[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011099608A - Boiler combustion control device - Google Patents

Boiler combustion control device Download PDF

Info

Publication number
JP2011099608A
JP2011099608A JP2009254149A JP2009254149A JP2011099608A JP 2011099608 A JP2011099608 A JP 2011099608A JP 2009254149 A JP2009254149 A JP 2009254149A JP 2009254149 A JP2009254149 A JP 2009254149A JP 2011099608 A JP2011099608 A JP 2011099608A
Authority
JP
Japan
Prior art keywords
air
boiler
control device
flow rate
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009254149A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takamatsu
宏至 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009254149A priority Critical patent/JP2011099608A/en
Publication of JP2011099608A publication Critical patent/JP2011099608A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem in air-fuel ratio constant value control of a boiler wherein constant value control of CO becomes unstable in control restrictions and CO concentration control, when there are specific characteristics in CO discharge characteristics with respect to change of O<SB>2</SB>. <P>SOLUTION: The boiler combustion control device includes an air flow rate control device 22 and a fuel flow rate control device 21 controlling a fuel flow rate and an air flow rate supplied to the boiler 1, and an air amount is controlled based on an air-fuel ratio set value. The boiler combustion control device includes an O<SB>2</SB>control device 26 generating a first adjustment signal based on the an O<SB>2</SB>concentration in exhaust gas of the boiler, and a CO change rate control device 27 generating a second adjustment signal based on a change rate of a CO concentration in the exhaust gas of the boiler. An adjustment signal with higher priority of the first adjustment signal and the second adjustment signal is selected in a high selector 28, and by providing it to the air-fuel ratio set value as a bias (deflection) signal, an energy-saving and low pollution combustion system is constructed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、火力発電所などのボイラに供給する燃料流量および空気流量を制御するボイラ燃焼制御装置に関するもので、特に負荷変動時において空気量を適切に制御して排ガス内のCO排出の抑制を行うようにしたボイラ燃焼制御装置に関するものである。   The present invention relates to a boiler combustion control device that controls the flow rate of fuel and air supplied to a boiler such as a thermal power plant, and particularly controls the amount of air appropriately during load fluctuations to suppress CO emissions in exhaust gas. The present invention relates to a boiler combustion control apparatus.

従来のボイラの燃焼制御において、ボイラの負荷に対する燃料量、空気量の調整はあらかじめ保有している、空燃比(燃料と空気との比率)設定特性に応じた空気過剰率制御が行われている。この空気過剰率制御(空燃比制御)に、O(酸素)制御とCO(一酸化炭素)制御を付加する場合には、排ガス内のO濃度測定値とO濃度目標値との偏差を用いて変換係数として演算により空燃比設定値を補正する方式がとられ、さらに、排ガスのCO濃度を測定し、CO濃度目標値との差の変換係数を上記排ガスO濃度目標値に乗算して排ガスO濃度の最終目標値を得た後、実測されたO濃度との偏差により補正された空燃比制御によりボイラ空気量調整がなされている。(特許文献1および特許文献2参照) In conventional boiler combustion control, adjustment of the fuel amount and the air amount with respect to the boiler load is performed in advance, and the excess air ratio control according to the air-fuel ratio (fuel / air ratio) setting characteristics is performed. . When O 2 (oxygen) control and CO (carbon monoxide) control are added to this excess air ratio control (air-fuel ratio control), the deviation between the measured value of O 2 concentration in the exhaust gas and the target value of O 2 concentration Is used to correct the air-fuel ratio set value by calculation as a conversion coefficient. Further, the CO concentration of exhaust gas is measured, and the exhaust gas O 2 concentration target value is multiplied by the conversion coefficient of the difference from the CO concentration target value. Then, after obtaining the final target value of the exhaust gas O 2 concentration, the boiler air amount is adjusted by air-fuel ratio control corrected by the deviation from the actually measured O 2 concentration. (See Patent Document 1 and Patent Document 2)

特開平6−117627号公報(図3、図4)JP-A-6-117627 (FIGS. 3 and 4) 特開平6−180116号公報(図3、図4)JP-A-6-180116 (FIGS. 3 and 4)

従来のボイラ燃焼制御装置においては、空燃比設定装置により、燃料量に応じた空気量を調整する空燃比設定システムが適用され、更にO制御とCO制御が付加されている。この場合の空燃比設定において、CO制御のコントローラ出力、O制御のコントローラ出力をカスケード信号にて加算して空燃比設定の変更を行う方式で構成されているので、排ガスのCO濃度制御を実施する場合もO濃度制御を併用して実施しておくことが必要であり、又Oの変化に対するCOの排出特性に特有の特性がある場合、COの定値制御が不安定になる等の、制御上の制約やCO濃度制御上の問題点があった。 In the conventional boiler combustion control device, an air-fuel ratio setting system that adjusts the air amount according to the fuel amount is applied by an air-fuel ratio setting device, and O 2 control and CO control are further added. In this case, the air-fuel ratio is set by changing the air-fuel ratio setting by adding the controller output of the CO control and the controller output of the O 2 control with the cascade signal. In this case, it is necessary to carry out the O 2 concentration control together, and when there is a characteristic specific to the CO emission characteristic with respect to the change of O 2 , the constant value control of CO becomes unstable. There were problems in control and CO concentration control.

この発明は上記のような課題を解決するためになされたものであり、O濃度制御が先行して実施されていなくてもCO排出抑制制御が実施でき、またCO濃度制御の方法においても適切なCO制御により燃焼空気量を適切にすることができるボイラ燃焼制御装置を提供することを目的とするものである。 The present invention has been made to solve the above-described problems, and can perform CO emission suppression control even when O 2 concentration control is not performed in advance, and is also suitable for the CO concentration control method. It is an object of the present invention to provide a boiler combustion control device capable of making the amount of combustion air appropriate by proper CO control.

この発明に係るボイラ燃焼制御装置は、ボイラに供給する燃料流量および空気流量を制御するボイラ燃焼制御装置において、ボイラに供給される空気流量を検出する空気流量検出装置からの信号に基づいてボイラに供給する空気流量を制御する空気流量制御装置、ボイラに供給される燃料流量を検出する燃料流量検出装置からの信号に基づいてボイラに供給する燃料流量を制御する燃料流量制御装置、燃料流量検出装置で検出された燃料流量の計測値から、その燃料流量に応じて設定されている空燃比設定値を算出する空燃比設定装置、ボイラの排ガス内のO(酸素)濃度とO濃度目標値との偏差に基づいて第1の調整信号を作成するO制御装置、ボイラの排ガス内のCO(一酸化炭素)濃度の変化率とCO濃度変化率の上限目標値との偏差に基づいて第2の調整信号を作成するCO変化率制御装置、第1の調整信号と第2の調整信号の内、優先度の高い調整信号を選択するハイセ
レクタ、このハイセレクタで選択した調整信号を空燃比設定装置で算出した空燃比設定値にバイアス(偏倚)信号として与えて制御信号を作成し、その制御信号を空気流量制御装置の制御値とする第1の演算手段、ボイラの蒸気圧力を検出し、その検出された圧力とボイラ圧力目標値との偏差に基づいて制御信号を作成するボイラマスタ、このボイラマスタで作成された制御信号を燃料流量制御装置の制御値とする第2の演算手段を備えたものである。
A boiler combustion control device according to the present invention is a boiler combustion control device that controls a fuel flow rate and an air flow rate that are supplied to a boiler, based on a signal from an air flow rate detection device that detects an air flow rate supplied to the boiler. An air flow rate control device that controls the flow rate of air supplied, a fuel flow rate control device that controls the flow rate of fuel supplied to the boiler based on a signal from a fuel flow rate detection device that detects the flow rate of fuel supplied to the boiler, and a fuel flow rate detection device An air-fuel ratio setting device that calculates an air-fuel ratio set value that is set according to the fuel flow rate detected from the measured value of the fuel flow rate, and an O 2 (oxygen) concentration and an O 2 concentration target value in the exhaust gas of the boiler The O 2 control device that creates the first adjustment signal based on the deviation from the above, the change rate of the CO (carbon monoxide) concentration in the exhaust gas of the boiler, and the upper limit target value of the CO concentration change rate A CO change rate control device that creates a second adjustment signal based on the deviation between the first adjustment signal and the second adjustment signal, a high selector that selects an adjustment signal with a higher priority among the first adjustment signal and the second adjustment signal, A first calculation means that creates a control signal by applying the selected adjustment signal as a bias (bias) signal to the air-fuel ratio setting value calculated by the air-fuel ratio setting device, and uses the control signal as a control value for the air flow rate control device; A boiler master that detects the steam pressure of the boiler and creates a control signal based on the deviation between the detected pressure and the boiler pressure target value, and uses the control signal created by the boiler master as the control value of the fuel flow control device. 2 arithmetic means.

また、この発明に係るボイラ燃焼制御装置は、ボイラに供給する燃料流量を検出し、その検出された燃料流量を基に燃料流量を調整する燃料調整制御系と、ボイラに供給する空気流量を検出し、その検出された空気流量を基に空気流量を調整する空気量調整制御系とを有したボイラ燃焼制御装置において、ボイラの蒸気圧力を検出し、その検出された圧力信号によりボイラ燃焼制御信号を作成するボイラマスタを有し、ボイラマスタで作成したボイラ燃焼制御信号を燃料調整制御系と空気量調整制御系に与える第1の制御装置と、検出された燃料流量を基に、その燃料流量に応じて設定されている空燃比設定値を算出する空燃比設定装置を有し、空燃比設定装置で算出された空燃比設定値の制御信号を空気量調整制御系に与える第2の制御装置と、ボイラの排ガス内のO(酸素)濃度とO濃度目標値との偏差に基づいて第1の調整信号を作成するO制御装置を有し、O制御装置からの第1の調整信号により空燃比設定装置で算出した空燃比設定値にバイアス(偏倚)を与える第3の制御装置と、ボイラの排ガス内のCO(一酸化炭素)濃度の変化率とCO濃度の変化率の上限目標値との偏差に基づいて第2の調整信号を作成するCO変化率制御装置を有し、CO変化率制御装置からの第2の調整信号により空燃比設定装置で算出した空燃比設定値にバイアス(偏倚)を与える第4の制御装置とを備え、第3の制御装置からの第1の調整信号と、第4の制御装置からの第2の調整信号の内、優先度の高い調整信号をハイセレクタを用いて選択し、ハイセレクタで選択した調整信号により空燃比設定装置で算出した空燃比設定値にバイアス(偏倚)を与えるようにしたものである。 Further, the boiler combustion control apparatus according to the present invention detects a fuel flow rate supplied to the boiler, detects a fuel adjustment control system that adjusts the fuel flow rate based on the detected fuel flow rate, and detects an air flow rate supplied to the boiler. In the boiler combustion control device having an air amount adjustment control system for adjusting the air flow rate based on the detected air flow rate, the boiler steam pressure is detected, and the boiler combustion control signal is detected by the detected pressure signal. A first control device that provides a boiler combustion control signal generated by the boiler master to the fuel adjustment control system and the air amount adjustment control system, and based on the detected fuel flow rate, according to the fuel flow rate A second control device for providing the air amount adjustment control system with a control signal of the air-fuel ratio setting value calculated by the air-fuel ratio setting device. When having a O 2 controller for generating a first adjustment signal based on the deviation between the O 2 (oxygen) concentration and the O 2 concentration target value of the exhaust gas of the boiler, the first from the O 2 control system A third control device that applies a bias to the air-fuel ratio setting value calculated by the air-fuel ratio setting device in accordance with the adjustment signal; and a change rate of CO (carbon monoxide) concentration and a change rate of CO concentration in the exhaust gas of the boiler An air-fuel ratio setting value calculated by the air-fuel ratio setting device by the second adjustment signal from the CO change rate control device, having a CO change rate control device that creates a second adjustment signal based on the deviation from the upper limit target value And a fourth control device that applies a bias to the first control signal, and a high-priority adjustment among the first adjustment signal from the third control device and the second adjustment signal from the fourth control device. Select the signal using the high selector, and select the signal selected with the high selector. A bias (bias) is applied to the air-fuel ratio set value calculated by the air-fuel ratio setting device using the trim signal.

この発明のボイラ燃焼制御装置は、CO(一酸化炭素)濃度制御を行う場合、O濃度制御と併用して、あるいは単独で、空燃比制御が達成できるようになり、必要量以上の燃焼空気量の供給を抑制することや、ボイラが不完全燃焼となりCOが発生しているような燃焼状態が発生しない限界の空燃比制御できるようになるので、精度高く燃焼空気ファンの動力と排ガスの熱ロスを削減することができ、また良好なボイラ燃焼によるCOの排出抑制を達成することができる。
またCO濃度が異常に増加した場合も、その濃度の変化率を検出し空燃比制御の信号へバイアスを与える制御をすることで、排ガス内のCO排出抑制制御を取り入れることにより燃焼空気量を適切にしているので、省エネルギー上からも、公害防止上からも有利なボイラ燃焼方法が取れる。
When performing CO (carbon monoxide) concentration control, the boiler combustion control apparatus according to the present invention can achieve air-fuel ratio control in combination with O 2 concentration control or independently, and more combustion air than necessary. This makes it possible to control the air-fuel ratio at the limit where the supply of the amount is suppressed and the combustion state in which the boiler is incompletely burned and CO is not generated, so the power of the combustion air fan and the heat of the exhaust gas can be accurately controlled. Loss can be reduced, and CO emission suppression by good boiler combustion can be achieved.
Even if the CO concentration increases abnormally, the amount of combustion air can be appropriately adjusted by detecting the rate of change in the concentration and applying a bias to the air-fuel ratio control signal to incorporate CO emission suppression control in the exhaust gas. Therefore, an advantageous boiler combustion method can be taken from the viewpoint of energy saving and pollution prevention.

この発明の実施の形態1を示す全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram which shows Embodiment 1 of this invention. この発明の実施の形態2を示す全体構成図である。It is a whole block diagram which shows Embodiment 2 of this invention. この発明の実施の形態3を示す全体構成図である。It is a whole block diagram which shows Embodiment 3 of this invention. この発明の実施の形態4を示す全体構成図である。It is a whole block diagram which shows Embodiment 4 of this invention. 燃料流量に応じた空燃比の特性を示す図である。It is a figure which shows the characteristic of the air fuel ratio according to a fuel flow volume. ボイラ負荷に応じた排ガス内のO濃度特性を示す図である。Is a diagram showing an O 2 density characteristics of the exhaust gas in accordance with the boiler load. 濃度の変化に対する排ガス中のCO濃度特性を示す図である。Is a diagram showing the CO concentration profile in the exhaust gas with respect to O 2 concentration change.

実施の形態1.
以下、この発明の実施の形態1におけるボイラ燃焼制御装置を図1に基づいて説明する
。図1において、ボイラ1の所定の壁部にバーナが設置され、このバーナに燃料供給路2および空気供給路3からそれぞれ燃料および空気を供給し、ここで燃料と空気が混合されて燃焼することにより、ボイラ1内の被加熱対象、例えば水を加熱して配管4から蒸気を出力し、図示しない次工程に送られる。またボイラ1で燃焼した排ガスは排気管5を通じて集塵機6を経由して煙突7から排出される。
Embodiment 1 FIG.
Hereinafter, the boiler combustion control apparatus in Embodiment 1 of this invention is demonstrated based on FIG. In FIG. 1, a burner is installed on a predetermined wall portion of a boiler 1, and fuel and air are supplied to the burner from a fuel supply path 2 and an air supply path 3, respectively, where the fuel and air are mixed and burned. Thus, the object to be heated in the boiler 1, for example, water is heated to output steam from the pipe 4 and sent to the next process (not shown). Further, the exhaust gas burned in the boiler 1 is discharged from the chimney 7 through the exhaust pipe 5 and the dust collector 6.

燃料供給路2にはボイラ1に供給する燃料量を調整する調整弁などの燃料流量調整手段8とボイラ1に供給される燃料流量を検出する燃料流量検出装置9が設けられ、また空気供給路3にはボイラ1に供給する空気量を調整する可変速送風機とVVVFなどの空気流量調整手段10とボイラ1に供給される空気流量を検出する空気流量検出装置11が設けられている。さらに、配管4には蒸気圧力を検出する蒸気圧力検出装置12とボイラ1の負荷を検出するボイラ負荷検出装置13が設けられ、また排気管5にはCO(一酸化炭素)の濃度を検出するCO濃度検出装置14とO(酸素)の濃度を検出するO濃度検出装置15が設けられている。 The fuel supply path 2 is provided with a fuel flow rate adjusting means 8 such as an adjustment valve for adjusting the amount of fuel supplied to the boiler 1 and a fuel flow rate detecting device 9 for detecting the fuel flow rate supplied to the boiler 1, and also an air supply path. 3, a variable speed blower for adjusting the amount of air supplied to the boiler 1, an air flow rate adjusting means 10 such as VVVF, and an air flow rate detection device 11 for detecting the air flow rate supplied to the boiler 1 are provided. Further, the pipe 4 is provided with a steam pressure detecting device 12 for detecting the steam pressure and a boiler load detecting device 13 for detecting the load of the boiler 1, and the exhaust pipe 5 detects the concentration of CO (carbon monoxide). A CO concentration detection device 14 and an O 2 concentration detection device 15 for detecting the concentration of O 2 (oxygen) are provided.

ボイラ制御装置20は、燃料流量検出装置9で検出した燃料流量に基づいて燃料流量調整手段8により燃料流量を調整する燃料流量制御装置21からなる燃料調整制御系と、空気流量検出装置11で検出した空気流量に基づいて空気流量調整手段10により空気流量を調整する空気流量制御装置22からなる空気量調整制御系とを有している。
またボイラ制御装置20は、蒸気圧力検出装置12で検出したボイラ1の蒸気圧力とボイラ圧力目標値との偏差に基づいてボイラ燃焼制御信号を作成するボイラマスタ23を有し、ボイラマスタ23で作成したボイラ燃焼制御信号を、燃料調整制御系と空気量調整制御系に与える第1の制御装置を備えている。即ち、ボイラマスタ23で作成したボイラ燃焼制御信号は、燃料流量制御装置21および空気流量制御装置22の流量制御値へ演算手段としての乗算器24a、24bを経由してバイアス信号の制御値として与えられる。
The boiler control device 20 is detected by a fuel adjustment control system including a fuel flow rate control device 21 that adjusts the fuel flow rate by the fuel flow rate adjustment means 8 based on the fuel flow rate detected by the fuel flow rate detection device 9, and an air flow rate detection device 11. And an air amount adjustment control system comprising an air flow rate control device 22 that adjusts the air flow rate by the air flow rate adjusting means 10 based on the air flow rate.
The boiler control device 20 has a boiler master 23 that creates a boiler combustion control signal based on the deviation between the steam pressure of the boiler 1 detected by the steam pressure detection device 12 and the boiler pressure target value. A first control device is provided for supplying a combustion control signal to the fuel adjustment control system and the air amount adjustment control system. In other words, the boiler combustion control signal created by the boiler master 23 is given to the flow rate control values of the fuel flow rate control device 21 and the air flow rate control device 22 as the control value of the bias signal via the multipliers 24a and 24b as calculation means. .

またボイラ制御装置20は、燃料流量検出装置9で検出された燃料流量を基づいて、その燃料流量に応じて設定されている図5に示す空燃比設定値を算出する空燃比設定装置25を有し、この空燃比設定装置25で算出された空燃比設定値の制御信号を空気量調整制御系に与える第2の制御装置を備えている。   Further, the boiler control device 20 has an air-fuel ratio setting device 25 that calculates an air-fuel ratio set value shown in FIG. 5 that is set according to the fuel flow rate based on the fuel flow rate detected by the fuel flow rate detection device 9. The air-fuel ratio setting device 25 calculates a control signal for the air-fuel ratio set value to the air amount adjustment control system.

さらにボイラ制御装置20は、ボイラ1から排出される排ガスのO(酸素)制御とCO(一酸化炭素)制御を行うための制御装置も付加されている。
即ち、O濃度検出装置15で検出された排ガス内のO(酸素)濃度計測値と、ボイラ負荷検出装置13で検出されたボイラ負荷に応じて設定されているO濃度目標値との偏差に基づいて第1の調整信号を作成するO制御装置26を有し、このO制御装置26からの第1の調整信号により空燃比設定装置25で算出した空燃比設定値にバイアス(偏倚)を与えて、空燃比設定値を補正する第3の制御装置を備えている。
Further, the boiler control device 20 is also provided with a control device for performing O 2 (oxygen) control and CO (carbon monoxide) control of exhaust gas discharged from the boiler 1.
That is, the O 2 (oxygen) concentration measurement value in the exhaust gas detected by the O 2 concentration detection device 15 and the O 2 concentration target value set according to the boiler load detected by the boiler load detection device 13. It has an O 2 control device 26 that creates a first adjustment signal based on the deviation, and is biased to the air-fuel ratio setting value calculated by the air-fuel ratio setting device 25 by the first adjustment signal from the O 2 control device 26 ( And a third control device for correcting the air-fuel ratio set value.

また、CO濃度検出装置14で検出された排ガス内のCO(一酸化炭素)濃度の変化率と、CO濃度の変化率の上限目標値との偏差に基づいて第2の調整信号を作成するCO変化率制御装置27を有し、このCO変化率制御装置27からの第2の調整信号により空燃比設定装置25で算出した空燃比設定値にバイアス(偏倚)を与えて、空燃比設定値を補正する第4の制御装置を備えている。
CO濃度の変化率の検出方法は、短時間の計測スキャン時間ΔT(通常1秒前後)の間で計測されたCO濃度の前回値COoldと今回値COnewとの差の計測時間内での変化量であり、変化率の許容限度値ΔCO(通常100ppm)以上となった時に検出をおこなう。その関係式は次の通りとなる。
(COnew−COold)/ΔT>ΔCO
Further, the CO that creates the second adjustment signal based on the deviation between the CO (carbon monoxide) concentration change rate in the exhaust gas detected by the CO concentration detection device 14 and the upper limit target value of the CO concentration change rate. A change rate control device 27 is provided, and a bias (bias) is given to the air-fuel ratio setting value calculated by the air-fuel ratio setting device 25 by the second adjustment signal from the CO change rate control device 27, so that the air-fuel ratio set value is A fourth control device for correction is provided.
The method for detecting the change rate of the CO concentration is the amount of change within the measurement time of the difference between the previous value COold and the current value COnew of the CO concentration measured during a short measurement scan time ΔT (usually around 1 second). The detection is performed when the change rate exceeds the allowable limit value ΔCO (usually 100 ppm). The relational expression is as follows.
(COnew-COold) / ΔT> ΔCO

ハイセレクタ28はO制御装置26から出力される第1の調整信号の制御値と、CO変化率制御装置27から出力される第2の調整信号の制御値を比較し、第1の調整信号と第2の調整信号の内、優先度の高い(例えば制御値の大きい方)調整信号を選択する。そしてハイセレクタ28で選択された調整信号は、空燃比設定装置25からの空燃比設定値にバイアス(偏倚)する制御値として演算手段の乗算器24cに与えらる。乗算器24cは、空燃比設定値にハイセレクタ28で選択された調整信号をバイアス(偏倚)し、そのバイアスされた制御信号を空気流量制御装置22の目標制御値としている。
ハイセレクタ28の具体的な構成としては、各種変換器からの電圧信号を2点入力し、2つの入力信号のうち高い方を選択して電流信号または電圧信号を出力する変換器などが用いられる。
The high selector 28 compares the control value of the first adjustment signal output from the O 2 control device 26 with the control value of the second adjustment signal output from the CO change rate control device 27 to obtain the first adjustment signal. Among the second adjustment signals, an adjustment signal having a higher priority (for example, one having a larger control value) is selected. The adjustment signal selected by the high selector 28 is given to the multiplier 24c of the computing means as a control value for biasing (biasing) the air-fuel ratio setting value from the air-fuel ratio setting device 25. The multiplier 24 c biases (bias) the adjustment signal selected by the high selector 28 to the air-fuel ratio set value, and uses the biased control signal as the target control value of the air flow rate control device 22.
As a specific configuration of the high selector 28, a converter that inputs two voltage signals from various converters, selects a higher one of the two input signals, and outputs a current signal or a voltage signal is used. .

ハイセレクタ28は、CO変化率制御装置27が負荷変動時のCO濃度の変化率を検出し、あらかじめ設定している変化率の許容限度値ΔCO以上になった場合、O制御装置26の第1の調整信号の出力値からCOの変化率が実質零になるまでCO変化率制御装置27からの第2の調整信号の出力値を優先して出力する。ここでCOの変化率が実質零とは30ppm以下、さらに好ましくは10ppm以下である。 High selector 28, CO rate of change controller 27 detects the rate of change of CO concentration during load change, when it becomes more than the allowable limit value ΔCO rate of change is set in advance, first of O 2 controller 26 The output value of the second adjustment signal from the CO change rate control device 27 is preferentially output from the output value of the adjustment signal 1 until the change rate of CO becomes substantially zero. Here, the change rate of CO is substantially zero, which is 30 ppm or less, more preferably 10 ppm or less.

次にこの発明の実施の形態1の動作について説明する。
ボイラ1のバーナ燃焼において、燃料と空気を混合して燃焼しているが、この燃料と空気の比率(空燃比)を、理論空気量を基準として空気過剰率である図5に示す空燃比をあらかじめ設定しておき、この空燃比を使用して燃焼している燃料に応じて供給する空気量を設定している。
即ち、燃料流量検出装置9で検出した燃料流量に基づき空燃比設定装置25で空燃比設定値を算出し、空気流量制御装置22は、この空燃比設定値を目標値として空気流量が最適になるよう、空気流量検出装置11で検出された空気流量に基づき空気流量調整装置10を制御する。その場合、空燃比設定値は、ボイラマスタ23で作成されたボイラ燃焼制御信号により乗算手段24bでバイアスされ、ボイラ1の蒸気圧力に応じて修正されている。
Next, the operation of the first embodiment of the present invention will be described.
In the burner combustion of the boiler 1, fuel and air are mixed and burned. The fuel / air ratio (air / fuel ratio) is set to the air / fuel ratio shown in FIG. The amount of air to be supplied is set in advance according to the fuel burned using this air-fuel ratio.
That is, the air-fuel ratio setting device 25 calculates the air-fuel ratio setting value based on the fuel flow rate detected by the fuel flow rate detection device 9, and the air flow control device 22 uses the air-fuel ratio setting value as a target value to optimize the air flow rate. The air flow rate adjusting device 10 is controlled based on the air flow rate detected by the air flow rate detecting device 11. In this case, the air-fuel ratio set value is biased by the multiplying means 24 b by the boiler combustion control signal created by the boiler master 23 and is corrected according to the steam pressure of the boiler 1.

一方、ボイラマスタ23で作成されたボイラ燃焼制御信号は乗算手段24aでバイアスされて燃料流量制御装置21の制御値が作成され、燃料流量制御装置21は燃料流量が最適になるよう、上記制御値から燃料流量検出装置9で検出された燃料流量に基づき燃料流量調整装置8を制御し、燃料流量を調整する。   On the other hand, the boiler combustion control signal created by the boiler master 23 is biased by the multiplying means 24a to create the control value of the fuel flow rate control device 21, and the fuel flow rate control device 21 uses the above control value so that the fuel flow rate is optimized. Based on the fuel flow rate detected by the fuel flow rate detection device 9, the fuel flow rate adjustment device 8 is controlled to adjust the fuel flow rate.

一般にボイラの燃焼において、燃料流量が定格値近傍、つまり燃料流量が大きいときは空燃比は小さくてよいが、燃料流量が小さい低負荷域では燃料と空気との混合性が良くなく、空気量を多く供給する必要があり、低負荷域での空燃比の設定は図5に示すように大きくしないと発煙してしまう。すなわち、空燃比は燃料流量に対して一定ではなく、燃料流量の低下に伴って上昇するという非線形特性を有している。   In general, in the combustion of boilers, the air-fuel ratio may be small when the fuel flow rate is close to the rated value, that is, when the fuel flow rate is large. It is necessary to supply a large amount, and smoke is generated unless the air-fuel ratio in the low load range is set large as shown in FIG. That is, the air-fuel ratio is not constant with respect to the fuel flow rate, and has a non-linear characteristic that increases as the fuel flow rate decreases.

しかしながら、図5に示す空燃比の設定により空気量の供給を継続すると、ボイラの燃焼特性の変化で燃焼空気の供給が必要以上に過剰供給状態となり不経済な運用となる場合や、空気供給不足となり不完全燃焼で黒煙を起こし公害面で問題となる場合がある。
そこで、過剰空気が適切に供給されていることを確認するために、排ガス内のO(酸素)濃度をO濃度検出装置15で検出すると共にボイラ負荷検出装置13でボイラ負荷を検出し、O制御装置26で図6に示すボイラの負荷(蒸気量)と排ガスのO濃度との特性になるように、空燃比設定装置25で設定した空燃比設定値に、図1の乗算器24cを使用してO補正のバイアスを与え、排ガスのO制御として供給空気量の補正を行っている。
However, if the supply of the air amount is continued by setting the air-fuel ratio shown in FIG. 5, the combustion air supply becomes excessively excessive due to changes in the combustion characteristics of the boiler, resulting in an uneconomical operation, or insufficient air supply. Incomplete combustion may cause black smoke, which may cause problems in terms of pollution.
Therefore, in order to confirm that excess air is properly supplied, the O 2 (oxygen) concentration in the exhaust gas is detected by the O 2 concentration detection device 15 and the boiler load detection device 13 detects the boiler load, The multiplier shown in FIG. 1 is added to the air-fuel ratio set value set by the air-fuel ratio setting device 25 so that the O 2 control device 26 has the characteristics of the boiler load (steam amount) and the exhaust gas O 2 concentration shown in FIG. 24c is used to give a bias for O 2 correction, and the amount of supplied air is corrected as O 2 control of exhaust gas.

この方法で使用する排ガスO濃度制御のみでは、O濃度を計測する排ガス内に外部空気が混入した場合には燃焼状態を正確には見出せないことが有る。そこで、排ガス中に残存する可燃成分のCO濃度を検出し、排ガス内のCO濃度がCO濃度目標値になるように、排ガスO濃度調節の設定値をCO濃度検出値に応じて修正して制御するCO制御装置を設けることが従来行われていた。 With only the exhaust gas O 2 concentration control used in this method, the combustion state may not be found accurately when external air is mixed into the exhaust gas for measuring the O 2 concentration. Therefore, the CO concentration of the combustible component remaining in the exhaust gas is detected, and the set value for adjusting the exhaust gas O 2 concentration is corrected according to the detected CO concentration value so that the CO concentration in the exhaust gas becomes the CO concentration target value. Conventionally, a CO control device to be controlled has been provided.

この場合、O濃度の変化に対するCO濃度値のCO排出特性を100%の負荷と25%の負荷を例として図7に示すが、O濃度が低下し空気過剰率が低下してくると、不完全燃焼が発生しCO濃度値が急激に増加する急峻な特性と、O濃度が増加した場合にはCO濃度値の低下は緩慢な特性を保有する場合がある。
図7に示すCOの特性があるボイラにCOの定値濃度制御を摘要した場合、その制御が不安定となり、高濃度のCOが排出される場合や、必要以上の燃焼空気が供給されることになり、環境保全上からも好ましくなく、省エネルギー上からも不経済である。
In this case, O 2 and CO emissions characteristics of CO concentration values for density variation as an example of 100% load and 25% load are shown in Figure 7, the O 2 concentration is reduced excess air ratio is lowered In some cases, incomplete combustion occurs and the CO concentration value increases rapidly, and when the O 2 concentration increases, the CO concentration value decreases slowly.
When the constant concentration control of CO is required for a boiler having the characteristics of CO shown in FIG. 7, the control becomes unstable, and high-concentration CO is discharged or excessive combustion air is supplied. Therefore, it is not preferable from the viewpoint of environmental conservation, and it is uneconomical from the viewpoint of energy saving.

そこでこの発明においては、CO制御装置に代えてCO変化率制御装置27を設け、さらにハイセレクタ28を用いて、O制御装置26からの第1の調整信号の制御値とCO変化率制御装置27からの第2の調整信号の制御値を比較し、優先度の高い調整信号を選択する。ハイセレクタ28で選択された調整信号は、乗算器24cにて空燃比設定装置25からの空燃比設定値にバイアス値として与えて、空燃比設定値を補正するようにしたものである。 Therefore, in the present invention, the CO change rate control device 27 is provided instead of the CO control device, and the control value of the first adjustment signal from the O 2 control device 26 and the CO change rate control device are further used by using the high selector 28. The control value of the second adjustment signal from 27 is compared, and an adjustment signal having a high priority is selected. The adjustment signal selected by the high selector 28 is applied as a bias value to the air-fuel ratio setting value from the air-fuel ratio setting device 25 by the multiplier 24c to correct the air-fuel ratio setting value.

即ち、ハイセレクタ28は、通常動作時はO制御装置26からの第1の調整信号を選択し、図6に示すボイラの負荷(蒸気量)と排ガスのO濃度との特性になるように、空燃比設定装置25からの空燃比設定値に乗算器24cを使用してO補正のバイアスを与え、排ガスのO制御として供給空気量の補正を行っている。
しかし、CO変化率制御装置27が負荷変動時のCO濃度の変化率を検出し、あらかじめ設定している変化率の許容限度値ΔCO以上になった場合、ハイセレクタ28は、O制御装置26の第1の調整信号からCO変化率抑制制御装置27からの第2の調整信号に優先して切り替え、COの変化率が実質ゼロになり、COが未検出になるまでその状態を継続する。
That is, the high selector 28 selects the first adjustment signal from the O 2 control device 26 during normal operation so that the characteristics of the boiler load (steam amount) and the exhaust gas O 2 concentration shown in FIG. 6 are obtained. In addition, an O 2 correction bias is applied to the air / fuel ratio set value from the air / fuel ratio setting device 25 by using the multiplier 24c, and the supply air amount is corrected as O 2 control of the exhaust gas.
However, when the CO change rate control device 27 detects the change rate of the CO concentration at the time of load change and becomes equal to or greater than a preset change rate allowable limit value ΔCO, the high selector 28 controls the O 2 control device 26. The first adjustment signal is switched in preference to the second adjustment signal from the CO change rate suppression control device 27, and the state is continued until the CO change rate becomes substantially zero and CO is not detected.

このように実施の形態1の発明は、負荷変動時等にCOが急激に増加した場合に、ハイセレクタ28を使用して、O制御の信号からCO変化率抑制制御の信号に優先選択して調整信号を切り替え、この調整信号を空燃比制御の信号にバイアスを与えることにより、不完全燃焼が防止でき、公害防止上からも有利なボイラ燃焼方法が取れる。このハイセレクタ方式を使用することにより、O濃度制御が先行して実施されていない場合も高濃度のCOの排出抑制が可能である。 As described above, according to the first embodiment, when the CO suddenly increases at the time of a load change or the like, the high selector 28 is used to preferentially select the O 2 control signal to the CO change rate suppression control signal. Thus, the adjustment signal is switched, and the adjustment signal is biased to the air-fuel ratio control signal, whereby incomplete combustion can be prevented and a boiler combustion method that is advantageous in terms of pollution prevention can be taken. By using this high selector method, it is possible to suppress the emission of high concentration CO even when the O 2 concentration control is not performed in advance.

実施の形態2.
次にこの発明の実施の形態2におけるボイラ燃焼制御装置を図2に基づいて説明する。図2において、図1に示す実施の形態1におけるボイラ燃焼制御装置に加えて、ボイラ制御装置20内にCO未検出制御装置29を装備し、CO未検出制御装置29の出力をハイセレクタ28に調整信号の制御値として入力するようにしたものである。その他の構成は図1と同じに付き、同じ符号を付して説明を省略する。
Embodiment 2. FIG.
Next, the boiler combustion control apparatus in Embodiment 2 of this invention is demonstrated based on FIG. 2, in addition to the boiler combustion control device in the first embodiment shown in FIG. 1, a CO non-detection control device 29 is provided in the boiler control device 20, and the output of the CO non-detection control device 29 is supplied to the high selector 28. This is input as a control value of the adjustment signal. Other configurations are the same as those in FIG. 1 and are denoted by the same reference numerals, and description thereof is omitted.

CO未検出制御装置29は、CO濃度検出装置14で検出された排ガス内のCO濃度値とCO濃度値の上限管理値との偏差に基づいて第3の調整信号を作成する。即ち、CO未検出制御装置29は、CO濃度値の上限管理値を例えば30ppm、さらに好ましくは10ppm以下とし、CO濃度が実質未検出になるまで調整信号を出力する。
ハイセレクタ28は、O制御装置26からの第1の調整信号である制御値と、CO変
化率制御装置27からの第2の調整信号である制御値と、CO未検出制御装置29からの第3の調整信号である制御値との3個の調整信号を比較し、優先度の高い(絶対値の大きい)調整信号を取り出し、乗算器24cはハイセレクタ28で取り出した調整信号の大きさに応じて空燃比設定装置25からの空燃比設定値にバイアス(偏倚)を与え、空燃比設定値を補正している。
The CO non-detection control device 29 creates a third adjustment signal based on the deviation between the CO concentration value in the exhaust gas detected by the CO concentration detection device 14 and the upper limit management value of the CO concentration value. That is, the CO non-detection control device 29 sets the upper limit management value of the CO concentration value to, for example, 30 ppm, more preferably 10 ppm or less, and outputs an adjustment signal until the CO concentration is substantially undetected.
The high selector 28 controls the control value that is the first adjustment signal from the O 2 control device 26, the control value that is the second adjustment signal from the CO change rate control device 27, and the control value from the CO non-detection control device 29. The three adjustment signals are compared with the control value, which is the third adjustment signal, and an adjustment signal having a high priority (a large absolute value) is extracted. The multiplier 24c is the magnitude of the adjustment signal extracted by the high selector 28. Accordingly, the air-fuel ratio setting value from the air-fuel ratio setting device 25 is biased (biased) to correct the air-fuel ratio setting value.

実施の形態1の発明においては、O制御装置26からの偏差の第1の調整信号と、CO変化率制御装置27からの第2の調整信号をハイセレクタ28で選択した調整信号を作成しているが、この第2の調整信号はCOの変化率で信号を作成しているために、COの排出が高濃度の排出状態で整定する場合がある。そこで実施の形態2の発明においては、ハイセレクタ28は、各偏差に基づいた3個の調整信号の絶対値を比較し、優先度の高い調整信号を取り出しているので、CO未検出制御装置29の第3の調整信号が零になるように、O制御装置26の管理目標値の設定変更を行い、両制御装置の偏差が零になるように制御する。 In the first embodiment, an adjustment signal is generated by selecting the first adjustment signal of the deviation from the O 2 control device 26 and the second adjustment signal from the CO change rate control device 27 by the high selector 28. However, since the second adjustment signal is generated with the rate of change of CO, there is a case where CO emission is set in a high concentration emission state. Therefore, in the invention of the second embodiment, the high selector 28 compares the absolute values of the three adjustment signals based on the deviations, and takes out the adjustment signal having a high priority. The control target value of the O 2 control device 26 is changed so that the third adjustment signal becomes zero, and control is performed so that the deviation between the two control devices becomes zero.

この実施の形態2の発明は、負荷安定時にCO濃度の管理上限値を超えたCO濃度が計測された場合に、O制御装置26の調整信号からCO未検出制御装置29の調整信号へ優先選択して調整信号を切り替え、CO濃度が実質未検出になるまでCO未検出制御装置29からの出力を優先してハイセレクタ28へ出力するので、通常の燃焼状態における低濃度のCOの連続排出も削減することができる。 In the invention of the second embodiment, when the CO concentration exceeding the control upper limit value of CO concentration is measured when the load is stable, the adjustment signal of the O 2 control device 26 is prioritized from the adjustment signal of the CO non-detection control device 29. The adjustment signal is selected and switched, and the output from the CO non-detection control device 29 is given priority and output to the high selector 28 until the CO concentration becomes substantially undetected, so continuous discharge of low concentration CO in the normal combustion state Can also be reduced.

一方、CO濃度の管理上限値を下回ったCO濃度が計測された場合は、CO未検出制御装置29の第3の調整信号の絶対値でも比較しているので、この第3の調整信号が選択されることとなり、通常の燃焼状態において、低濃度のCOの連続排出により、不必要な燃焼空気量を減少することができ、燃焼空気ファンの動力と排ガスの熱ロスを削減ができる。この方式を採用することによりO濃度制御が先行して実施されていない場合も高濃度のCOの排出抑制が可能である。 On the other hand, when the CO concentration below the CO concentration control upper limit value is measured, the absolute value of the third adjustment signal of the CO non-detection control device 29 is also compared, so this third adjustment signal is selected. Thus, in a normal combustion state, the amount of unnecessary combustion air can be reduced by continuously discharging CO at a low concentration, and the power of the combustion air fan and the heat loss of the exhaust gas can be reduced. By adopting this method, it is possible to suppress the emission of high-concentration CO even when the O 2 concentration control is not performed in advance.

実施の形態3.
次にこの発明の実施の形態3におけるボイラ燃焼制御装置を図3に基づいて説明する。図3において、図2に示す実施の形態2におけるボイラ燃焼制御装置に加えて、ボイラ制御装置20内にCO排出特性データベース30を装備している。その他の構成は図1および図2と同じに付き、同じ符号を付して説明を省略する。
Embodiment 3 FIG.
Next, the boiler combustion control apparatus in Embodiment 3 of this invention is demonstrated based on FIG. 3, in addition to the boiler combustion control device in the second embodiment shown in FIG. 2, a CO emission characteristic database 30 is provided in the boiler control device 20. Other configurations are the same as those in FIG. 1 and FIG.

ボイラ1の燃料燃焼特性において、空燃比を増加させてO濃度を計測した場合、排ガス内のO濃度とCO濃度の特性にはCOが未検出に至る燃焼特性と、COの排出が少量ではあるが生成継続するボイラ固有のCO排出特性がある。図7に示す曲線C2のCO排出特性がCO未検出の排出特性であり、図7に示す曲線C1のCO排出特性がO濃度が
増加しても少量のCOは生成継続する排出特性である。
In the fuel combustion characteristics of the boiler 1, when the O 2 concentration is measured by increasing the air-fuel ratio, the characteristics of the O 2 concentration and the CO concentration in the exhaust gas are the combustion characteristics in which CO is not detected, and the amount of CO emission is small. However, it has CO emission characteristics unique to boilers that continue to generate. The CO emission characteristic of the curve C2 shown in FIG. 7 is an emission characteristic in which CO is not detected, and the CO emission characteristic of the curve C1 shown in FIG. 7 is an emission characteristic in which a small amount of CO continues to be generated even when the O 2 concentration increases. .

CO排出特性データベース30は、このような数種のボイラのCO排出特性を保有している。このCO排出特性データベース30から当該ボイラ1の排出特性に合わせて、CO未検出制御装置29のCO濃度の上限管理値として、図7に示すCO最低値検出のCOminか、CO検出が零のCOzeroの選択を行い、CO未検出制御装置29の管理目標値COsvとして設定を行う。   The CO emission characteristic database 30 holds the CO emission characteristics of such several types of boilers. According to the emission characteristics of the boiler 1 from this CO emission characteristic database 30, the CO concentration upper limit management value of the CO non-detection control device 29 is COmin for detecting the CO minimum value shown in FIG. 7 or COzero with zero CO detection. And is set as the management target value COsv of the CO non-detection control device 29.

CO未検出制御装置29の制御の方法は、計測されたCO濃度値COnewがCO濃度の
管理目標値COsvを超える場合に、CO濃度が実質未検出の管理目標値COsvとなるようにハイセレクタ28に制御値を出力する。
CO濃度の管理目標値は国の排出基準値(300ppm)未満の通常30ppm程度と
する場合が好ましい。
The control method of the CO non-detection control device 29 is such that when the measured CO concentration value COnew exceeds the management target value COsv of the CO concentration, the high selector 28 is set so that the CO concentration becomes the management target value COsv that is not substantially detected. The control value is output to.
The control target value of the CO concentration is preferably about 30 ppm, usually less than the national emission standard value (300 ppm).

この実施の形態3の発明は数種のボイラのCO排出特性を保有しているCO排出特性データベース30から、当該ボイラの排出特性に合わせてCO濃度の上限管理値としてCO未検出制御装置29の管理目標値COsvの設定を行うので、適正なCO排出の管理目標値が設定され、通常の燃焼状態における低濃度のCOの連続排出も削減することができる。   The invention of the third embodiment is based on the CO emission characteristic database 30 having the CO emission characteristics of several types of boilers, and the CO non-detection control device 29 is used as the upper limit management value of the CO concentration according to the emission characteristics of the boiler. Since the management target value COsv is set, an appropriate management target value for CO emission is set, and continuous emission of low concentration CO in a normal combustion state can also be reduced.

実施の形態4.
次にこの発明の実施の形態4におけるボイラ燃焼制御装置を図4に基づいて説明する。図4において、図3に示す実施の形態3におけるボイラ燃焼制御装置に加えて、ボイラ制御装置20内にCO変化率警報装置31を装備している。その他の構成は図1乃至図3と同じに付き、同じ符号を付して説明を省略する。
CO変化率警報装置31は、CO変化率制御装置27がCOの変化率を算出し、CO濃度の変化率の上限管理値との偏差が設定された値以上となった場合に、発電所などの管理員へブザーやランプなどで警報発令等を伝達する。
Embodiment 4 FIG.
Next, the boiler combustion control apparatus in Embodiment 4 of this invention is demonstrated based on FIG. In FIG. 4, in addition to the boiler combustion control device in the third embodiment shown in FIG. 3, a CO change rate alarm device 31 is provided in the boiler control device 20. Other configurations are the same as those in FIGS. 1 to 3, and are denoted by the same reference numerals and description thereof is omitted.
The CO change rate warning device 31 calculates the CO change rate by the CO change rate control device 27, and when the deviation from the upper limit management value of the change rate of the CO concentration becomes a set value or more, a power plant or the like The warnings are transmitted to the managers using buzzers and lamps.

この実施の形態4の発明はCO変化率制御装置27にてCOの変化率を算出し、CO濃度の変化率の上限管理値との偏差が設定された値以上となった場合に、CO変化率警報装置31により発電所などの管理員へ警報発令等を伝達するので、CO濃度が異常に増加しているボイラの異常燃焼の状態を早期に発電所などの管理員が把握でき、ボイラの良好な燃焼状態への移行措置を取ることが可能となるので、ボイラの良好な運転状態の継続と、公害面での黒煙の発生を早期に防止することができる。   In the invention of the fourth embodiment, the CO change rate is calculated by the CO change rate control device 27, and when the deviation from the upper limit control value of the CO concentration change rate becomes equal to or larger than the set value, the CO change Since the alarm warning is transmitted to the manager of the power plant by the rate alarm device 31, the manager of the power plant can quickly grasp the abnormal combustion state of the boiler in which the CO concentration is abnormally increased. Since it is possible to take a transition to a good combustion state, it is possible to prevent the boiler from continuing to operate in good condition and to prevent the occurrence of black smoke in terms of pollution at an early stage.

なお実施の形態4の発明は、実施の形態3におけるCO未検出制御装置29およびCO排出特性データベース30を有するボイラ燃焼制御装置にCO変化率警報装置31を装備したものについて説明したが、CO未検出制御装置29が装備されていない実施の形態1の発明およびCO排出特性データベース30が装備されていない実施の形態2の発明にCO変化率警報装置31を装備したものにも適用できる。   Although the invention of the fourth embodiment has been described with respect to the boiler combustion control device having the CO non-detection control device 29 and the CO emission characteristic database 30 according to the third embodiment, the CO change rate alarm device 31 is provided. The invention can also be applied to the invention of the first embodiment not equipped with the detection control device 29 and the invention of the second embodiment not equipped with the CO emission characteristic database 30 equipped with the CO change rate alarm device 31.

1:ボイラ 2:燃料供給路
3:空気供給路 4:配管
5:排気管 6:集塵機
7:煙突 8:燃料流量調整手段(調整弁)
9:燃料流量検出装置 10:空気流量調整手段
11:空気流量検出装置 12:蒸気圧力検出装置
13:ボイラ負荷検出装置 14:CO濃度検出装置
15:O濃度検出装置
20:ボイラ制御装置 21:燃料流量制御装置
22:空気流量制御装置 23:ボイラマスタ
24a、24b、24c:演算手段(乗算器)
25:空燃比設定装置 26:O制御装置
27:CO変化率制御装置 28:ハイセレクタ
29:CO未検出制御装置 30:CO排出特性データベース
31:CO変化率警報装置。
1: Boiler 2: Fuel supply path 3: Air supply path 4: Piping 5: Exhaust pipe 6: Dust collector 7: Chimney 8: Fuel flow rate adjusting means (regulating valve)
9: Fuel flow rate detection device 10: Air flow rate adjustment means 11: Air flow rate detection device 12: Steam pressure detection device 13: Boiler load detection device 14: CO concentration detection device 15: O 2 concentration detection device 20: Boiler control device 21: Fuel flow control device 22: Air flow control device 23: Boiler master 24a, 24b, 24c: Calculation means (multiplier)
25: Air-fuel ratio setting device 26: O 2 control device 27: CO change rate control device 28: High selector 29: CO non-detection control device 30: CO emission characteristic database 31: CO change rate alarm device

Claims (6)

ボイラに供給する燃料流量および空気流量を制御するボイラ燃焼制御装置において、前記ボイラに供給される空気流量を検出する空気流量検出装置からの信号に基づいて前記ボイラに供給する空気流量を制御する空気流量制御装置、前記ボイラに供給される燃料流量を検出する燃料流量検出装置からの信号に基づいて前記ボイラに供給する燃料流量を制御する燃料流量制御装置、前記燃料流量検出装置で検出された燃料流量の計測値から、その燃料流量に応じて設定されている空燃比設定値を算出する空燃比設定装置、前記ボイラの排ガス内のO(酸素)濃度とO濃度目標値との偏差に基づいて第1の調整信号を作成するO制御装置、前記ボイラの排ガス内のCO(一酸化炭素)濃度の変化率と、CO濃度変化率の上限目標値との偏差に基づいて第2の調整信号を作成するCO変化率制御装置、前記第1の調整信号と第2の調整信号の内、優先度の高い調整信号を選択するハイセレクタ、このハイセレクタで選択した調整信号を前記空燃比設定装置で算出した空燃比設定値にバイアス(偏倚)信号として与えて制御信号を作成し、その制御信号を前記空気流量制御装置の制御値とする第1の演算手段、前記ボイラの蒸気圧力を検出し、その検出された圧力とボイラ圧力目標値との偏差に基づいて制御信号を作成するボイラマスタ、このボイラマスタで作成された制御信号を前記燃料流量制御装置の制御値とする第2の演算手段を備えたボイラ燃焼制御装置。 In a boiler combustion control device for controlling a fuel flow rate and an air flow rate supplied to a boiler, air for controlling an air flow rate supplied to the boiler based on a signal from an air flow rate detection device for detecting an air flow rate supplied to the boiler A flow rate control device, a fuel flow rate control device that controls a fuel flow rate supplied to the boiler based on a signal from a fuel flow rate detection device that detects a fuel flow rate supplied to the boiler, and a fuel detected by the fuel flow rate detection device An air-fuel ratio setting device that calculates an air-fuel ratio setting value that is set according to the fuel flow rate from the measured value of the flow rate, and the deviation between the O 2 (oxygen) concentration in the exhaust gas of the boiler and the O 2 concentration target value The O 2 control device that creates the first adjustment signal based on the deviation of the CO (carbon monoxide) concentration change rate in the exhaust gas of the boiler and the upper limit target value of the CO concentration change rate CO change rate control device for generating a second adjustment signal based on the difference, a high selector for selecting a high-priority adjustment signal among the first adjustment signal and the second adjustment signal, and selection by this high selector The control signal is generated by applying the adjusted signal as a bias (bias) signal to the air-fuel ratio set value calculated by the air-fuel ratio setting device, and the control signal is used as a control value for the air flow rate control device. A boiler master that detects a steam pressure of the boiler and creates a control signal based on a deviation between the detected pressure and a boiler pressure target value; a control signal created by the boiler master is a control value of the fuel flow control device; The boiler combustion control apparatus provided with the 2nd calculating means. ボイラマスタで作成された制御信号を、第1の演算手段が作成した制御信号に乗算して空気流量制御装置の制御値とするようにした請求項1に記載のボイラ燃焼制御装置。   The boiler combustion control apparatus according to claim 1, wherein the control signal generated by the boiler master is multiplied by the control signal generated by the first arithmetic means to obtain a control value of the air flow rate control apparatus. ボイラの排ガス内のCO(一酸化炭素)濃度値と、CO濃度値の上限管理値との偏差に基づいて第3の調整信号を作成するCO未検出制御装置を備え、ハイセレクタはO制御装置からの第1の調整信号と、CO変化率制御装置からの第2の調整信号と、前記CO未検出制御装置からの第3の調整信号の3個の信号を比較し、その絶対値の大きい信号を選択し、前記ハイセレクタで選択した調整信号を空燃比設定装置で算出した空燃比設定値にバイアス(偏倚)信号として与えるようにした請求項1または請求項2に記載のボイラ燃焼制御装置。 A CO non-detection control device that creates a third adjustment signal based on the deviation between the CO (carbon monoxide) concentration value in the exhaust gas of the boiler and the upper limit control value of the CO concentration value is provided, and the high selector performs O 2 control. The first adjustment signal from the device, the second adjustment signal from the CO change rate control device, and the third adjustment signal from the CO non-detection control device are compared, and the absolute value of The boiler combustion control according to claim 1 or 2, wherein a large signal is selected, and the adjustment signal selected by the high selector is applied as a bias (bias) signal to the air-fuel ratio setting value calculated by the air-fuel ratio setting device. apparatus. 数種のボイラのCO排出特性を有したデータベースを備え、適合するCO排出特性に合わせて前記データベースからCO未検出制御装置のCO濃度値の上限管理値を選択し、この管理値として検出零のCOzeroと最低値検出のCOminのいずれかの信号が選択できるようにした請求項3に記載のボイラ燃焼制御装置。   A database having CO emission characteristics of several types of boilers is provided, and the upper limit management value of the CO non-detection control device of the CO non-detection control device is selected from the database according to the suitable CO emission characteristics. 4. The boiler combustion control apparatus according to claim 3, wherein a signal of either COzero or COmin for detecting the minimum value can be selected. CO変化率制御装置が検出した、排ガス内のCO(一酸化炭素)濃度の変化率とCO濃度変化率の上限目標値との偏差が、所定の値を超えた場合に警報発令を出力する警報装置を備えた請求項1〜請求項4のいずれか1項に記載のボイラ燃焼制御装置。   An alarm that outputs an alarm when a deviation between the CO (carbon monoxide) concentration change rate in the exhaust gas and the upper limit target value of the CO concentration change rate detected by the CO change rate control device exceeds a predetermined value. The boiler combustion control apparatus according to any one of claims 1 to 4, further comprising an apparatus. ボイラに供給する燃料流量を検出し、その検出された燃料流量を基に燃料流量を調整する燃料調整制御系と、ボイラに供給する空気流量を検出し、その検出された空気流量を基に空気流量を調整する空気量調整制御系とを有したボイラ燃焼制御装置において、
前記ボイラの蒸気圧力を検出し、その検出された圧力信号によりボイラ燃焼制御信号を作成するボイラマスタを有し、前記ボイラマスタで作成したボイラ燃焼制御信号を前記燃料調整制御系と前記空気量調整制御系に与える第1の制御装置と、
前記検出された燃料流量を基に、その燃料流量に応じて設定されている空燃比設定値を算出する空燃比設定装置を有し、前記空燃比設定装置で算出された空燃比設定値の制御信号を前記空気量調整制御系に与える第2の制御装置と、
前記ボイラの排ガス内のO(酸素)濃度とO濃度目標値との偏差に基づいて第1の調整信号を作成するO制御装置を有し、前記O制御装置からの第1の調整信号により
前記空燃比設定装置で算出した空燃比設定値にバイアス(偏倚)を与える第3の制御装置と、
前記ボイラの排ガス内のCO(一酸化炭素)濃度の変化率とCO濃度の変化率の上限目標値との偏差に基づいて第2の調整信号を作成するCO変化率制御装置を有し、前記CO変化率制御装置からの第2の調整信号により前記空燃比設定装置で算出した空燃比設定値にバイアス(偏倚)を与える第4の制御装置とを備え、
前記第3の制御装置からの第1の調整信号と、前記第4の制御装置からの第2の調整信号の内、優先度の高い調整信号をハイセレクタを用いて選択し、前記ハイセレクタで選択した調整信号により前記空燃比設定装置で算出した空燃比設定値にバイアス(偏倚)を与えるようにしたボイラ燃焼制御装置。
A fuel adjustment control system that detects the fuel flow rate supplied to the boiler and adjusts the fuel flow rate based on the detected fuel flow rate, and detects the air flow rate supplied to the boiler, and air is detected based on the detected air flow rate. In a boiler combustion control device having an air amount adjustment control system for adjusting a flow rate,
A boiler master that detects a steam pressure of the boiler and generates a boiler combustion control signal based on the detected pressure signal; the boiler combustion control signal created by the boiler master is used as the fuel adjustment control system and the air amount adjustment control system; A first control device to give to
Based on the detected fuel flow rate, an air-fuel ratio setting device that calculates an air-fuel ratio setting value that is set according to the fuel flow rate is provided. Control of the air-fuel ratio setting value that is calculated by the air-fuel ratio setting device A second control device for providing a signal to the air amount adjustment control system;
It has an O 2 controller for generating a first adjustment signal based on the deviation between the O 2 (oxygen) concentration and the O 2 concentration target value of the exhaust gas of the boiler, first from the O 2 control system A third control device for applying a bias (bias) to the air-fuel ratio setting value calculated by the air-fuel ratio setting device by an adjustment signal;
A CO change rate control device that creates a second adjustment signal based on a deviation between a change rate of CO (carbon monoxide) concentration in the exhaust gas of the boiler and an upper limit target value of the change rate of CO concentration; A fourth control device that applies a bias (bias) to the air-fuel ratio setting value calculated by the air-fuel ratio setting device according to a second adjustment signal from a CO change rate control device;
Among the first adjustment signal from the third control device and the second adjustment signal from the fourth control device, an adjustment signal having a high priority is selected using a high selector, and the high selector A boiler combustion control device that applies a bias (bias) to an air-fuel ratio setting value calculated by the air-fuel ratio setting device according to a selected adjustment signal.
JP2009254149A 2009-11-05 2009-11-05 Boiler combustion control device Pending JP2011099608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009254149A JP2011099608A (en) 2009-11-05 2009-11-05 Boiler combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009254149A JP2011099608A (en) 2009-11-05 2009-11-05 Boiler combustion control device

Publications (1)

Publication Number Publication Date
JP2011099608A true JP2011099608A (en) 2011-05-19

Family

ID=44190935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009254149A Pending JP2011099608A (en) 2009-11-05 2009-11-05 Boiler combustion control device

Country Status (1)

Country Link
JP (1) JP2011099608A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388834A (en) * 2012-05-11 2013-11-13 费希尔-罗斯蒙特系统公司 Methods and apparatus to control combustion process system
CN103742937A (en) * 2013-12-30 2014-04-23 广东电网公司电力科学研究院 Coal feeding control method and system of double-inlet and double-outlet coal mill
CN105276562A (en) * 2015-11-25 2016-01-27 杭州和利时自动化有限公司 Method and system for coordinating header system boilers
WO2016104383A1 (en) * 2014-12-25 2016-06-30 富士電機株式会社 Combustion controlling device, combustion controlling method, combustion controlling program, and computer-readable recording medium
CN107763659A (en) * 2017-10-25 2018-03-06 贵州电网有限责任公司电力科学研究院 A kind of method that direct-firing pulverized-coal fired boiler in power station judges bias current medium
KR101883623B1 (en) * 2018-04-10 2018-07-30 이영희 Boiler system and control method the same
CN110531719A (en) * 2019-08-27 2019-12-03 赫普能源环境科技有限公司 A kind of fired power generating unit coordinated control peak-frequency regulation system, apparatus and method
KR20200083767A (en) * 2018-12-28 2020-07-09 한국에너지기술연구원 Air ratio feedback controlling system for boiler
KR20210079508A (en) * 2019-12-20 2021-06-30 주식회사 포스코 Apparatus for treating exhaust gas in power boiler
CN113932247A (en) * 2021-11-24 2022-01-14 国家能源集团谏壁发电厂 Automatic control method for reasonably reducing CO concentration of tower furnace

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388834A (en) * 2012-05-11 2013-11-13 费希尔-罗斯蒙特系统公司 Methods and apparatus to control combustion process system
JP2013238390A (en) * 2012-05-11 2013-11-28 Fisher-Rosemount Systems Inc Method and apparatus to control combustion process system
CN103388834B (en) * 2012-05-11 2018-10-02 费希尔-罗斯蒙特系统公司 Method and apparatus for controlling fuel processing system
CN103742937A (en) * 2013-12-30 2014-04-23 广东电网公司电力科学研究院 Coal feeding control method and system of double-inlet and double-outlet coal mill
CN103742937B (en) * 2013-12-30 2016-06-08 广东电网公司电力科学研究院 Double inlet and outlet coal mill as-fired coal amount control method and system
TWI677649B (en) * 2014-12-25 2019-11-21 日商富士電機股份有限公司 Combustion control device, combustion control method, and computer-readable recording medium
WO2016104383A1 (en) * 2014-12-25 2016-06-30 富士電機株式会社 Combustion controlling device, combustion controlling method, combustion controlling program, and computer-readable recording medium
JPWO2016104383A1 (en) * 2014-12-25 2017-04-27 富士電機株式会社 Combustion control device, combustion control method, and combustion control program
CN106796029A (en) * 2014-12-25 2017-05-31 富士电机株式会社 Combustion control device, method for controlling combustion, Combustion System program and computer-readable recording medium
EP3239611A4 (en) * 2014-12-25 2018-08-15 Fuji Electric Co., Ltd. Combustion control system, combustion control method, combustion control program, and computer-readable recording medium
CN105276562A (en) * 2015-11-25 2016-01-27 杭州和利时自动化有限公司 Method and system for coordinating header system boilers
CN105276562B (en) * 2015-11-25 2017-11-03 杭州和利时自动化有限公司 The method and system that a kind of header system boiler is coordinated
CN107763659A (en) * 2017-10-25 2018-03-06 贵州电网有限责任公司电力科学研究院 A kind of method that direct-firing pulverized-coal fired boiler in power station judges bias current medium
KR101883623B1 (en) * 2018-04-10 2018-07-30 이영희 Boiler system and control method the same
KR20200083767A (en) * 2018-12-28 2020-07-09 한국에너지기술연구원 Air ratio feedback controlling system for boiler
KR102202296B1 (en) * 2018-12-28 2021-01-14 한국에너지기술연구원 Air ratio feedback controlling system for boiler
CN110531719A (en) * 2019-08-27 2019-12-03 赫普能源环境科技有限公司 A kind of fired power generating unit coordinated control peak-frequency regulation system, apparatus and method
CN110531719B (en) * 2019-08-27 2020-09-08 赫普能源环境科技有限公司 Thermal power generating unit coordinated control peak shaving frequency modulation system, equipment and method
KR20210079508A (en) * 2019-12-20 2021-06-30 주식회사 포스코 Apparatus for treating exhaust gas in power boiler
KR102293265B1 (en) 2019-12-20 2021-08-24 주식회사 포스코 Apparatus for treating exhaust gas in power boiler
CN113932247A (en) * 2021-11-24 2022-01-14 国家能源集团谏壁发电厂 Automatic control method for reasonably reducing CO concentration of tower furnace
CN113932247B (en) * 2021-11-24 2024-04-26 国家能源集团谏壁发电厂 Automatic control method for reasonably reducing CO concentration of tower furnace

Similar Documents

Publication Publication Date Title
JP2011099608A (en) Boiler combustion control device
US5855111A (en) Nitrogen oxide removal control apparatus
US9727061B2 (en) Method and apparatus for controlling a furnace pressure of a continuous annealing furnace
CA2642980C (en) Assured compliance mode of operating a combustion system
JP4568592B2 (en) Fuel gas heating control device and gas turbine power generation facility provided with the fuel gas heating control device
WO2016104383A1 (en) Combustion controlling device, combustion controlling method, combustion controlling program, and computer-readable recording medium
JP2011021758A (en) Method of correcting fuel charging amount for boiler
WO2016021298A1 (en) Flow ratio calculation device, control device provided with same, gas turbine plant provided with said control device, flow ratio calculation method, and method for controlling fuel system
JP6153090B2 (en) Waste incinerator and waste incineration method
JP3517260B2 (en) Fuel cell power generator and control method for fuel cell power generator
JP5314946B2 (en) Heating furnace controller
JP2006029162A (en) Control device and control method of gas turbine
JP5745640B2 (en) Control device for gas turbine power plant
US5813212A (en) Nitrogen oxide removal control apparatus
JP2007139412A (en) Refuse incineration plant regulation method using operation of support burner
JP2008075529A (en) Device and method for stabilizing system frequency
JP4605656B2 (en) Thermal power generation boiler and combustion air supply control method
JP2009133538A (en) Reheat steam control method and reheat steam temperature management system
JP7210125B2 (en) Combustion equipment
WO2024048028A1 (en) Combustion facility
KR20100063387A (en) Automatic control device for nox concentration and method thereof
JP2617830B2 (en) Control method of combustion air volume in ash melting furnace
JPH06180116A (en) Exhaust gas concentration controller
JP2005147472A (en) Combustion control method of combustion chamber of waste melting treatment facility
JPH06117627A (en) Exhaust gas concentration control device