adsorbent such as activated carbon, silica gel, or zeolite to remove VOC in exhaust gas.
The main feature of the adsorption method is that it can recover and reuse the VOC that is desorbed during regeneration of the adsorbent. The regeneration method uses heat (TSA), pressure reduction (PSA), and a combination of both. There are other methods. In general, since the regeneration operation is performed while alternately switching between adsorption and regeneration, the adsorbent is required to be able to be quickly desorbed at the same time as having a high adsorption capacity in constructing a VOC removal and recovery system.

VOC除去並びに吸着・回収用に用いられている吸着剤は、上記したように、活性炭、シリカゲル、ゼオライト等である。
活性炭には、粒状、繊維状のものがあり、吸着性能に優れ、一般的に大風量、低濃度の場合に使用されているが、可燃性であり、またVOCの種類によっては、吸着作用とは異なる触媒作用が発現するためにその使用に当たっては注意が必要である。特に、ケトン、アルデヒド系の物質を対象とする場合、高濃度では酸化・重合による発熱で発火の危険性がある。また、再生はスチーム流通系においてTSAが適用されるのが一般的であり、このため水溶性のVOCの回収には不向きであり、その上最終的には廃水処理を考慮する必要がある。
このように、活性炭は安価であり、最も良く使用される吸着剤ではあるものの、可燃性、吸着熱(発熱)また再生コスト等に難点があり、対象とするVOCの種類によってはシリカゲルやゼオライトが代替使用されている(非特許文献1、2、3等)。
As described above, the adsorbent used for VOC removal and adsorption / recovery is activated carbon, silica gel, zeolite, and the like.
Activated charcoal includes granular and fibrous materials, and has excellent adsorption performance. Generally, it is used in the case of large air volume and low concentration, but it is flammable, and depending on the type of VOC, Since different catalysis occurs, care must be taken in its use. In particular, when a ketone or aldehyde-based substance is used as a target, there is a risk of ignition due to heat generated by oxidation / polymerization at a high concentration. In addition, TSA is generally applied for regeneration in a steam distribution system. Therefore, it is unsuitable for recovery of water-soluble VOC, and finally, it is necessary to consider wastewater treatment.
As described above, activated carbon is inexpensive and is the most commonly used adsorbent, but there are difficulties in combustibility, heat of adsorption (heat generation), regeneration cost, etc. Depending on the type of VOC to be used, silica gel and zeolite are It is used as an alternative (Non-Patent Documents 1, 2, 3, etc.).

また、シリカゲルは、小風量、高濃度の場合に適し、PSA法によって再生処理することが可能であり、また、ゼオライトは低濃度ではシリカゲルよりも吸着能が高く、出口濃度の規制が厳しい場合に有効であり、再生法にはTSA、PSA共に利用することができるといった活性炭にはない利点を有するものである。
しかし、シリカゲルの場合、活性炭やゼオライトと比較すると吸着能が低く、特に対水蒸気特性を向上させるために細孔表面を化学修飾しなければならないといった課題がある。さらに、吸着能はマイクロ孔容量が大きいほど高くなるが、脱着能は低くなり、脱離工程に真空、不活性ガスによるパージに加え加熱操作が必要で、処理装置の大型化が避けられないことが大きな課題となっている。
Silica gel is suitable for small air volumes and high concentrations, and can be regenerated by the PSA method. Also, zeolite has a higher adsorption capacity than silica gel at low concentrations, and the outlet concentration is severely regulated. It is effective and has an advantage not available with activated carbon such that both TSA and PSA can be used in the regeneration method.
However, in the case of silica gel, the adsorption ability is lower than that of activated carbon or zeolite, and there is a problem that the pore surface must be chemically modified, in particular, in order to improve the water vapor property. Furthermore, the adsorption capacity increases as the micropore volume increases, but the desorption capacity decreases, and the desorption process requires a heating operation in addition to vacuum and purging with an inert gas. Has become a major issue.

また、ゼオライトの場合、細孔径は1nm以下のため、大きな分子を吸着することは不可能であり、したがって、高沸点物質の除去には適用できないという難点がある。また、脱離には加熱操作が必要であり、より脱離特性に優れた疎水性ゼオライトの開発が期待されている。   In addition, in the case of zeolite, since the pore diameter is 1 nm or less, it is impossible to adsorb large molecules, and therefore, it is difficult to apply to the removal of high boiling point substances. In addition, a heating operation is required for desorption, and the development of a hydrophobic zeolite with better desorption characteristics is expected.

上記のとおり、現行のVOC吸着剤にはそれぞれ一長一短あり、今後のガス規制、殊にVOC規制に伴う種々の課題を克服し、さらにVOCの除去、回収・再利用を実現するためには、水蒸気共存下での高い吸着能はもとより、殊に再生工程の容易なVOC吸着剤の開発が強く要請されている。   As described above, current VOC adsorbents have their merits and demerits. To overcome various problems associated with future gas regulations, especially VOC regulations, and to realize removal, recovery and reuse of VOCs, There is a strong demand for the development of a VOC adsorbent that is easy to regenerate, in addition to its high adsorbability in the presence of coexistence.

本発明者らは、安価なアルカリ珪酸塩をシリカ源とし、無毒性の非イオン性界面活性剤の自己秩序形成能を使用して合成される繊維状シリカ多孔体が、メソ孔とマイクロ孔との2元細孔構造に起因する特異な吸着・脱着現象を認め、特に使用割合の高いVOCであるトルエンに対する吸着剤として有効なことを見いだした(特許文献1)。さらに、継続的な研究開発を行い、当該繊維状シリカ多孔体が、ベンゼンあるいはトリクロロエチレン等に対しても物理吸着能を発揮することを明らかにした(非特許文献4)。
したがって、VOCは、分子径、分子構造、さらに物理化学的特性の異なる様々なガス状物質があるが、活性炭、ゼオライト、並びにシリカゲル等の市販吸着剤と同様、物理吸着現象に基づく限りにおいては、当該繊維状シリカ多孔体が、トルエンばかりでなく、多種多様なガス用吸着剤として利用できることは明らかである(非特許文献5、非特許文献6)。
The inventors of the present invention have described that a fibrous silica porous body synthesized using an inexpensive alkali silicate as a silica source and using the self-ordering ability of a non-toxic nonionic surfactant has mesopores and micropores. The unique adsorption / desorption phenomenon due to the binary pore structure of the above was recognized, and it was found to be particularly effective as an adsorbent for toluene, which is a VOC having a high use ratio (Patent Document 1). Furthermore, continuous research and development have been carried out, and it has been clarified that the fibrous silica porous material exhibits physical adsorption ability with respect to benzene or trichlorethylene (Non-patent Document 4).
Therefore, VOC has various gaseous substances having different molecular diameters, molecular structures, and physicochemical properties. However, as with commercial adsorbents such as activated carbon, zeolite, and silica gel, It is clear that the fibrous silica porous material can be used not only as toluene but also as a wide variety of gas adsorbents (Non-patent Documents 5 and 6).

具体的には、特許文献1のガス吸着剤である、2元細孔構造を有する繊維状シリカが、特異なVOC吸着能を発揮し、種々の細孔特性を有するシリカゲルと比較して、マイクロ孔容量が1/2程度であっても同程度の吸着能を有すると同時に、「トルエンガス吸着後、40℃の不活性ガス流通下で、全吸着分のうち50%〜97%以上が脱着可能であるもの」、更には「トルエンガス吸着後、60℃の不活性ガス流通下で、全吸着分のうち98%以上が脱着可能であるもの」であることを明らかにした。   Specifically, fibrous silica having a binary pore structure, which is the gas adsorbent of Patent Document 1, exhibits a unique VOC adsorption ability, and is compared with silica gel having various pore characteristics. At the same time, even if the pore volume is about 1/2, it has the same adsorption capacity, and at the same time, after adsorption of toluene gas, 50% to 97% or more of the total adsorption is desorbed under an inert gas flow at 40 ° C. It was also clarified that "it is possible to desorb 98% or more of the total adsorbed amount under an inert gas flow at 60 ° C after adsorption of toluene gas".

特許第4061408号公報Japanese Patent No. 4061408 特許第4099811号公報Japanese Patent No. 4099811 特開2004−182492号公報JP 2004-182492 A 特開2004−143026号公報JP 2004-143026 A 特開2006−151798号公報JP 2006-151798 A 特開2006−151799号公報JP 2006-151799 A 特開2007−204288号公報JP 2007-204288 A 特願2009−078051Japanese Patent Application No. 2009-078051 特願2009−079589Japanese Patent Application No. 2009-079589

PETROTECH、2001年、第24巻、第2号、pp.145PETROTECH, 2001, Vol. 24, No. 2, pp.145 化学装置、2002年10月号、特集記事「吸着剤技術と用途開発の最新動向」)Chemical equipment, October 2002 issue, special feature article "Latest trends in adsorbent technology and application development") 化学装置2002年9月号別冊Separate volume of September 2002 issue of Chemical Equipment Kosuge, K. Kubo, S. Kikukawa, N. Takemori, M. Langmuir, 2007, 23, 3095.Kosuge, K. Kubo, S. Kikukawa, N. Takemori, M. Langmuir, 2007, 23, 3095. 多孔質体の性質とその応用技術、1999年、(株)フジ・テクノシステムProperties of porous materials and their applied technology, 1999, Fuji Techno System Co., Ltd. 多孔質吸着剤ハンドブック、2005年、(株)フジ・テクノシステムPorous adsorbent handbook, 2005, Fuji Techno System Co., Ltd.

しかしながら、前述の2元細孔構造を有する繊維状シリカにおいて、脱離率85%から90%以上を達成するには、吸着温度より高い温度で加熱する工程が不可欠であり、非加熱条件下における常圧不活性ガスパージでは達成することができないといった課題があった。さらに、繊維状シリカ多孔体の合成条件並びに合成物の加熱処理温度に依存する細孔表面の化学的性質と、水蒸気共存の有無におけるVOC吸脱離能との関係に関する評価は全く行われていなかった。
VOC除去、吸着・回収用処理装置の省エネ化をさらに促進できるシステム開発のためには、高い吸着能はもとより、特に従来の吸着剤の脱離性能を凌ぐ吸着剤の開発が不可欠の課題である。しかも、VOC使用業種は多種多様であり、処理対象となるVOCは水蒸気との混合ガスの場合が多く、水蒸気共存下におけるVOC吸脱着能の低下が抑制可能なシリカ系吸着剤の開発が極めて重要である。すなわち、水蒸気の共存の有無によって吸脱着能に顕著な差異が認められず、さらに、脱離・再生工程において加熱操作が不要で、常温付近における常圧あるいは真空下において、不活性ガスパージにより効率的に脱離させることができる吸着剤の開発は、今後の省エネ型VOC吸着・回収用処理装置の開発に直結するものである。
However, in the fibrous silica having the above-mentioned binary pore structure, in order to achieve a desorption rate of 85% to 90% or more, a process of heating at a temperature higher than the adsorption temperature is indispensable. There has been a problem that it cannot be achieved by normal pressure inert gas purge. Furthermore, no evaluation has been made regarding the relationship between the chemical properties of the pore surface depending on the synthesis conditions of the fibrous silica porous material and the heat treatment temperature of the composite, and the VOC adsorption / desorption ability in the presence or absence of water vapor. It was.
In order to develop a system that can further promote the energy saving of VOC removal and adsorption / recovery treatment equipment, it is essential to develop an adsorbent that not only has a high adsorption capacity but also surpasses the conventional adsorbent desorption performance. . In addition, there are many different types of VOC use industries, and VOCs to be processed are often mixed gases with water vapor, and it is extremely important to develop a silica-based adsorbent that can suppress the decrease in VOC adsorption / desorption ability in the presence of water vapor. It is. That is, there is no significant difference in adsorption / desorption ability depending on the presence or absence of water vapor, and further, no heating operation is required in the desorption / regeneration process, and it is efficient by inert gas purging at normal pressure or vacuum near normal temperature. The development of adsorbents that can be desorbed directly will lead to the development of energy-saving VOC adsorption / recovery treatment equipment in the future.

本発明は、このような事情に鑑みなされたものであって、不燃性であり、吸着能に優れ、吸着ガス分子の拡散が容易で、特に、非加熱状態の常圧あるいは真空下における不活性ガスパージによる脱着再生能に優れ、水蒸気共存下においても吸脱着能の低下が抑制されることで、幅広い用途に適用可能なガス吸着剤を提供することを目的とするものである。   The present invention has been made in view of such circumstances, and is nonflammable, excellent in adsorption capacity, easy to diffuse adsorbed gas molecules, and particularly inert under non-heated atmospheric pressure or vacuum. An object of the present invention is to provide a gas adsorbent that is applicable to a wide range of applications by being excellent in desorption / regeneration ability by gas purge and suppressing a decrease in adsorption / desorption ability even in the presence of water vapor.

本発明者らは、安価なアルカリ珪酸塩をシリカ源とし、無毒性の非イオン性界面活性剤の自己秩序形成能を使用して合成される繊維状シリカ多孔体が、メソ孔とマイクロ孔の有機的な連結構造に起因して発現する特異なVOC吸着・脱着挙動を基本として、さらに脱離能に優れたシリカ吸着剤の開発を目指し一貫した研究を行っている。すなわち、特許文献2の合成方法で製造した繊維状シリカ多孔体は、メソ孔とマイクロ孔の有機的な連結構造に基づいて高い吸着能と脱着能を有するが、特に脱離能の観点からは充分な性能が得られなかった。   The inventors of the present invention have prepared a porous silica porous material synthesized using an inexpensive alkali silicate as a silica source and using the self-ordering ability of a non-toxic nonionic surfactant, having mesopores and micropores. Based on the unique VOC adsorption / desorption behavior that occurs due to the organic linkage structure, we are conducting consistent research with the aim of developing a silica adsorbent with even better desorption ability. That is, the fibrous silica porous material produced by the synthesis method of Patent Document 2 has high adsorption ability and desorption ability based on the organic connection structure of mesopores and micropores, but particularly from the viewpoint of desorption ability. Sufficient performance was not obtained.

本発明者らは、新規繊維状シリカ多孔体をはじめ、形態制御されたシリカ多孔体の開発を行い、その製造方法並びに応用に関し、数件の特許公開を行い(特許文献3、4、5、6、7)、さらに現在2件を特許出願(特許文献8、9)したところである。これらの特許文献においては、原料溶液を一定時間攪拌した後、より高温で熟成を行うことが、新規繊維状あるいはロッド状シリカの効率的な製造方法の開発には極めて有効であり、特に細孔径の制御として優れていることを明らかにした。
しかし、VOC吸脱着特性評価については、前記の通り特許文献1、2の比較的低温における攪拌工程のみで合成した繊維状又はロッド状シリカ多孔体に限られていた。
The inventors of the present invention have developed a porous silica body whose shape is controlled, including a novel fibrous silica porous body, and published several patents regarding its production method and application (Patent Documents 3, 4, 5, 6, 7) and two more patent applications (Patent Documents 8 and 9). In these patent documents, it is extremely effective for development of an efficient production method of a new fibrous or rod-shaped silica to be aged at a higher temperature after stirring the raw material solution for a certain period of time. It was clarified that it is excellent as control of
However, as described above, the VOC adsorption / desorption characteristic evaluation is limited to the fibrous or rod-shaped silica porous body synthesized only by the stirring process at relatively low temperatures in Patent Documents 1 and 2.

本発明らは、水熱条件下熟成法によって得られた繊維状シリカ多孔体とその加熱生成物のVOC吸脱着特性並びに水蒸気共存の有無におけるVOC吸脱着特性に関する評価を行うことによって、これまでには全く予期することのできなかったVOC脱離効果を見いだし、新規VOC吸着剤の開発に成功したものである。
すなわち、水熱条件下における熟成によって得られた繊維状シリカ多孔体の細孔表面は低温攪拌工程だけで得られたものと比較して、600℃での加熱処理生成物でもより疎水的であり、一旦吸着したVOCは非加熱条件下における不活性ガスパージによってほぼ90%以上脱離し、水蒸気共存下で吸着させた場合でも脱離率は65%から約90%に達することが明らかになった。なお、低温攪拌で得られた繊維状シリカ多孔体では脱離率は最大でも80%程度であり、水蒸気が共存すると50%まで低下してしまう。
水熱条件下におけるシリカ表面の改質に関する研究は数多いが、シリカメソ多孔体の合成条件によって調整された細孔表面とVOC吸脱着特性に関しての報告は全く行われていない。
The present inventors have evaluated the VOC adsorption / desorption characteristics of the fibrous silica porous material obtained by the aging method under hydrothermal conditions and the heated product and the VOC adsorption / desorption characteristics in the presence or absence of water vapor so far. Found a VOC desorption effect that was completely unexpected and succeeded in developing a new VOC adsorbent.
That is, the pore surface of the fibrous silica porous material obtained by aging under hydrothermal conditions is more hydrophobic even with the heat-treated product at 600 ° C. than that obtained only by the low temperature stirring step. It was revealed that once adsorbed VOC was desorbed by approximately 90% or more by inert gas purge under non-heating conditions, and the desorption rate reached 65% to approximately 90% even when adsorbed in the presence of water vapor. In the fibrous silica porous material obtained by low-temperature stirring, the desorption rate is about 80% at the maximum, and when water vapor coexists, it decreases to 50%.
There are many studies on the modification of the silica surface under hydrothermal conditions, but there has been no report on the pore surface and VOC adsorption / desorption characteristics adjusted by the synthesis conditions of the silica mesoporous material.

本発明では、実施例に詳細を記載するとおり、細孔内に充填した界面活性剤を加熱除去して形成される細孔表面の性質は、水熱合成条件に敏感であり、VOC吸脱着特性を著しく向上させることを見出した。
さらに、1次粒子内にメソ孔とマイクロ孔を有するシリカ多孔体であれば、繊維状に限らず、ロッド状、球状及び薄板状シリカ、並びにそれらの凝集体においても、700℃以上の高温で加熱することによって細孔表面が疎水化し、水蒸気の共存の有無に係わらず、一旦吸着したVOCを非加熱条件の不活性ガスパージによって89%以上脱離し、且つ両者の脱離率の差異は10%以下となることが明らかになった。
In the present invention, as described in detail in the examples, the properties of the pore surface formed by heating and removing the surfactant filled in the pores are sensitive to hydrothermal synthesis conditions, and the VOC adsorption / desorption characteristics Has been found to improve significantly.
Furthermore, the silica porous body having mesopores and micropores in the primary particles is not limited to the fiber shape, and rod-like, spherical and lamellar silica and their aggregates can be used at a high temperature of 700 ° C. or higher. By heating, the pore surface becomes hydrophobic, regardless of the presence or absence of water vapor, once adsorbed VOC is desorbed by 89% or more by an inert gas purge under non-heating conditions, and the difference between the desorption rates is 10%. It became clear that

多孔性非晶質シリカを高温に加熱すると、シラノール基(Si−OH)の脱水・縮合によりシロキサン結合(O−Si−O)に変化して、その結果細孔表面の疎水性が向上することは周知のことである。しかしながら、粒子間間隙が細孔として機能する一般の市販シリカゲルでは、単純に高温に加熱すると比表面積(細孔容積)は著しく減少し、疎水化は実現できても吸着能は著しく低下し、VOC吸着剤として使用するには充填量が嵩み処理装置の大型化ということが大きな課題となる。
上記のとおり、本発明は、細孔表面の疎水性を簡易的な方法で高めることで、特に吸着回収システムの省エネ化の開発に極めて効果的となる、脱着性能に優れた、1次粒子内にメソ孔とマイクロ孔を有する新たなシリカ吸着剤を見出すことに初めて成功した。
When porous amorphous silica is heated to a high temperature, silanol groups (Si-OH) are converted to siloxane bonds (O-Si-O) by dehydration / condensation of the silanol groups (Si-OH), resulting in improved hydrophobicity on the pore surface. Is well known. However, in a general commercial silica gel in which the interparticle gap functions as pores, the specific surface area (pore volume) is significantly reduced when heated simply to a high temperature. In order to use it as an adsorbent, the filling amount is bulky and increasing the size of the processing apparatus is a big problem.
As described above, the present invention improves the hydrophobicity of the pore surface by a simple method, and is particularly effective for energy saving development of the adsorption recovery system. For the first time, a new silica adsorbent with mesopores and micropores was successfully discovered.

本発明は、かかる知見に基づいてなされたものである。
すなわち、本発明によれば、以下の発明が提供される。
[1]1次粒子内に連結したマイクロ孔とメソ孔を有するシリカ多孔体からなり、揮発性有機化合物(VOC)ガスの動的破過曲線測定において、破過して飽和吸着に達した後、常圧下において35℃以下の不活性気体を流通することで、全吸着分のうち85%以上が脱着可能であることを特徴とするガス吸着剤。
[2]1次粒子内に連結したマイクロ孔とメソ孔を有するシリカ多孔体からなり、揮発性有機化合物(VOC)ガスと水蒸気との混合ガスの動的破過曲線測定において、破過して飽和吸着に達した後、常圧下において35℃以下の不活性気体を流通することで、全吸着分のうち80%以上が脱着可能であることを特徴とするガス吸着剤。
[3]揮発性有機化合物(VOC)ガス単独、及び当該揮発性有機化合物(VOC)ガスと水蒸気との混合ガス、の両者の動的破過曲線測定において、破過して飽和吸着に達した後、35℃以下の常圧下において不活性気体を流通した全脱離量を比較した時、水蒸気と混合された揮発性有機化合物(VOC)ガスの脱離割合が、揮発性有機化合物(VOC)ガス単独の脱離割合の90%以上であることを特徴とする上記[1]又は[2]のガス吸着剤。
[4]シリカ多孔体の合成時の高温熟成工程又は合成後の加熱処理により、前記マイクロ孔とメソ孔の表面が疎水化されていることを特徴とする上記[1]〜[3]のガス吸着剤。
[5]600℃加熱処理において比表面積700m/g以上、全細孔容積0.55ml/g以上、及びマイクロ孔容積0.05ml/g以上を有し、これらの細孔特性値を、800℃加熱処理生成物と比較した場合、いずれも600℃の細孔特性値の40%以上が保持され、800℃以上に加熱しても、窒素吸着等温線の細孔特性評価において明確にマイクロ孔とメソ孔の共存が確認できることを特徴とする上記[1]〜[4]のガス吸着剤。
[6]1次粒子の形態が、繊維状、ロッド状、薄板状、又は球状のいずれかの形態を呈することを特徴とする上記[1]〜[5]のいずれか1項に記載のガス吸着剤。
The present invention has been made based on such knowledge.
That is, according to the present invention, the following inventions are provided.
[1] After having reached saturation adsorption through breakthrough in dynamic breakthrough curve measurement of volatile organic compound (VOC) gas, comprising a porous silica body having micropores and mesopores connected in primary particles A gas adsorbent characterized in that 85% or more of all adsorbed components can be desorbed by circulating an inert gas of 35 ° C. or lower under normal pressure.
[2] It consists of a porous silica material having micropores and mesopores connected in the primary particles, and in the dynamic breakthrough curve measurement of the mixed gas of volatile organic compound (VOC) gas and water vapor, A gas adsorbent characterized in that 80% or more of the total adsorbed amount can be desorbed by passing an inert gas of 35 ° C. or lower under normal pressure after reaching saturated adsorption.
[3] In the dynamic breakthrough curve measurement of both the volatile organic compound (VOC) gas alone and the mixed gas of the volatile organic compound (VOC) gas and water vapor, breakthrough reached saturation adsorption. Then, when comparing the total desorption amount through which an inert gas was circulated under an atmospheric pressure of 35 ° C. or lower, the desorption ratio of the volatile organic compound (VOC) gas mixed with water vapor was volatile organic compound (VOC). The gas adsorbent according to [1] or [2] above, wherein the gas adsorbent is 90% or more of the desorption ratio of the gas alone.
[4] The gas according to any one of [1] to [3] above, wherein the surfaces of the micropores and mesopores are hydrophobized by a high temperature aging step at the time of synthesizing the silica porous body or a heat treatment after the synthesis. Adsorbent.
[5] A heat treatment at 600 ° C. has a specific surface area of 700 m 2 / g or more, a total pore volume of 0.55 ml / g or more, and a micropore volume of 0.05 ml / g or more. When compared with the heat treatment product at 60 ° C., 40% or more of the pore characteristic value at 600 ° C. is maintained, and even when heated to 800 ° C. or higher, the pore characteristics evaluation of the nitrogen adsorption isotherm clearly The gas adsorbent according to any one of [1] to [4] above, wherein the coexistence of water and mesopores can be confirmed.
[6] The gas according to any one of the above [1] to [5], wherein the primary particles are in the form of a fiber, rod, thin plate, or sphere. Adsorbent.

本発明のガス吸着剤は、一旦吸着したVOCを、非加熱状態の常圧における不活性気体パージにより85%以上の高効率で脱着することができ、さらには、水蒸気が共存する環境条件下においても脱離能は80%以上であり、VOCの省エネ型除去及び吸着回収システムの構築に極めて有効である。また、本発明の吸着剤は、その再生工程に、非加熱状態の常圧における不活性気体パージのみならず、非加熱状態の真空不活性気体パージ、加熱状態の常圧、あるいは減圧不活性気体パージの適用が可能であることはもちろんであり、これらのいずれかを採用して、吸着回収システムの性能の高効率化を図ることができる。   The gas adsorbent of the present invention can desorb VOC once adsorbed with a high efficiency of 85% or more by an inert gas purge at normal pressure in a non-heated state, and further, under environmental conditions where water vapor coexists. Also, the desorption ability is 80% or more, which is extremely effective for the construction of an energy-saving VOC removal and adsorption recovery system. In addition, the adsorbent of the present invention is not limited to an inert gas purge at a normal pressure in a non-heated state, but a vacuum inert gas purge in a non-heated state, a normal pressure in a heated state, or a reduced pressure inert gas in the regeneration process. Of course, it is possible to apply a purge, and any of these can be employed to improve the performance of the adsorption recovery system.

さらに、本発明のガス吸着剤は、安価な原料を使用し、穏やかな反応条件下、短時間での合成が可能であることから、新たな工業用用途への応用も可能であり、たとえば、ミクロンサイズの粒子形態を利用して、単独、或いは種々のシリカゲル、ゼオライト、活性炭、粘土鉱物又は樹脂、塗料、紙等種々の素材と組み合わせることによって、ナノコンポジット吸着剤としての利用が可能である。
さらにまた、本発明の吸着剤は、均一細孔径を有することから、VOCばかりでなく、マイクロ孔を通過可能なあらゆる気体分子、例えば、酸素、窒素、二酸化炭素、一酸化炭素、フロン、メタン、水素等の吸着・分離剤として適用可能である。
Furthermore, since the gas adsorbent of the present invention can be synthesized in a short time under mild reaction conditions using an inexpensive raw material, it can be applied to new industrial applications. Utilizing a micron-sized particle form, it can be used as a nanocomposite adsorbent alone or in combination with various materials such as various silica gels, zeolites, activated carbon, clay minerals or resins, paints, and papers.
Furthermore, since the adsorbent of the present invention has a uniform pore size, not only VOC but also any gas molecule that can pass through the micropores, such as oxygen, nitrogen, carbon dioxide, carbon monoxide, freon, methane, It can be applied as an adsorbing / separating agent for hydrogen and the like.

本発明のガス吸着剤の粒子形態を示すSEM像であり、ぞれぞれ、(a)繊維状シリカ粒子(実施例1)、(b)ロッドシリカ(実施例7)、(c)薄板状シリカ(実施例5)、及び(d)球状シリカ(実施例8)のSEM像。It is a SEM image which shows the particle | grain form of the gas adsorbent of this invention, respectively, (a) Fibrous silica particle (Example 1), (b) Rod silica (Example 7), (c) Thin plate shape SEM images of silica (Example 5) and (d) spherical silica (Example 8). 本発明のガス吸着剤のそれぞれの粒子形態に対応する基本構造単位(1次粒子)を示す概念図。The conceptual diagram which shows the basic structural unit (primary particle) corresponding to each particle | grain form of the gas adsorbent of this invention. 本発明(実施例1)の繊維状シリカの微細構造を示すFE−SEM像。The FE-SEM image which shows the fine structure of the fibrous silica of this invention (Example 1). 本発明(実施例1の600℃加熱焼成物)及び従来(比較例1の600℃加熱焼成物)の繊維状シリカのトルエン破過曲線と脱離挙動Toluene breakthrough curve and desorption behavior of fibrous silica of the present invention (600 ° C. heat-fired product of Example 1) and conventional (600 ° C. heat-fired product of Comparative Example 1) 本発明(実施例1の800℃加熱焼成物)のVOC吸着剤の、(a)水蒸気共存の有無によるトルエン破過曲線と(b)脱離挙動の比較図Comparison chart of (a) toluene breakthrough curve with and without coexistence of water vapor and (b) desorption behavior of VOC adsorbent of the present invention (800 ° C. heat-fired product of Example 1) 本発明のVOC吸着剤(実施例1)の窒素吸着等温線Nitrogen adsorption isotherm of VOC adsorbent of the present invention (Example 1) 本発明のVOC吸着剤(実施例1)の細孔分布曲線Pore distribution curve of VOC adsorbent of the present invention (Example 1) 本発明のVOC吸着剤(実施例1)のt−プロットT-plot of VOC adsorbent of the invention (Example 1) 比較例3及び4の窒素吸着等温線Nitrogen adsorption isotherms of Comparative Examples 3 and 4 比較例3及び4のt−プロットT-plot of Comparative Examples 3 and 4

本発明に係るシリカ多孔体からなるガス吸着剤は、1次粒子内にメソ孔と、該メソ孔と連結するマイクロ孔が存在し、この2元細孔構造配列を保持したまま、合成時の高温熟成工程又は合成後の加熱処理により、細孔表面を疎水化することで、水蒸気の共存の有無に関わらず、VOC吸着能を有すると同時に、非加熱状態の常圧において高い脱離能を発揮することが大きな特徴である。   The gas adsorbent composed of the porous silica according to the present invention has mesopores in the primary particles and micropores connected to the mesopores, and maintains this binary pore structure arrangement. By hydrophobizing the pore surface by a high temperature aging step or heat treatment after synthesis, it has VOC adsorption ability regardless of the presence or absence of water vapor, and at the same time has high desorption ability at non-heated atmospheric pressure. It is a great feature to demonstrate.

最初に、本発明のシリカ多孔体の粒子形態及びその2元細孔構造について、図を用いて説明する。
図1の(a)ないし(d)は、後述する実施例で得られた本発明のシリカ多孔体からなるガス吸着剤の粒子形態を示す走査電子顕微鏡像(SEM像)であり、それぞれ順に、実施例1で得られた繊維状シリカ、実施例7で得られたロッド状シリカ、実施例5で得られた薄板状シリカ、及び実施例8で得られた球状シリカ、のSEM像である。
図1の(a)ないし(d)のSEM像で観察される、本発明のシリカ多孔体のマクロ形態は、それぞれ対応する基本構造単位、すなわち1次粒子の規則的集合体又は不規則な凝集体である。
図2は、それぞれの粒子形態に対応する基本構造単位(1次粒子)を説明するために単純化した概念図である。以下、それぞれの粒子形態について説明する。
Initially, the particle | grain form of the silica porous body of this invention and its binary pore structure are demonstrated using figures.
(A) thru | or (d) of FIG. 1 are the scanning electron microscope images (SEM image) which show the particle | grain form of the gas adsorbent which consists of the silica porous body of this invention obtained in the Example mentioned later, 3 is an SEM image of fibrous silica obtained in Example 1, rod-like silica obtained in Example 7, thin-plate silica obtained in Example 5, and spherical silica obtained in Example 8. FIG.
The macro form of the porous silica of the present invention observed in the SEM images of FIGS. 1 (a) to 1 (d), respectively, corresponds to the corresponding basic structural unit, that is, a regular aggregate or irregular aggregate of primary particles. It is a collection.
FIG. 2 is a conceptual diagram simplified to explain the basic structural unit (primary particle) corresponding to each particle form. Hereinafter, each particle form will be described.

図1(a)の繊維状シリカの粒子は、長さ10〜500μmで、合成条件により、繊維長及びメソ細孔径等の細孔特性値を制御することができる。
図3は、実施例1で得られた繊維状シリカの微細構造を示す走査電子顕微鏡写真であり、細長いロッド状粒子が連鎖して1本の繊維状粒子に伸張していると同時に、伸張した複数の繊維状粒子が束状に集合していることを示している。
したがって、図1(a)の実際の繊維状シリカの粒子は、複数の繊維状粒子から成る繊維束の集合体である。
図2(a)は、1つの繊維状粒子の基本構造単位を示しており、ロッド状粒子が連鎖していることを明示している。ただし、ここでは3個のロッド状粒子しか描いていないが、実際には数十から数百個の連鎖体である。
The fibrous silica particles in FIG. 1A have a length of 10 to 500 μm, and the pore characteristic values such as fiber length and mesopore diameter can be controlled by the synthesis conditions.
FIG. 3 is a scanning electron micrograph showing the microstructure of the fibrous silica obtained in Example 1, in which elongated rod-shaped particles are chained and stretched to one fibrous particle, and simultaneously stretched. It shows that a plurality of fibrous particles are gathered in a bundle.
Accordingly, the actual fibrous silica particles in FIG. 1A are an aggregate of fiber bundles composed of a plurality of fibrous particles.
FIG. 2A shows the basic structural unit of one fibrous particle, and clearly shows that rod-shaped particles are linked. However, although only three rod-like particles are drawn here, it is actually several tens to several hundreds of linked bodies.

また、図1(b)のロッド状シリカの粒子は、SEM像では長さ約1〜2μmのロッド状粒子が個々に独立して存在する様に認められるが、実際の合成物では完全に分散した状態にすることは難しく、多数のロッド状粒子が凝集した2次粒子であり、大きさが数十μmの塊状粒子である。
図2(b)は、図1(b)のロッド状シリカを構成する1個のロッド状粒子に対応するもので、基本構造単位を示すものである。また、図2(a)の繊維状粒子の基本構造単位は、図2(b)の基本構造単位であるロッド状粒子が連鎖したものである。さらに、図2(c)は、図2(b)の基本構造単位の伸張方向の長さが短い、すなわちアスペクト比の小さいロッド状の基本構造単位を表している。なお、アスペクト比は、1次元メソチャンネル方向の粒子長を、その垂直方向断面の粒子幅で除して求められる。
In addition, the rod-like silica particles in FIG. 1 (b) can be recognized in the SEM image that rod-like particles having a length of about 1 to 2 μm exist individually, but in the actual composition, they are completely dispersed. It is difficult to achieve this state, and it is a secondary particle in which a large number of rod-shaped particles are aggregated, and is a massive particle having a size of several tens of μm.
FIG. 2B corresponds to one rod-shaped particle constituting the rod-shaped silica of FIG. 1B and shows a basic structural unit. Moreover, the basic structural unit of the fibrous particle in FIG. 2A is a chain of rod-shaped particles that are the basic structural unit in FIG. Further, FIG. 2C shows a rod-like basic structural unit in which the length of the basic structural unit in FIG. 2B is short, that is, the aspect ratio is small. The aspect ratio is obtained by dividing the particle length in the one-dimensional mesochannel direction by the particle width in the vertical cross section.

図1(c)の薄板状シリカの粒子は、図2(c)の薄いロッド状の1次粒子の強い凝集体である。すなわち、図1(c)の合成物は、厚さ0.3μm以下の薄いロッド状1次粒子が凝集した塊状粒子で、約20mmに粒度分布のピーク値が存在する。
さらに、図1(d)の球状シリカの粒子は、1次粒子であるサブミクロンオーダーの小さな球状粒子(図2(d))が強く集合して数十μmの球状粒子に成長し、さらに複数の球状粒子が凝集した数百μmの塊状粒子である。
The thin silica particles shown in FIG. 1 (c) are strong aggregates of the thin rod-like primary particles shown in FIG. 2 (c). That is, the composite of FIG. 1C is agglomerated particles in which thin rod-shaped primary particles having a thickness of 0.3 μm or less are aggregated, and a peak value of the particle size distribution exists at about 20 mm.
Furthermore, the spherical silica particles in FIG. 1 (d) grow into spherical particles having a size of several tens of μm by strongly gathering small spherical particles (FIG. 2 (d)) of the order of submicron as primary particles. The spherical particles are aggregated particles of several hundred μm.

次に、本発明のそれぞれの粒子における、本発明でいう、「マイクロ孔とメソ孔が連結した細孔構造」について、図2より説明する。
繊維状シリカ(a)と、ロッド状シリカ(b)及び薄板状シリカ(c)では、いずれも一方向に伸張した六角柱を刳り貫いて形成される中空部分(メソチャンネル)が、シリカ骨格によって取り囲まれ、さらにその基本単位がハニカム状に規則配列し、個々のロッド状粒子として存在している。このロッド状粒子のアスペクト比は、合成条件に依存し、1次元チャンネルの極端に短い図2(c)の様な薄板状粒子として制御することも可能である。本発明と従来の繊維状及びロッド状粒子のVOC吸着剤としての吸脱着挙動の差異は、特に、1次元メソチャンネルの孔径と、細孔表面の親疎水性の程度に起因するものである。
また、基本構造単位が、図2(d)に示す球状である場合、メソ孔は3次元的に連なって存在し、その配列構造の規則性は低いが、マイクロ孔がメソ孔間を連結していると考えられる。なお、メソ孔をマイクロ孔の大きさに制御することが可能で、後述する比較例1の球状マイクロ孔多孔体に対応する。
Next, the “pore structure in which micropores and mesopores are connected” in the present invention in each particle of the present invention will be described with reference to FIG.
In the fibrous silica (a), the rod-like silica (b), and the thin-plate silica (c), hollow portions (mesochannels) formed by passing through hexagonal columns extending in one direction are formed by the silica skeleton. Further, the basic units are regularly arranged in a honeycomb shape and exist as individual rod-like particles. The aspect ratio of the rod-like particles depends on the synthesis conditions, and can be controlled as thin plate-like particles as shown in FIG. The difference in the adsorption / desorption behavior of the present invention and the conventional fibrous and rod-like particles as VOC adsorbents is caused in particular by the pore diameter of the one-dimensional mesochannel and the degree of hydrophilicity / hydrophobicity of the pore surface.
When the basic structural unit is spherical as shown in FIG. 2D, the mesopores are three-dimensionally connected and the regularity of the arrangement structure is low, but the micropores connect the mesopores. It is thought that. Note that the mesopores can be controlled to the size of the micropores, which corresponds to the spherical microporous material of Comparative Example 1 described later.

本発明のガス吸着剤では、いずれもメソ孔(図2の黒塗りの六角形)は、シリカ骨格中を貫通する多数のマイクロ孔(有効径2nm以下の細孔で、図2では小さい黒丸並びに黒線で表記している)によって相互に連結され、さらに最も外側に位置するマイクロ孔とメソ孔は外界と通じている。
また、本発明でいう「1次粒子」とは、図2に示す基本構造単位に対応し、基本構造単位内に規則的に配列したメソ孔とマイクロ孔が存在する粒子のことである。なお、一般の市販シリカゲルは、1次粒子内には細孔は存在せず、1次粒子乃至その集合体によって形成される粒子間間隙が吸着に寄与する細孔であり、1次粒子あるいはその集合体の大きさにより細孔径は制御されている。
したがって、細孔配列と細孔径の観点から、本発明のシリカ多孔体からなるガス吸着剤は、1次粒子内に細孔が存在すること、及び細孔径分布が極めて均一であることで、市販シリカゲルと顕著な差異がある。
In the gas adsorbent of the present invention, each mesopore (black hexagon in FIG. 2) is a large number of micropores (pores having an effective diameter of 2 nm or less) penetrating through the silica skeleton. The micropores and mesopores that are connected to each other by the black line and communicate with the outside world.
The “primary particles” in the present invention are particles corresponding to the basic structural unit shown in FIG. 2 and having mesopores and micropores regularly arranged in the basic structural unit. In general, commercially available silica gel has no pores in the primary particles, and the interparticle gaps formed by the primary particles or aggregates contribute to the adsorption. The pore diameter is controlled by the size of the aggregate.
Therefore, from the viewpoint of pore arrangement and pore diameter, the gas adsorbent comprising the porous silica of the present invention is commercially available due to the presence of pores in the primary particles and the extremely uniform pore size distribution. There are significant differences from silica gel.

本発明者らは、従来のガス吸着剤である繊維状シリカの脱着能を向上させるためには、1次元メソチャンネルと、チャンネル間を連結するマイクロ孔が有機的に連結した細孔構造を維持したままで、細孔表面を疎水化すること及びメソ孔を拡張することが有効であることを、VOCガスの動的破過曲線と脱離曲線の測定によって見出した。   In order to improve the desorption ability of fibrous silica, which is a conventional gas adsorbent, the present inventors maintain a pore structure in which one-dimensional mesochannels and micropores connecting the channels are organically connected. It was found by measuring the dynamic breakthrough curve and desorption curve of VOC gas that it is effective to hydrophobize the pore surface and expand the mesopores.

本発明のガス吸着剤は、繊維状シリカを含め全てのシリカ多孔体では、ガス破過曲線において破過するまでに明瞭な一定の保持時間が存在し、破過後急峻な立ち上がりを示すものが好ましい。
なお、「ガス破過曲線」とは、吸着剤に一定濃度のガスを流通させた場合の、流通時間に対する出口濃度の変化を示す連続曲線を意味し、「ガス破過曲線において破過するまでに明瞭な一定の保持時間が存在する」とは、流通開始から一定時間はガスが吸着剤に全て吸着されてガス濃度がゼロの値を示すことを意味する。また、「破過後急峻な立ち上がりを示す」とは、吸着されたガス成分が粒子内を容易に拡散することを意味し、急峻であればあるほど粒子内拡散に優れるといった特性の発現を意味する。
The gas adsorbent of the present invention preferably has a clear and constant holding time until it breaks in the gas breakthrough curve and exhibits a sharp rise after breakthrough in all porous silica materials including fibrous silica. .
The “gas breakthrough curve” means a continuous curve showing a change in the outlet concentration with respect to the circulation time when a certain concentration of gas is circulated through the adsorbent. "There is a clear constant holding time" means that the gas is completely adsorbed by the adsorbent for a certain period of time from the start of flow and the gas concentration shows a value of zero. In addition, “showing a steep rise after breakthrough” means that the adsorbed gas component diffuses easily in the particle, and that the steeper the gas component, the better the diffusion in the particle. .

さらに具体的には、破過曲線の形状は測定対象ガスに依存することは当然であり、同一ガス種であっても、吸着塔の径と高さ、また吸着剤の充填量、粒度や充填密度、更にはガス濃度と流通速度に左右される。これらの条件をできるだけ統一し、一定濃度のVOCを試料に連続的に流通させて、出口濃度がゼロに保持される時間(破過時間)の長さによって吸着能を評価し、破過時間が長いほど吸着能が高いことになる。破過後そのままVOC濃度の測定を継続し、出口濃度が入口濃度と同一となった時、動的な飽和吸着状態に達したことになり、流通開始点から飽和吸着到達時間までの破過曲線の面積から動的吸着量を算出することができる。この時、破過後は粒子内に完全には吸着されず、VOC濃度は上昇し、この上昇カーブが急峻な程、吸着されたVOCは粒子内を容易に拡散することができ脱着能が高いことを示唆している。   More specifically, the shape of the breakthrough curve naturally depends on the gas to be measured, and even with the same gas type, the diameter and height of the adsorption tower, the amount of adsorbent, the particle size, and the packing It depends on density, gas concentration and flow rate. Unifying these conditions as much as possible, allowing a constant concentration of VOC to continuously flow through the sample, evaluating the adsorption capacity by the length of time (breakthrough time) during which the outlet concentration is maintained at zero, and the breakthrough time The longer it is, the higher the adsorption capacity. After the breakthrough, the measurement of the VOC concentration was continued, and when the outlet concentration became the same as the inlet concentration, a dynamic saturated adsorption state was reached, and the breakthrough curve from the distribution start point to the saturated adsorption arrival time The amount of dynamic adsorption can be calculated from the area. At this time, it is not completely adsorbed in the particles after breakthrough, and the VOC concentration increases. The steeper curve of this increase makes the adsorbed VOC easier to diffuse in the particles and has higher desorption ability. It suggests.

脱着能を具体的に評価するには、動的に飽和吸着されたVOCを、非加熱の状態、即ち吸着時と同じ室温付近で、一定時間窒素パージして比較的脱着し易いVOC分を脱離させた後、さらに一定温度で昇温して完全に脱離するまで昇温脱離(TPD)曲線を測定する。TPD曲線の面積は吸着剤に比較的強く吸着したVOC量に対応し、この脱着量を前記の動的吸着容量から差し引いた分を常圧窒素パージによって脱離する、脱着し易いVOC量とする。なお、脱離操作時間は、飽和吸着に達するVOC流通時間の5倍以内に設定して実施し、短時間での脱離能を評価している。   In order to specifically evaluate the desorption ability, the VOC that was dynamically saturated and adsorbed was purged with nitrogen for a certain period of time in the non-heated state, i.e., near the same room temperature as during adsorption, to remove the VOC component that is relatively easy to desorb. After the separation, the temperature-programmed desorption (TPD) curve is measured until the temperature is further desorbed by heating at a constant temperature. The area of the TPD curve corresponds to the amount of VOC adsorbed relatively strongly on the adsorbent, and the amount obtained by subtracting this desorption amount from the dynamic adsorption capacity is desorbed by atmospheric pressure nitrogen purge, and is the amount of VOC that is easy to desorb. . The desorption operation time is set within 5 times the VOC circulation time to reach saturated adsorption, and the desorption ability in a short time is evaluated.

一方、実際のVOC発生現場においては、水蒸気との混合ガスである場合が多く、水蒸気共存下でのVOCの動的吸脱着能の評価が必須の課題である。
本発明は、上記と全く同様な手順で、水蒸気共存下における破過曲線並びに常圧窒素ガスパージとTPD測定を行い、動的吸脱着量を評価した。
なお、本動的吸脱着能評価においては、いずれの場合も破過曲線を飽和吸着状態まで測定しているが、飽和吸着以前であればどの段階でも動的吸着測定を停止し、脱離工程に移行しても、本発明におけるガス吸着剤の脱離率の規定を外れることはなく、寧ろ脱離率はより高くなることは周知のことである。
On the other hand, in actual VOC generation sites, it is often a mixed gas with water vapor, and the evaluation of the dynamic adsorption / desorption ability of VOC in the presence of water vapor is an essential issue.
In the present invention, the breakthrough curve in the presence of water vapor and the atmospheric pressure nitrogen gas purge and TPD measurement were performed in the same procedure as described above, and the dynamic adsorption / desorption amount was evaluated.
In this dynamic adsorption / desorption ability evaluation, the breakthrough curve was measured up to the saturated adsorption state in all cases, but the dynamic adsorption measurement was stopped at any stage before the saturated adsorption, and the desorption process Even if it shifts to, it is well known that the desorption rate of the gas adsorbent in the present invention is not deviated and rather the desorption rate becomes higher.

はじめに、細孔表面の疎水化を行いVOC吸脱着能を向上させる1つの手段として、細孔構造の配列様式を変えずに反応温度を高くすることが有効であることを説明する。
図4に、従来及び本発明のVOC吸着剤である繊維状シリカのトルエンの動的破過曲線(a)と脱離曲線(b)を示す。従来の繊維状シリカは、反応温度38℃で原料反応溶液を6時間攪拌し作製したもので、表1の比較例1の600℃加熱処理生成物に対応する。
図1(a)及び図3の本発明の繊維状シリカは、従来と同一反応原料組成で、38℃で1時間攪拌後、80℃で熟成して作製した実施例1の600℃加熱処理生成物である。
First, it will be explained that it is effective to increase the reaction temperature without changing the arrangement of the pore structure as one means for improving the VOC adsorption / desorption capability by hydrophobizing the pore surface.
FIG. 4 shows a dynamic breakthrough curve (a) and a desorption curve (b) of toluene of fibrous silica which is a conventional and VOC adsorbent of the present invention. The conventional fibrous silica was prepared by stirring the raw material reaction solution for 6 hours at a reaction temperature of 38 ° C., and corresponds to the 600 ° C. heat treatment product of Comparative Example 1 in Table 1.
The fibrous silica of the present invention shown in FIGS. 1 (a) and 3 is the same reaction raw material composition as before, stirred at 38 ° C. for 1 hour, and then aged at 80 ° C. and produced at 600 ° C. by heat treatment. It is a thing.

2つの繊維状シリカを比較すると、図4から、破過時間は、本発明の繊維状シリカの方が長く、また、破過後の立ち上がりも、本発明の繊維状シリカの方が鋭く、粒子内拡散が容易であることが分かる。さらに、本発明の繊維状シリカの方が、昇温脱離(TPD)により脱離する強く、吸着したトルエン量が少量で、常圧窒素パージにより脱離する割合が高く、脱離能に優れていることが分かる。
実施例1と同等な吸脱着現象は、本発明の全ての繊維状シリカ(実施例2から実施例4)において認められる。本発明の繊維状シリカでは、表2に示すように、全動的吸着量のうち常圧窒素パージによりほぼ90%が脱離し、極めて脱離能が高いことが明らかである。
また、ロッド状シリカについても本発明の熟成法を適用したロッド状シリカ(実施例5)の方が、従来法のロッド状粒子(比較例2)と比較すると、吸着量は大きく、さらに全動的吸着量のうち常圧窒素パージにより85%が脱離する。
Comparing two fibrous silicas, it can be seen from FIG. 4 that the breakthrough time is longer for the fibrous silica of the present invention, and the rise after breakthrough is sharper for the fibrous silica of the present invention. It can be seen that diffusion is easy. Furthermore, the fibrous silica of the present invention is more strongly desorbed by temperature-programmed desorption (TPD), has a small amount of adsorbed toluene, has a higher rate of desorption by atmospheric pressure nitrogen purge, and has excellent desorption ability. I understand that
The adsorption / desorption phenomenon equivalent to that in Example 1 is observed in all the fibrous silicas of the present invention (Examples 2 to 4). In the fibrous silica of the present invention, as shown in Table 2, it is clear that almost 90% of the total dynamic adsorption amount is desorbed by the atmospheric pressure nitrogen purge, and the desorbability is extremely high.
As for the rod-like silica, the amount of adsorption is larger in the rod-like silica (Example 5) to which the aging method of the present invention is applied, compared to the rod-like particles in the conventional method (Comparative Example 2). 85% of the target adsorption amount is desorbed by atmospheric pressure nitrogen purge.

本発明の繊維状シリカ及びロッド状シリカは、従来と異なり、低温で攪拌あるいは熟成し続けるのでなく、一旦攪拌反応を停止して、生成した懸濁液を、攪拌時より高い温度で熟成することによって作製している。
さらに、水蒸気が共存する場合、全実施例において破過時間は、トルエン単独の場合より短くなるが、その短縮の程度は、攪拌時より高い温度で熟成して作製した本発明の繊維状シリカ及びロッド状シリカの方が従来法で作製した場合より顕著に抑制されている。具体的には、600℃加熱処理生成物について、トルエン吸着後常圧窒素ガスパージで脱離する割合をRとし、水蒸気が共存しないトルエンだけの場合と、水蒸気が共存する場合の脱離率をそれぞれR(T600)、R(TW600)とする。
表1に示すように、繊維状シリカ及びロッド状シリカとも、R(TW600)はR(T600)よりも10%以上高いことが明らかである。
従って、多孔性シリカ前駆体のシリカ壁は、高温での熟成反応によって脱水・縮合が進み、さらに加熱処理することで、疎水化された細孔表面を有する1次元メソチャンネルと、チャンネル間を連結するマイクロ孔が共存する2元細孔構造が形成されていることになる。さらに、常温常圧下の不活性ガスパージによってVOC脱離率が高くなるのは、高温での熟成により、細孔表面の疎水化と同時にメソチャンネル径が大きくなるによって物質移動が容易になることが大きく寄与していると考えられる。
Unlike the prior art, the fibrous silica and rod-shaped silica of the present invention are not continuously stirred or ripened at a low temperature, but once the stirring reaction is stopped, the resulting suspension is ripened at a temperature higher than that during stirring. It is made by.
Furthermore, when water vapor coexists, the breakthrough time is shorter in all examples than in the case of toluene alone, but the degree of shortening is the fibrous silica of the present invention produced by aging at a higher temperature than during stirring and The rod-shaped silica is remarkably suppressed as compared with the case where it is produced by the conventional method. Specifically, for the heat-treated product at 600 ° C., the rate of desorption by atmospheric pressure nitrogen purge after toluene adsorption is R, and the desorption rate in the case of only toluene that does not coexist with water vapor and in the case of coexistence of water vapor, respectively. Let R (T600) and R (TW600).
As shown in Table 1, it is clear that R (TW600) is 10% or more higher than R (T600) in both fibrous silica and rod-like silica.
Therefore, the silica wall of the porous silica precursor is dehydrated and condensed by a aging reaction at high temperature, and is further heat-treated to connect the one-dimensional mesochannels having hydrophobic pore surfaces and the channels. Thus, a binary pore structure in which micropores coexist is formed. Furthermore, the VOC desorption rate is increased by inert gas purging under normal temperature and normal pressure because mass transfer is facilitated by aging at high temperature and by increasing the mesochannel diameter simultaneously with the hydrophobization of the pore surface. It is thought that it has contributed.

次に、細孔表面を疎水化する他の方法として、細孔形成剤である界面活性剤を除去する温度、あるいは一旦界面活性剤を取り除いた状態の生成物を高温で加熱処理することが有効であることを説明する。
図5に、800℃で加熱処理して作製した本発明のVOC吸着剤である一例の繊維状シリカの水蒸気共存の影響を明示するトルエンの動的破過曲線(a)と脱離曲線(b)を示す。図5(a)より、水蒸気が共存しても、破過時間は僅かに減少するだけで、破過曲線の形状に差異は無いことが分かる。特に特徴的なことは、水蒸気の共存の有無に関わらず、昇温脱離により脱離する、強く吸着したトルエン量が極めて少ないことである(図5(b))。
Next, as another method for hydrophobizing the pore surface, it is effective to heat the product at a temperature at which the surfactant, which is a pore-forming agent, is removed or once the surfactant has been removed. Explain that.
FIG. 5 shows a dynamic breakthrough curve (a) and a desorption curve (b) of toluene that clearly show the influence of water vapor coexistence of an example of fibrous silica that is a VOC adsorbent of the present invention prepared by heat treatment at 800 ° C. ). From FIG. 5A, it can be seen that even if water vapor coexists, the breakthrough time is only slightly reduced, and there is no difference in the shape of the breakthrough curve. What is particularly characteristic is that the amount of strongly adsorbed toluene that is desorbed by temperature-programmed desorption regardless of the presence or absence of water vapor is extremely small (FIG. 5B).

この水蒸気共存の有無に関わる動的吸脱着挙動は、高温で加熱処理して得られた本発明の全ての繊維状シリカに認められる。さらに、繊維状シリカばかりでなくロッド状シリカあるいは球状粒子の凝集粒子であっても、高温で加熱処理して得られた多孔性粒子は上記と同様な動的吸脱着挙動が認められ、本発明のガス吸着剤は、非加熱下において常圧不活性気体パージによる脱離率は、水蒸気が共存しない場合には85%以上、水蒸気が共存する場合でも80%以上を示している。   This dynamic adsorption / desorption behavior related to the presence or absence of water vapor is observed in all the fibrous silicas of the present invention obtained by heat treatment at a high temperature. Furthermore, the porous particles obtained by heat treatment at high temperature, not only fibrous silica but also rod-like silica or aggregated particles of spherical particles, have the same dynamic adsorption / desorption behavior as above, and the present invention In the case of the gas adsorbent, the desorption rate by the atmospheric pressure inert gas purge under non-heating shows 85% or more when water vapor does not coexist and 80% or more when water vapor coexists.

本発明の高温で加熱処理して得られるガス吸着剤が、水蒸気共存下おいてもVOC吸着能が高く、特に脱離能に優れていることは次のように考えることができる。
一般に、シリカゲルを加熱すると、シラノール基の脱水・縮合によりシロキサン結合が形成され細孔表面は疎水性が向上することは周知のことである。
本発明のシリカ多孔体と市販シリカゲルとの大きな相違は、熱的安定性にあり、本発明のシリカ多孔体の粒子内細孔の規則配列構造は、800℃の高温でも維持される。例えば、表1に示すように、600℃で加熱処理して得られたシリカ多孔体の比表面積と全細孔径容積は、800℃でも60%以上保持され、マイクロ孔も40%以上保持される。
It can be considered as follows that the gas adsorbent obtained by heat treatment at a high temperature of the present invention has a high VOC adsorption ability even in the presence of water vapor, and is particularly excellent in desorption ability.
In general, when silica gel is heated, siloxane bonds are formed by dehydration / condensation of silanol groups and the hydrophobicity of the pore surface is well known.
The major difference between the porous silica of the present invention and the commercially available silica gel is thermal stability, and the regular arrangement structure of the pores in the particles of the porous silica of the present invention is maintained even at a high temperature of 800 ° C. For example, as shown in Table 1, the specific surface area and total pore diameter volume of the porous silica obtained by heat treatment at 600 ° C. are maintained at 60% or more even at 800 ° C., and the micropores are also maintained at 40% or more. .

一方、メソ孔とマイクロ孔が粒子間間隙によって形成される市販シリカゲル(比較例4)では、粒子間間隙により構成された3次元的に不規則細孔配列構造のため、高温の熱処理によって破壊され易いと考えられる。例えば、表1に示すように、比較例4では、800℃で加熱すると比表面積は著しく減少し、725m/gから159m/gに低下する。
しかし、本発明者らが合成した、粒子内に規則性の程度は低いもののマイクロ孔だけを有するシリカ多孔体の場合(比較例3)、比表面積は600℃と800℃で、それぞれ760、368m/gであり、800℃に加熱しても比表面積は半減するに過ぎない。
On the other hand, the commercially available silica gel (Comparative Example 4) in which mesopores and micropores are formed by interparticle gaps is destroyed by high-temperature heat treatment because of the three-dimensional irregular pore array structure formed by interparticle gaps. It is considered easy. For example, as shown in Table 1, in Comparative Example 4, when heated at 800 ° C., the specific surface area is remarkably reduced and falls from 725 m 2 / g to 159 m 2 / g.
However, in the case of a porous silica material synthesized by the present inventors and having only micropores although the degree of regularity in the particles is low (Comparative Example 3), the specific surface area is 600 ° C. and 800 ° C., which are 760 and 368 m, respectively. 2 / g, and even when heated to 800 ° C., the specific surface area is only halved.

図9に、比較例3及び4の吸着等温線、図10に、対応する800℃加熱焼成物のt−プロットを示した。図9からわかるように、いずれも800℃では吸着量が大きく低下するが、その減量幅は比較例4の方が大きい。しかも、比較例4では、吸着等温線の形状が変化し、その原因がマイクロ孔の消失、即ち細孔配列構造の変化によって生じることがt−プロットから明らかである。一方、比較例3は、マイクロ孔だけを有しているにもかかわらず、800℃でも細孔容量は半減するだけで、マイクロ孔が粒子間間隙で形成された比較例4のシリカ多孔体と比較すると熱的安定性が高いことが分かる。
本発明のガス吸着剤が熱的安定性に優れているのは、1次粒子内に細孔が存在するため、高温でも配列構造が保持され、吸着量の減少が、主に壁の収縮に伴う細孔幅の減少に起因するためと考えられる。
FIG. 9 shows the adsorption isotherms of Comparative Examples 3 and 4, and FIG. 10 shows a corresponding t-plot of the 800 ° C. heat-fired product. As can be seen from FIG. 9, the adsorbed amount greatly decreases at 800 ° C., but the amount of reduction is larger in Comparative Example 4. Moreover, in Comparative Example 4, it is clear from the t-plot that the shape of the adsorption isotherm changes and the cause is caused by the disappearance of the micropores, that is, the change in the pore arrangement structure. On the other hand, although Comparative Example 3 has only micropores, the pore volume is only halved even at 800 ° C., and the porous silica of Comparative Example 4 in which micropores are formed with interparticle gaps is obtained. Comparison shows that the thermal stability is high.
The reason why the gas adsorbent of the present invention is excellent in thermal stability is that the pores are present in the primary particles, so that the arrangement structure is maintained even at a high temperature, and the decrease in the adsorption amount is mainly due to the shrinkage of the wall. This is thought to be due to the accompanying decrease in pore width.

このように粒子内に規則配列構造したメソ孔と、メソ孔間を連結するマイクロ孔が共存する場合、加熱処理温度が高いほどシリケート骨格の脱水・縮合が進行して細孔径と細孔容積は減少するが、図2のメソ孔の配列構造は高温でも安定に保持される結果、疎水化された細孔表面を持つ2元細孔構造が形成され、高いVOC脱離率が達成されるものと考えることができる。
上記のことは、粒子内にメソ孔と、メソ孔を連結するマイクロ孔が共存する2元細孔構造を持つ多孔性シリカ前駆体の場合、高温水熱条件下における形成あるいは高温における加熱処理、いずれの場合においても、メソ孔の配列構造が保持されることで、疎水化された細孔表面が形成されることを示している。
In this way, when the mesopores regularly arranged in the particles and the micropores connecting the mesopores coexist, dehydration / condensation of the silicate skeleton proceeds as the heat treatment temperature increases, and the pore diameter and pore volume are Although the mesopore arrangement structure in FIG. 2 is stably maintained even at a high temperature, a binary pore structure having a hydrophobized pore surface is formed, and a high VOC desorption rate is achieved. Can be considered.
In the case of the porous silica precursor having a binary pore structure in which the mesopores and the micropores connecting the mesopores coexist in the particles, the above is the formation under the high temperature hydrothermal condition or the heat treatment at the high temperature. In any case, it is shown that a hydrophobic surface of the pore is formed by maintaining the mesopore arrangement structure.

本発明で好ましく使用されるシリカ多孔体は、600℃加熱処理において比表面積700m/g以上、全細孔容積0.55ml/g以上及びマイクロ孔容積0.05ml/g以上を有し、これらの細孔特性値を、800℃加熱処理生成物と比較した場合、いずれも600℃の細孔特性値の40%以上が保持され、800℃以上に加熱しても、窒素吸着等温線の細孔特性評価をt−プロット法で解析を行うことで明確にマイクロ孔とメソ孔の共存が確認できることを特徴としている。 The porous silica preferably used in the present invention has a specific surface area of 700 m 2 / g or more, a total pore volume of 0.55 ml / g or more, and a micropore volume of 0.05 ml / g or more in heat treatment at 600 ° C. In comparison with the 800 ° C. heat-treated product, 40% or more of the pore characteristic value of 600 ° C. is maintained, and even when heated to 800 ° C. or higher, the nitrogen adsorption isotherm is fine. It is characterized in that the coexistence of micropores and mesopores can be clearly confirmed by analyzing the pore characteristics by the t-plot method.

本発明で好ましく使用されるシリカ多孔体は、直径3〜10nmのメソ孔が規則配列しており、且つメソ孔を連結する2nm以下のマイクロ孔を有し、そのマイクロ孔は0.05ml/g以上で、全細孔容積の10%以上を占めているものである。   The silica porous body preferably used in the present invention has regularly arranged mesopores having a diameter of 3 to 10 nm and has 2 nm or less micropores connecting the mesopores, and the micropores are 0.05 ml / g. This accounts for 10% or more of the total pore volume.

図6に、本発明の実施例1の、600℃と800℃で加熱処理したシリカ多孔体の吸着等温線を示す。図7に、図6に対応するシリカ多孔体の細孔径分布曲線を示す。
図6には、メソ孔への毛管凝縮による吸着等温線の立ち上がりが相対圧0.6〜0.7に認められ、800℃で加熱処理したシリカ多孔体では、吸着量は減少するものの、両シリカ多孔体の吸着等温線の形状は同一であり、メソ構造は破壊されていないことは明らかである。さらに、毛管凝縮による吸着等温線の立ち上がりが急激であるほどメソ孔の細孔径分布はシャープであり、図7に示されるように、800℃で加熱処理したシリカ多孔体では僅かにメソ孔は狭まるものの、両シリカ多孔体は、いずれも均一径を持つことが分かる。
さらに、マイクロ孔の存在を明示するt−プロットを図8に示す。マイクロ孔に吸着した後、メソ孔に吸着することを示す直線部分(M、M')が存在し、その部分を外捜することによって縦軸との交点からマイクロ孔容積を求めることができる。なお、直線部(N、N')と縦軸との交点は、粒子間隙に起因する細孔による寄与分を取り除いた値であり、粒子内に存在するメソ孔とマイクロ孔容積との総和であり、後述する表1に記載の全細孔容積に対応している。なお、本発明の全てのガス吸着剤は、図6〜図8と同等な結果が得られている。
一方、市販のシリカゲルは、本発明のシリカ多孔体と大きく異なり、粒子間間隙によって細孔が形成されているため、細孔径分布はいずれもブロードであり、メソ孔とマイクロ孔が共存していてもt−プロットによって識別することは難しい。
FIG. 6 shows adsorption isotherms of the porous silica material heat-treated at 600 ° C. and 800 ° C. in Example 1 of the present invention. FIG. 7 shows a pore size distribution curve of the porous silica corresponding to FIG.
In FIG. 6, the rise of the adsorption isotherm due to capillary condensation in the mesopores is recognized at a relative pressure of 0.6 to 0.7, and in the porous silica heated at 800 ° C., the adsorption amount decreases, It is clear that the shape of the adsorption isotherm of the silica porous body is the same, and the mesostructure is not destroyed. Further, the sharper the rise of the adsorption isotherm due to capillary condensation, the sharper the pore size distribution of the mesopores. As shown in FIG. 7, the mesopores are slightly narrowed in the porous silica heated at 800 ° C. However, it can be seen that both porous silicas have a uniform diameter.
Furthermore, a t-plot demonstrating the presence of micropores is shown in FIG. After adsorbing to the micropores, there are linear portions (M, M ′) indicating adsorbing to the mesopores, and the micropore volume can be determined from the intersection with the vertical axis by searching for that portion. The intersection between the straight line portion (N, N ′) and the vertical axis is a value obtained by removing the contribution due to the pores due to the particle gap, and is the sum of the mesopores and the micropore volume existing in the particles. Yes, corresponding to the total pore volume described in Table 1 described later. All the gas adsorbents of the present invention have the same results as in FIGS.
On the other hand, commercially available silica gel differs greatly from the porous silica of the present invention, and pores are formed by inter-particle gaps, so the pore size distribution is broad, and mesopores and micropores coexist. Are also difficult to identify by t-plots.

また、本発明で好ましく使用されるシリカ多孔体は、高分子界面活性剤の自己秩序形成能を利用して合成することで、1次粒子は図2に示したとおり、規則的な形状を有している。さらに、VOC吸着剤としては、メソ孔と、メソ孔と連結したマイクロ孔が共存する2元細孔構造を有する1次粒子で構成された粒子またその集合体、さらには粘土鉱物など他物質との混合体、もしくはそのペレット様成型体として使用することが可能である。   In addition, the porous silica preferably used in the present invention is synthesized by utilizing the self-ordering ability of the polymer surfactant, so that the primary particles have a regular shape as shown in FIG. is doing. Further, the VOC adsorbent includes particles or aggregates composed of primary particles having a binary pore structure in which mesopores and micropores linked to mesopores coexist, and other substances such as clay minerals. It is possible to use as a mixture of these or a pellet-like molded body thereof.

本発明のシリカ多孔体は、従来公知の吸着剤とは異なり、純粋なシリカ成分から成るにもかかわらず、細孔表面を簡単な手順で疎水性に制御することで、2つの大きさの異なさる細孔の配列構造に起因して、特に水蒸気共存下においてVOC高吸脱着能と吸脱着現象の協調作用を発揮する。
また、本発明のシリカ多孔体は、水蒸気が共存しない場合、VOCガス吸着後、非加熱の不活性ガス流通下で、「全吸着分のうち85%以上が脱着可能であり」、より好ましくは「全吸着分のうち90%以上が脱着可能であるもの」である。
また、本発明のシリカ多孔体は、水蒸気が共存する場合にも、VOCガス吸着後、非加熱の不活性ガス流通下で、「全吸着分のうち80%以上が脱着可能であり」、より好ましくは「全吸着分のうち90%以上が脱着可能であるもの」である。さらには、上記脱離特性値が水蒸気の共存しない場合と比較して、85%以上であり、さらに好ましくは90%以上である。
Unlike the conventionally known adsorbents, the porous silica of the present invention is composed of a pure silica component, but the pore surface is controlled to be hydrophobic by a simple procedure, so that the two different sizes can be obtained. Due to the arrangement structure of the pores formed, the VOC high adsorption / desorption ability and the adsorption / desorption phenomenon are exhibited particularly in the presence of water vapor.
Further, in the case where the porous silica of the present invention does not coexist with water vapor, after adsorption of the VOC gas, in an unheated inert gas flow, “85% or more of all adsorbed components can be desorbed”, more preferably “90% or more of all adsorbed components can be desorbed”.
In addition, the porous silica of the present invention is also capable of desorbing 80% or more of the total adsorbed amount under non-heated inert gas flow after VOC gas adsorption even when water vapor coexists. Preferably, “90% or more of all adsorbed components can be desorbed”. Furthermore, the above desorption characteristic value is 85% or more, more preferably 90% or more, compared with the case where water vapor does not coexist.

本発明のガス吸着剤は、不燃性、易脱着能によるガスの回収・再利用が可能といった従来のシリカ系吸着剤の利点を有すると共に、より再生し易いことが大きな特長であり、VOC脱離工程において熱処理操作が必須の条件でないガスの回収・再利用を考慮した実用システムの構築を可能とするもので、省エネ型VOC回収装置の開発に極めて有用な吸着剤であると考えられ、従来のシリカ系吸着剤の使用方法と比較して格段の進歩性を有する。このことは、規則配列したメソ孔が、マイクロ孔によって連結され、簡単な操作で疎水的細孔表面を有しているため、吸着VOC分子を容易に拡散させることが可能で、水蒸気共存下でも高吸着能と高脱着能という吸脱着現象の協調作用の発現といった、従来のシリカ系吸着剤の吸着・脱着挙動とは全く異なる特徴を有している。   The gas adsorbent of the present invention has the advantages of conventional silica-based adsorbents such as nonflammability and the ability to recover and reuse gas with easy desorption ability, and is a major feature that it is easier to regenerate and VOC desorption. It enables the construction of a practical system that takes into account the recovery and reuse of gases that are not essential conditions for heat treatment in the process, and is considered an extremely useful adsorbent for the development of energy-saving VOC recovery equipment. Compared to the method of using a silica-based adsorbent, it has a remarkable inventive step. This is because regularly arranged mesopores are connected by micropores and have a hydrophobic pore surface by a simple operation, so that adsorbed VOC molecules can be easily diffused even in the presence of water vapor. It has completely different characteristics from the adsorption / desorption behavior of conventional silica-based adsorbents, such as the development of a cooperative action of adsorption / desorption phenomena of high adsorption capacity and high desorption capacity.

本発明のガス吸着剤は、前記の通り、発明者等による新たな合成法によって得られた繊維状シリカが、従来の繊維状シリカより優れたVOC吸脱着特性を有することを見いだし、さらに繊維状シリカばかりでなく、疎水的な表面特性を持ったメソ孔とマイクロ孔を有するシリカ多孔体であれば、水蒸気共存下でも良好なVOC吸脱着特性を発揮することを明らかにし、新規VOC吸着剤の開発に成功したものである。
表1に、本発明に係るシリカ多孔体吸着剤の窒素吸着等温線から求めた細孔特性値を示す。同表中(*)、比較例1と2はそれぞれ実施例6と7の600℃加熱焼成物である。また、球状マイクロ孔多孔体及び市販シリカゲルを、それぞれ、比較例3,4として掲載した。なお、合成シリカ多孔体の作製法については、後段の実施例に記載する。
As described above, the gas adsorbent of the present invention has been found that the fibrous silica obtained by the new synthesis method by the inventors has VOC adsorption / desorption characteristics superior to those of conventional fibrous silica. It has been clarified that a silica porous body having not only silica but also mesopores and micropores having hydrophobic surface characteristics can exhibit good VOC adsorption / desorption characteristics even in the presence of water vapor. Successful development.
Table 1 shows the pore characteristic values obtained from the nitrogen adsorption isotherm of the porous silica adsorbent according to the present invention. In the same table (*), Comparative Examples 1 and 2 are 600 ° C. heat-fired products of Examples 6 and 7, respectively. Moreover, the spherical microporous material and the commercially available silica gel are listed as Comparative Examples 3 and 4, respectively. In addition, about the production method of a synthetic silica porous body, it describes in the latter Example.

表中、SBETは、比表面積、Vmicroは、マイクロ孔容積、Vtotalは、全細孔容積(メソ孔容積とマイクロ孔容積の和)、Dは、メソ孔直径。 In the table, S BET is the specific surface area, V micro is the micropore volume, Vtotal is the total pore volume (the sum of the mesopore volume and the micropore volume), and D is the mesopore diameter.

表2は、トルエンに対する破過曲線から求めた動的吸脱着特性値を示す。
Table 2 shows the dynamic adsorption / desorption characteristic values obtained from the breakthrough curve for toluene.

上記のとおり、本発明のガス吸着剤は、粒子内にメソ孔とマイクロ孔が連結して存在することが重要であり、細孔表面の疎水化は2つの方法、熟成反応条件と加熱処理によって達成できる。
さらに、不活性ガスによる脱離能が高い本発明のガス吸着剤は、種々のVOC吸着・回収システムの実用化に当たり、脱着工程に不活性ガスパージと共に加熱操作あるいは真空操作を組み入れることにより、より高効率な省エネ型吸着装置用吸着剤として使用可能である。
As described above, in the gas adsorbent of the present invention, it is important that mesopores and micropores are connected in the particles. Hydrophobization of the pore surface is performed by two methods, aging reaction conditions and heat treatment. Can be achieved.
Furthermore, the gas adsorbent of the present invention, which has a high desorption ability with an inert gas, can be improved by incorporating a heating operation or a vacuum operation together with an inert gas purge in the desorption process in the practical application of various VOC adsorption / recovery systems. It can be used as an adsorbent for efficient energy-saving adsorbers.

本発明のマイクロ孔とメソ孔を有するシリカ多孔体からなるガス吸着剤が、高い吸着能を有するのはマイクロ孔が存在することに起因し、さらに高い粒子内拡散能はマイクロ孔と連結したメソ孔によって発現すると考えられる。特に、常圧不活性ガスパージによる高い脱離率は、一定の攪拌工程後の熟成反応に基づく細孔表面の疎水化に起因している。疎水化の程度は熟成条件、例えば、反応混合割合、塩類の添加、反応時間や反応温度の制御、界面活性剤を除去する際の昇温速度と保持処理温度等で制御することは可能である。対象とするVOC発生現場の状況、特に水蒸気の共存が問題とならない条件であれば、熟成反応条件の調整だけで、高温での加熱処理は不要となる。   The gas adsorbent comprising a porous silica material having micropores and mesopores according to the present invention has a high adsorption ability due to the presence of micropores, and a higher intraparticle diffusion ability has a mesopore connected to the micropores. It is thought to be expressed by pores. In particular, the high desorption rate due to the normal pressure inert gas purge is due to the hydrophobization of the pore surface based on the aging reaction after a certain stirring step. The degree of hydrophobization can be controlled by aging conditions, for example, reaction mixture ratio, addition of salts, control of reaction time and reaction temperature, temperature increase rate when removing the surfactant and holding treatment temperature, etc. . If the situation of the target VOC generation site, in particular, the condition that coexistence of water vapor is not a problem, the heat treatment at a high temperature becomes unnecessary only by adjusting the aging reaction conditions.

本発明のガス吸着剤の中で、繊維状粒子からなるガス吸着剤は、ミクロンオーダーの繊維状を呈することから、フィルター、フェルト状に成形可能であり、種々の用途に適用可能である。また、本発明のガス吸着剤のうち、繊維状粒子を含めロッド状粒子、球状粒子はその形状を問わず、粘土鉱物などを成型助剤としてペレット状等の成型品として幅広く種々の吸着装置に組み込むことが可能である。特に、大きな吸着熱が発生したり、酸化性雰囲気下でのVOC等のガス吸着剤として、活性炭素繊維が適用できないような条件下での使用が可能であり、幅広い用途が期待できる。さらに、細孔表面に遷移金属あるいは貴金属を金属元素あるいは酸化物の形態で高分散に担持することにより、新たな吸着剤の開発が期待される。   Among the gas adsorbents of the present invention, the gas adsorbent composed of fibrous particles exhibits a micron order fiber shape, and can be formed into a filter or a felt shape, and can be applied to various applications. In addition, among the gas adsorbents of the present invention, rod-like particles and spherical particles including fibrous particles can be used in a wide variety of adsorbers as molded articles such as pellets using clay minerals as molding aids regardless of their shapes. It is possible to incorporate. In particular, it can be used under conditions where activated carbon fibers cannot be used as a gas adsorbent such as VOC in an oxidizing atmosphere where VOC is generated, and a wide range of applications can be expected. Furthermore, a new adsorbent is expected to be developed by supporting a transition metal or noble metal in the form of a metal element or oxide in a highly dispersed state on the pore surface.

次に、本発明を実施例によって更に具体的に説明するが、本発明はこの実施例によって限定されない。
尚、実施例で行った各試験方法は次の方法により行った。
EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited by this Example.
In addition, each test method performed in the Example was performed by the following method.

(測定法)
(1)形状:日本電子株式会社製走査型電子顕微鏡JSM5300を使用し、加速電圧10kV、WD10mmで観察した。さらに、日立製電界放射型走査電子顕微鏡S−4700Fを使用して形態観察を行った。
(2)比表面積・細孔径分布:日本ベル製BELSORP MINIを使用し、液体窒素温度で測定した窒素吸着等温線からBET比表面積を求め、細孔径分布はBJH法により解析した。さらに、t−プロット法によりマイクロ孔容積並びに全細孔容積であるメソ孔容積とマイクロ孔容積との総和を求めた。
(3)流通式によるトルエン吸着・脱着試験:動的破過曲線測定装置を使用して、窒素ガスで希釈した500ppmのトルエンを、U字管式試料管に実施例並びに比較例の吸着剤を約0.03g採り、室温で流量100ml/min流通して、トルエンの破過曲線を測定し吸着能を評価した。なお水蒸気共存下における破過曲線の測定は、トルエン500ppmと水蒸気2%を混合し100ml/minの同一流量で行った。破過してから徐々に出口濃度は増加し、動的飽和吸着に到達した後(全動的吸着量A)、そのまま窒素ガスのみを2時間流通させて、常圧窒素パージによる脱着曲線を測定した(脱離量B)。さらに、残留するVOC分を完全に脱離させるために、10℃/minで昇温脱離スペクトルを測定した(脱離量C)。
脱離量(B)は、全動的吸着量Aのうち、常圧下窒素ガス流通のみで脱離する吸着分で、この脱離量が多いほど、脱着性能に優れた吸着剤と言う事ができる。脱離量(B)は、動的吸着容量(A)から、昇温脱離によって取り除かれる吸着分(C)を差し引いたVOC量として算出した。
(Measurement method)
(1) Shape: A scanning electron microscope JSM5300 manufactured by JEOL Ltd. was used, and observed with an acceleration voltage of 10 kV and a WD of 10 mm. Furthermore, morphology observation was performed using a Hitachi field emission scanning electron microscope S-4700F.
(2) Specific surface area / pore size distribution: BELSORP MINI manufactured by Nippon Bell Co., Ltd. was used to determine the BET specific surface area from the nitrogen adsorption isotherm measured at the liquid nitrogen temperature, and the pore size distribution was analyzed by the BJH method. Furthermore, the total of the micropore volume and the mesopore volume, which is the total pore volume, and the micropore volume was determined by the t-plot method.
(3) Toluene adsorption / desorption test using a flow-through method: Using a dynamic breakthrough curve measuring device, 500 ppm of toluene diluted with nitrogen gas was used to place the adsorbents of Examples and Comparative Examples in U-tube sample tubes. About 0.03 g was taken and flowed at a flow rate of 100 ml / min at room temperature, and a breakthrough curve of toluene was measured to evaluate the adsorption ability. The breakthrough curve in the presence of water vapor was measured by mixing 500 ppm toluene and 2% water vapor at the same flow rate of 100 ml / min. After the breakthrough, the outlet concentration gradually increased, and after reaching dynamic saturation adsorption (total dynamic adsorption amount A), only nitrogen gas was allowed to flow for 2 hours and the desorption curve by atmospheric pressure nitrogen purge was measured. (Desorption amount B). Further, a temperature-programmed desorption spectrum was measured at 10 ° C./min in order to completely desorb the remaining VOC component (desorption amount C).
The desorption amount (B) is an adsorbed component that is desorbed only by flowing nitrogen gas under normal pressure out of the total dynamic adsorption amount A, and the larger the desorption amount, the better the adsorbent is. it can. The desorption amount (B) was calculated as the VOC amount obtained by subtracting the adsorbed component (C) removed by the temperature-programmed desorption from the dynamic adsorption capacity (A).

(実施例1)
水を加えて希釈した市販のJIS3号珪酸ナトリウム(SiO:23.6%、NaO:7.59%)を、2Nの塩酸に溶解したトリブロック共重合体Pluronic P123(EO20PO70EO20、BASF社製、平均分子量5800、親水部EO割合30%)溶液に攪拌しながら添加した。両原料溶液は予め所定温度38℃に調整して混合し、両原料溶液を混合してから1時間後に攪拌を停止した。この混合溶液の入ったガラス製反応容器の開放口をガラス板で塞ぎ、そのまま80℃に調整した恒温水槽に素早く移し300分間静置し熟成を行った。混合溶液のモル比はSiO:Pluronic P123:NaO:HCl:HO=1:0.017:0.312:5.88:202である。尚、HOには全ての原料由来の水が含まれている。反応後固体生成物を濾別し、洗浄後、65℃で十分乾燥させ600℃及び800℃の電気炉中で1時間焼成を行うことで有機成分を除去し繊維状多孔質シリカ粒子を得る。本実施例は、特開2007−204288号公報に記載の方法に準じ合成を行った。
図1(a)は、本実施例のSEM像であり、その微細構造は図3に示すとおりであり、約1μmの細長いロッド状粒子が連鎖していることを示している。
本発明のガス吸着剤である繊維状シリカ(実施例1〜4、及び実施例6)は全て同様な微細構造を持っている。また、表1には、本実施例を含め、他の実施例及び比較例のシリカ粒子のBET比表面積、全細孔容積、マイクロ孔容積を記載している。
Example 1
Triblock copolymer Pluronic P123 (EO 20 PO 70 ) in which commercially available JIS No. 3 sodium silicate (SiO 2 : 23.6%, Na 2 O: 7.59%) diluted with water was dissolved in 2N hydrochloric acid. EO 20 , manufactured by BASF, average molecular weight 5800, hydrophilic portion EO ratio 30%) was added to the solution with stirring. Both raw material solutions were adjusted in advance to a predetermined temperature of 38 ° C. and mixed, and stirring was stopped one hour after mixing both raw material solutions. The open mouth of the glass reaction vessel containing this mixed solution was closed with a glass plate, quickly transferred to a constant temperature water bath adjusted to 80 ° C., and allowed to stand for 300 minutes for aging. The molar ratio of the mixed solution is SiO 2 : Pluronic P123: Na 2 O: HCl: H 2 O = 1: 0.017: 0.312: 5.88: 202. H 2 O contains water derived from all raw materials. After the reaction, the solid product is separated by filtration, washed, sufficiently dried at 65 ° C., and baked in an electric furnace at 600 ° C. and 800 ° C. for 1 hour to remove organic components and obtain fibrous porous silica particles. In this example, synthesis was performed according to the method described in JP-A-2007-204288.
FIG. 1 (a) is an SEM image of this example, and the microstructure is as shown in FIG. 3, indicating that elongated rod-like particles of about 1 μm are chained.
The fibrous silica (Examples 1 to 4 and Example 6), which is the gas adsorbent of the present invention, all have the same microstructure. Table 1 shows the BET specific surface area, total pore volume, and micropore volume of silica particles of other examples and comparative examples including this example.

(実施例2)
水を加えて希釈した市販のJIS3号珪酸ナトリウム(SiO:23.6%、NaO:7.59%)を、2Nの塩酸に溶解したトリブロック共重合体Pluronic P123溶液に攪拌しながら添加した。両原料溶液は予め所定温度38℃に調整して混合し、両原料溶液を混合してから20分間後に攪拌を停止した。この混合溶液をテフロン(登録商標)製反応容器に移し、簡易型ステンレス製容器中に密閉して、予め100℃に調整した定温恒温槽内で300分間静置し熟成を行った。混合溶液のモル比はSiO:Pluronic P123:NaO:HCl:HO=1:0.017:0.312:5.88:202である。尚、HOには全ての原料由来の水が含まれている。反応後固体生成物を濾別し、洗浄後、65℃で十分乾燥させ600℃及び800℃の電気炉中で1時間焼成を行うことで有機成分を除去し繊維状多孔質シリカ粒子を得る。本実施例は、実施例1と同様、特開2007−204288号公報に記載の方法に準じ合成を行った。
(Example 2)
While stirring a commercially available JIS No. 3 sodium silicate (SiO 2 : 23.6%, Na 2 O: 7.59%) diluted with water in a triblock copolymer Pluronic P123 solution dissolved in 2N hydrochloric acid, the mixture was stirred. Added. Both raw material solutions were adjusted in advance to a predetermined temperature of 38 ° C. and mixed, and stirring was stopped 20 minutes after mixing both raw material solutions. This mixed solution was transferred to a Teflon (registered trademark) reaction vessel, sealed in a simple stainless steel vessel, and allowed to stand for 300 minutes in a constant temperature and constant temperature bath adjusted to 100 ° C. for aging. The molar ratio of the mixed solution is SiO 2 : Pluronic P123: Na 2 O: HCl: H 2 O = 1: 0.017: 0.312: 5.88: 202. H 2 O contains water derived from all raw materials. After the reaction, the solid product is separated by filtration, washed, sufficiently dried at 65 ° C., and baked in an electric furnace at 600 ° C. and 800 ° C. for 1 hour to remove organic components and obtain fibrous porous silica particles. In this example, as in Example 1, the synthesis was performed according to the method described in JP-A-2007-204288.

(実施例3)
水を加えて希釈した市販のJIS3号珪酸ナトリウム(SiO:23.6%、NaO:7.59%)を、2Nの塩酸に溶解したトリブロック共重合体Pluronic P123溶液に攪拌しながら添加した。両原料溶液は予め所定温度38℃に調整して混合し、両原料溶液を混合してから1時間後に攪拌を停止した。この混合溶液をテフロン(登録商標)製反応容器に移し、簡易型ステンレス製容器中に密閉して、予め100℃に調整した定温恒温槽内で300分間静置し熟成を行った。混合溶液のモル比はSiO:Pluronic P123:NaO:HCl:HO=1:0.017:0.312:5.88:202である。尚、HOには全ての原料由来の水が含まれている。反応後固体生成物を濾別し、洗浄後、65℃で十分乾燥させ600℃及び800℃の電気炉中で1時間焼成を行うことで有機成分を除去し繊維状多孔質シリカ粒子を得る。本実施例は、実施例1及び実施例2と同様、特開2007−204288号公報に記載の方法に準じ合成を行った。
(Example 3)
While stirring a commercially available JIS No. 3 sodium silicate (SiO 2 : 23.6%, Na 2 O: 7.59%) diluted with water in a triblock copolymer Pluronic P123 solution dissolved in 2N hydrochloric acid, the mixture was stirred. Added. Both raw material solutions were adjusted in advance to a predetermined temperature of 38 ° C. and mixed, and stirring was stopped one hour after mixing both raw material solutions. This mixed solution was transferred to a Teflon (registered trademark) reaction vessel, sealed in a simple stainless steel vessel, and allowed to stand for 300 minutes in a constant temperature and constant temperature bath adjusted to 100 ° C. for aging. The molar ratio of the mixed solution is SiO 2 : Pluronic P123: Na 2 O: HCl: H 2 O = 1: 0.017: 0.312: 5.88: 202. H 2 O contains water derived from all raw materials. After the reaction, the solid product is separated by filtration, washed, sufficiently dried at 65 ° C., and baked in an electric furnace at 600 ° C. and 800 ° C. for 1 hour to remove organic components and obtain fibrous porous silica particles. In this example, as in Example 1 and Example 2, the synthesis was performed according to the method described in JP-A-2007-204288.

(実施例4)
水を加えて希釈した市販のJIS3号珪酸ナトリウム(SiO:23.6%、NaO:7.59%)を、2Nの塩酸に溶解したトリブロック共重合体Pluronic P123溶液に攪拌しながら添加した。両原料溶液は予め所定温度38℃に調整して混合し、両原料溶液を混合してから2時間後に攪拌を停止した。反応懸濁液をろ過・洗浄して得られた湿潤状態の反応生成物をテフロン(登録商標)製反応容器に採り、純水を添加した懸濁液を、簡易型ステンレス製密閉容器中に密閉し、予め100℃に調整した定温恒温槽内で300分間静置し熟成を行った。混合溶液のモル比はSiO:Pluronic P123:NaO:HCl:HO=1:0.017:0.312:5.88:202である。尚、HOには全ての原料由来の水が含まれている。熟成はSiO1モルに対して、水を83モル使用した。熟成反応後固体生成物を濾別し、洗浄後、65℃で十分乾燥させ600℃及び800℃の電気炉中で1時間焼成を行うことで有機成分を除去し繊維状多孔質シリカ粒子を得る。本実施例は、特願2009−078051の方法に準じ合成を行った。
Example 4
While stirring a commercially available JIS No. 3 sodium silicate (SiO 2 : 23.6%, Na 2 O: 7.59%) diluted with water in a triblock copolymer Pluronic P123 solution dissolved in 2N hydrochloric acid, the mixture was stirred. Added. Both raw material solutions were adjusted in advance to a predetermined temperature of 38 ° C. and mixed, and stirring was stopped 2 hours after the mixing of both raw material solutions. The wet reaction product obtained by filtering and washing the reaction suspension is put in a Teflon (registered trademark) reaction vessel, and the suspension with pure water added is sealed in a simple stainless steel airtight vessel. Then, the mixture was allowed to stand for 300 minutes in a constant temperature and constant temperature bath adjusted to 100 ° C. in advance, and aging was performed. The molar ratio of the mixed solution is SiO 2 : Pluronic P123: Na 2 O: HCl: H 2 O = 1: 0.017: 0.312: 5.88: 202. H 2 O contains water derived from all raw materials. For aging, 83 mol of water was used per 1 mol of SiO 2 . After the aging reaction, the solid product is filtered off, washed, sufficiently dried at 65 ° C., and baked in an electric furnace at 600 ° C. and 800 ° C. for 1 hour to remove organic components and obtain fibrous porous silica particles. . In this example, synthesis was performed according to the method of Japanese Patent Application No. 2009-078051.

(実施例5)
水を加えて希釈した市販のJIS3号珪酸ナトリウム(SiO:23.6%、NaO:7.59%)を、2Nの塩酸に溶解したトリブロック共重合体Pluronic P123溶液に攪拌しながら添加した。本実施例では熟成前に白色の反応生成物を短時間で晶出させることが重要であり、予め所定温度38℃に調整した両原料溶液を混合すると、3分以内には白色の固体析出物が認められた。混合後20分間で攪拌を停止し、反応懸濁溶液をテフロン(登録商標)製反応容器に移し、簡易型ステンレス製容器中に密閉して、予め80℃に調整した定温恒温槽内で300分間静置し熟成を行った。本実施例では、混合溶液のモル比はSiO:Pluronic P123:NaO:HCl:HO=1:0.0131:0.312:4.3:151である。尚、HOには全ての原料由来の水が含まれている。反応後固体生成物を濾別し、洗浄後、65℃で十分乾燥させる。最終的に600℃の電気炉中で1時間焼成を行うことで有機成分を除去し多孔質シリカ粒子を得る。本実施例は、特願2009−079589の方法に準じ合成を行った。
図1(c)は、本実施例のSEM像であり、図2(c)に示すような、厚さ約0.3μmの薄板様のロッド状シリカが凝集し、粒度分布ピークは約20μmに認められる。
(Example 5)
While stirring a commercially available JIS No. 3 sodium silicate (SiO 2 : 23.6%, Na 2 O: 7.59%) diluted with water in a triblock copolymer Pluronic P123 solution dissolved in 2N hydrochloric acid, the mixture was stirred. Added. In this example, it is important to crystallize the white reaction product in a short time before aging, and when both raw material solutions adjusted in advance to a predetermined temperature of 38 ° C. are mixed, a white solid precipitate is obtained within 3 minutes. Was recognized. Stirring was stopped after 20 minutes after mixing, and the reaction suspension was transferred to a Teflon (registered trademark) reaction vessel, sealed in a simple stainless steel vessel, and pre-adjusted to 80 ° C. for 300 minutes. Aged and allowed to stand. In this example, the molar ratio of the mixed solution is SiO 2 : Pluronic P123: Na 2 O: HCl: H 2 O = 1: 0.0131: 0.312: 4.3: 151. H 2 O contains water derived from all raw materials. After the reaction, the solid product is filtered off, washed and sufficiently dried at 65 ° C. Finally, the organic component is removed by baking in an electric furnace at 600 ° C. for 1 hour to obtain porous silica particles. In this example, synthesis was performed according to the method of Japanese Patent Application No. 2009-079589.
FIG. 1C is an SEM image of this example. As shown in FIG. 2C, thin plate-like rod-like silica having a thickness of about 0.3 μm aggregates, and the particle size distribution peak reaches about 20 μm. Is recognized.

(実施例6)
水を加えて希釈した市販のJIS3号珪酸ナトリウム(SiO:23.6%、NaO:7.59%)を、2Nの塩酸に溶解したトリブロック共重合体Pluronic P123溶液に攪拌しながら添加した。両原料溶液は予め所定温度38℃に調整して混合し、両原料溶液を混合してから6時間後に攪拌を停止した。混合溶液のモル比はSiO:Pluronic P123:NaO:HCl:HO=1:0.017:0.312:5.88:202である。尚、HOには全ての原料由来の水が含まれている。反応後固体生成物を濾別し、洗浄後、65℃で十分乾燥させ800℃の電気炉中で1時間焼成を行うことで有機成分を除去し繊維状多孔質シリカ粒子を得る。本実施例は、特許第4099811号公報に記載の方法に準じ合成を行った。なお、表1には600℃で1時間加熱処理して得られた繊維状粒子を比較例1として、その細孔特性値を表1に示した。
(Example 6)
While stirring a commercially available JIS No. 3 sodium silicate (SiO 2 : 23.6%, Na 2 O: 7.59%) diluted with water in a triblock copolymer Pluronic P123 solution dissolved in 2N hydrochloric acid, the mixture was stirred. Added. Both raw material solutions were previously adjusted to a predetermined temperature of 38 ° C. and mixed, and stirring was stopped 6 hours after the mixing of both raw material solutions. The molar ratio of the mixed solution is SiO 2 : Pluronic P123: Na 2 O: HCl: H 2 O = 1: 0.017: 0.312: 5.88: 202. H 2 O contains water derived from all raw materials. After the reaction, the solid product is separated by filtration, washed, sufficiently dried at 65 ° C., and baked in an electric furnace at 800 ° C. for 1 hour to remove organic components and obtain fibrous porous silica particles. In this example, synthesis was performed according to the method described in Japanese Patent No. 4099881. Table 1 shows the pore characteristic values of the fibrous particles obtained by heat treatment at 600 ° C. for 1 hour as Comparative Example 1.

(実施例7)
水を加えて希釈した市販のJIS3号珪酸ナトリウム(SiO:23.6%、NaO:7.59%)を、2Nの塩酸に溶解したトリブロック共重合体Pluronic P123溶液に攪拌しながら添加した。両原料溶液は予め所定温度30℃に調整して混合し、両原料溶液を混合してから30秒後に攪拌を停止し、そのまま30℃で6時間静置反応を行う。混合溶液のモル比はSiO:Pluronic P123:NaO:HCl:HO=1:0.017:0.312:5.90:203である。尚、HOには全ての原料由来の水が含まれている。反応後固体生成物を濾別し、洗浄後、60℃で十分乾燥させ800℃の電気炉中で1時間焼成を行うことで有機成分を除去し繊維状多孔質シリカ粒子を得る。本実施例は、特許第4099811号に準じ合成した。なお、表1には600℃で1時間加熱処理して得られたロッド状粒子を比較例2として、その細孔特性値を表1に示した。
図1(b)は本実施例のSEM像であり、約1μmの細長い個々のロッド状粒子が集合して数十ミクロンの凝集体として得られる。
(Example 7)
While stirring a commercially available JIS No. 3 sodium silicate (SiO 2 : 23.6%, Na 2 O: 7.59%) diluted with water in a triblock copolymer Pluronic P123 solution dissolved in 2N hydrochloric acid, the mixture was stirred. Added. Both raw material solutions are adjusted and mixed in advance at a predetermined temperature of 30 ° C., and after mixing both raw material solutions, stirring is stopped 30 seconds later, and the reaction is allowed to stand at 30 ° C. for 6 hours. The molar ratio of the mixed solution is SiO 2 : Pluronic P123: Na 2 O: HCl: H 2 O = 1: 0.017: 0.312: 5.90: 203. H 2 O contains water derived from all raw materials. After the reaction, the solid product is separated by filtration, washed, sufficiently dried at 60 ° C., and baked in an electric furnace at 800 ° C. for 1 hour to remove organic components and obtain fibrous porous silica particles. This example was synthesized according to Japanese Patent No. 40998811. In Table 1, the rod-like particles obtained by heat treatment at 600 ° C. for 1 hour are shown as Comparative Example 2 and their pore characteristic values are shown in Table 1.
FIG. 1 (b) is an SEM image of this example, and elongated rod-like particles of about 1 μm are gathered to obtain an aggregate of several tens of microns.

(実施例8)
12%の硝酸に溶解したトリブロック共重合体Pluronic P104(EO27PO61EO27、BASF社製、平均分子量5900、親水部EO割合40%)溶液に、市販のJIS3号珪酸ナトリウム(SiO:23.6%、NaO:7.59%)に水を加え希釈した珪酸ナトリウム水溶液を400rpmで攪拌しながら添加する。混合溶液のモル比はSiO:Pluronic P104:NaO:HNO:HO=1:0.0138:0.312:4.06:202である。尚、HOには全ての原料由来の水が含まれている。反応温度は35℃で、3時間攪拌反応を行った後、固体生成物をろ過・洗浄後、60℃で十分乾燥させ、600℃及び800℃の電気炉中で1時間焼成を行うことで有機成分を除去し多孔質シリカ粒子を得る。
図1(d)は本実施例のSEM像であり、小さな球状粒子が強く集合して数十ミクロンの球状粒子に成長し、さらに複数の球状粒子が凝集した数百ミクロンの塊状粒子である。
(Example 8)
Commercially available JIS No. 3 sodium silicate (SiO 2 : SiO 2 :) in a triblock copolymer Pluronic P104 (EO 27 PO 61 EO 27 , manufactured by BASF, average molecular weight 5900, hydrophilic part EO ratio 40%) dissolved in 12% nitric acid. 23.6%, Na 2 O: 7.59%), and a water-diluted aqueous sodium silicate solution is added with stirring at 400 rpm. The molar ratio of the mixed solution is SiO 2 : Pluronic P104: Na 2 O: HNO 3 : H 2 O = 1: 0.0138: 0.312: 4.06: 202. H 2 O contains water derived from all raw materials. The reaction temperature is 35 ° C., and after stirring for 3 hours, the solid product is filtered and washed, dried sufficiently at 60 ° C., and baked for 1 hour in an electric furnace at 600 ° C. and 800 ° C. The component is removed to obtain porous silica particles.
FIG. 1D is an SEM image of the present example, which is a massive particle of several hundred microns, in which small spherical particles are strongly aggregated to grow into spherical particles of several tens of microns, and a plurality of spherical particles are aggregated.

(比較例3)
12%の硝酸に溶解したトリブロック共重合体Pluronic F88(EO39PO103EO39、BASF社製、平均分子量11400、親水部EO割合80%)溶液に、市販のJIS3号珪酸ナトリウム(SiO:23.6%、NaO:7.59%)に水を加え希釈した珪酸ナトリウム水溶液を600rpmで攪拌しながら添加する。混合溶液のモル比はSiO:Pluronic F88:NaO:HNO:HO=1:0.0075:0.312:3.72:146である。尚、HOには全ての原料由来の水が含まれている。反応温度は35℃で、4時間攪拌反応を行った後、固体生成物をろ過・洗浄後、60℃で十分乾燥させ、600℃及び800℃の電気炉中で1時間焼成を行うことで有機成分を除去し、比較例3の直径約100mmの単分散球状多孔質シリカ粒子が得られる。本比較例3は、特開2004−182492号公報に記載の方法に準じ合成を行った。
(Comparative Example 3)
To a commercially available JIS No. 3 sodium silicate (SiO 2 : SiO 2 : Triblock copolymer Pluronic F88 (EO 39 PO 103 EO 39 , manufactured by BASF, average molecular weight 11400, hydrophilic part EO ratio 80%) dissolved in 12% nitric acid. 23.6%, Na 2 O: 7.59%) and a diluted sodium silicate aqueous solution added with water is added with stirring at 600 rpm. The molar ratio of the mixed solution is SiO 2 : Pluronic F88: Na 2 O: HNO 3 : H 2 O = 1: 0.0075: 0.312: 3.72: 146. H 2 O contains water derived from all raw materials. The reaction temperature is 35 ° C., and after stirring for 4 hours, the solid product is filtered and washed, dried sufficiently at 60 ° C., and baked for 1 hour in an electric furnace at 600 ° C. and 800 ° C. By removing the components, the monodispersed spherical porous silica particles having a diameter of about 100 mm of Comparative Example 3 are obtained. In Comparative Example 3, the synthesis was performed according to the method described in JP-A No. 2004-182492.

(比較例4)
比較例4のシリカ粒子は、国内の代表的なシリカの製造・開発を行う民間会社のマイクロ孔とメソ孔を有する球状シリカゲル粒子であり、表1中、600℃加熱焼成物カラムには、300℃で前処理したサンプルの測定結果を記載した。
(Comparative Example 4)
The silica particles of Comparative Example 4 are spherical silica gel particles having micropores and mesopores of a private company that produces and develops representative silica in Japan. The measurement results of the sample pretreated at 0 ° C. are described.

図9に比較例3及び4の吸着等温線を、図10には対応する800℃加熱焼成物のt−プロットを示した。
図9からわかるように、いずれも800℃では吸着量が大きく低下するが、その減量幅は比較例4の方が大きい。しかも、比較例4では吸着等温線の形状が変化し、その原因がマイクロ孔の消失、即ち細孔配列構造の変化によって生じることがt−プロットから明らかである。比較例4のt−プロットは、原点からの直線に対し、吸着量が僅かに上向きに転じ、メソポア多孔体に特徴的な形状と認められる。一方、比較例3は、マイクロ孔だけを有しているにもかかわらず、800℃でも細孔容量は半減するだけで、細孔が粒子間間隙で形成された比較例4のシリカ多孔体と比較すると、熱的安定性が高いことが分かる。本発明の吸着剤が熱的安定性に優れているのは、1次粒子内に細孔が存在するため、高温でも配列構造が保持され、吸着量の減少が、主に壁の収縮に伴う細孔幅の減少に起因するためと考えられる。
FIG. 9 shows adsorption isotherms of Comparative Examples 3 and 4, and FIG. 10 shows a corresponding t-plot of the 800 ° C. heat-fired product.
As can be seen from FIG. 9, the adsorbed amount greatly decreases at 800 ° C., but the amount of reduction is larger in Comparative Example 4. Moreover, it is clear from the t-plot that the shape of the adsorption isotherm changes in Comparative Example 4 and the cause is caused by the disappearance of the micropores, that is, the change in the pore arrangement structure. In the t-plot of Comparative Example 4, the amount of adsorption turned slightly upward with respect to the straight line from the origin, which is recognized as a characteristic shape of the mesopore porous body. On the other hand, although Comparative Example 3 has only micropores, the pore volume is only halved even at 800 ° C., and the porous silica of Comparative Example 4 in which the pores are formed with interparticle gaps is used. Comparison shows that the thermal stability is high. The reason why the adsorbent of the present invention is excellent in thermal stability is that the pores are present in the primary particles, so that the arrangement structure is maintained even at high temperatures, and the decrease in the amount of adsorption is mainly caused by the shrinkage of the wall. This is thought to be due to a decrease in the pore width.

(実施例9)
動的破過曲線と脱離曲線の一例を、実施例1について、それぞれ図4(a)と(b)に示した。本発明の全吸着剤についても同様なデータを集積し、図4(a)に対応する動的破過曲線において、流通するトルエンを全て吸着し、濃度ゼロを保持する破過時間Tを、600℃と800℃の加熱処理生成物に対し、水蒸気の共存しない場合と共存する場合について表2に記載した。さらに、全動的吸着容量(A)と昇温脱離により取り除かれる吸着分(C)を、それぞれのデータ曲線の面積から求め、その差(A−C)から常圧下窒素ガス流通のみで脱離する吸着分(B)を算出し、脱着能をB/A(%)値から評価するため、表2中脱離率Rとして記載した。なお、前記した通り、600℃の加熱処理生成物のR値は、トルエンのみの場合R(T600)、トルエンと水蒸気との混合ガスの場合R(TW600)と表記し、800℃についてはこの表記に準じた。
Example 9
An example of a dynamic breakthrough curve and a desorption curve are shown in FIGS. 4A and 4B for Example 1, respectively. The same data is accumulated for all the adsorbents of the present invention, and in the dynamic breakthrough curve corresponding to FIG. 4 (a), the breakthrough time T for adsorbing all circulating toluene and maintaining the concentration at zero is 600. Table 2 shows the cases where water vapor does not coexist and coexists with respect to the heat-treated products at 800C and 800C. Further, the total dynamic adsorption capacity (A) and the adsorbed part (C) removed by the temperature-programmed desorption are obtained from the areas of the respective data curves, and the desorption can be performed only by flowing nitrogen gas under normal pressure from the difference (AC). In order to calculate the adsorbed content (B) to be released and to evaluate the desorption ability from the B / A (%) value, it is described as the desorption rate R in Table 2. In addition, as described above, the R value of the heat treatment product at 600 ° C. is represented as R (T600) in the case of toluene alone, and R (TW600) in the case of a mixed gas of toluene and water vapor, and this notation at 800 ° C. According to

また、実施例1の800℃加熱焼成物について、水蒸気共存の有無に対するVOC動的破過曲線と脱離曲線への影響を、それぞれ図5(a)と(b)に示す。他の実施例の吸着剤についてもそれぞれに対応するデータ曲線を測定し、実施例1の場合と同様に、破過時間Tと脱離率Rを表2に記載した。なお、実施例8については800℃加熱処理生成物だけを測定対象とした。さらに、比較例についても対応する測定値を示した。
表2中、比較例1、2、3は熟成工程を適用せずに作製したシリカ多孔体であり、600℃加熱処理生成物の脱離率は、水蒸気が共存しない場合でも80%以下と低く、本発明の85%以上を示す吸着剤とはならない。一方、800℃加熱処理生成物の脱離率は、実施例6、7、8を含め全ての吸着剤で、水蒸気が共存しない場合には85%以上、水蒸気が共存する場合でも80%以上を示す本発明の吸着剤の規定を満たしている。
Moreover, about the 800 degreeC heat baked material of Example 1, the influence on the VOC dynamic breakthrough curve and desorption curve with respect to the presence or absence of water vapor | steam is shown to Fig.5 (a) and (b), respectively. The data curves corresponding to the adsorbents of the other examples were also measured, and the breakthrough time T and the desorption rate R are shown in Table 2 as in the case of Example 1. In addition, about Example 8, only the 800 degreeC heat processing product was made into the measuring object. Furthermore, the corresponding measured value was also shown about the comparative example.
In Table 2, Comparative Examples 1, 2, and 3 are porous silica materials that were prepared without applying the aging step, and the desorption rate of the 600 ° C. heat-treated product was as low as 80% or less even when no water vapor coexists. The adsorbent does not represent 85% or more of the present invention. On the other hand, the desorption rate of the heat-treated product at 800 ° C. is 85% or more when water vapor does not coexist with all the adsorbents including Examples 6, 7, and 8 and 80% or more even when water vapor coexists. The specified adsorbent of the present invention is satisfied.

上記の実験結果について、表1及び表2に基づいて、本発明の吸着剤の細孔構造並びに表面特性と、脱離率Rの関係について次のことが明らかである。
攪拌反応に引き続き攪拌温度以上で熟成して得られる本発明の吸着剤、繊維状シリカ(実施例1〜4)及びロッド状シリカ(実施例5)は、熟成工程を適用しない場合(実施例6及び実施例7)と比較し、脱離率R(T600)は大きく85%以上となる。さらに、水蒸気共存の有無における脱離率を比較すると、攪拌温度以上で熟成して得られた本発明の吸着剤のR(TW600)/R(T600)は、熟成工程を適用しない場合より大きく、高温での熟成によって得られるシリカ多孔体の細孔表面はより疎水的であると考えられる。
さらに一般的には、シリカ多孔体の細孔表面の疎水化は高温での加熱処理によって可能であり、粒子間間隙により細孔が形成されマイクロ孔の存在割合の大きなシリカゲルでは、800℃以上に加熱すると比表面積及び細孔容積の著しい減少を伴い、多孔体としての吸着機能の低下が避けられない。このことは、上記「比較例」中、比較例4の市販シリカゲルの加熱処理結果より明らかで、800℃の加熱処理に伴う脱水縮合によるシリケート骨格構造の変化が著しく、比表面積及び細孔容積は最大値から約75%も減少することになる。
しかしながら、粒子内にマイクロ孔が存在する比較例3において、800℃においても比表面積並びに細孔容量は600℃の値から半減するにとどまり、比較例4と顕著な差異が認められる。しかし、粒子内に存在するマイクロ孔は、粒子間間隙に起因するマイクロ孔よりも熱的には安定な構造であると言えるが、マイクロ孔だけでは細孔径の減少による粒子内拡散が極めて抑制され、VOCの脱離が困難となってしまう。したがって、比較例3は、600℃加熱処理生成物ばかりでなく、細孔表面の疎水化が行われる800℃処理生成物においても、脱離率は低く、R(T800)<65%である。このことは、マイクロ孔径の縮小による粒子内拡散能の低下が著しく、疎水化の効果が現われ難いことに起因すると考えられる。
Based on Table 1 and Table 2, the following is clear regarding the relationship between the pore structure and surface characteristics of the adsorbent of the present invention and the desorption rate R.
The adsorbent of the present invention, fibrous silica (Examples 1 to 4), and rod-like silica (Example 5) obtained by aging at a temperature higher than the stirring temperature following the stirring reaction, do not apply the aging step (Example 6). Compared with Example 7), the desorption rate R (T600) is largely 85% or more. Furthermore, when comparing the desorption rate in the presence or absence of water vapor, the R (TW600) / R (T600) of the adsorbent of the present invention obtained by aging at a stirring temperature or higher is larger than when the aging step is not applied. The pore surface of the porous silica obtained by aging at high temperature is considered to be more hydrophobic.
More generally, the surface of the pores of the porous silica material can be hydrophobized by heat treatment at a high temperature, and in the case of silica gel in which pores are formed by inter-particle gaps and a large proportion of micropores is present, the temperature becomes 800 ° C or higher. When heated, the specific surface area and pore volume are significantly reduced, and the adsorption function as a porous body is inevitably lowered. This is clear from the heat treatment result of the commercially available silica gel of Comparative Example 4 in the above “Comparative Example”, and the change in the silicate skeleton structure due to dehydration condensation accompanying the heat treatment at 800 ° C. is significant, and the specific surface area and pore volume are It will decrease about 75% from the maximum value.
However, in Comparative Example 3 in which micropores are present in the particles, the specific surface area and pore volume are only halved from the value of 600 ° C. even at 800 ° C., and a marked difference from Comparative Example 4 is observed. However, it can be said that the micropores present in the particles have a more thermally stable structure than the micropores caused by the interparticle gaps. , VOC desorption becomes difficult. Therefore, in Comparative Example 3, not only the 600 ° C. heat treatment product but also the 800 ° C. treatment product in which the pore surface is hydrophobized has a low desorption rate, and R (T800) <65%. This is considered to be due to the remarkable decrease in the diffusibility within the particles due to the reduction of the micropore diameter, and the effect of hydrophobizing is difficult to appear.

一方、メソ孔とマイクロ孔が共存する本発明のシリカ吸着剤については、800℃と600℃における加熱焼成物を比較すると、マイクロ孔容積は比較例3と同様30〜60%減少するが、比表面積の低下は35%に留まる。このことは、加熱によりメソ孔の収縮は生じるが、メソ規則配列構造は高温でも維持されることを明示している。
したがって、高温での加熱処理生成物である、疎水的な細孔表面を持ったメソ-マイクロ孔の有機的な連結構造が形成されている本発明の吸着剤は、全ての実施例において(実施例1〜8)、800℃において加熱処理して得られた多孔体の脱離率は、R(T800)>85%、R(TW800)>80%であり、R(TW800)/R(T800)>90%となる。
On the other hand, for the silica adsorbent of the present invention in which mesopores and micropores coexist, when comparing the calcined products at 800 ° C. and 600 ° C., the micropore volume is reduced by 30 to 60% as in Comparative Example 3. The reduction in surface area is only 35%. This clearly shows that the mesopores are contracted by heating, but the mesoregular arrangement structure is maintained even at a high temperature.
Therefore, the adsorbent of the present invention in which a meso-micropore organic connection structure having a hydrophobic pore surface, which is a heat treatment product at a high temperature, is formed in all the examples (implementation). The desorption rates of the porous bodies obtained by heat treatment at 800 ° C. in Examples 1 to 8) were R (T800)> 85%, R (TW800)> 80%, and R (TW800) / R (T800 )> 90%.

上記のとおり、細孔表面が疎水化されるよう合成時に調整された本発明の吸着剤は、高い吸着能と、特に非加熱状態において高い脱離能を有することから、水蒸気を含まないVOCガスの吸着回収システムの開発に有効である。さらに、高温処理して細孔表面を疎水化して得られる本発明の吸着剤は、VOC脱離工程において加熱操作を施すことなく、常温付近での常圧あるいは真空下における不活性ガスパージによって高い脱離率を発揮することから、水蒸気の共存の有無に係わらず、幅広い環境条件下におけるVOCガスの吸着回収システムの開発に有効である。なお、本発明は常温での常圧窒素パージにより脱離特性を評価しているが、実用システムでは真空窒素(空気)パージが一般に採用されている。本発明の評価法は、真空不活性ガスパージより脱離し難い、常圧下で実施されたもので、吸着剤自体の脱着特性を直接反映しており、実用システム構築に当たっては極めて有用と考えられる。   As described above, the adsorbent of the present invention adjusted at the time of synthesis so that the pore surface is hydrophobized has a high adsorption ability and a high desorption ability particularly in a non-heated state. It is effective for the development of adsorption recovery system. Furthermore, the adsorbent of the present invention obtained by hydrophobizing the surface of the pores by high-temperature treatment is highly desorbed by an inert gas purge near normal temperature or under vacuum without performing a heating operation in the VOC desorption process. Since it exhibits a separation rate, it is effective for developing a VOC gas adsorption and recovery system under a wide range of environmental conditions regardless of the presence or absence of water vapor. In the present invention, the desorption characteristics are evaluated by normal pressure nitrogen purge at normal temperature, but vacuum nitrogen (air) purge is generally employed in practical systems. The evaluation method of the present invention is carried out under normal pressure, which is less likely to desorb than a vacuum inert gas purge, and directly reflects the desorption characteristics of the adsorbent itself, and is considered extremely useful in constructing a practical system.

Claims (6)

1次粒子内に連結したマイクロ孔とメソ孔を有するシリカ多孔体からなり、揮発性有機化合物(VOC)ガスの動的破過曲線測定において、破過して飽和吸着に達した後、常圧下において35℃以下の不活性気体を流通することで、全吸着分のうち85%以上が脱着可能であることを特徴とするガス吸着剤。   It consists of a porous silica body with micropores and mesopores connected in the primary particles. In the dynamic breakthrough curve measurement of volatile organic compound (VOC) gas, it breaks down and reaches saturated adsorption, and then under normal pressure A gas adsorbent characterized in that 85% or more of all adsorbed components can be desorbed by circulating an inert gas at 35 ° C. or lower. 1次粒子内に連結したマイクロ孔とメソ孔を有するシリカ多孔体からなり、揮発性有機化合物(VOC)ガスと水蒸気との混合ガスの動的破過曲線測定において、破過して飽和吸着に達した後、常圧下において35℃以下の不活性気体を流通することで、全吸着分のうち80%以上が脱着可能であることを特徴とするガス吸着剤。   It consists of a porous silica body with micropores and mesopores connected in the primary particles, and it breaks through to saturated adsorption in dynamic breakthrough curve measurement of a mixed gas of volatile organic compound (VOC) gas and water vapor. A gas adsorbent characterized in that 80% or more of the total adsorbed content can be desorbed by passing an inert gas of 35 ° C. or lower under normal pressure after reaching. 揮発性有機化合物(VOC)ガス単独、及び当該揮発性有機化合物(VOC)ガスと水蒸気との混合ガス、の両者の動的破過曲線測定において、破過して飽和吸着に達した後、35℃以下の常圧下において不活性気体を流通した全脱離量を比較した時、水蒸気と混合された揮発性有機化合物(VOC)ガスの脱離割合が、揮発性有機化合物(VOC)ガス単独の脱離割合の90%以上であることを特徴とする請求項1又は2に記載のガス吸着剤。   In a dynamic breakthrough curve measurement of both a volatile organic compound (VOC) gas alone and a mixed gas of the volatile organic compound (VOC) gas and water vapor, after breaking through and reaching saturated adsorption, 35 When comparing the total desorption amount through which an inert gas was circulated under normal pressure of ℃ or less, the desorption ratio of the volatile organic compound (VOC) gas mixed with water vapor is that of the volatile organic compound (VOC) gas alone. The gas adsorbent according to claim 1 or 2, wherein the gas adsorbent is 90% or more of a desorption ratio. シリカ多孔体の合成時の高温熟成工程又は合成後の加熱処理により、前記マイクロ孔とメソ孔の表面が疎水化されていることを特徴とする請求項1〜3のいずれか1項に記載のガス吸着剤。   The surface of the said micropore and a mesopore is hydrophobized by the high temperature aging process at the time of the synthesis | combination of a silica porous body, or the heat processing after a synthesis | combination, The any one of Claims 1-3 characterized by the above-mentioned. Gas adsorbent. 600℃加熱処理において比表面積700m/g以上、全細孔容積0.55ml/g以上、及びマイクロ孔容積0.05ml/g以上を有し、これらの細孔特性値を、800℃加熱処理生成物と比較した場合、いずれも600℃の細孔特性値の40%以上が保持され、800℃以上に加熱しても、窒素吸着等温線の細孔特性評価において明確にマイクロ孔とメソ孔の共存が確認できることを特徴とする請求項1〜4のいずれか1項に記載のガス吸着剤。 It has a specific surface area of 700 m 2 / g or more in heat treatment at 600 ° C., a total pore volume of 0.55 ml / g or more, and a micropore volume of 0.05 ml / g or more. When compared with the product, 40% or more of the pore characteristic value at 600 ° C. is maintained, and even when heated to 800 ° C. or higher, the pore characteristics of the nitrogen adsorption isotherm are clearly evaluated as micropores and mesopores. The gas adsorbent according to any one of claims 1 to 4, wherein coexistence of the gas can be confirmed. 1次粒子の形態が、繊維状、ロッド状、薄板状、又は球状のいずれかの形態を呈することを特徴とする請求項1〜5のいずれか1項に記載のガス吸着剤。   The gas adsorbent according to any one of claims 1 to 5, wherein the primary particles have a fibrous form, a rod form, a thin plate form, or a spherical form.
JP2009146166A 2009-06-19 2009-06-19 Gas adsorbing agent Pending JP2011000548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009146166A JP2011000548A (en) 2009-06-19 2009-06-19 Gas adsorbing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009146166A JP2011000548A (en) 2009-06-19 2009-06-19 Gas adsorbing agent

Publications (1)

Publication Number Publication Date
JP2011000548A true JP2011000548A (en) 2011-01-06

Family

ID=43558971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009146166A Pending JP2011000548A (en) 2009-06-19 2009-06-19 Gas adsorbing agent

Country Status (1)

Country Link
JP (1) JP2011000548A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518833A (en) * 2011-04-27 2014-08-07 エボニック デグサ ゲーエムベーハー Silicon dioxide powder with large pore length
CN115707504A (en) * 2021-08-19 2023-02-21 中国石油化工股份有限公司 Oil gas recovery method for improving oil gas absorption and desorption amount
CN116328739A (en) * 2023-02-22 2023-06-27 东洋和光净化材料(江苏)有限公司 Hydrophobic VOC adsorbent and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518833A (en) * 2011-04-27 2014-08-07 エボニック デグサ ゲーエムベーハー Silicon dioxide powder with large pore length
CN115707504A (en) * 2021-08-19 2023-02-21 中国石油化工股份有限公司 Oil gas recovery method for improving oil gas absorption and desorption amount
CN116328739A (en) * 2023-02-22 2023-06-27 东洋和光净化材料(江苏)有限公司 Hydrophobic VOC adsorbent and production method thereof

Similar Documents

Publication Publication Date Title
Ludwinowicz et al. Effect of activating agents on the development of microporosity in polymeric-based carbon for CO2 adsorption
Han et al. Amine-impregnated millimeter-sized spherical silica foams with hierarchical mesoporous–macroporous structure for CO2 capture
Chen et al. Polyethylenimine-incorporated zeolite 13X with mesoporosity for post-combustion CO2 capture
Feng et al. Tetraethylenepentamine-modified siliceous mesocellular foam (MCF) for CO2 capture
Wang et al. Functionalized hollow siliceous spheres for VOCs removal with high efficiency and stability
Anyanwu et al. CO2 capture (including direct air capture) and natural gas desulfurization of amine-grafted hierarchical bimodal silica
Lai et al. Amine-impregnated silicic acid composite as an efficient adsorbent for CO2 capture
Chuah et al. High-performance porous carbon-zeolite mixed-matrix membranes for CO2/N2 separation
AU2011380572B2 (en) Solid carbon dioxide absorbent including amine or a compound thereof for use in the capturing process of dry carbon dioxide, and method for manufacturing same
Xia et al. Ordered mesoporous carbon monoliths: CVD nanocasting and hydrogen storage properties
Ahmad et al. Adsorptive removal of resorcinol on a novel ordered mesoporous carbon (OMC) employing COK-19 silica scaffold: kinetics and equilibrium study
Zhang et al. A general silica-templating synthesis of alkaline mesoporous carbon catalysts for highly efficient H2S oxidation at room temperature
Witoon et al. Preparation of silica xerogel with high silanol content from sodium silicate and its application as CO2 adsorbent
Meng et al. MgO-templated porous carbons-based CO2 adsorbents produced by KOH activation
Pino et al. Sorbents with high efficiency for CO2 capture based on amines-supported carbon for biogas upgrading
Guo et al. Tetraethylenepentamine modified protonated titanate nanotubes for CO2 capture
Wang et al. VOC adsorption and desorption behavior of hydrophobic, functionalized SBA-15
Zeng et al. High-performance CO 2 capture on amine-functionalized hierarchically porous silica nanoparticles prepared by a simple template-free method
Qin et al. Effect of morphology and pore structure of SBA-15 on toluene dynamic adsorption/desorption performance
Akhtar et al. Colloidal processing and thermal treatment of binderless hierarchically porous zeolite 13X monoliths for CO2 capture
Chi et al. Porous molecular sieve polymer composite with high CO2 adsorption efficiency and hydrophobicity
Kong et al. Use of monolithic silicon carbide aerogel as a reusable support for development of regenerable CO 2 adsorbent
JP2011000548A (en) Gas adsorbing agent
Lu et al. Adsorption of carbon dioxide from gas streams via mesoporous spherical-silica particles
JP4061408B2 (en) Gas adsorbent