JP2011094063A - Soil stabilizer and method of soil stabilization using the same - Google Patents
Soil stabilizer and method of soil stabilization using the same Download PDFInfo
- Publication number
- JP2011094063A JP2011094063A JP2009250754A JP2009250754A JP2011094063A JP 2011094063 A JP2011094063 A JP 2011094063A JP 2009250754 A JP2009250754 A JP 2009250754A JP 2009250754 A JP2009250754 A JP 2009250754A JP 2011094063 A JP2011094063 A JP 2011094063A
- Authority
- JP
- Japan
- Prior art keywords
- soil
- mass
- flocculant
- stabilization
- sulfate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Processing Of Solid Wastes (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Abstract
Description
本発明は、地盤改良分野又は地盤環境分野に適用可能な土壌安定処理材及びこれを用いた土壌安定処理方法に関する。 The present invention relates to a soil stabilization treatment material applicable to the ground improvement field or the ground environment field and a soil stabilization treatment method using the same.
従来、環境負荷低減及びコスト削減の観点から、堤防盛土材や埋戻材として建設発生土が利用されている。建設発生土は、土砂状のものから、シールド泥土に代表される高含水比のものまで状態が多岐にわたり、主としてコーン指数qCに基づいて用途が定められる。建設汚泥処理土利用技術基準(平成18年8月国土交通省)によると、発生土を有効利用する際、コーン指数を200kN/m2超とすることが必要である。 Conventionally, construction generated soil has been used as a bank embankment material and a backfill material from the viewpoint of reducing environmental burden and cost. Construction soil generated from sediment-like ones, over state range to that of a high water content ratio represented by the shield mud, applications are determined based primarily on the cone index q C. According to the Construction Sludge Treatment Soil Utilization Technical Standard (August 2006, Ministry of Land, Infrastructure, Transport and Tourism), when the generated soil is used effectively, the corn index needs to be over 200 kN / m 2 .
また、処理土から溶出して周囲のpHに影響を与える物質が環境負荷因子として認識され始めている。水質基準に関する省令(平成15年5月厚生労働省)では、水道水のpHが中性域(5.8〜8.6)を満足するように定められており、この条件が建設汚泥処理土に課されるケースが増えている。 In addition, substances that are eluted from the treated soil and affect the surrounding pH are beginning to be recognized as environmental load factors. The ministerial ordinance on water quality standards (May 2003, Ministry of Health, Labor and Welfare) stipulates that the pH of tap water should be in the neutral range (5.8 to 8.6). Increasing cases are imposed.
こうした状況から、建設発生土のコーン指数の向上、またpHの中性化などを目的とした土壌改質材が多数検討されている(特許文献1〜5参照)。特許文献1,2にはセメント又は酸化マグネシウムを主材とする固化材等が記載されている。上記特許文献3には石膏を主材とする固化材が記載されている。特許文献4には、ペーパースラッジを主材とする改良材が記載されている。特許文献5にはポリ塩化アルミニウム(PAC)と他の材料とを併用した固化材が記載されている。 Under such circumstances, many soil modifiers aimed at improving the corn index of construction-generated soil and neutralizing pH have been studied (see Patent Documents 1 to 5). Patent Documents 1 and 2 describe a solidified material mainly composed of cement or magnesium oxide. Patent Document 3 describes a solidifying material mainly composed of gypsum. Patent Document 4 describes an improved material mainly composed of paper sludge. Patent Document 5 describes a solidified material using polyaluminum chloride (PAC) and other materials in combination.
ところで、セメント、酸化マグネシウム又はペーパースラッジ等を主材として使用した処理材は、処理土のpHが上昇すると考えられ、水質基準に関する上記省令の条件を満たすことができないおそれがある。また、処理土を中性域に保つためには他の材料を多量に添加する必要があり、この場合、改質材の量が膨大となるため、扱いの点でも改善の余地がある。 By the way, the treatment material using cement, magnesium oxide, paper sludge or the like as the main material is considered to increase the pH of the treated soil, and may not satisfy the above-mentioned ministerial ordinance regarding water quality standards. Further, in order to keep the treated soil in a neutral region, it is necessary to add a large amount of other materials. In this case, the amount of the modifying material becomes enormous, so there is room for improvement in terms of handling.
石膏を主材として使用した従来の処理材は、必ずしも発生土の強度向上が十分ではなく、上記の建設汚泥処理土利用技術基準に規定された条件を満たすことができないおそれがある。また、ポリ塩化アルミニウムと他の材料とを併用した処理材は、処理土のpHを中性域に保つことができてもポリ塩化アルミニウムをどの程度添加すれば発生土のpHの条件及び強度の条件を両立できるのか明らかではないのが現状である。 The conventional treatment material using gypsum as a main material does not necessarily improve the strength of the generated soil, and may not satisfy the conditions stipulated in the construction sludge treatment soil utilization technical standards. In addition, the treatment material using both polyaluminum chloride and other materials can maintain the pH of the generated soil and the strength of the generated soil by adding how much polyaluminum chloride even if the pH of the treated soil can be maintained in a neutral range. It is not clear whether the conditions can be satisfied.
本発明は、上記実情に鑑みてなされたものであり、建設発生土のpH上昇を十分に抑制できる土壌安定処理材及びこれを用いた土壌安定処理方法を提供することを目的とする。 This invention is made | formed in view of the said situation, and it aims at providing the soil stabilization processing material which can fully suppress the pH raise of construction generation | occurrence | production soil, and the soil stabilization processing method using the same.
本発明に係る土壌安定処理材は、ポリ塩化アルミニウム及び硫酸塩を含む凝集剤と、生石灰及び消石灰の少なくとも一方を含むカルシウム含有化合物とを含有するものであり、当該土壌安定処理材の全質量100質量部に対して上記凝集剤を50質量部以上含有し、上記凝集剤は当該凝集剤の全質量を基準とする硫酸塩の含有量が0.1〜20質量%であることを特徴とする。 The soil stabilization treatment material according to the present invention contains a flocculant containing polyaluminum chloride and sulfate, and a calcium-containing compound containing at least one of quick lime and slaked lime, and the total mass of the soil stabilization treatment material is 100. The flocculant is contained in an amount of 50 parts by mass or more based on part by mass, and the flocculant has a sulfate content of 0.1 to 20% by mass based on the total mass of the flocculant. .
本発明に係る処理材は、従来のものと比較し、カルシウム含有化合物(例えば、セメント組成物等)の配合量が少なく、凝集剤の配合量が多いため、処理土のpH上昇を抑制できる。また、本発明に係る処理材は、所定量の硫酸塩を含有する凝集剤を配合したことによって、処理土の強度を向上し得る。すなわち、硫酸塩から生じるSO4 2−、カルシウム、ポリ塩化アルミニウム及び水分を共存せしめることによって水酸化アルミニウムゲル及び二水石膏が生成する。水酸化アルミニウムゲル中に分散した柱状の石膏によって高い強度が発現すると推察される(図5参照)。 Since the treatment material according to the present invention has a smaller amount of calcium-containing compound (for example, cement composition) and a larger amount of flocculant than conventional ones, it is possible to suppress an increase in pH of the treated soil. Moreover, the processing material which concerns on this invention can improve the intensity | strength of processing soil by mix | blending the flocculant containing a predetermined amount of sulfate. That is, aluminum hydroxide gel and dihydrate gypsum are produced by the coexistence of SO 4 2− , calcium, polyaluminum chloride, and water generated from sulfate. It is inferred that high strength is expressed by the columnar gypsum dispersed in the aluminum hydroxide gel (see FIG. 5).
本発明によれば、建設発生土のpH上昇を十分に抑制できる。また、上記凝集剤を所定の比率で含有する土壌安定処理材と土壌とを混合することで、24時間程度の短時間のうちに土壌の強度が十分に向上する。 According to the present invention, it is possible to sufficiently suppress an increase in pH of construction-generated soil. Moreover, the intensity | strength of soil fully improves in about 24 hours by mixing the soil stabilization processing material and soil which contain the said flocculent by a predetermined | prescribed ratio.
<土壌安定処理材>
本実施形態に係る安定化処理材は、ポリ塩化アルミニウム及び硫酸塩を含む凝集剤と、セメント組成物(カルシウム含有化合物)とを含有する。セメント組成物としては、例えば、普通ポルトランドセメントや高炉セメントB種を使用できる。
<Soil stabilization material>
The stabilization processing material which concerns on this embodiment contains the coagulant | flocculant containing polyaluminum chloride and a sulfate, and a cement composition (calcium containing compound). As the cement composition, for example, ordinary Portland cement or blast furnace cement B type can be used.
凝集剤は、ポリ塩化アルミニウム及び硫酸塩を含有する。この凝集剤は、当該凝集剤の全質量を基準とする硫酸塩の含有量は0.1〜20質量%であり、0.1〜9.3質量%であることが好ましく、8.4〜8.7質量%であることがより好ましい。硫酸塩の含有量が0.1質量%未満であると、土壌の強度向上が不十分となり、他方、20質量%を超えて硫酸塩を含有しても土壌の強度向上効果が飽和する。 The flocculant contains polyaluminum chloride and sulfate. The content of sulfate based on the total mass of the flocculant is 0.1 to 20% by mass, preferably 0.1 to 9.3% by mass, and 8.4 to It is more preferable that it is 8.7 mass%. If the sulfate content is less than 0.1% by mass, the soil strength is insufficiently improved. On the other hand, if the sulfate content exceeds 20% by mass, the effect of improving the soil strength is saturated.
硫酸塩としては、硫酸アルミニウム(Al2(SO4)3)、硫酸アルミニウムカリウム(AlK(SO4)2・12HO)、硫酸アンモニウム((NH4)2SO4)、硫酸カリウム(K2SO4)などを例示できる。 As sulfates, aluminum sulfate (Al 2 (SO 4 ) 3 ), potassium aluminum sulfate (AlK (SO 4 ) 2 · 12HO), ammonium sulfate ((NH 4 ) 2 SO 4 ), potassium sulfate (K 2 SO 4 ) Etc. can be illustrated.
本実施形態に係る土壌安定処理材は、当該処理材の全質量100質量部に対して上記凝集剤を50質量部以上含有する。凝集剤の含有量が50質量部未満であると、セメント組成物の含有量の増加により土壌のpHが向上して中性域に保つことが困難となる。処理すべき土壌の種類や含水比にもよるが、土壌のpHを中性域に保ちながら土壌の高い強度を達成する観点から、凝集剤の含有量は60〜90質量部であることが好ましく、70〜80質量部であることがより好ましい。処理土の土壌は、環境に対する負荷の低減の観点からpH5.8〜8.6の中性域に保たれることが好ましい。 The soil stabilization processing material which concerns on this embodiment contains the said flocculent 50 mass parts or more with respect to 100 mass parts of total mass of the said processing material. When the content of the flocculant is less than 50 parts by mass, the increase in the content of the cement composition increases the pH of the soil, making it difficult to maintain the neutral range. Although depending on the type of soil to be treated and the water content ratio, the content of the flocculant is preferably 60 to 90 parts by mass from the viewpoint of achieving high soil strength while maintaining the pH of the soil in a neutral range. 70 to 80 parts by mass is more preferable. The soil of the treated soil is preferably maintained in a neutral range of pH 5.8 to 8.6 from the viewpoint of reducing the load on the environment.
<建設発生土の処理方法>
本実施形態に係る土壌安定処理方法は、上記安定化処理材と建設発生土(被処理土)とを混合する工程を備える。両者を混合する方法は、特に限定されず、例えば、現場で混合を行うには被処理土に処理材を撒き出し、バックホウなどの重機を用いて混合すればよい。被処理土が流動性を有する場合は、被処理土に処理材を添加して攪拌することによって混合してもよい。
<Treatment method of construction waste soil>
The soil stabilization method according to the present embodiment includes a step of mixing the stabilization treatment material and the construction generated soil (treated soil). The method of mixing both is not specifically limited, For example, in order to mix on-site, a processing material should be sprinkled on to-be-processed soil and mixed using heavy machinery, such as a backhoe. When the soil to be treated has fluidity, it may be mixed by adding a treatment material to the soil to be treated and stirring.
被処理土の含水比ωは、高い強度の処理土を得る観点から、5〜1000%であることが好ましく、25〜1000%であることがより好ましい。なお、含水比ω(%)は、下記式(1)で定義されるものである。式中、WWは土壌に含まれる水の質量、WSは土壌に含まれる固形分の質量をそれぞれ示す。
ω=(WW/WS)×100 (1)
The water content ω of the soil to be treated is preferably 5 to 1000% and more preferably 25 to 1000% from the viewpoint of obtaining treated soil with high strength. The water content ratio ω (%) is defined by the following formula (1). In the formula, W W is the mass of water contained in the soil, W S is the mass of the solid content contained in the soil, respectively.
ω = (W W / W S ) × 100 (1)
被処理土に添加する処理材の量は、被処理土の特性あるいは処理土の用途又は要求性能に応じて適宜調整すればよい。例えば、建設発生土を有効利用する場合には、コーン指数が200kN/m2超となるように、処理材を添加することが好ましい。具体的には、被処理土1m3に対して処理材を100〜200kg程度添加することが好ましい。なお、廃棄する建設発生土を単に運びやすくする場合などにあっては、上記と比較して少なめの添加量でもよい。 What is necessary is just to adjust suitably the quantity of the processing material added to a to-be-processed soil according to the characteristic of a to-be-processed soil, the use of a treated soil, or required performance. For example, when the construction-generated soil is effectively used, it is preferable to add a treatment material so that the cone index exceeds 200 kN / m 2 . Specifically, it is preferable to add about 100 to 200 kg of treatment material to 1 m 3 of the soil to be treated. In addition, in the case where the construction generated soil to be discarded is simply transported, a smaller addition amount may be used as compared with the above.
本実施形態に係る処理材によって土壌のコーン指数が高くなるメカニズムは以下のように推察される。すなわち、走査電子顕微鏡観察結果によると、普通ポルトランドセメント又は高炉セメントB種と上記凝集剤とを混合することによって、図1(a)又は図2(a)に示すゲル状物質、並びに、図3(a)又は図4(a)に示す柱状物質が生成する。これらの物質について、EDS成分分析を行った(図1〜4のグラフ(b)参照)。その結果、ゲル状物質は主にAl,Cl,Ca及びSiを含み、その形態及び成分からCa2+を取り込んだ水酸化アルミニウムゲルであることが分った。他方、柱状物質は主にCa及びSを含み、その形態及び成分から石膏であることが分った。図5に示す通り、水酸化アルミニウムゲル中に柱状の石膏が分散しており、柱状の石膏が水酸化アルミニウムゲルの塊同士を繋いでいる。なお、SEM画像中の「Agel」は水酸化アルミニウムゲルを、「Gyp」は石膏を、「EDS」は成分分析を行った位置をそれぞれ意味する。 The mechanism by which the soil cone index is increased by the treatment material according to this embodiment is presumed as follows. That is, according to a scanning electron microscope observation result, by mixing ordinary Portland cement or blast furnace cement B type and the above-mentioned flocculant, the gel-like substance shown in FIG. 1A or FIG. The columnar substance shown in (a) or FIG. The EDS component analysis was performed about these substances (refer the graph (b) of FIGS. 1-4). As a result, it was found that the gel-like substance was an aluminum hydroxide gel mainly containing Al, Cl, Ca and Si and incorporating Ca 2+ from its form and components. On the other hand, it was found that the columnar substance mainly contains Ca and S and is gypsum from its form and components. As shown in FIG. 5, columnar gypsum is dispersed in the aluminum hydroxide gel, and the columnar gypsum connects the lumps of aluminum hydroxide gel. In the SEM image, “Agel” means aluminum hydroxide gel, “Gyp” means gypsum, and “EDS” means the position where component analysis was performed.
本発明に係る土壌安定処理材の効果を確認するため、複数の種類の処理材を調製し、これらを用いて土壌の処理試験を実施した。セメント及び凝集剤は以下のものを使用した。下記凝集剤に含まれる硫酸塩は、当該凝集剤の全質量を基準として8.5質量%であった。
普通ポルトランドセメント(OPC):太平洋セメント社製、
高炉セメントB種(BB):太平洋セメント社製、
凝集剤:大明化学工業社製 タイパック(商品名)。
In order to confirm the effect of the soil stabilization treatment material according to the present invention, a plurality of types of treatment materials were prepared, and a soil treatment test was performed using them. The following cement and flocculant were used. The sulfate contained in the following flocculant was 8.5% by mass based on the total mass of the flocculant.
Normal Portland cement (OPC): Taiheiyo Cement
Blast furnace cement type B (BB): Taiheiyo Cement Co., Ltd.
Flocculant: TAIPACK (trade name) manufactured by Daimei Chemical Industry Co., Ltd.
(実施例1〜5)
普通ポルトランドセメント(OPC)と凝集剤とを併用して5種類の処理材を調製した。表1に各凝集剤の配合比率を示す。他方、シルト質粘土を用いて含水比ωが42%の模擬土壌を準備した。このシルト質粘土の液性限界ωLは35%であり、含水比ωが42%とした場合には流動性を有するヘドロ状を呈する。
(Examples 1-5)
Five types of treatment materials were prepared using ordinary Portland cement (OPC) and a flocculant. Table 1 shows the blending ratio of each flocculant. On the other hand, simulated soil having a water content ω of 42% was prepared using silty clay. The silty clay has a liquidity limit ω L of 35%, and when the water content ratio ω is 42%, it exhibits a fluid sludge shape.
模擬土壌1m3に対して150kgの処理材を添加し、ホバートミキサーで1分間攪拌し、その後放置した。24時間経過後、処理後の模擬土壌に対して、ポータブルコーン貫入試験(JGS1228−2000)及びpH試験(JGS0211−2000)を実施した。表1に結果を示す。 150 kg of treatment material was added to 1 m 3 of simulated soil, stirred for 1 minute with a Hobart mixer, and then allowed to stand. After 24 hours, a portable corn penetration test (JGS1228-2000) and a pH test (JGS0211-2000) were performed on the treated simulated soil. Table 1 shows the results.
(実施例6〜10)
普通ポルトランドセメント(OPC)の代わりに高炉セメントB種(BB)を使用したことの他は、実施例1〜5と同様にして5種類の処理材をそれぞれ調製し、これらを用いて模擬土壌の処理を行った。また、処理後の土壌のコーン指数及びpHの測定も実施例1〜5と同様に行った。表2に結果を示す。
(Examples 6 to 10)
Except for using Blast Furnace Cement B (BB) instead of ordinary Portland Cement (OPC), five types of treatment materials were prepared in the same manner as in Examples 1 to 5, and using these, Processed. Moreover, the measurement of the corn index and pH of the soil after a process was also performed similarly to Examples 1-5. Table 2 shows the results.
(実施例11〜13)
実施例3に係る処理材を使用し、関東ローム(含水比140%)の処理を行った。処理材の添加量は、土壌1m3に対して100kg、150kg及び200kgとした。処理後の土壌のコーン指数及びpHの測定は実施例1〜5と同様に行った。表3に結果を示す。
(Examples 11 to 13)
The treatment material according to Example 3 was used to treat Kanto Loam (water content ratio: 140%). The amount of treatment material added was 100 kg, 150 kg, and 200 kg with respect to 1 m 3 of soil. The corn index and pH of the treated soil were measured in the same manner as in Examples 1-5. Table 3 shows the results.
Claims (2)
生石灰及び消石灰の少なくとも一方を含むカルシウム含有化合物と、
を含有する土壌安定処理材であり、
当該土壌安定処理材の全質量100質量部に対して前記凝集剤を50質量部以上含有し、前記凝集剤は当該凝集剤の全質量を基準とする硫酸塩の含有量が0.1〜20質量%であることを特徴とする土壌安定処理材。 A flocculant comprising polyaluminum chloride and sulfate;
A calcium-containing compound containing at least one of quicklime and slaked lime;
A soil stabilization treatment material containing
The flocculant is contained in an amount of 50 parts by mass or more with respect to 100 parts by mass of the total mass of the soil stabilization treatment material, and the flocculant has a sulfate content of 0.1 to 20 based on the total mass of the flocculant. A soil-stabilized material characterized by being mass%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009250754A JP5718562B2 (en) | 2009-10-30 | 2009-10-30 | Soil stabilization treatment material and soil stabilization treatment method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009250754A JP5718562B2 (en) | 2009-10-30 | 2009-10-30 | Soil stabilization treatment material and soil stabilization treatment method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011094063A true JP2011094063A (en) | 2011-05-12 |
JP5718562B2 JP5718562B2 (en) | 2015-05-13 |
Family
ID=44111344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009250754A Active JP5718562B2 (en) | 2009-10-30 | 2009-10-30 | Soil stabilization treatment material and soil stabilization treatment method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5718562B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2515479A1 (en) | 2011-04-20 | 2012-10-24 | Yokogawa Electric Corporation | Communication resource assignment system |
JP2014210255A (en) * | 2013-04-04 | 2014-11-13 | 宇部興産株式会社 | Method for solidifying soil weak-acidly |
JP2020032397A (en) * | 2018-08-28 | 2020-03-05 | 五洋建設株式会社 | Method of manufacturing solidified soil |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0975884A (en) * | 1995-09-08 | 1997-03-25 | Raito Kogyo Co Ltd | Collecting method for polluted substance and its barrier wall |
JP2000239660A (en) * | 1999-02-17 | 2000-09-05 | Tousei Sangyo Kk | Soil-solidifying agent |
JP2003064361A (en) * | 2001-08-29 | 2003-03-05 | Matsuda Giken Kogyo Kk | Soil hardener |
JP2005270783A (en) * | 2004-03-24 | 2005-10-06 | Japan Science & Technology Agency | Sludge treatment method using gypsum waste |
JP2007021461A (en) * | 2005-07-21 | 2007-02-01 | Daicel Chem Ind Ltd | Solidifying agent for water-containing sludge stabilizing treatment and water-containing sludge stabilizing treatment method |
-
2009
- 2009-10-30 JP JP2009250754A patent/JP5718562B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0975884A (en) * | 1995-09-08 | 1997-03-25 | Raito Kogyo Co Ltd | Collecting method for polluted substance and its barrier wall |
JP2000239660A (en) * | 1999-02-17 | 2000-09-05 | Tousei Sangyo Kk | Soil-solidifying agent |
JP2003064361A (en) * | 2001-08-29 | 2003-03-05 | Matsuda Giken Kogyo Kk | Soil hardener |
JP2005270783A (en) * | 2004-03-24 | 2005-10-06 | Japan Science & Technology Agency | Sludge treatment method using gypsum waste |
JP2007021461A (en) * | 2005-07-21 | 2007-02-01 | Daicel Chem Ind Ltd | Solidifying agent for water-containing sludge stabilizing treatment and water-containing sludge stabilizing treatment method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2515479A1 (en) | 2011-04-20 | 2012-10-24 | Yokogawa Electric Corporation | Communication resource assignment system |
JP2014210255A (en) * | 2013-04-04 | 2014-11-13 | 宇部興産株式会社 | Method for solidifying soil weak-acidly |
JP2020032397A (en) * | 2018-08-28 | 2020-03-05 | 五洋建設株式会社 | Method of manufacturing solidified soil |
JP7125073B2 (en) | 2018-08-28 | 2022-08-24 | 五洋建設株式会社 | Method for producing solidified soil |
Also Published As
Publication number | Publication date |
---|---|
JP5718562B2 (en) | 2015-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6787142B2 (en) | Heavy metal pollution control material and heavy metal pollution control method using the pollution control material | |
JP6485514B2 (en) | Heavy metal pollution control material and heavy metal pollution control method using the pollution control material | |
JP5500828B2 (en) | Soil hardening material | |
JP2005146275A (en) | Agent for improving, solidifying, and stabilizing soil and its quality | |
JP2007119341A (en) | Coal ash granulated sand and method of manufacturing coal ash granulated sand | |
JP2011093738A (en) | Cement-based solidifying material | |
JP7422071B2 (en) | Heavy metal insolubilization solidification material and method for improving contaminated soil | |
JP2012046704A (en) | Solidification material | |
JP5718562B2 (en) | Soil stabilization treatment material and soil stabilization treatment method using the same | |
CN107709267A (en) | Fast hard material, its manufacture method and the fast hydraulic cement composition using the fast hard material | |
JP6485513B1 (en) | Heavy metal pollution control material and heavy metal pollution control method using the pollution control material | |
JP4694434B2 (en) | By-product processing method | |
JP2008255171A (en) | Fixing agent for inorganic harmful component | |
JP2005272546A (en) | Soil neutralizing and solidifying material, and improved method for neutralizing and solidifying soil | |
JP6587114B1 (en) | Heavy metal pollution control material and heavy metal pollution control method using the pollution control material | |
JP2004292568A (en) | Soil solidifying material | |
JP6204099B2 (en) | Ground improvement method | |
JP7076337B2 (en) | Insolubilizer | |
JP2009185159A (en) | Soil-improving material and soil-improving method | |
JP2021041311A (en) | Solidifying material | |
JP7545653B2 (en) | Fluorine elution suppression type solidification material, improved soil, and manufacturing method of improved soil | |
JP6331514B2 (en) | Slightly acidic solidification method for soil | |
JP6166153B2 (en) | Ground improvement material | |
JP7381642B2 (en) | Solidification treatment method | |
JP2005162862A (en) | Heavy metal elution controller and method for controlling heavy metal elution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120417 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140402 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140729 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150317 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150319 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5718562 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |