JP2011098284A - Nozzle for mixing gas and liquid - Google Patents
Nozzle for mixing gas and liquid Download PDFInfo
- Publication number
- JP2011098284A JP2011098284A JP2009254343A JP2009254343A JP2011098284A JP 2011098284 A JP2011098284 A JP 2011098284A JP 2009254343 A JP2009254343 A JP 2009254343A JP 2009254343 A JP2009254343 A JP 2009254343A JP 2011098284 A JP2011098284 A JP 2011098284A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- orifice
- liquid
- nozzle
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Nozzles (AREA)
Abstract
Description
本発明は、気液混合(または2流体)ノズルに関し、より詳細には、気体噴射部のオリフィス出口先端が、液体噴射部のオリフィス出口先端より噴射方向に突設してなる気液混合ノズルに関する。 The present invention relates to a gas-liquid mixing (or two-fluid) nozzle, and more particularly, to a gas-liquid mixing nozzle in which an orifice outlet tip of a gas injection unit protrudes in an injection direction from an orifice outlet tip of a liquid injection unit. .
一般的に、2流体ノズルは、気体供給圧と液体供給圧との2つの圧力を作用させて液体を微粒化(平均粒子径は、例えば10〜50μm程度)させている。この2流体ノズルの供給液量を調節する機構として、液体流通部の内部に、ニードルを移動可能に配置し、このニードルの移動によって、オリフィス開口面積を絞ることで、供給液量を調整する。 In general, in the two-fluid nozzle, two pressures of a gas supply pressure and a liquid supply pressure are applied to atomize the liquid (the average particle diameter is about 10 to 50 μm, for example). As a mechanism for adjusting the supply liquid amount of the two-fluid nozzle, a needle is movably disposed inside the liquid circulation part, and the supply liquid amount is adjusted by reducing the orifice opening area by the movement of the needle.
また、近年、様々な産業分野で、低圧の気体供給圧(例えば、100kPa以下)での霧化噴射が要望されている。しかし、気体供給圧を低圧にするほど、液体噴射量が減少するものであった。 In recent years, atomization injection at a low gas supply pressure (for example, 100 kPa or less) has been demanded in various industrial fields. However, the liquid injection amount decreases as the gas supply pressure is lowered.
また、市販の多種の気液混合ノズルにおいて、空気圧力20kPa〜500kPa、噴霧流量1〜1000mL/minの条件下で、気液混合ノズルから噴霧された液微粒子の平均粒子径が10〜200μmの広範囲であった。そして、気液混合ノズルから噴霧された液微粒子中の粒子径の大きい霧(例えば、湿った霧)は、気液混合ノズルからの噴霧方向に対し大きな角度で広がる傾向にある(図7、「飛沫」参照)。粒子径の小さい霧(例えば、乾いた霧、煙霧)は、気液混合ノズルからの噴霧方向軸上に噴出する傾向にある(図7、霧化体参照)。例えば、図7の気液混合ノズルのスプレー半角が15°の場合に飛沫の噴出半角は約55°であって、飛沫粒子の平均粒子径が50〜100μmであり、スプレー半角15°部分の粒子の平均粒子径が10〜20μmであった。すなわち、飛沫の存在により、噴霧全体の平均粒子径が大きくなっていた。 Further, in a variety of commercially available gas-liquid mixing nozzles, a wide range in which the average particle diameter of liquid fine particles sprayed from the gas-liquid mixing nozzle is 10 to 200 μm under the conditions of an air pressure of 20 kPa to 500 kPa and a spraying flow rate of 1 to 1000 mL / min. Met. And the mist (for example, wet mist) with a large particle diameter in the liquid fine particles sprayed from the gas-liquid mixing nozzle tends to spread at a large angle with respect to the spraying direction from the gas-liquid mixing nozzle (see FIG. 7, “ See "Splashes"). A mist having a small particle diameter (for example, a dry mist or a haze) tends to be ejected on the spray direction axis from the gas-liquid mixing nozzle (see FIG. 7, atomized body). For example, when the spray half angle of the gas-liquid mixing nozzle of FIG. 7 is 15 °, the spray half angle is about 55 °, the average particle size of the spray particles is 50 to 100 μm, and the spray half angle is 15 °. The average particle size of was 10-20 μm. That is, the average particle diameter of the entire spray was increased due to the presence of splashes.
ところで、微粒子ミストを生成するための噴霧ノズル装置が知られている(特許文献1)。この噴霧ノズル装置は、第1ノズル部と第2ノズル部を有し、第1ノズル部からの噴射液と第2ノズル部からの噴射液とを衝突させて、微粒子ミストを形成することができる。しかしながら、2流体ノズル部を2つ備えるため、コスト高であり、小型化にも適していない。また、気体供給圧を低圧にするのに適した構成ではない。 By the way, a spray nozzle device for generating fine particle mist is known (Patent Document 1). This spray nozzle device has a first nozzle part and a second nozzle part, and can form a fine particle mist by colliding the spray liquid from the first nozzle part with the spray liquid from the second nozzle part. . However, since two two-fluid nozzle portions are provided, the cost is high and it is not suitable for downsizing. Moreover, it is not a structure suitable for making gas supply pressure low.
本発明は、上記実情に鑑みてなされたものであって、その目的は、気体供給圧が低圧下で、気液混合の噴霧を可能とし、かつ、従来の飛沫のような粒子径の大きい噴霧を抑制可能な気液混合ノズルを提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to enable spraying of gas-liquid mixing under a low gas supply pressure and a spray having a large particle diameter like a conventional droplet. It is in providing the gas-liquid mixing nozzle which can suppress this.
上記課題を解決するための本発明の気液混合ノズルは、気体噴射部のオリフィス出口先端が、液体噴射部のオリフィス出口先端より噴射方向に突設するように、気体噴射部のオリフィス内に液体噴射部のオリフィスが配置される気液混合ノズルであって、
気体噴射部のオリフィス入口部近位に、液体噴射部のオリフィス出口部が配置され、
気体噴射部の気体供給通路と気体噴射部のオリフィス入口部との連なり部が、その断面視でR処理あるいはテーパー処理がなされていることを特徴とする。
In order to solve the above problems, the gas-liquid mixing nozzle of the present invention is configured so that the orifice outlet tip of the gas injection unit protrudes in the injection direction from the orifice outlet tip of the liquid injection unit. A gas-liquid mixing nozzle in which an orifice of an injection unit is disposed,
An orifice outlet part of the liquid injection part is disposed in the vicinity of the orifice inlet part of the gas injection part,
The connecting portion between the gas supply passage of the gas injection portion and the orifice inlet portion of the gas injection portion is subjected to R processing or taper processing in a cross-sectional view.
気液混合ノズルは、気体噴射部のオリフィス出口先端が、液体噴射部のオリフィス出口先端より噴射方向に突設するように、気体噴射部のオリフィス内に液体噴射部のオリフィスが配置される。気体噴射部のオリフィス先端と液体噴射部のオリフィス先端のそれぞれの位置が一致している構成よりも、液微粒子の噴射量を大きくできる。そして、気体噴射部のオリフィス入口部近位に、液体噴射部のオリフィス出口部が配置される。「気体噴射部のオリフィス入口部近位」は、気体噴射部のオリフィスの入口部の近位であり、お互いが一致している構成、いずれか一方が前後していて一致していない構成がある。 In the gas-liquid mixing nozzle, the orifice of the liquid ejecting section is arranged in the orifice of the gas ejecting section so that the orifice exit end of the gas ejecting section protrudes in the ejecting direction from the orifice exit end of the liquid ejecting section. The injection amount of the liquid fine particles can be made larger than the configuration in which the positions of the orifice tip of the gas injection unit and the orifice tip of the liquid injection unit coincide with each other. And the orifice exit part of a liquid injection part is arrange | positioned in the orifice entrance part proximal to a gas injection part. “Proximal orifice inlet part of gas injection part” is the proximal part of the inlet part of the orifice of the gas injection part, and there is a configuration in which they are coincident with each other, and there is a configuration in which either one is back and forth. .
従来の気体噴射部と液体噴射部との各オリフィスの配置は、中空筒状の気体オリフィス内に、中空筒状の液体オリフィスが、それぞれの先端部が一致するように構成されている。そして、気体オリフィスから噴射される気体は、オリフィス出口(断面ドーナツ形)から、その形状が半径方向に拡大しながら略直線状に噴射される。このとき、気体の供給圧力が高いため(例えば200kPa〜500kPa)、液体オリフィス出口の噴射側前方部に負圧空間が形成され、この負圧による吸液力によって、液体の供給圧力が実質的に無くても、液体が噴射される。従来の配置であれば、気体オリフィスの内側壁面と液体オリフィスの外側壁面とで、上記のように気体の噴射方向(気流)が規定されるが、本願発明のように、気体噴射部の気体オリフィス入口部近位に、液体噴射部のオリフィス出口部が配置される構成においては、気体供給通路から気体オリフィス入口へ気体が流れる際に、液体オリフィスの外壁面がなくなるために、気体オリフィス内で噴射気体同士が合流し(断面ドーナツ形から円柱形の気体流となり)、気体オリフィスを通じて出口から外部に噴射される。この際に、気体オリフィス内の噴射気体流が、液体噴射部オリフィス入口部の噴射側前方部に負圧空間(従来よりも高い負圧空間、あるいは安定した負圧空間)を形成し、供給気体が従来よりも低圧力(100kPa以下)であっても液体を吸液して噴射することができる。 In the conventional arrangement of the orifices of the gas injection part and the liquid injection part, the hollow cylindrical liquid orifice is configured so that the tip ends of the hollow cylindrical gas orifices coincide with each other. And the gas injected from a gas orifice is injected from the orifice exit (cross-sectional donut shape) substantially linearly, the shape expanding radially. At this time, since the gas supply pressure is high (for example, 200 kPa to 500 kPa), a negative pressure space is formed in the front side of the ejection side of the liquid orifice outlet, and the liquid supply pressure is substantially reduced by the liquid absorption force due to this negative pressure. Even without it, the liquid is ejected. In the conventional arrangement, the gas injection direction (air flow) is defined by the inner wall surface of the gas orifice and the outer wall surface of the liquid orifice as described above. However, as in the present invention, the gas orifice of the gas injection unit In the configuration in which the orifice outlet part of the liquid injection part is disposed in the vicinity of the inlet part, when the gas flows from the gas supply passage to the gas orifice inlet, the outer wall surface of the liquid orifice disappears, so that the injection is performed in the gas orifice. Gases merge together (from a cross-sectional donut shape to a cylindrical gas flow), and are ejected to the outside through a gas orifice. At this time, the jet gas flow in the gas orifice forms a negative pressure space (a negative pressure space higher than the conventional one or a stable negative pressure space) in the jet side front part of the liquid jet part orifice inlet, and the supply gas However, even if the pressure is lower than the conventional pressure (100 kPa or less), the liquid can be absorbed and ejected.
さらに本願発明では、気体噴射部の気体供給通路と気体噴射部のオリフィス入口部との連なり部が、その断面視でR処理あるいはテーパー処理がなされている。これにより、気体供給通路内壁面から気体オリフィス内壁面に沿うように、滑らかな気流を形成して、気体オリフィス出口への流速が速くなり、液体オリフィス入口部の噴射側前方部の負圧空間をさらに、従来よりも高い負圧空間、あるいは安定した負圧空間に形成することができる。よって、気体供給圧が低圧下でも、吸液力が強く、気液混合噴霧を可能とし、かつ、従来の飛沫のような粒子径の大きい噴霧を抑制することができる。特に、本願発明においては、液体噴射部オリフィス入口部の噴射側前方部の負圧空間を安定して形成できないようなノズル噴射条件、ノズル内部形状においても、気体供給通路と気体オリフィス入口部との連なり部が、その断面視でR処理あるいはテーパー処理がなされていることで、上記負圧空間の形成を好適に改善し、高い吸液力で液体噴霧を可能にする。 Further, in the present invention, the continuous portion of the gas supply passage of the gas injection portion and the orifice inlet portion of the gas injection portion is subjected to R processing or taper processing in a sectional view. As a result, a smooth air flow is formed from the inner wall surface of the gas supply passage to the inner wall surface of the gas orifice, the flow velocity to the outlet of the gas orifice is increased, and the negative pressure space at the front side of the injection side of the liquid orifice inlet portion is reduced. Further, it can be formed in a higher negative pressure space than in the past or in a stable negative pressure space. Therefore, even when the gas supply pressure is low, the liquid-absorbing force is strong, gas-liquid mixed spraying is possible, and spraying with a large particle diameter such as a conventional droplet can be suppressed. In particular, in the present invention, even in the nozzle injection conditions and the nozzle internal shape in which the negative pressure space at the injection side front part of the liquid injection part orifice inlet part cannot be stably formed, the gas supply passage and the gas orifice inlet part Since the continuous portion is subjected to R processing or taper processing in a cross-sectional view, the formation of the negative pressure space is preferably improved, and liquid spraying is possible with high liquid absorption.
また、本発明は、気体噴射部のオリフィス入口部近位に、液体噴射部のオリフィス出口部が配置されることで、噴射気体流が、液体噴射部オリフィス内に逆流してしまうような場合においても、R処理あるいはテーパー処理された上記連なり部により、気体供給通路内壁面から気体オリフィス内壁面に沿うように、滑らかな気流を形成して、そのような逆流を生じさせず、上記負圧空間を好適に形成することができる。 Further, the present invention provides a case in which the injection gas flow reversely flows into the liquid injection unit orifice by arranging the orifice outlet unit of the liquid injection unit in the vicinity of the orifice inlet of the gas injection unit. However, the above-described continuous portion subjected to the R treatment or the taper treatment forms a smooth air flow from the inner wall surface of the gas supply passage to the inner wall surface of the gas orifice, and does not generate such a backflow. Can be suitably formed.
「気体噴射部の気体供給通路と気体噴射部のオリフィス入口部との連なり部」は、それぞれ別体同士を連接した連なり構成でもよく、お互いが一体構成のものの連なり構成でもよい。「R処理」は、通常のR処理をいい、角部や突出部をとり丸みを施す処理である。また、「R処理」後の連なり部の断面形状を曲率あるいは曲率半径の一つあるいは複数個で表現することもできる。「テーパー処理」は、通常のテーパー処理をいう。本発明においては、「テーパー処理」後の角部に「R処理」が施されていてもよい。また、「テーパー処理」は、複数のテーパー部を形成することでもよい(いわゆる、断面視で多角形状でもよい)。また、気体供給通路とオリフィス入口部からなる連なり部の角度α(図5参照)は、90°以上180°未満の範囲である。例えば、角度αは、90°〜165°範囲、110°〜145°の範囲が例示される。 The “continuous part of the gas supply passage of the gas injection part and the orifice inlet part of the gas injection part” may be a continuous structure in which separate bodies are connected to each other, or a continuous structure in which the gas injection part is an integral structure. “R processing” refers to normal R processing, which is a process of rounding off corners and protrusions. Further, the cross-sectional shape of the continuous portion after “R treatment” can be expressed by one or a plurality of curvatures or curvature radii. “Taper processing” refers to normal taper processing. In the present invention, “R treatment” may be applied to the corner after “taper treatment”. In addition, the “tapering process” may be to form a plurality of tapered portions (so-called polygonal shape in cross-sectional view). Further, the angle α (see FIG. 5) of the continuous portion including the gas supply passage and the orifice inlet is in the range of 90 ° or more and less than 180 °. For example, the angle α is exemplified by a range of 90 ° to 165 ° and a range of 110 ° to 145 °.
上記発明の一実施形態として、気体噴射部の実質的に同径のオリフィス内に、液体噴射部のオリフィスが配置され、気体噴射部のオリフィスおよび液体噴射部のオリフィスのそれぞれの中心軸が一致する構成がある。 As an embodiment of the above invention, the orifice of the liquid ejecting section is disposed within the orifice of substantially the same diameter of the gas ejecting section, and the respective central axes of the orifice of the gas ejecting section and the orifice of the liquid ejecting section coincide with each other. There is a configuration.
「実質的に同径のオリフィス」は、実質的にストレートのオリフィスを形成していることを意味し、例えば、ノズル内部のオリフィス始端部と、ノズル先端部のオリフィス終端部との、それぞれの直径が同一、加工精度として実質的に同一(テーパー角度を許容する)、あるいは、オリフィス始端部の直径に対し、オリフィス終端部の直径が+−10%以内でストレート部を形成することを含む概念である。 “Substantially the same diameter orifice” means that a substantially straight orifice is formed, for example, the diameter of each of the orifice start end inside the nozzle and the orifice end end of the nozzle tip With the same processing accuracy (allows taper angle), or a concept that includes forming the straight portion with the diameter of the orifice end portion within + -10% of the diameter of the orifice start end portion. is there.
気液混合ノズルの他の構成部材としては、公知の部材を用いることができ、例えば、金属製、プラスチック製、ゴム製、それらが混在したもので構成できる。気液混合ノズルに供給される「気体」は、特に制限されず、例えば、空気、清浄空気、高酸素濃度空気、不活性ガス等の気体が挙げられる。また、気液混合ノズルに供給される「液体」は、特に制限されないが、水、イオン化水、化粧水等の化粧薬液、医薬液、殺菌液、除菌液等の薬液、塗料、燃料油、コーティング剤、溶剤、樹脂等が挙げられる。 As other constituent members of the gas-liquid mixing nozzle, known members can be used. For example, the constituent members can be made of metal, plastic, rubber, or a mixture thereof. The “gas” supplied to the gas-liquid mixing nozzle is not particularly limited, and examples thereof include gases such as air, clean air, high oxygen concentration air, and inert gas. In addition, the “liquid” supplied to the gas-liquid mixing nozzle is not particularly limited, but is a cosmetic solution such as water, ionized water, and lotion, a chemical solution such as a pharmaceutical solution, a bactericidal solution, a sterilizing solution, a paint, a fuel oil, A coating agent, a solvent, resin, etc. are mentioned.
気液混合ノズル装置に供給される気体の供給圧力は、例えば、5kPa〜50kPa、好ましくは、5kPa〜40kPa、より好ましくは5kPa〜30kPa、さらに好ましくは5kPa〜20kPaの低圧条件である。液体の供給圧力は、フリー、例えば、液体の供給圧力等の外的作用がない状態である。この条件において、ノズルを上方に向けて、気体の噴射作用で液体を吸い上げて、気液混合し、液微粒子を発生させ噴射させることができる。特に本願発明においては、R処理あるいはテーパー処理された上記連なり部により、気体供給通路内壁面から気体オリフィス内壁面に沿うように、滑らかな気流を形成して、上記負圧空間を好適に形成できるので、このような、低エネルギーでも液微粒子を発生させることができる。なお、気体供給圧力を低圧にできるため、気液混合ノズルの気体送給に必要な駆動源(例えば、コンプレッサー、エアポンプ、電源、圧縮空気ボンベ、手動の空気送給機構)を小型化できる。 The supply pressure of the gas supplied to the gas-liquid mixing nozzle device is, for example, a low pressure condition of 5 kPa to 50 kPa, preferably 5 kPa to 40 kPa, more preferably 5 kPa to 30 kPa, and even more preferably 5 kPa to 20 kPa. The supply pressure of the liquid is free, for example, there is no external action such as the supply pressure of the liquid. Under these conditions, the nozzle can be directed upward, the liquid can be sucked up by gas jetting action, gas-liquid mixed, and liquid fine particles can be generated and jetted. In particular, in the present invention, the negative pressure space can be suitably formed by forming a smooth air flow from the inner wall surface of the gas supply passage to the inner wall surface of the gas orifice by the continuous portion subjected to R processing or taper processing. Therefore, liquid fine particles can be generated even with such low energy. Since the gas supply pressure can be reduced, a drive source (for example, a compressor, an air pump, a power source, a compressed air cylinder, a manual air supply mechanism) necessary for gas supply of the gas-liquid mixing nozzle can be reduced in size.
以下に、気液混合ノズルについて図を用いて説明する。図1は、気液混合ノズル10の断面図である。気液混合ノズル10は、気体を供給する気体供給部11と、この気体供給部11から気体を気体噴射部の気体オリフィス101に流通する気体供給通路12と、液体を液体噴射部の液体オリフィス102に流通する液体流通部13と、を有し、図2、5に示すように、この気体オリフィス101の内部に液体オリフィス102が配置される構成である。気体噴射部の気体オリフィス入口部(連なり部C)近位に、液体オリフィス出口部が配置されている。
Below, a gas-liquid mixing nozzle is demonstrated using figures. FIG. 1 is a cross-sectional view of the gas-
図3は、図2における連なり部Cの拡大断面図である。図3(a)は、連なり部CにR処理が施された形状(301)を示し、図3(b)では、連なり部Cにテーパー処理が施された形状(302)を示す。図4(b)に、連なり部C近傍領域における気流を矢印で示す。図4(b)に示すように、気体供給通路12内壁面から気体オリフィス101内壁面に沿うように、滑らかな気流を形成して、気体オリフィス101出口への流速を速くでき、液体オリフィス102入口部の噴射側前方部の負圧空間を、従来よりも高い負圧空間であって安定した負圧空間を形成することができる。一方、図4(a)は、連なり部CにR処理あるいはテーパー処理が施されていない場合の気流を矢印で図示しており、これによれば、液体オリフィス102の出口部に気流が巻き込み、逆流することが想定され、また、供給気体の圧力が低い場合や不安定な場合においても好適に負圧空間が形成されない場合があるが、本構成のように、連なり部CにR処理あるいはテーパー処理を施すことで、負圧空間を好適に形成することができる。
FIG. 3 is an enlarged cross-sectional view of the continuous portion C in FIG. FIG. 3A shows a shape (301) in which the continuous portion C is subjected to R processing, and FIG. 3B shows a shape (302) in which the continuous portion C is subjected to taper processing. In FIG.4 (b), the airflow in the continuous part C vicinity area | region is shown by the arrow. As shown in FIG. 4B, a smooth air flow can be formed along the inner wall surface of the
また、図2、図5の気体および液体噴射部の断面模式図において、気体オリフィス101先端が、液体オリフィス102先端より噴射方向に突設している。実質的に同一直径の気体オリフィス101内に、液体オリフィス102が配置され、気体オリフィス101および液体オリフィス102のそれぞれのストレート方向の中心軸が一致している。気体オリフィス101の連なり部C(あるいは気体オリフィス始端部)近位に、液体オリフィス102先端が配置されている。以下において、気体オリフィスを空気オリフィスと、液体オリフィスを水オリフィスと称することがある。
2 and 5, the tip of the
連なり部Cの近傍に配置される液体オリフィス102出口先端の位置は、気体オリフィス101入口部から、気体オリフィス101のストレート長さの±5%の距離である。あるいは、気体オリフィス101入口部から液体オリフィス102出口先端までの距離(L2 図5参照)が、−0.1mm〜0.1mmの範囲が好ましく、−0.05mm〜0.05mmがより好ましく、−0.02mm〜0.02mmがさらに好ましい。
The position of the outlet end of the
(実施例)
空気オリフィス外径(φda[mm]、図5参照)を0.55、空気オリフィス内径(φdb[mm])を0.50、水オリフィス径(φdw[mm])を0.30、0.33、0.35の3種類とした。連なり部Cは、R処理した。連なり部の角度αは135°である。気体供給通路12の絞り角度が90°である。空気オリフィス内における水オリフィス先端位置は、L2が零である。空気圧Paは23kPa、空気流量Qaが1.09[NL/min]における、水全噴射量(Qw[ml/min])について測定した結果を表1に示す。気液混合ノズルを噴射方向を上向きにして静置させ、液面高さが水オリフィス先端から−25mmとなるように水を予め供給しておき、上記3種類の空気圧における水全噴射量(Qw)を測定した。空気オリフィス101のストレート長さ寸法(L1 図5参照)は0.51mmである。空気供給駆動源にコンプレッサーを用いた。
(Example)
The air orifice outer diameter (φda [mm], see FIG. 5) is 0.55, the air orifice inner diameter (φdb [mm]) is 0.50, and the water orifice diameter (φdb [mm]) is 0.30, 0.33. , 0.35. The continuous part C was R-processed. The angle α of the continuous portion is 135 °. The throttle angle of the
(比較例)
比較例は、連なり部CにR処理を施していないこと以外、上記実施例と同様である。
(Comparative example)
The comparative example is the same as the above embodiment except that the R process is not performed on the continuous portion C.
図6に、実施例1から3の噴射状態を示す。実施例1から3のいずれにおいても、図7に示すような従来の飛沫発生を好適に抑制できたことが確かめられた。また、表1の結果から、いずれの水オリフィス径(φdw)においても、好適に噴射できた。一方、比較例1から3は、いずれも噴射されなかった。 In FIG. 6, the injection state of Examples 1 to 3 is shown. In any of Examples 1 to 3, it was confirmed that the conventional splash generation as shown in FIG. 7 could be suitably suppressed. Further, from the results shown in Table 1, it was possible to suitably inject at any water orifice diameter (φdw). On the other hand, none of Comparative Examples 1 to 3 was jetted.
(他の実施例)
上記のR処理に代わり、図3(b)に示すテーパーを連なり部Cに形成したこと以外上記実施例1から3と同様である。上記と同様に、好適に噴射できたことが確認できた。
(Other examples)
It is the same as that of the said Example 1 to 3 except having formed the taper shown in FIG.3 (b) in the continuous part C instead of said R process. In the same manner as described above, it was confirmed that injection was possible suitably.
C 連なり部
10 気液混合ノズル
12 気体供給通路
101 気体オリフィス
102 液体オリフィス
301 R処理形成部
302 テーパー部
C connected
Claims (3)
気体噴射部のオリフィス入口部近位に、液体噴射部のオリフィス出口部が配置され、
気体噴射部の気体供給通路と気体噴射部のオリフィス入口部との連なり部が、その断面視でR処理あるいはテーパー処理がなされていることを特徴とする気液混合ノズル。 A gas-liquid mixing nozzle in which the orifice of the liquid ejecting unit is disposed in the orifice of the gas ejecting unit so that the orifice exit leading end of the gas ejecting unit protrudes in the ejecting direction from the orifice exit leading end of the liquid ejecting unit,
An orifice outlet part of the liquid injection part is disposed in the vicinity of the orifice inlet part of the gas injection part,
A gas-liquid mixing nozzle, wherein a continuous portion of the gas supply passage of the gas injection unit and the orifice inlet of the gas injection unit is subjected to R processing or taper processing in a sectional view.
The gas-liquid mixing nozzle according to claim 1, wherein the liquid is atomized and jetted at a low gas supply pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009254343A JP2011098284A (en) | 2009-11-05 | 2009-11-05 | Nozzle for mixing gas and liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009254343A JP2011098284A (en) | 2009-11-05 | 2009-11-05 | Nozzle for mixing gas and liquid |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011098284A true JP2011098284A (en) | 2011-05-19 |
Family
ID=44189917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009254343A Pending JP2011098284A (en) | 2009-11-05 | 2009-11-05 | Nozzle for mixing gas and liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011098284A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101163627B1 (en) | 2012-03-05 | 2012-07-09 | 주식회사 유천엔바이로 | Flash mixer |
WO2013094522A1 (en) * | 2011-12-19 | 2013-06-27 | ノズルネットワーク株式会社 | Liquid atomization device |
WO2013125555A1 (en) * | 2012-02-21 | 2013-08-29 | ノズルネットワーク株式会社 | Liquid atomization device |
JP2014039738A (en) * | 2012-08-23 | 2014-03-06 | Toho Gas Co Ltd | Mist sauna apparatus and bathroom heating and drying apparatus with mist sauna function |
US11931761B2 (en) | 2022-02-04 | 2024-03-19 | Hydra-Cone, Inc. | Torpedo nozzle apparatus |
-
2009
- 2009-11-05 JP JP2009254343A patent/JP2011098284A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013094522A1 (en) * | 2011-12-19 | 2013-06-27 | ノズルネットワーク株式会社 | Liquid atomization device |
CN104039460A (en) * | 2011-12-19 | 2014-09-10 | 喷嘴网络株式会社 | Liquid atomization device |
JPWO2013094522A1 (en) * | 2011-12-19 | 2015-04-27 | ノズルネットワーク株式会社 | Liquid atomizer |
WO2013125555A1 (en) * | 2012-02-21 | 2013-08-29 | ノズルネットワーク株式会社 | Liquid atomization device |
KR101163627B1 (en) | 2012-03-05 | 2012-07-09 | 주식회사 유천엔바이로 | Flash mixer |
JP2014039738A (en) * | 2012-08-23 | 2014-03-06 | Toho Gas Co Ltd | Mist sauna apparatus and bathroom heating and drying apparatus with mist sauna function |
US11931761B2 (en) | 2022-02-04 | 2024-03-19 | Hydra-Cone, Inc. | Torpedo nozzle apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5971532B2 (en) | Liquid atomizer | |
JPWO2013094522A1 (en) | Liquid atomizer | |
JP2002126587A (en) | Spray nozzle device | |
JP2011098284A (en) | Nozzle for mixing gas and liquid | |
JP2010247106A (en) | Gas-liquid mixing nozzle device for miniaturization acceleration | |
CN202527302U (en) | Atomizing nozzle | |
JP5672613B2 (en) | Liquid atomizer | |
WO2016076038A1 (en) | Spray nozzle and humidifier provided with said spray nozzle | |
JPH08215614A (en) | Atomizer | |
TW201330934A (en) | Liquid atomizing device | |
JP5140712B2 (en) | Liquid atomization apparatus and liquid atomization method | |
JP5562601B2 (en) | Miniaturization promoting device and gas-liquid mixing nozzle device for miniaturization promoting device | |
JP2006346611A (en) | Washing liquid spraying apparatus | |
JP5562612B2 (en) | Miniaturization promoting device and gas-liquid mixing nozzle device for miniaturization promoting device | |
JP2011062583A (en) | Gas-liquid mixing nozzle | |
JP2022014190A (en) | Spray nozzle | |
JP2010137341A5 (en) | INJECTION PROCESSING DEVICE AND INJECTION PROCESSING METHOD | |
JP2022014192A (en) | Spray nozzle | |
JP2012030179A (en) | Micronizer | |
WO2023228634A1 (en) | Atomization device | |
JP2004344689A (en) | Two-fluid nozzle | |
JP5270317B2 (en) | Nozzle for cleaning | |
WO2013073336A1 (en) | Liquid atomization device | |
JP2023175228A (en) | Binary fluid spray device | |
JP2012254457A (en) | Liquid atomizing device and liquid atomizing method |