[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011094005A - Method for producing epoxy resin composition, method for manufacturing prepreg and method for manufacturing laminated board and wiring board - Google Patents

Method for producing epoxy resin composition, method for manufacturing prepreg and method for manufacturing laminated board and wiring board Download PDF

Info

Publication number
JP2011094005A
JP2011094005A JP2009248617A JP2009248617A JP2011094005A JP 2011094005 A JP2011094005 A JP 2011094005A JP 2009248617 A JP2009248617 A JP 2009248617A JP 2009248617 A JP2009248617 A JP 2009248617A JP 2011094005 A JP2011094005 A JP 2011094005A
Authority
JP
Japan
Prior art keywords
epoxy resin
inorganic filler
resin composition
producing
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009248617A
Other languages
Japanese (ja)
Other versions
JP5549183B2 (en
Inventor
Masahito Tsuji
雅仁 辻
Tetsuya Kawahira
哲也 川平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2009248617A priority Critical patent/JP5549183B2/en
Publication of JP2011094005A publication Critical patent/JP2011094005A/en
Application granted granted Critical
Publication of JP5549183B2 publication Critical patent/JP5549183B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce an epoxy resin composition having sufficient thermal conductivity and improved moisture resistance. <P>SOLUTION: In producing an epoxy resin composition including (A) an epoxy resin, (B) a phenolic novolac resin, (C) an inorganic filler and (D) a silane coupling agent having an amino group, the inorganic filler (C) is contained in an amount of 150-950 pts.mass based on 100 pts.mass of the resin solid content and a liquid mixture is formed by kneading the epoxy resin (A) and/or the phenolic novolac resin (B), the inorganic filler (C) and the silane coupling agent (D) having an amino group in a paste state beforehand and then mixing the resultant kneaded product with the remainder of the epoxy resin (A) and/or the phenolic novolac resin (B) in a necessary amount based on the total amount of the composition. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、エポキシ樹脂組成物の製造法に関する。また、この方法により製造したエポキシ樹脂組成物を用いたプリプレグ、積層板ないしは配線板の製造法に関する。この方法により製造した樹脂組成物は、充分な熱伝導性を有し、かつ、耐熱性および耐湿特性に優れ、発熱部品を実装する配線板の絶縁層として好適である。   The present invention relates to a method for producing an epoxy resin composition. Moreover, it is related with the manufacturing method of the prepreg, the laminated board, or the wiring board using the epoxy resin composition manufactured by this method. The resin composition produced by this method has sufficient thermal conductivity, is excellent in heat resistance and moisture resistance, and is suitable as an insulating layer for a wiring board on which a heat-generating component is mounted.

電子機器に搭載する配線板は、電子機器の軽薄短小化に伴う微細配線・高密度実装の技術が求められる一方で、発熱に対応する高放熱の技術も求められている。特に、各種制御・操作に大電流を使用する自動車などにおける電子回路では、導電回路の抵抗に起因する発熱やパワー素子からの発熱が非常に多く、配線板の放熱特性は高レベルであることが必須となってきている。   A wiring board mounted on an electronic device is required to have a technology for fine wiring and high-density mounting in accordance with a reduction in the thickness and size of the electronic device, and a technology for high heat dissipation corresponding to heat generation is also required. In particular, in electronic circuits such as automobiles that use a large current for various controls and operations, heat generation due to the resistance of the conductive circuit and heat generation from the power element are very large, and the heat dissipation characteristics of the wiring board may be high. It has become essential.

そのような現状において、配線板の絶縁層の熱伝導性を向上させるために、熱硬化性樹脂に無機充填材を添加することは広く行われている。例えば、熱硬化性樹脂に鱗片状無機充填材と粒子状無機充填材との混合充填材を添加した熱伝導性樹脂シートが特許文献1に記載されている。この熱伝導性樹脂シートは、鱗片状無機充填材と粒子状無機充填材とを混合し、鱗片状無機充填材を厚さ方向に配向させることにより、樹脂シートの厚さ方向の熱伝導性を向上させるものである。   Under such circumstances, adding an inorganic filler to a thermosetting resin is widely performed in order to improve the thermal conductivity of the insulating layer of the wiring board. For example, Patent Document 1 discloses a thermally conductive resin sheet in which a mixed filler of a scaly inorganic filler and a particulate inorganic filler is added to a thermosetting resin. This heat conductive resin sheet mixes the scale-like inorganic filler and the particulate inorganic filler, and orients the scale-like inorganic filler in the thickness direction, thereby increasing the heat conductivity in the thickness direction of the resin sheet. It is to improve.

しかし、エポキシ樹脂などの熱硬化性樹脂自体は熱伝導率が低く、樹脂組成物としての熱伝導率を向上させるためには、熱硬化性樹脂に無機充填材を高充填する必要がある。これにともない、樹脂組成物の加工性が悪くなる、脆くなる、高価になるなどの問題がある。加えて、熱硬化性樹脂の体積分率が少なくなり、樹脂と無機充填材の間にクラックやボイドが発生しやすくなるため、耐湿特性(特に、吸湿処理後のはんだ耐熱性)が低下するという問題がある。さらに、樹脂と無機充填材の密着性が不充分となり、絶縁層上で配線導体を構成している銅はく引きはがし強さが低下するという問題がある。   However, thermosetting resins such as epoxy resins themselves have low thermal conductivity, and in order to improve the thermal conductivity as a resin composition, it is necessary to highly fill the thermosetting resin with an inorganic filler. In connection with this, there exists a problem that the workability of a resin composition worsens, becomes brittle, becomes expensive. In addition, the volume fraction of the thermosetting resin is reduced, and cracks and voids are likely to occur between the resin and the inorganic filler, resulting in reduced moisture resistance (particularly solder heat resistance after moisture absorption treatment). There's a problem. Furthermore, there is a problem that the adhesion between the resin and the inorganic filler becomes insufficient, and the strength of peeling off the copper constituting the wiring conductor on the insulating layer is lowered.

一方、シランカップリング剤については、無機充填材の分散性等の向上を目的とし、無機充填材の表面を改質させるために使用されていることは周知であり、代表的には、ビニル基、エポキシ基、メタクリル基、アミノ基、メルカプト基を有するシランカップリング剤などがあり、シランカップリング剤のシラノール基は、表面に水酸基を持つ素材と、特に、強い親和性及び反応性を示すため、有機物−無機物の結合に効果があることが知られている。
無機充填材のシランカップリング剤処理は、一般には、乾式ないし湿式で無機充填材を直接処理する方法や、無機充填材を含む樹脂ワニス中にシランカップリング剤を添加するインテグラルブレンド法が知られている。
On the other hand, it is well known that silane coupling agents are used for the purpose of improving the dispersibility of inorganic fillers, and are used to modify the surface of inorganic fillers. There are silane coupling agents with epoxy groups, methacryl groups, amino groups, mercapto groups, etc., and silanol groups of silane coupling agents are especially strong with materials having hydroxyl groups on the surface, because they show strong affinity and reactivity It is known that the organic-inorganic bond is effective.
In general, the silane coupling agent treatment of inorganic fillers is known by a method of directly treating inorganic fillers in a dry or wet manner, or an integral blend method in which a silane coupling agent is added to a resin varnish containing inorganic fillers. It has been.

特開2005−232313号公報JP 2005-232313 A

上述のように、絶縁層をエポキシ樹脂で構成した配線板は、エポキシ樹脂に無機充填材を高充填することにより熱伝導性を向上できたとしても、耐湿特性(特に、吸湿処理後のはんだ耐熱性)や銅はく引きはがし強さを維持することは容易ではない。
この対策として、シランカップリング剤を使用し、樹脂と無機充填材の密着性を向上させる方法があるが、前述の無機充填材を直接処理する方法では、処理工程の追加とそのための製造設備が必要となりコストアップにつながるという問題がある。また、インテグラルブレンド法では、無機充填材を含む樹脂ワニス中にシランカップリング剤を添加するため、無機充填材のみを選択的に処理することが難しく、所望の耐湿特性が得られないという問題がある。
As described above, the wiring board in which the insulating layer is made of epoxy resin has moisture resistance (particularly, solder heat resistance after moisture absorption treatment) even if the thermal conductivity can be improved by highly filling the epoxy resin with an inorganic filler. Property) and copper peeling strength are not easy to maintain.
As a countermeasure for this, there is a method of using a silane coupling agent to improve the adhesion between the resin and the inorganic filler. However, in the method of directly treating the inorganic filler described above, there are additional processing steps and manufacturing equipment therefor. There is a problem that it is necessary and leads to cost increase. In addition, in the integral blend method, since a silane coupling agent is added to a resin varnish containing an inorganic filler, it is difficult to selectively treat only the inorganic filler, and a desired moisture resistance characteristic cannot be obtained. There is.

本発明が解決しようとする課題は、充分な熱伝導性を有し、かつ、耐湿特性を向上したエポキシ樹脂組成物を製造することである。また、この方法により製造したエポキシ樹脂組成物を用いたプリプレグを製造することである。さらには、前記プリプレグによる積層板ないしは絶縁層を備えた配線板を製造することである。
本発明は、高熱伝導性の無機充填材を使用した場合においても、特定の官能基を有するシランカップリング剤を併用し、かつ、特定の混練方法を採用することにより、耐湿特性を向上することができるという新しい知見に基づくものである。
The problem to be solved by the present invention is to produce an epoxy resin composition having sufficient thermal conductivity and improved moisture resistance. Moreover, it is manufacturing the prepreg using the epoxy resin composition manufactured by this method. Furthermore, it is manufacturing a wiring board provided with the laminated board or insulating layer by the said prepreg.
The present invention improves moisture resistance characteristics by using a specific silane coupling agent having a specific functional group and adopting a specific kneading method even when an inorganic filler with high thermal conductivity is used. It is based on the new knowledge that it is possible.

上記課題を達成するために、本発明に係るエポキシ樹脂組成物の製造法は、エポキシ樹脂(A)と、フェノール類ノボラック樹脂(B)と、無機充填材(C)と、アミノ基を有するシランカップリング剤(D)とを含むエポキシ樹脂組成物の製造法であって、無機充填材(C)が、樹脂固形分100質量部に対して、150〜950質量部である。そして、エポキシ樹脂(A)及び/又はフェノール類ノボラック樹脂(B)と、無機充填材(C)と、アミノ基を有するシランカップリング剤(D)とを、あらかじめペースト状態で混練した後、前記混練物に、全体として必要な残りのエポキシ樹脂(A)及び/又はフェノール類ノボラック樹脂(B)を混合して液状の混合物とすることを特徴とする(請求項1)。
ここで、ペースト状態とは、HAAKE社製レオメータなどのコーン−プレート型による粘度測定で、2000mPa・s以上ないし測定が不可能な高い粘度の状態をいう。また、液状とは、前記の粘度測定で、2000mPa・s未満の粘度の状態をいう。
本発明において、樹脂固形分とは、エポキシ樹脂(A)及びフェノール類ノボラック樹脂(B)に加えて、硬化促進剤や難燃剤、希釈剤、可塑剤等を含んだ樹脂固形分をいう。
In order to achieve the above object, a method for producing an epoxy resin composition according to the present invention includes an epoxy resin (A), a phenol novolak resin (B), an inorganic filler (C), and a silane having an amino group. It is a manufacturing method of the epoxy resin composition containing a coupling agent (D), Comprising: An inorganic filler (C) is 150-950 mass parts with respect to 100 mass parts of resin solid content. And after knead | mixing the epoxy resin (A) and / or phenol novolak resin (B), the inorganic filler (C), and the silane coupling agent (D) which has an amino group in a paste state previously, The kneaded product is mixed with the remaining epoxy resin (A) and / or phenol novolak resin (B) necessary as a whole to form a liquid mixture (claim 1).
Here, the paste state refers to a state of high viscosity that is 2000 mPa · s or higher or impossible to measure in a viscosity measurement with a cone-plate type such as a rheometer manufactured by HAAKE. The term “liquid” refers to a state having a viscosity of less than 2000 mPa · s in the viscosity measurement.
In the present invention, the resin solid content means a resin solid content containing a curing accelerator, a flame retardant, a diluent, a plasticizer and the like in addition to the epoxy resin (A) and the phenol novolac resin (B).

好ましくは、アミノ基を有するシランカップリング剤(D)のアミノ基が、ウレイド基中のアミノ基である(請求項2)。また、無機充填材(C)が、窒化ホウ素、窒化アルミニウム、窒化ケイ素およびアルミナからなる群より選ばれた1種以上を含有する(請求項3)。   Preferably, the amino group of the silane coupling agent (D) having an amino group is an amino group in the ureido group (Claim 2). The inorganic filler (C) contains one or more selected from the group consisting of boron nitride, aluminum nitride, silicon nitride, and alumina.

また、好ましくは、エポキシ樹脂(A)が、(式1)で示す分子構造のエポキシ樹脂モノマを含有する(請求項4)。   Preferably, the epoxy resin (A) contains an epoxy resin monomer having a molecular structure represented by (Formula 1) (Claim 4).

Figure 2011094005
Figure 2011094005

さらに好ましくは、エポキシ樹脂(A)が、(式2)で示す分子構造のエポキシ樹脂モノマを含有する(請求項5)。   More preferably, the epoxy resin (A) contains an epoxy resin monomer having a molecular structure represented by (Formula 2) (Claim 5).

Figure 2011094005
Figure 2011094005

本発明に係るプリプレグの製造法は、上記の方法により製造したエポキシ樹脂組成物を、シート状繊維基材に含浸し乾燥することを特徴とする(請求項6)。
本発明に係る積層板の製造法は、上記の方法により製造したプリプレグを、プリプレグ層の一部ないし全部の層として使用し加熱加圧成形することを特徴とする(請求項7)。
本発明に係る配線板の製造法は、上記の方法により製造したプリプレグの層を加熱加圧成形して絶縁層を形成することを特徴とする(請求項8)。
The method for producing a prepreg according to the present invention is characterized in that the epoxy resin composition produced by the above method is impregnated into a sheet-like fiber base material and dried (Claim 6).
The manufacturing method of the laminated board which concerns on this invention uses the prepreg manufactured by said method as a one part thru | or all layer of a prepreg layer, and is heat-press-molded (Claim 7).
The method for producing a wiring board according to the present invention is characterized in that an insulating layer is formed by heating and pressing a prepreg layer produced by the above method (claim 8).

本発明に係るエポキシ樹脂組成物の製造法は、エポキシ樹脂(A)を主剤とし、耐熱性を付与するために、硬化剤としてフェノール類ノボラック樹脂(B)を使用する。また、充分な熱伝導性を確保するために、無機充填材(C)を含有させる。   The method for producing an epoxy resin composition according to the present invention uses an epoxy resin (A) as a main ingredient, and a phenol novolac resin (B) as a curing agent in order to impart heat resistance. Moreover, in order to ensure sufficient heat conductivity, an inorganic filler (C) is contained.

そして、無機充填材(C)を、樹脂固形分100質量部に対して、150〜950質量部とする。無機充填材(C)の配合量が150質量より少ないと充分な熱伝導率を確保することができず、950質量部を超えると、無機充填材同士の隙間を樹脂で充分に埋めることができなくなり、熱伝導率が低下し、また耐熱性も低下する。   And let inorganic filler (C) be 150-950 mass parts with respect to 100 mass parts of resin solid content. If the blending amount of the inorganic filler (C) is less than 150 masses, sufficient thermal conductivity cannot be secured, and if it exceeds 950 parts by mass, the gaps between the inorganic fillers can be sufficiently filled with resin. The heat conductivity is lowered, and the heat resistance is also lowered.

さらに、耐湿特性を向上させるため、エポキシ樹脂(A)及び/又はフェノール類ノボラック樹脂(B)と、無機充填材(C)と、アミノ基を有するシランカップリング剤(D)とを、あらかじめペースト状態で混練した後、前記混練物に、全体として必要な残りのエポキシ樹脂(A)及び/又はフェノール類ノボラック樹脂(B)を混合して液状の混合物とする。   Further, in order to improve moisture resistance, the epoxy resin (A) and / or the phenol novolak resin (B), the inorganic filler (C), and the silane coupling agent (D) having an amino group are pasted in advance. After kneading in a state, the remaining epoxy resin (A) and / or phenol novolak resin (B) necessary as a whole is mixed with the kneaded material to obtain a liquid mixture.

上記の混練方法によれば、無機充填材のみを選択的にシランカップリング剤処理することができ、樹脂と無機充填材の密着性を充分に確保することができる。そのため、上記の混練方法で得られたエポキシ樹脂組成物は、樹脂と無機充填材間の微小なクラックやボイド発生を無くすることができ、耐熱性や耐湿特性を向上することができる。   According to the above kneading method, only the inorganic filler can be selectively treated with the silane coupling agent, and sufficient adhesion between the resin and the inorganic filler can be ensured. Therefore, the epoxy resin composition obtained by the above kneading method can eliminate generation of minute cracks and voids between the resin and the inorganic filler, and can improve heat resistance and moisture resistance.

このように、本発明に係るエポキシ樹脂組成物の製造法を用いることにより、充分な熱伝導性を確保でき、かつ、耐湿特性を向上したエポキシ樹脂組成物を製造することができる。   Thus, by using the method for producing an epoxy resin composition according to the present invention, it is possible to produce an epoxy resin composition having sufficient heat conductivity and improved moisture resistance.

本発明に係るエポキシ樹脂組成物において、エポキシ樹脂(A)は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂など一般的なエポキシ樹脂はいずれも使用できる。基本骨格にメソゲン骨格と呼ばれる剛直な構造(例えば、ビフェニル骨格やターフェニル骨格等)を持つエポキシ樹脂は、熱伝導性が向上するため好ましい。   In the epoxy resin composition according to the present invention, the epoxy resin (A) may be any general epoxy resin such as bisphenol A type epoxy resin and bisphenol F type epoxy resin. An epoxy resin having a rigid structure called a mesogenic skeleton (for example, a biphenyl skeleton or a terphenyl skeleton) in the basic skeleton is preferable because thermal conductivity is improved.

特に(式1)で示される分子構造式のビフェニル骨格あるいはビフェニル誘導体の骨格をもつエポキシ樹脂は、熱伝導性が向上するため好ましい。   In particular, an epoxy resin having a biphenyl skeleton or a biphenyl derivative skeleton having a molecular structure represented by (formula 1) is preferable because thermal conductivity is improved.

Figure 2011094005
Figure 2011094005

さらに好ましくは、(式2)で示される分子構造式のエポキシ樹脂を選択する。ビフェニル基がより配列しやすいため、熱伝導性をさらに向上することができる。また、ビフェニル骨格あるいはビフェニル誘導体の骨格は単一分子内に2つ以上あってもよい。   More preferably, an epoxy resin having a molecular structure represented by (Formula 2) is selected. Since the biphenyl group is more easily arranged, the thermal conductivity can be further improved. Two or more biphenyl skeletons or biphenyl derivative skeletons may be present in a single molecule.

Figure 2011094005
Figure 2011094005

上記の一般的なエポキシ樹脂や基本骨格にメソゲン骨格を持つエポキシ樹脂を単独あるいは2種類以上を組み合わせて用いてもよい。基本骨格にメソゲン骨格を持つエポキシ樹脂を主剤の全てあるいは一部に含むと、樹脂硬化物の分子鎖の規則性が高くなり、樹脂硬化物の熱伝導率を向上させる。樹脂と無機充填材の複合体とするとき、樹脂硬化物の熱伝導率の向上は無機充填材による熱伝導率の向上効果をより一層高める効果があり、基本骨格にメソゲン骨格を持つエポキシ樹脂と無機充填材の複合体は、一般的なエポキシ樹脂と無機充填材の複合体と比較して大きく熱伝導率が向上する。このため、基本骨格にメソゲン骨格を持つエポキシ樹脂の配合量は、主剤のうちエポキシ当量比で40%以上であることが好ましい。   The above general epoxy resins and epoxy resins having a mesogenic skeleton in the basic skeleton may be used alone or in combination of two or more. When an epoxy resin having a mesogenic skeleton as a basic skeleton is included in all or part of the main agent, the regularity of the molecular chain of the cured resin is increased, and the thermal conductivity of the cured resin is improved. When a composite of a resin and an inorganic filler is used, the improvement of the thermal conductivity of the cured resin has the effect of further enhancing the improvement of the thermal conductivity by the inorganic filler, and an epoxy resin having a mesogenic skeleton as the basic skeleton. The composite of an inorganic filler is greatly improved in thermal conductivity as compared with a composite of a general epoxy resin and an inorganic filler. For this reason, it is preferable that the compounding quantity of the epoxy resin which has a mesogen skeleton in a basic skeleton is 40% or more by epoxy equivalent ratio among main agents.

フェノール類ノボラック樹脂(B)は、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA型ノボラック樹脂等であり、特に制約するものではない。また、これらを単独あるいは2種類以上を組み合わせて用いてもよい。硬化剤としてフェノール類ノボラック樹脂を使用することにより、酸無水物系やアミン系の硬化剤を使用した場合と比較して、樹脂組成物の耐熱性を向上することができる。   The phenol novolak resin (B) is a phenol novolak resin, a cresol novolak resin, a bisphenol A type novolak resin or the like, and is not particularly limited. Moreover, you may use these individually or in combination of 2 or more types. By using a phenol novolak resin as a curing agent, the heat resistance of the resin composition can be improved as compared with the case where an acid anhydride or amine curing agent is used.

無機充填材(C)は、熱伝導率が20W/m・K以上の無機充填材を使用することにより、樹脂硬化物の熱伝導率がさらに向上するので好ましい。前記熱伝導率が20W/m・K以上の無機充填材としては、例えば、窒化ホウ素、窒化アルミニウム、窒化ケイ素、アルミナ等が挙げられる。これら無機充填材を単独あるいは2種類以上を組み合わせて用いてもよい。なお、無機充填材(C)の配合量は、エポキシ樹脂(A)とフェノール類ノボラック樹脂(B)とハロゲン含有難燃剤との樹脂固形分100質量部に対して、150〜950質量部とする。   The inorganic filler (C) is preferable because the thermal conductivity of the cured resin is further improved by using an inorganic filler having a thermal conductivity of 20 W / m · K or more. Examples of the inorganic filler having a thermal conductivity of 20 W / m · K or more include boron nitride, aluminum nitride, silicon nitride, and alumina. You may use these inorganic fillers individually or in combination of 2 or more types. In addition, the compounding quantity of an inorganic filler (C) shall be 150-950 mass parts with respect to 100 mass parts of resin solid content of an epoxy resin (A), a phenol novolak resin (B), and a halogen-containing flame retardant. .

アミノ基を有するシランカップリング剤(D)は、3−ウレイドプロピルトリエトシキシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−(2−アミノエチル)アミノプロピルトリメトキシシラン、3−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、3−フェニルアミノプロピルトリメトキシシラン等であり、特に制約するものではない。アミノ基を有するシランカップリング剤(D)のアミノ基が、ウレイド基中のアミノ基であると、耐湿特性が向上するため好ましい。これらを単独あるいは2種類以上組み合わせてもよい。なお、耐湿特性向上のためには、樹脂固形分100質量部に対し、0.3〜1.5質量部の量で配合することが好ましい。さらに好ましくは、0.5〜1質量部である。   The silane coupling agent (D) having an amino group is 3-ureidopropyltriethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane. , 3- (2-aminoethyl) aminopropylmethyldimethoxysilane, 3-phenylaminopropyltrimethoxysilane, and the like, which are not particularly limited. It is preferable that the amino group of the silane coupling agent (D) having an amino group is an amino group in the ureido group because moisture resistance is improved. These may be used alone or in combination of two or more. In order to improve moisture resistance, it is preferable to add 0.3 to 1.5 parts by mass with respect to 100 parts by mass of the resin solid content. More preferably, it is 0.5-1 mass part.

シランカップリング剤の反応基は、無機物に対してほとんど選択性はないが、有機物に対して、はっきりとした選択性があり、エポキシ樹脂組成物中に配合されるシランカップリング剤は、有機物と反応する側の末端基の選択が重要である。特に、アミノ基(−NH)を有することで、エポキシ樹脂組成物中の未反応のエポキシ基とシランカップリング剤のアミノ基の窒素原子で、電子求核置換反応し、接着性が高まる。更に、ウレイド基(−NHCONH)には、多くの窒素原子が含まれているため、より一層の接着性が高まることになる。但し、エポキシ樹脂とフェノール類ノボラック樹脂との反応を阻害しない様に、配合量を制約する必要がある。 The reactive group of the silane coupling agent has almost no selectivity for inorganic substances, but has a clear selectivity for organic substances. The selection of the end group on the side to be reacted is important. In particular, by having an amino group (—NH 2 ), an electron nucleophilic substitution reaction occurs between the unreacted epoxy group in the epoxy resin composition and the nitrogen atom of the amino group of the silane coupling agent, thereby improving the adhesion. Furthermore, since many nitrogen atoms are contained in the ureido group (—NHCONH 2 ), the adhesiveness is further improved. However, it is necessary to limit the blending amount so as not to inhibit the reaction between the epoxy resin and the phenol novolac resin.

エポキシ樹脂(A)、フェノール類ノボラック樹脂(B)、無機充填材(C)およびアミノ基を有するシランカップリング剤(D)を配合したエポキシ樹脂組成物には、必要に応じて硬化促進剤や難燃剤、希釈剤、可塑剤等を含むことができる。   In the epoxy resin composition containing the epoxy resin (A), the phenol novolak resin (B), the inorganic filler (C) and the silane coupling agent (D) having an amino group, a curing accelerator or Flame retardants, diluents, plasticizers and the like can be included.

難燃剤は、例えば、テトラブロモビスフェノールAなどのハロゲン含有難燃剤やリン含有難燃剤、窒素含有難燃剤等はいずれも使用できる。これらの難燃剤は、エポキシ樹脂と硬化剤の反応に関与してもよく、関与しない化合物でもよい。樹脂の硬化反応に関与する化合物の場合、樹脂硬化物の分子鎖の規則性が一般的なエポキシ樹脂より高く保てる範囲でその構造は制約されない。   As the flame retardant, for example, a halogen-containing flame retardant such as tetrabromobisphenol A, a phosphorus-containing flame retardant, a nitrogen-containing flame retardant, or the like can be used. These flame retardants may be involved in the reaction between the epoxy resin and the curing agent, or may be compounds that do not participate. In the case of a compound involved in the curing reaction of the resin, its structure is not limited as long as the regularity of the molecular chain of the cured resin can be kept higher than that of a general epoxy resin.

本発明に係るエポキシ樹脂組成物の混練方法を、以下説明する。
まず、エポキシ樹脂(A)及び/又はフェノール類ノボラック樹脂(B)と、無機充填材(C)と、アミノ基を有するシランカップリング剤(D)とを、あらかじめペースト状態で混練する。
The kneading method of the epoxy resin composition according to the present invention will be described below.
First, an epoxy resin (A) and / or a phenol novolak resin (B), an inorganic filler (C), and an amino group-containing silane coupling agent (D) are kneaded in a paste state in advance.

上記の混練は、例えば、ハイビスディスパー(「T.K.ハイビスディスパーミックス」プライミクス社製)のような、ブレードおよびホモディスパーからなり、かつ、密閉した系にすることができる混練機あるいはこれと同等の効果を得られるような混練方法を用いることができる。なお、ボールミルのようなメディアによるせん断力での混練方法では、混練物の粘度が高くなりすぎて、メディアが動くことができなくなるため、混練することができない。また、3本ロールのような開放系の混練方法では、ペースト状態となった混練物から溶剤が揮発してしまい、粉体となるため適さない。   The above-mentioned kneading is, for example, a kneading machine made of a blade and a homodisper, such as Hibis Disper (manufactured by “TK Hibis Disper Mix” Primes), and capable of forming a closed system, or the like. A kneading method that can achieve the above effect can be used. In addition, in a kneading method using a shearing force by a medium such as a ball mill, the viscosity of the kneaded product becomes too high and the medium cannot move, so that the kneading cannot be performed. In addition, an open-type kneading method such as a three-roll method is not suitable because the solvent is volatilized from the kneaded material in a paste state to form a powder.

このとき、ペースト状態より低い粘度で混練した場合、混練物中の樹脂ないし溶剤が多くなり、無機充填材とアミノ基を有するシランカップリング剤の接触確率が下がるため、充分な表面処理の効果が得られない。また、この段階で表面処理を行わないと、無機充填材に選択的に表面処理を行うことができず、所望の耐湿特性が得られない。   At this time, when kneaded at a viscosity lower than the paste state, the resin or solvent in the kneaded product increases, and the contact probability between the inorganic filler and the silane coupling agent having an amino group is lowered, so that a sufficient surface treatment effect is obtained. I can't get it. Further, if the surface treatment is not performed at this stage, the inorganic filler cannot be selectively subjected to the surface treatment and desired moisture resistance characteristics cannot be obtained.

次に、上記混練物に、全体として必要な残りのエポキシ樹脂(A)及び/又はフェノール類ノボラック樹脂(B)を混合して液状の混合物とする。これにより、上記混練物の粘度を下げることができ、後述のプリプレグを製造する際に、シート状繊維基材に含浸できるようになる。このときの粘度が高いと、シート状繊維基材に充分に含浸することができなくなり、また、粘度が低すぎると、無機充填材が均一にプリプレグ内に存在できなくなる。この粘度を調節するためには、必要に応じて溶剤を使用することができる。このときの混練機は、例えば、ボールミルやビーズミル、3本ロールのような混練機や、これと同等の効果を得られるような混練方法を用いることができる。   Next, the remaining epoxy resin (A) and / or phenol novolak resin (B) necessary as a whole is mixed with the kneaded material to obtain a liquid mixture. Thereby, the viscosity of the kneaded product can be lowered, and the sheet-like fiber base material can be impregnated when a prepreg described later is manufactured. If the viscosity at this time is high, the sheet-like fiber base material cannot be sufficiently impregnated, and if the viscosity is too low, the inorganic filler cannot be uniformly present in the prepreg. In order to adjust this viscosity, a solvent can be used as needed. As the kneading machine at this time, for example, a kneading machine such as a ball mill, a bead mill, or a three roll, or a kneading method capable of obtaining the same effect can be used.

本発明に係るプリプレグの製造法は、前記の方法により製造したエポキシ樹脂組成物のワニスを、ガラス繊維や有機繊維で構成されたシート状繊維基材(織布や不織布)に含浸し加熱乾燥して、エポキシ樹脂を半硬化状態とする。   The method for producing a prepreg according to the present invention involves impregnating a varnish of an epoxy resin composition produced by the above-described method into a sheet-like fiber base material (woven fabric or non-woven fabric) composed of glass fibers or organic fibers, followed by heating and drying. Thus, the epoxy resin is brought into a semi-cured state.

そして、本発明に係る積層板の製造法は、前記の方法により製造したプリプレグを、プリプレグ層の一部ないし全部の層として使用し加熱加圧成形するものであり、必要に応じて前記加熱加圧成形時に片面あるいは両面に銅箔等の金属箔を一体に貼り合せる。
さらに、本発明に係る配線板の製造法は、前記の方法により製造したプリプレグの層を加熱加圧成形して絶縁層を形成するものであり、その対象は、片面配線板、両面配線板、さらには、内層と表面層に配線を有する多層配線板である。
The method for producing a laminated board according to the present invention uses the prepreg produced by the above-described method as a part or all of the prepreg layer, and heat-press-molds it. A metal foil such as a copper foil is integrally bonded to one side or both sides during pressure forming.
Furthermore, the method for producing a wiring board according to the present invention is a method in which an insulating layer is formed by heat-pressing a layer of a prepreg produced by the above-described method, and the object is a single-sided wiring board, a double-sided wiring board, Furthermore, it is a multilayer wiring board having wiring in the inner layer and the surface layer.

以下、本発明に係る実施例を示し、本発明について詳細に説明する。尚、以下の実施例および比較例において、「部」とは「質量部」を意味する。また、本発明は、その要旨を逸脱しない限り、本実施例に限定されるものではない。   Examples of the present invention will be described below, and the present invention will be described in detail. In the following examples and comparative examples, “part” means “part by mass”. Moreover, this invention is not limited to a present Example, unless it deviates from the summary.

実施例1
ガラス繊維織布(「#1080」旭化成エレクトロニクス製,厚さ:60μm,質量:48g/m)に含浸するエポキシ樹脂組成物として、以下を準備した。
まず、窒化ホウ素(「UHP−2」昭和電工製)30部、アルミナ(「DAW−03」電気化学工業製,平均粒径:3μm)150部、3−ウレイドプロピルトリエトキシシラン(「A−1160」モメンティブ製、表中では『ウレイドシラン』と記載)0.7部に、フェノールノボラック樹脂(「LF6161」DIC製)26部およびメチルセロソルブ19部を加えて、ブレードおよびホモディスパーを有する混練機であるハイビスディスパー(「T.K.ハイビスディスパーミックス」プライミクス社製)で混練し混練物とした。このときの粘度は、2000mPa・s以上で、測定が不可能な高い粘度(ペースト状態)であった。なお、粘度の測定は、HAAKE社製レオメータ(コーン−プレート型)により行った。
Example 1
The following was prepared as an epoxy resin composition to be impregnated into a glass fiber woven fabric (“# 1080” manufactured by Asahi Kasei Electronics, thickness: 60 μm, mass: 48 g / m 2 ).
First, 30 parts of boron nitride (“UHP-2” manufactured by Showa Denko), 150 parts of alumina (“DAW-03” manufactured by Denki Kagaku Kogyo, average particle size: 3 μm), 3-ureidopropyltriethoxysilane (“A-1160”) "Momentive, described as" ureidosilane "in the table) 0.7 parts, phenol novolac resin (" LF6161 "made by DIC) 26 parts and methyl cellosolve 19 parts, with a kneader having blades and homodispers The mixture was kneaded with a certain hibis disperser (“TK Hibis Disper Mix” manufactured by Primics) to obtain a kneaded product. The viscosity at this time was 2000 mPa · s or more, and was a high viscosity (paste state) that could not be measured. The viscosity was measured with a rheometer (cone-plate type) manufactured by HAAKE.

また、ビフェニル骨格をもつエポキシ樹脂(「YL6121H」ジャパンエポキシレジン製)24部、3官能エポキシ樹脂(「VG3101」プリンテック製)29部、難燃剤として、テトラブロモビスフェノールA(「FR−1524」ブロモ・ケム・ファーイースト製)21部を、メチルセロソルブとメチルエチルケトンの混合溶媒に溶解し、エポキシ樹脂ワニスを調整した。
尚、「YL6121H」は、既述の分子構造式(式1)において、R=−CH,n=0.1である液晶エポキシ樹脂と分子構造式(式2)において、m=0.1である液晶エポキシ樹脂を等モルで含有するエポキシ樹脂である。
Also, 24 parts of an epoxy resin having a biphenyl skeleton (“YL6121H” made by Japan Epoxy Resin), 29 parts of a trifunctional epoxy resin (made by “VG3101” Printec), tetrabromobisphenol A (“FR-1524” bromo) as a flame retardant -21 parts of Chem Far East) was dissolved in a mixed solvent of methyl cellosolve and methyl ethyl ketone to prepare an epoxy resin varnish.
“YL6121H” is a liquid crystal epoxy resin in which R = —CH 3 , n = 0.1 in the molecular structural formula (formula 1) and m = 0.1 in the molecular structural formula (formula 2). It is an epoxy resin containing a liquid crystal epoxy resin that is an equimolar amount.

次に、上記混練物に、上記エポキシ樹脂ワニスを加えて、ハイビスディスパーで充分に混合した後、硬化促進剤として、2−エチル−4−メチルイミダゾール(「キュアゾール2E4MZ」四国化成製)0.1部を混合した。そして、さらにボールミルで混練し、メチルセロソルブを加え、粘度が約300mPa・sの充填材含有エポキシ樹脂ワニスを作製した。最終的なエポキシ樹脂組成物の割合は表1に示す。   Next, the epoxy resin varnish is added to the kneaded product and mixed well with a hibis disper, and then used as a curing accelerator, 2-ethyl-4-methylimidazole (“CUREZOL 2E4MZ”, manufactured by Shikoku Chemicals) 0.1 The parts were mixed. Then, the mixture was further kneaded with a ball mill, methyl cellosolve was added, and a filler-containing epoxy resin varnish having a viscosity of about 300 mPa · s was produced. Table 1 shows the final ratio of the epoxy resin composition.

上記充填材含有エポキシ樹脂ワニスをガラス繊維織布に含浸し、140℃で15分間乾燥して、プリプレグを得た。樹脂(無機充填材を含む)の含有量は、80質量%である。このプリプレグを4枚重ね、その両面に18μmの銅はくを配置し、温度205℃、圧力3.9MPaの条件で、90分間加熱加圧成形し、厚み0.4mmの銅張り積層板を得た。   A glass fiber woven fabric was impregnated with the filler-containing epoxy resin varnish and dried at 140 ° C. for 15 minutes to obtain a prepreg. The content of the resin (including the inorganic filler) is 80% by mass. Four prepregs are stacked, 18 μm copper foil is placed on both sides of the prepreg, and heat-press molding is performed for 90 minutes under the conditions of a temperature of 205 ° C. and a pressure of 3.9 MPa to obtain a 0.4 mm thick copper-clad laminate. It was.

比較例1
実施例1において、3−ウレイドプロピルトリエトキシシラン「A−1160」の代わりに、3−グリシドキシプロピルトリエトキシシラン(「A−187」モメンティブ製、表中では『エポキシシラン』と記載)を使用する以外は、実施例1と同様にして、プリプレグ及び銅張り積層板を得た。
Comparative Example 1
In Example 1, instead of 3-ureidopropyltriethoxysilane “A-1160”, 3-glycidoxypropyltriethoxysilane (manufactured by “A-187” Momentive, described as “epoxysilane” in the table) was used. A prepreg and a copper-clad laminate were obtained in the same manner as in Example 1 except for using.

比較例2
実施例1において、3−ウレイドプロピルトリエトキシシラン「A−1160」を、硬化促進剤(2−エチル−4−メチルイミダゾール)と同時期に混合する以外は、実施例1と同様にして、プリプレグ及び銅張り積層板を得た。なお、シランカップリング剤混合時のワニス粘度は、600mPa・s(液状)であった。
Comparative Example 2
A prepreg was prepared in the same manner as in Example 1 except that 3-ureidopropyltriethoxysilane “A-1160” was mixed with a curing accelerator (2-ethyl-4-methylimidazole) at the same time in Example 1. And the copper clad laminated board was obtained. In addition, the varnish viscosity at the time of mixing a silane coupling agent was 600 mPa * s (liquid state).

比較例3
ビフェニル骨格をもつエポキシ樹脂24部、3官能エポキシ樹脂29部、フェノールノボラック樹脂26部、難燃剤として、テトラブロモビスフェノールA21部、硬化促進剤として、2−エチル−4−メチルイミダゾール0.1部を、メチルセロソルブとメチルエチルケトンの混合溶媒に溶解し、エポキシ樹脂ワニスを調整した。
Comparative Example 3
24 parts of an epoxy resin having a biphenyl skeleton, 29 parts of a trifunctional epoxy resin, 26 parts of a phenol novolac resin, 21 parts of tetrabromobisphenol A as a flame retardant, and 0.1 part of 2-ethyl-4-methylimidazole as a curing accelerator An epoxy resin varnish was prepared by dissolving in a mixed solvent of methyl cellosolve and methyl ethyl ketone.

次に、このエポキシ樹脂ワニスの40質量%と、窒化ホウ素30部、アルミナ150部および、3−ウレイドプロピルトリエトキシシラン0.7部を配合し、ハイビスディスパーで混練した。このときの粘度は、1000mPa・s(液状)であった。さらに、残りのエポキシ樹脂ワニスを3回に分けてハイビスディスパーに加えて粘度を下げた後、ボールミルで混練し、メチルセロソルブを加え、粘度が約300mPa・sの充填材含有エポキシ樹脂ワニスを作製した。この充填材含有エポキシ樹脂ワニスを使用し、実施例1と同様にしてプリプレグ及び銅張り積層板を得た。
なお、本比較例では、実施例1で使用した原材料と同じものを使用した。
Next, 40% by mass of this epoxy resin varnish, 30 parts of boron nitride, 150 parts of alumina, and 0.7 part of 3-ureidopropyltriethoxysilane were blended and kneaded with a hibisdisper. The viscosity at this time was 1000 mPa · s (liquid). Furthermore, the remaining epoxy resin varnish was added to the hibis disperse in three portions, the viscosity was lowered, kneaded with a ball mill, methyl cellosolve was added, and an epoxy resin varnish containing a filler having a viscosity of about 300 mPa · s was produced. . Using this filler-containing epoxy resin varnish, a prepreg and a copper-clad laminate were obtained in the same manner as in Example 1.
In this comparative example, the same raw material used in Example 1 was used.

実施例2
ガラス繊維不織布(「EPM−4015」日本バイリーン製,質量:15g/m)に含浸するエポキシ樹脂組成物として、以下を準備した。
まず、アルミナ混合物700部、3−ウレイドプロピルトリエトキシシラン(「A−1160」モメンティブ製、表中では『ウレイドシラン』と記載)1.0部に、フェノールノボラック樹脂(「LF6161」DIC製)26部およびメチルセロソルブ25部を加えて、ブレードおよびホモディスパーを有する混練機であるハイビスディスパー(「T.K.ハイビスディスパーミックス」プライミクス社製)で混練し混練物とした。このときの粘度は、2000mPa・s以上で、測定が不可能な高い粘度(ペースト状態)であった。
尚、上記アルミナ混合物は、平均粒径0.4μmのアルミナ(「AA−04」住友化学製)、平均粒径3μmのアルミナ(「DAW−03」電気化学工業製)および平均粒径18μmのアルミナ(「AA−18」住友化学製)を、「AA−04」:「DAW−03」:「AA−18」=12:14:74の比率(質量比)で混合したものである。
Example 2
The following was prepared as an epoxy resin composition to be impregnated into a glass fiber nonwoven fabric (“EPM-4015” manufactured by Nippon Vilene, mass: 15 g / m 2 ).
First, 700 parts of an alumina mixture, 1.0 part of 3-ureidopropyltriethoxysilane (manufactured by “A-1160” Momentive, described as “ureidosilane” in the table), 26 parts of phenol novolac resin (manufactured by “LF6161” DIC) 26 And 25 parts of methyl cellosolve were added, and kneaded with a hibis disper ("TK Hibis Disper Mix" Primix Co., Ltd.) which is a kneader having a blade and a homodisper to obtain a kneaded product. The viscosity at this time was 2000 mPa · s or more, and was a high viscosity (paste state) that could not be measured.
The alumina mixture is composed of alumina having an average particle diameter of 0.4 μm (“AA-04” manufactured by Sumitomo Chemical), alumina having an average particle diameter of 3 μm (“DAW-03” manufactured by Denki Kagaku Kogyo), and alumina having an average particle diameter of 18 μm. ("AA-18" manufactured by Sumitomo Chemical Co., Ltd.) are mixed at a ratio (mass ratio) of "AA-04": "DAW-03": "AA-18" = 12: 14: 74.

また、ビフェニル骨格をもつエポキシ樹脂(「YL6121H」ジャパンエポキシレジン製)24部、3官能エポキシ樹脂(「VG3101」プリンテック製)29部、難燃剤として、テトラブロモビスフェノールA(「FR−1524」ブロモ・ケム・ファーイースト製)21部を、メチルセロソルブとメチルエチルケトンの混合溶媒に溶解し、エポキシ樹脂ワニスを調整した。   In addition, 24 parts of an epoxy resin having a biphenyl skeleton (manufactured by “YL6121H” Japan Epoxy Resin), 29 parts of a trifunctional epoxy resin (manufactured by “VG3101” Printec), tetrabromobisphenol A (“FR-1524” bromo) as a flame retardant -21 parts of Chem Far East) was dissolved in a mixed solvent of methyl cellosolve and methyl ethyl ketone to prepare an epoxy resin varnish.

次に、上記混練物に、上記エポキシ樹脂ワニスを加えて、ハイビスディスパーで充分に混合した後、硬化促進剤として、2−エチル−4−メチルイミダゾール(「キュアゾール2E4MZ」四国化成製)0.1部を混合した。そして、さらにボールミルで混練し、メチルセロソルブを加え、粘度が約300mPa・sの充填材含有エポキシ樹脂ワニスを作製した。最終的なエポキシ樹脂組成物の割合は表2に示す。   Next, the epoxy resin varnish is added to the kneaded product and mixed well with a hibis disper, and then used as a curing accelerator, 2-ethyl-4-methylimidazole (“CUREZOL 2E4MZ”, manufactured by Shikoku Chemicals) 0.1 The parts were mixed. Then, the mixture was further kneaded with a ball mill, methyl cellosolve was added, and a filler-containing epoxy resin varnish having a viscosity of about 300 mPa · s was produced. The final proportion of the epoxy resin composition is shown in Table 2.

上記充填材含有エポキシ樹脂ワニスをガラス繊維不織布に含浸し、140℃で12分間乾燥して、プリプレグを得た。樹脂(無機充填材を含む)の含有量は、96質量%である。このプリプレグを3枚重ね、その両面に18μmの銅はくを配置し、温度205℃、圧力4.9MPaの条件で、90分間加熱加圧成形し、厚み0.4mmの銅張り積層板を得た。   A glass fiber nonwoven fabric was impregnated with the filler-containing epoxy resin varnish and dried at 140 ° C. for 12 minutes to obtain a prepreg. The content of the resin (including the inorganic filler) is 96% by mass. Three prepregs are stacked, 18 μm copper foil is placed on both sides of the prepreg, and heat-press molding is performed for 90 minutes under the conditions of a temperature of 205 ° C. and a pressure of 4.9 MPa to obtain a 0.4 mm thick copper-clad laminate. It was.

比較例4
実施例2において、3−ウレイドプロピルトリエトキシシラン「A−1160」を、硬化促進剤(2−エチル−4−メチルイミダゾール)と同時期に混合する以外は、実施例2と同様にして、プリプレグ及び銅張り積層板を得た。なお、シランカップリング剤混合時のワニス粘度は、500mPa・s(液状)であった。
Comparative Example 4
In Example 2, prepreg was prepared in the same manner as in Example 2 except that 3-ureidopropyltriethoxysilane “A-1160” was mixed with the curing accelerator (2-ethyl-4-methylimidazole) at the same time. And the copper clad laminated board was obtained. In addition, the varnish viscosity at the time of mixing a silane coupling agent was 500 mPa * s (liquid state).

比較例5
ビフェニル骨格をもつエポキシ樹脂24部、3官能エポキシ樹脂29部、フェノールノボラック樹脂26部、難燃剤として、テトラブロモビスフェノールA21部、硬化促進剤として、2−エチル−4−メチルイミダゾール0.1部を、メチルセロソルブとメチルエチルケトンの混合溶媒に溶解し、エポキシ樹脂ワニスを調整した。
Comparative Example 5
24 parts of an epoxy resin having a biphenyl skeleton, 29 parts of a trifunctional epoxy resin, 26 parts of a phenol novolac resin, 21 parts of tetrabromobisphenol A as a flame retardant, and 0.1 part of 2-ethyl-4-methylimidazole as a curing accelerator An epoxy resin varnish was prepared by dissolving in a mixed solvent of methyl cellosolve and methyl ethyl ketone.

次に、このエポキシ樹脂ワニスの40質量%と、アルミナ混合物700部および、3−ウレイドプロピルトリエトキシシラン1.0部を配合し、ハイビスディスパーで混練した。このときの粘度は、1000mPa・sであった。さらに、残りのエポキシ樹脂ワニスを3回に分けてハイビスディスパーに加えて粘度を下げた後、ボールミルで混練し、メチルセロソルブを加え、粘度が約300mPa・sの充填材含有エポキシ樹脂ワニスを作製した。この充填材含有エポキシ樹脂ワニスを使用し、実施例2と同様にしてプリプレグ及び銅張り積層板を得た。
なお、本比較例では、実施例2で使用した原材料と同じものを使用した。
Next, 40% by mass of this epoxy resin varnish, 700 parts of an alumina mixture and 1.0 part of 3-ureidopropyltriethoxysilane were blended and kneaded with a hibis disper. The viscosity at this time was 1000 mPa · s. Furthermore, the remaining epoxy resin varnish was added to the hibis disperse in three portions, the viscosity was lowered, kneaded with a ball mill, methyl cellosolve was added, and an epoxy resin varnish containing a filler having a viscosity of about 300 mPa · s was produced. . Using this filler-containing epoxy resin varnish, a prepreg and a copper-clad laminate were obtained in the same manner as in Example 2.
In this comparative example, the same raw material used in Example 2 was used.

上記の各実施例と比較例における銅張り積層板について、熱伝導率、吸湿処理後のはんだ耐熱性を評価した結果を表1に示した。表中に示した各特性は、次のようにして評価した。
熱伝導率:銅はくを全面エッチングにより除去した積層板について、ASTM−E1461に準拠し、測定した。なお、測定装置は、NETZSCH製nanoflash LFA447型を使用した。
吸湿処理後のはんだ耐熱性:銅張り積層板を50×50mmのサイズにカットし、片面の25×50mmの領域に銅はくを残し、その他の領域はエッチングにより銅はくを除去した試料を準備した。この試料を、121℃/0.2MPaの飽和水蒸気雰囲気下で5時間処理した後、試料表面の水分を充分除去し、温度288℃のはんだ槽に20秒間浸漬した。この試料の銅はく残存領域のふくれの個数を計測した。
Table 1 shows the results of evaluating the thermal conductivity and the solder heat resistance after moisture absorption treatment for the copper-clad laminates in the above Examples and Comparative Examples. Each characteristic shown in the table was evaluated as follows.
Thermal conductivity: Measured in accordance with ASTM-E 1461 for a laminated board from which copper foil was removed by whole surface etching. In addition, the measuring apparatus used nanoflash LFA447 type made from NETZSCH.
Solder heat resistance after moisture absorption treatment: Cut a copper-clad laminate into a size of 50 x 50 mm, leave copper foil in a 25 x 50 mm area on one side, and remove the copper foil by etching in the other areas Got ready. This sample was treated in a saturated water vapor atmosphere at 121 ° C./0.2 MPa for 5 hours, and then water on the sample surface was sufficiently removed and immersed in a solder bath at a temperature of 288 ° C. for 20 seconds. The number of blisters in the copper foil remaining area of this sample was measured.

Figure 2011094005
Figure 2011094005

Figure 2011094005
Figure 2011094005

表1、2から明らかなように、本発明に係るエポキシ樹脂組成物の製造法は、エポキシ樹脂(A)及び/又はフェノール類ノボラック樹脂(B)と、無機充填材(C)と、アミノ基を有するシランカップリング剤(D)とを、あらかじめペースト状態で混練した後、前記混練物に、全体として必要な残りのエポキシ樹脂(A)及び/又はフェノール類ノボラック樹脂(B)を混合して液状の混合物とすることにより、充分な熱伝導性を確保でき、かつ、吸湿処理後のはんだ耐熱性における「ふくれの個数」が少なく、耐湿特性を向上したエポキシ樹脂組成物を製造できることが理解できる(実施例1と比較例1〜3、実施例2と比較例4〜5の対照)。   As is apparent from Tables 1 and 2, the method for producing the epoxy resin composition according to the present invention comprises an epoxy resin (A) and / or a phenol novolak resin (B), an inorganic filler (C), and an amino group. After the silane coupling agent (D) having a kneaded state is previously kneaded in a paste state, the remaining epoxy resin (A) and / or phenol novolak resin (B) necessary as a whole is mixed with the kneaded product. By using a liquid mixture, it can be understood that sufficient thermal conductivity can be secured, and the number of blisters in the solder heat resistance after moisture absorption treatment is small, and an epoxy resin composition with improved moisture resistance can be produced. (Control of Example 1 and Comparative Examples 1 to 3, and Example 2 and Comparative Examples 4 to 5).

比較例1では、シランカップリング剤としてエポキシシランを使用しているため、耐吸湿特性が低下している。また、比較例2〜5では、シランカップリング剤をペースト状態より低い粘度で混練しているため、耐吸湿特性が低下している。   In Comparative Example 1, since the epoxy silane is used as the silane coupling agent, the moisture absorption resistance is deteriorated. Moreover, in Comparative Examples 2-5, since the silane coupling agent is knead | mixed with the viscosity lower than a paste state, the moisture absorption characteristic has fallen.

Claims (8)

エポキシ樹脂(A)と、フェノール類ノボラック樹脂(B)と、無機充填材(C)と、アミノ基を有するシランカップリング剤(D)とを含むエポキシ樹脂組成物の製造法であって、
無機充填材(C)が、樹脂固形分100質量部に対して、150〜950質量部であり、
エポキシ樹脂(A)及び/又はフェノール類ノボラック樹脂(B)と、無機充填材(C)と、アミノ基を有するシランカップリング剤(D)とを、あらかじめペースト状態で混練した後、
前記混練物に、全体として必要な残りのエポキシ樹脂(A)及び/又はフェノール類ノボラック樹脂(B)を混合して液状の混合物とすることを特徴とするエポキシ樹脂組成物の製造法。
A method for producing an epoxy resin composition comprising an epoxy resin (A), a phenol novolak resin (B), an inorganic filler (C), and a silane coupling agent (D) having an amino group,
The inorganic filler (C) is 150 to 950 parts by mass with respect to 100 parts by mass of the resin solid content,
After kneading the epoxy resin (A) and / or the phenol novolak resin (B), the inorganic filler (C), and the silane coupling agent (D) having an amino group in a paste state in advance,
A method for producing an epoxy resin composition, wherein the kneaded product is mixed with the remaining epoxy resin (A) and / or phenol novolak resin (B) necessary as a whole to form a liquid mixture.
アミノ基を有するシランカップリング剤(D)のアミノ基が、ウレイド基中のアミノ基であることを特徴とする請求項1記載のエポキシ樹脂組成物の製造法。   The method for producing an epoxy resin composition according to claim 1, wherein the amino group of the silane coupling agent (D) having an amino group is an amino group in a ureido group. 無機充填材(C)が、窒化ホウ素、窒化アルミニウム、窒化ケイ素およびアルミナからなる群より選ばれた1種以上を含有することを特徴とする請求項1又は2記載のエポキシ樹脂組成物の製造法。   The method for producing an epoxy resin composition according to claim 1 or 2, wherein the inorganic filler (C) contains one or more selected from the group consisting of boron nitride, aluminum nitride, silicon nitride and alumina. . エポキシ樹脂(A)が、(式1)で示す分子構造のエポキシ樹脂モノマを含有することを特徴とする請求項1〜3のいずれかに記載のエポキシ樹脂組成物の製造法。
Figure 2011094005
The method for producing an epoxy resin composition according to any one of claims 1 to 3, wherein the epoxy resin (A) contains an epoxy resin monomer having a molecular structure represented by (Formula 1).
Figure 2011094005
エポキシ樹脂(A)が、(式2)で示す分子構造のエポキシ樹脂モノマを含有することを特徴とする請求項4記載のエポキシ樹脂組成物の製造法。
Figure 2011094005
The method for producing an epoxy resin composition according to claim 4, wherein the epoxy resin (A) contains an epoxy resin monomer having a molecular structure represented by (Formula 2).
Figure 2011094005
請求項1〜5のいずれかに記載の方法により製造したエポキシ樹脂組成物を、シート状繊維基材に含浸し乾燥することを特徴とするプリプレグの製造法。   A method for producing a prepreg, comprising impregnating a sheet-like fiber base material with the epoxy resin composition produced by the method according to claim 1 and drying. 請求項6記載の方法により製造したプリプレグを、プリプレグ層の一部ないし全部の層として使用し加熱加圧成形することを特徴とする積層板の製造法。   A method for producing a laminated board, characterized in that the prepreg produced by the method according to claim 6 is used as a part or all of the prepreg layer and is heated and pressed. 請求項6記載の方法により製造したプリプレグの層を加熱加圧成形して絶縁層を形成することを特徴とする配線板の製造法。   A method for producing a wiring board, comprising forming a layer of a prepreg produced by the method according to claim 6 by heating and pressing to form an insulating layer.
JP2009248617A 2009-10-29 2009-10-29 Method for producing epoxy resin composition, method for producing prepreg, method for producing laminated board and wiring board Expired - Fee Related JP5549183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009248617A JP5549183B2 (en) 2009-10-29 2009-10-29 Method for producing epoxy resin composition, method for producing prepreg, method for producing laminated board and wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009248617A JP5549183B2 (en) 2009-10-29 2009-10-29 Method for producing epoxy resin composition, method for producing prepreg, method for producing laminated board and wiring board

Publications (2)

Publication Number Publication Date
JP2011094005A true JP2011094005A (en) 2011-05-12
JP5549183B2 JP5549183B2 (en) 2014-07-16

Family

ID=44111291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009248617A Expired - Fee Related JP5549183B2 (en) 2009-10-29 2009-10-29 Method for producing epoxy resin composition, method for producing prepreg, method for producing laminated board and wiring board

Country Status (1)

Country Link
JP (1) JP5549183B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240312A (en) * 2011-05-19 2012-12-10 Hitachi Chemical Co Ltd Prepreg, laminated board using the same and printed wiring board
JP2013082883A (en) * 2011-09-27 2013-05-09 Hitachi Chemical Co Ltd Composition, b-stage sheet, prepreg, cured product of the composition, laminate, metal substrate, wiring board, and method of producing the composition
JP2013129788A (en) * 2011-12-22 2013-07-04 Shin Kobe Electric Mach Co Ltd Thermosetting resin composition, prepreg for heating pressure molding, and laminate
JP2013253126A (en) * 2012-06-05 2013-12-19 Sumitomo Bakelite Co Ltd Composition for forming insulation layer, film for forming insulation layer and substrate
JP2014201610A (en) * 2013-04-01 2014-10-27 日立化成株式会社 Epoxy resin composition, heat-conductive material precursor, b-stage sheet, prepreg, laminate sheet, metallic substrate, and printed wiring board
WO2016121758A1 (en) * 2015-01-29 2016-08-04 日立化成株式会社 Epoxy resin composition, semi-cured epoxy resin composition, resin sheet and prepreg
JP2018021180A (en) * 2017-06-26 2018-02-08 日立化成株式会社 Epoxy resin composition, heat conduction material precursor, b stage sheet, prepreg, heat conduction material, laminate, metal substrate and printed wiring board
WO2018181287A1 (en) * 2017-03-30 2018-10-04 日立化成株式会社 Prepreg and production method therefor, stacked plate, printed circuit board and semiconductor package
JP2019172936A (en) * 2018-03-29 2019-10-10 Jnc株式会社 Composition for heat radiation member, heat radiation member, and electronic device
JP7501105B2 (en) 2020-05-22 2024-06-18 住友ベークライト株式会社 Resin-coated inorganic particles, thermosetting resin composition, semiconductor device, and method for producing resin-coated inorganic particles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10101906A (en) * 1996-10-03 1998-04-21 Shin Etsu Chem Co Ltd Production of liquid epoxy resin composition
JP2003105094A (en) * 2001-09-28 2003-04-09 Hitachi Chem Co Ltd Manufacturing method of epoxy resin-molded material, epoxy resin-molded material, manufacturing method of molded product and apparatus of electronic parts
JP2003277589A (en) * 2002-03-27 2003-10-02 Sumitomo Bakelite Co Ltd Semiconductor sealing epoxy resin molding material and its preparation process
JP2009091391A (en) * 2007-10-04 2009-04-30 Shin Kobe Electric Mach Co Ltd Flame-retardant epoxy resin composition, and prepreg, laminated plate and printed wiring board
JP2009209318A (en) * 2008-03-06 2009-09-17 Dic Corp Epoxy resin composition and cured product thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10101906A (en) * 1996-10-03 1998-04-21 Shin Etsu Chem Co Ltd Production of liquid epoxy resin composition
JP2003105094A (en) * 2001-09-28 2003-04-09 Hitachi Chem Co Ltd Manufacturing method of epoxy resin-molded material, epoxy resin-molded material, manufacturing method of molded product and apparatus of electronic parts
JP2003277589A (en) * 2002-03-27 2003-10-02 Sumitomo Bakelite Co Ltd Semiconductor sealing epoxy resin molding material and its preparation process
JP2009091391A (en) * 2007-10-04 2009-04-30 Shin Kobe Electric Mach Co Ltd Flame-retardant epoxy resin composition, and prepreg, laminated plate and printed wiring board
JP2009209318A (en) * 2008-03-06 2009-09-17 Dic Corp Epoxy resin composition and cured product thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240312A (en) * 2011-05-19 2012-12-10 Hitachi Chemical Co Ltd Prepreg, laminated board using the same and printed wiring board
JP2013082883A (en) * 2011-09-27 2013-05-09 Hitachi Chemical Co Ltd Composition, b-stage sheet, prepreg, cured product of the composition, laminate, metal substrate, wiring board, and method of producing the composition
JP2013129788A (en) * 2011-12-22 2013-07-04 Shin Kobe Electric Mach Co Ltd Thermosetting resin composition, prepreg for heating pressure molding, and laminate
JP2013253126A (en) * 2012-06-05 2013-12-19 Sumitomo Bakelite Co Ltd Composition for forming insulation layer, film for forming insulation layer and substrate
JP2014201610A (en) * 2013-04-01 2014-10-27 日立化成株式会社 Epoxy resin composition, heat-conductive material precursor, b-stage sheet, prepreg, laminate sheet, metallic substrate, and printed wiring board
CN107207701A (en) * 2015-01-29 2017-09-26 日立化成株式会社 Composition epoxy resin, semi-solid preparation composition epoxy resin, resin sheet and prepreg
WO2016121758A1 (en) * 2015-01-29 2016-08-04 日立化成株式会社 Epoxy resin composition, semi-cured epoxy resin composition, resin sheet and prepreg
KR20170109551A (en) * 2015-01-29 2017-09-29 히타치가세이가부시끼가이샤 An epoxy resin composition, a semi-cured epoxy resin composition, a resin sheet and a prepreg
KR102539483B1 (en) 2015-01-29 2023-06-02 가부시끼가이샤 레조낙 Epoxy resin composition, semi-cured epoxy resin composition, resin sheet and prepreg
WO2018181287A1 (en) * 2017-03-30 2018-10-04 日立化成株式会社 Prepreg and production method therefor, stacked plate, printed circuit board and semiconductor package
JP2018021180A (en) * 2017-06-26 2018-02-08 日立化成株式会社 Epoxy resin composition, heat conduction material precursor, b stage sheet, prepreg, heat conduction material, laminate, metal substrate and printed wiring board
JP2019172936A (en) * 2018-03-29 2019-10-10 Jnc株式会社 Composition for heat radiation member, heat radiation member, and electronic device
JP7501105B2 (en) 2020-05-22 2024-06-18 住友ベークライト株式会社 Resin-coated inorganic particles, thermosetting resin composition, semiconductor device, and method for producing resin-coated inorganic particles

Also Published As

Publication number Publication date
JP5549183B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5549183B2 (en) Method for producing epoxy resin composition, method for producing prepreg, method for producing laminated board and wiring board
JP5967558B2 (en) Resin composition, prepreg and laminate
JP4697144B2 (en) Epoxy resin composition for prepreg, prepreg, multilayer printed wiring board
JP4735492B2 (en) Prepress and laminate for heat and pressure molding
WO2011118584A1 (en) Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board
JP2014152283A (en) Resin composition, resin varnish, prepreg, metal-clad laminate and printed wiring board
JP6604565B2 (en) Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board
JP6839811B2 (en) Resin composition, prepreg, metal-clad laminate, printed wiring board, and metal foil with resin
JP2006063315A (en) Prepreg, method for producing the same, laminated sheet and printed circuit board
JP5370129B2 (en) Thermosetting resin composition, prepreg and laminate
JP2009051978A (en) Epoxy resin composition for printed wiring board, prepreg, metal foil clad laminated plate, and multilayer printed wiring board
JP4793277B2 (en) Manufacturing method of epoxy resin varnish, manufacturing method of prepreg, manufacturing method of laminated board and wiring board
JP2010229368A (en) Epoxy resin composition and prepreg, laminated board, and wiring board
JP2013045806A (en) Prepreg and printed-wiring board
JP2001348420A (en) Epoxy resin composition, prepreg, and multilayer printed wiring board
JP5217865B2 (en) Flame-retardant epoxy resin composition, prepreg, laminate and wiring board
JP4955856B2 (en) Phosphorus-containing epoxy resin composition, prepreg, resin-coated metal foil, adhesive sheet, laminate, multilayer board, phosphorus-containing epoxy resin varnish for coating, phosphorus-containing epoxy resin sealing material, phosphorus-containing epoxy resin casting material, phosphorus for impregnation Containing epoxy resin varnish
JP5263076B2 (en) Magnesium oxide powder production method, thermosetting resin composition, prepreg and laminate production method
JP6767709B2 (en) Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board
JP4244975B2 (en) Epoxy resin composition for prepreg, prepreg, multilayer printed wiring board
JP4858359B2 (en) Epoxy resin composition for prepreg, prepreg, laminate and printed wiring board using the same
JP4410619B2 (en) Electrical laminates and printed wiring boards
JP5779962B2 (en) Resin composition for package substrate and prepreg and laminate using the same
JP2004059704A (en) Epoxy resin composition for printed wiring board, prepreg and laminate
JP7061944B2 (en) Varnish and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140505

R150 Certificate of patent or registration of utility model

Ref document number: 5549183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees