JP2011089222A - Deodorization functional agent-containing ultrafine fiber and method for producing the same - Google Patents
Deodorization functional agent-containing ultrafine fiber and method for producing the same Download PDFInfo
- Publication number
- JP2011089222A JP2011089222A JP2009242557A JP2009242557A JP2011089222A JP 2011089222 A JP2011089222 A JP 2011089222A JP 2009242557 A JP2009242557 A JP 2009242557A JP 2009242557 A JP2009242557 A JP 2009242557A JP 2011089222 A JP2011089222 A JP 2011089222A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- functional agent
- ultrafine
- deodorant
- deodorizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003795 chemical substances by application Substances 0.000 title claims abstract description 74
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000004332 deodorization Methods 0.000 title abstract description 14
- 229920001410 Microfiber Polymers 0.000 title description 9
- 239000000835 fiber Substances 0.000 claims abstract description 112
- 230000001877 deodorizing effect Effects 0.000 claims abstract description 55
- 239000002781 deodorant agent Substances 0.000 claims abstract description 43
- 229920000642 polymer Polymers 0.000 claims abstract description 32
- 239000011163 secondary particle Substances 0.000 claims abstract description 22
- 239000002131 composite material Substances 0.000 claims description 17
- 229920000728 polyester Polymers 0.000 claims description 8
- 239000003242 anti bacterial agent Substances 0.000 claims description 7
- 239000003463 adsorbent Substances 0.000 claims description 6
- 238000002074 melt spinning Methods 0.000 claims description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 4
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 claims description 4
- 238000004804 winding Methods 0.000 claims description 4
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910001431 copper ion Inorganic materials 0.000 claims description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 2
- 150000004692 metal hydroxides Chemical class 0.000 claims description 2
- 229910021645 metal ion Inorganic materials 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical group 0.000 claims description 2
- 229910001463 metal phosphate Inorganic materials 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 229910001923 silver oxide Inorganic materials 0.000 claims description 2
- 239000011787 zinc oxide Substances 0.000 claims description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 2
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 claims 1
- 230000006866 deterioration Effects 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 27
- -1 polyethylene terephthalate Polymers 0.000 description 14
- 239000011941 photocatalyst Substances 0.000 description 13
- 208000012886 Vertigo Diseases 0.000 description 12
- 238000009987 spinning Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 8
- 235000019645 odor Nutrition 0.000 description 8
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 7
- 239000004744 fabric Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000004594 Masterbatch (MB) Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241000282320 Panthera leo Species 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 229920005601 base polymer Polymers 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000009940 knitting Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920002620 polyvinyl fluoride Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- YZTJKOLMWJNVFH-UHFFFAOYSA-N 2-sulfobenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1S(O)(=O)=O YZTJKOLMWJNVFH-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000208125 Nicotiana Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000895 acaricidal effect Effects 0.000 description 1
- 239000000642 acaricide Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000005003 food packaging material Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Multicomponent Fibers (AREA)
- Artificial Filaments (AREA)
Abstract
Description
本発明は、優れた消臭機能を発現可能な消臭機能剤含有極細繊維およびその製造方法に関するものである。更に詳しくは消臭機能剤が繊維から脱落せず、かつ従来になく消臭機能を効果的に発現させることが可能な極細マルチフィラメントおよびその製造方法に関するものである。 The present invention relates to a deodorant functional agent-containing ultrafine fiber capable of exhibiting an excellent deodorant function and a method for producing the same. More specifically, the present invention relates to an ultrafine multifilament in which a deodorant functional agent does not fall off from a fiber and can effectively exhibit a deodorant function, and a method for producing the same.
近年、快適生活を指向する生活環境の多様化に伴い、家庭だけでなく、オフィスや病院などにおいても種々の臭いに対する関心が高くなってきている。また、住宅の気密性の向上に伴い、顕在化してきた問題として、住居内における悪臭や有害な成分、例えばホルムアルデヒドのような成分への対応が迫られてきている。 In recent years, with the diversification of living environments oriented toward comfortable living, interest in various odors has increased not only at home but also in offices and hospitals. In addition, with the improvement of the airtightness of houses, as a problem that has become apparent, it is necessary to deal with malodors and harmful components in the dwelling, such as formaldehyde.
このような状況において、消臭性能を有する繊維構造物を使用して悪臭を取り除く試みが種々提案されており、単なる吸着機能だけでなく、光触媒など分解機能も有しているものが永続的な消臭性能を発揮し続けることができるものとして提案されている。 In such a situation, various attempts to remove malodors using a fiber structure having deodorizing performance have been proposed, and not only a simple adsorption function but also a decomposition function such as a photocatalyst is permanent. It has been proposed as one that can continue to exhibit deodorant performance.
従来、光触媒消臭性能の繊維構造物への付与方法は、例えば繊維構造物に後加工を施して消臭成分を付着させる方法(特開2001−254281号公報など)が提案されているが、この方法では消臭性能を有する機能剤粒子が繊維表面に存在する為に機能剤粒子の脱落が起こりやすく、付着の為にバインダーを用いる為、繊維布帛そのものの風合いが硬くなるなどの問題を有している。 Conventionally, as a method for imparting photocatalytic deodorization performance to a fiber structure, for example, a method of applying a post-processing to the fiber structure to attach a deodorant component (JP 2001-254281 A, etc.) has been proposed. In this method, functional agent particles having a deodorizing performance are present on the fiber surface, so that the functional agent particles are likely to fall off, and since a binder is used for adhesion, the texture of the fiber fabric itself becomes hard. is doing.
これらの耐久性や風合いの問題を解決する為に、光触媒を繊維中に練り込んだものが種々提案されている(特開2005−220471号公報など)。しかしこの方法では光触媒が繊維に埋没する為、臭い成分と光触媒の反応が繊維構成ポリマーによって制限され、光触媒の性能が発揮され難いという問題を有する。また、光触媒自身による基材の劣化により繊維強度が経時的に低下するという問題があった。その対策として、特開2004−169217号公報などの様に、芯鞘型複合繊維の鞘部にのみ光触媒を担持させ、芯部で強度を確保する方法が提案されている。 In order to solve these problems of durability and texture, various types in which a photocatalyst is kneaded into fibers have been proposed (Japanese Patent Laid-Open No. 2005-220471, etc.). However, in this method, since the photocatalyst is buried in the fiber, the reaction between the odor component and the photocatalyst is limited by the fiber-constituting polymer, so that the performance of the photocatalyst is hardly exhibited. In addition, there is a problem that the fiber strength decreases with time due to deterioration of the base material by the photocatalyst itself. As a countermeasure, a method has been proposed in which a photocatalyst is supported only on a sheath portion of a core-sheath type composite fiber and strength is secured at the core portion as disclosed in JP-A-2004-169217.
しかしこの方法では強度の問題は解決されるものの、光触媒が鞘部に埋没し機能が発現しにくい問題があった。これらの問題を解決する為に、光触媒を練り込んだ剥離分割型複合繊維を分割することにより、繊維表面への光触媒の露出割合を増やし、性能の発現を容易にする方法が提案されている(特開平10−204727号公報)。この方法により露出割合は増加し且つ細繊度化できるため、ある程度光触媒効果及び風合いの向上を図ることができるものの、分割率が変動するため安定した品質のものが得られないという問題があった。 However, although this method solves the problem of strength, there is a problem that the photocatalyst is buried in the sheath portion and the function is difficult to express. In order to solve these problems, a method for increasing the exposure ratio of the photocatalyst to the fiber surface by splitting the separation-dividing composite fiber kneaded with the photocatalyst and facilitating the expression of the performance has been proposed ( JP-A-10-204727). Although the exposure ratio can be increased and the fineness can be reduced by this method, the photocatalytic effect and the texture can be improved to some extent, but there is a problem that a stable quality cannot be obtained because the division ratio varies.
本発明の目的は、従来技術の有する課題を克服し、優れた消臭性能を有し、長期間の使用や繰返しの洗濯等によっても初期の性能の劣化が少ない消臭機能剤含有極細マルチフィラメントとその製造方法を提供することにある。 The object of the present invention is to overcome the problems of the prior art, have an excellent deodorizing performance, and have a deodorizing functional agent-containing ultrafine multifilament with little deterioration in initial performance even after long-term use, repeated washing, etc. And providing a manufacturing method thereof.
本発明者等は、上記問題を解決するため鋭意検討した結果、極細繊維中に含有する消臭機能剤の粒子径と繊維直径とを特定範囲に制御するとき、上記消臭機能剤含有極細マルチフィラメントが得られることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have determined that when the particle size and fiber diameter of the deodorizing functional agent contained in the ultrafine fiber are controlled within a specific range, the deodorizing functional agent-containing ultrafine multi It has been found that a filament can be obtained.
すなわち、本発明によれば、
下記要件を満足することを特徴とする消臭機能剤含有極細マルチフィラメント、
a)極細単糸繊維の平均直径が200〜2000nmであること。
b)消臭機能剤の平均2次粒子径が0.1〜2μmであること。
c)極細単糸繊維直径以上の2次粒子径を有する消臭機能剤を含み、該消臭機能剤のうち繊維ポリマーに被覆されることなく繊維表面に露出している部分が存在するものの個数が5〜25ケ/25μm2であること。
及び、海成分と島成分からなる海島型複合繊維から海成分を除去し島成分からなる極細マルチフィラメントとする極細マルチフィラメントの製造方法において、下記要件を満足する消臭機能剤含有極細マルチフィラメントの製造方法、
a)島成分からなる極細単糸繊維の平均直径が200〜2000nmであること。
b)島成分に極細単糸繊維直径以上の2次粒子径を有する消臭機能剤を含むこと。
c)海島型複合繊維が溶融紡糸し、一旦巻き取ることなく直接延伸することにより得られたものであること。
が提供される。
That is, according to the present invention,
Deodorant functional agent-containing ultrafine multifilament, which satisfies the following requirements:
a) The average diameter of the ultrafine single yarn fibers is 200 to 2000 nm.
b) The average secondary particle diameter of the deodorant functional agent is 0.1 to 2 μm.
c) The number of deodorizing functional agents having a secondary particle diameter equal to or larger than the diameter of the ultrafine single yarn fiber, and the portions exposed to the fiber surface without being coated with the fiber polymer. 5 to 25/25 μm 2 .
In addition, in the method for producing an ultrafine multifilament that removes the sea component from the sea-island type composite fiber composed of the sea component and the island component to form an ultrafine multifilament composed of the island component, the deodorant functional agent-containing ultrafine multifilament satisfying the following requirements: Production method,
a) The average diameter of the ultrafine single yarn fibers made of island components is 200 to 2000 nm.
b) The island component contains a deodorizing functional agent having a secondary particle diameter equal to or larger than the diameter of the ultrafine single yarn fiber.
c) The sea-island type composite fiber is obtained by melt spinning and drawing directly without winding.
Is provided.
本発明により、消臭機能を効果的に発現できると共に優れた強度を有し、かつ長期間に亘る使用においても繊維強度の低下が少ない消臭機能剤含有極細マルチフィラメントを提供できる。消臭性物質が繊維表面にむき出し、あるいは非常に薄く繊維を形成するポリマーによって被覆されている状態であり、繊維中に埋没している従来の消臭性物質練り込み型繊維と比較して圧倒的に消臭効率が向上する。 According to the present invention, it is possible to provide a deodorant functional agent-containing ultrafine multifilament that can effectively exhibit a deodorizing function, has excellent strength, and has little decrease in fiber strength even when used for a long period of time. The deodorant substance is exposed on the fiber surface or is coated with a polymer that forms a very thin fiber, and it is overwhelming compared to conventional deodorant substance-kneaded fibers embedded in the fiber. Deodorizing efficiency is improved.
本発明の消臭機能剤含有極細繊維を構成するポリマーは、繊維形成能を有する結晶性熱可塑性ポリマーであれば特に制限されず、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等のポリエステル、ナイロン6、ナイロン66等のポリアミドなどを挙げることができ、なかでも汎用的に用いられ、コスト面や性能のバランスのとれたポリエチレンテレフタレートを使用することが好ましい。 The polymer constituting the deodorant functional agent-containing ultrafine fiber of the present invention is not particularly limited as long as it is a crystalline thermoplastic polymer having fiber forming ability. For example, polyester such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, etc. Polyamides such as nylon 6, nylon 66, etc. can be mentioned. Among them, it is preferable to use polyethylene terephthalate which is used for general purposes and has a good balance of cost and performance.
本発明の消臭機能剤含有極細マルチフィラメントを構成する極細単糸繊維の軸方向に直交する断面における平均直径は、200〜2000nmであることが必要である。平均直径が200nm未満の場合は、消臭機能剤の凝集によって繊維の形成が困難となり、一方、平均直径が2000nmを超す場合はソフトな風合いが得られず、又消臭機能剤径の大きなものを用いないと光触媒の露出度合いが少なくなり、また繊維比表面積が減少する為、消臭性物質の吸着(消臭)効率が下がる。好ましくは、300〜1000nmである。 The average diameter in the cross section orthogonal to the axial direction of the ultrafine single yarn fiber constituting the deodorant functional agent-containing ultrafine multifilament of the present invention needs to be 200 to 2000 nm. When the average diameter is less than 200 nm, it becomes difficult to form fibers due to the aggregation of the deodorizing functional agent. On the other hand, when the average diameter exceeds 2000 nm, a soft texture cannot be obtained and the deodorizing functional agent has a large diameter. Without using the photocatalyst, the degree of exposure of the photocatalyst decreases and the specific surface area of the fiber decreases, so that the adsorption (deodorization) efficiency of the deodorant substance decreases. Preferably, it is 300-1000 nm.
一般的に消臭機能剤として吸着剤を使用した場合も、繊維に練り込むと繊維を構成するポリマー自身が吸着剤の吸収性能を妨げ、効率が落ちてしまう。
そこで本発明の消臭機能剤含有極細マルチフィラメントにおいては、極細単糸繊維の平均直径よりも大きな2次粒子径を有する消臭機能剤を少なくとも含有し、且つ該極細単糸繊維の平均直径よりも大きな2次粒子径を有する消臭機能剤が繊維ポリマーにより被覆されない部分が存在することが特徴であり、その結果消臭効率が飛躍的に向上する。
In general, when an adsorbent is used as a deodorant functional agent, when kneaded into the fiber, the polymer itself constituting the fiber hinders the absorption performance of the adsorbent, and the efficiency is lowered.
Therefore, the deodorizing functional agent-containing ultrafine multifilament of the present invention contains at least a deodorizing functional agent having a secondary particle diameter larger than the average diameter of the ultrafine single yarn fiber, and from the average diameter of the ultrafine single yarn fiber. The deodorizing functional agent having a large secondary particle size is characterized in that there is a portion that is not covered with the fiber polymer, and as a result, the deodorizing efficiency is dramatically improved.
通常、繊維の直径よりも大きな粒子を含有する様な繊維は紡糸時に曳糸性がその粒子により阻害される為製造が困難であり、特に極細化は至難である。
しかしながら、本発明においては、海島複合繊維の島成分に消臭機能剤を含有させ、海成分を除去して島成分からなる極細繊維とする方法を採用することにより上記繊維が製造可能であることを見出したものである。すなわち海島複合繊維においては島成分が脆い繊維(2次粒子径が単糸繊維直径よりも大きいものを含むような繊維、従って強度の低い繊維)であったとしても海成分により紡糸延伸上の強度保持が可能となる。又海成分を除去した極細化後であってもマルチフィラメントであることにより強度を保持することが可能となる。
Usually, fibers containing particles larger than the diameter of the fibers are difficult to produce because the spinnability is hindered by the particles during spinning, and it is particularly difficult to make them extremely fine.
However, in the present invention, the fiber can be produced by adopting a method of adding a deodorizing functional agent to the island component of the sea-island composite fiber and removing the sea component to form an ultrafine fiber composed of the island component. Is found. That is, in the sea-island composite fiber, even if the island component is a brittle fiber (a fiber having a secondary particle diameter larger than the single yarn fiber diameter, and thus a low-strength fiber), the strength in spinning drawing by the sea component. Holding is possible. In addition, even after ultra-thinning after removing sea components, the strength can be maintained by the multifilament.
更に海島複合繊維の複合紡糸時に一旦巻き取りすることなく引き続いて延伸処理する紡糸直接延伸法が好ましい。紡糸直接延伸法によって極細単糸繊維直径以上の2次粒子径の消臭機能剤が繊維ポリマーの延伸に追随できず、繊維ポリマーで被覆されず繊維表面に露出する部分が多くなる。ここで消臭効果と繊維物性をバランスするには、該消臭機能剤のうち繊維ポリマーに被覆されず繊維表面に露出している部分が5ケ/25μm2以上存在していることが必要である。 Further, a spinning direct stretching method in which the sea-island composite fiber is continuously stretched without being wound once at the time of composite spinning is preferable. The deodorizing functional agent having a secondary particle diameter equal to or larger than the diameter of the ultrafine single yarn fiber cannot follow the drawing of the fiber polymer by the spinning direct drawing method, and the portion exposed to the fiber surface without being coated with the fiber polymer increases. Here, in order to balance the deodorizing effect and the physical properties of the fiber, it is necessary that a portion of the deodorizing functional agent that is not coated with the fiber polymer and exposed on the fiber surface is present at 5/25 μm 2 or more. is there.
但し、繊維表面に露出している部分があまり多すぎると、繊維の品質(強度、伸度、毛羽)が著しく低下するという問題が発生するので、繊維表面に露出している部分の個数は25ケ/25μm2以下であることが好ましい。 However, if too many parts are exposed on the fiber surface, there is a problem in that the quality (strength, elongation, fluff) of the fiber is significantly reduced. Therefore, the number of parts exposed on the fiber surface is 25. It is preferable that the thickness is 25 / m 2 or less.
この際、消臭機能剤は繊維ポリマーに対して異物であり、消臭機能剤を含有する部分の繊維ポリマー量が少ないことによって、延伸に追随できずに亀裂が生じ、消臭機能剤が繊維ポリマーと遊離する部分(露出部分)が生じることとなる。この露出部分によって臭気成分との接触効率が向上し、吸着(消臭)性能が飛躍的に増加することとなる。 At this time, the deodorizing functional agent is a foreign substance with respect to the fiber polymer, and since the amount of the fiber polymer in the portion containing the deodorizing functional agent is small, cracks occur without being able to follow the drawing, and the deodorizing functional agent is a fiber. A polymer and a free part (exposed part) will be generated. This exposed portion improves the contact efficiency with the odor component, and the adsorption (deodorization) performance is dramatically increased.
本発明の消臭機能剤含有極細マルチフィラメントの単糸断面形状は特に限定されず異形断面でも良い。異形断面の具体例としてはT字形、U字形、V字形、H字形、Y字形、W字形、3〜14葉型、多角形等を挙げることができるが、本発明においてはこれらの形状に限定されるものではない。また、中実繊維であっても中空繊維であってもよい。 The single yarn cross-sectional shape of the deodorant functional agent-containing ultrafine multifilament of the present invention is not particularly limited, and may be an irregular cross-section. Specific examples of the modified cross section include a T-shape, U-shape, V-shape, H-shape, Y-shape, W-shape, 3-14 leaf shape, polygonal shape, etc., but the present invention is limited to these shapes. Is not to be done. Further, it may be a solid fiber or a hollow fiber.
本発明において、消臭機能剤として、吸着剤、消臭剤、抗菌剤、制菌剤の群から選ばれるすくなくとも1種が使用可能で、いずれか或いは複数を含んでいても良い。吸着剤や消臭剤、抗菌剤や制菌剤の区別は明確ではなく、特に限定しないが、以下の成分を含むものである。具体的には、銀イオン、銅イオン、亜鉛イオンからなる群から選ばれる少なくとも一種の金属イオン、及び/又は酸化銀、酸化亜鉛、酸化アルミニウム、酸化珪素、酸化ジルコニウムの群から選ばれる少なくとも1種の金属酸化物、及び/又は四価金属のリン酸塩、及び/又は二価金属の水酸化物、を主たる成分として含んでいるものが好ましい。 In the present invention, as the deodorizing functional agent, at least one selected from the group consisting of an adsorbent, a deodorant, an antibacterial agent and an antibacterial agent can be used, and any or a plurality of them may be included. The distinction between adsorbents, deodorants, antibacterial agents and antibacterial agents is not clear and is not particularly limited, but includes the following components. Specifically, at least one metal ion selected from the group consisting of silver ions, copper ions, and zinc ions, and / or at least one selected from the group consisting of silver oxide, zinc oxide, aluminum oxide, silicon oxide, and zirconium oxide. The main component is preferably a metal oxide and / or a tetravalent metal phosphate and / or a divalent metal hydroxide.
具体的には水澤化学製“ミズカナイト”、ライオン製“ライオナイト”、協和化学工業製“ハイドロタルサイト類化合物”、東亞合成製“ケスモン”シリーズ、“ノバロン”シリーズ、ラサ工業製“KD−211GF”、チタン工業製“TZ−100”、“SZ−100S”などから選ばれる一種以上を混合して使用可能である。 Specifically, "Mizukanite" manufactured by Mizusawa Chemical, "Lionite" manufactured by Lion, "Hydrotalcite compound" manufactured by Kyowa Chemical Industry, "Kesmon" series manufactured by Toagosei, "Novaron" series, "KD-211GF" manufactured by Rasa Industrial ”, One or more selected from“ TZ-100 ”,“ SZ-100S ”, etc. manufactured by Titanium Industry can be used.
また、該消臭機能剤の平均2次粒子径は、0.1〜2μmであることが必要である。さらに好ましくは0.2〜1.5μmである。粒子径が2μmを越えると、たとえば溶融紡糸時にフィルター詰まりや毛羽断糸が生じ易くなり、延伸時の糸切れも増大しやすくなる。 Moreover, the average secondary particle diameter of this deodorizing functional agent needs to be 0.1-2 micrometers. More preferably, it is 0.2-1.5 micrometers. When the particle diameter exceeds 2 μm, for example, filter clogging and fluff yarn are likely to occur during melt spinning, and yarn breakage during stretching tends to increase.
該消臭機能剤の使用量は、繊維の品質(強度、伸度、毛羽)を損なわない広い範囲から選択でき、たとえば繊維全体に対して0.1〜25質量%、好ましくは0.3〜20質量%、さらに好ましくは0.5〜10重量%の範囲である。 The amount of the deodorizing functional agent used can be selected from a wide range that does not impair the quality (strength, elongation, fluff) of the fiber, for example, 0.1 to 25% by weight, preferably 0.3 to It is 20 mass%, More preferably, it is the range of 0.5-10 weight%.
上述のように、消臭機能剤を島成分ポリマーに添加する方法としては、
1.島成分ポリマーの重合時または重合直後に消臭機能剤を添加含有させる方法、2.島成分ポリマーをベースとする消臭機能剤を含有するマスターバッチを作製しておき、それを使用する方法、3.紡糸するまでの任意の段階(例えば、ポリマーのペレットの作製段階、溶融紡糸段階など)で消臭機能剤を添加させる方法などを挙げることができるが、重合時の触媒活性による副反応の防止などの観点からマスターバッチ添加法が好ましく用いられる。
また、本発明の消臭機能剤含有極細繊維マルチフィラメントにおいては触媒性能を向上させるために、上記消臭機能剤を複数併用しても良い。
As described above, as a method of adding the deodorant functional agent to the island component polymer,
1. 1. A method of adding and containing a deodorizing functional agent during or immediately after polymerization of the island component polymer. 2. A method for preparing a masterbatch containing a deodorizing functional agent based on an island component polymer and using it. Examples include a method of adding a deodorizing functional agent at any stage until spinning (for example, polymer pellet production stage, melt spinning stage, etc.), but prevention of side reactions due to catalytic activity during polymerization, etc. From this point of view, the master batch addition method is preferably used.
In the deodorant functional agent-containing ultrafine fiber multifilament of the present invention, a plurality of the above deodorant functional agents may be used in combination in order to improve the catalyst performance.
本発明で使用する海島型複合繊維は例えば図1、図2に示すような公知の海島型複合紡糸口金を用い、前述の島成分、海成分を溶融状態で繊維状に押出し、それを500〜3500m/分の速度で溶融紡糸後、一旦巻き取ることなく延伸、熱処理することが必要である。 The sea-island type composite fiber used in the present invention uses, for example, a known sea-island type composite spinneret as shown in FIGS. 1 and 2, and extrudes the aforementioned island component and sea component into a fiber state in a molten state. After melt spinning at a speed of 3500 m / min, it is necessary to stretch and heat-treat without winding.
島数は多いほうが海溶解後の島成分からなる繊維が細くなり、100〜1,000島/単糸であることが好ましい。100島未満では、島比率が小さい場合に極細繊維としての効果が期待できない。一方、1,000島を超えると、紡糸口金の製造コストが高くなるだけでなく、加工精度自体も低下しやすくなる。好ましくは、500〜1,000島である。 The larger the number of islands, the finer the fibers composed of the island components after dissolution in the sea, and preferably 100 to 1,000 islands / single yarn. If it is less than 100 islands, the effect as an ultrafine fiber cannot be expected when the island ratio is small. On the other hand, if it exceeds 1,000 islands, not only the production cost of the spinneret increases, but also the processing accuracy itself tends to decrease. Preferably, it is 500 to 1,000 islands.
海成分の島成分に対する溶解速度比は、海成分が島成分の30〜5,000倍であることが好ましい。より好ましくは、100〜4,000倍である。溶解速度比が30倍未満の場合には、繊維断面表層部の分離した島成分の一部が溶解されて、繊維断面中央部にある海成分まで溶解されないという問題が起こり易くなる。これにより、島成分の消臭機能剤が露出せず消臭性能が低下する。一方、溶解速度比が5,000倍を超えると、海成分を除去するのに時間がかかり繊維化が難しい。 The dissolution rate ratio of the sea component to the island component is preferably 30 to 5,000 times that of the island component. More preferably, it is 100 to 4,000 times. When the dissolution rate ratio is less than 30 times, a part of the separated island component of the fiber cross-section surface layer portion is dissolved, and the problem that the sea component at the center of the fiber cross-section is not dissolved easily occurs. Thereby, the deodorant functional agent of an island component is not exposed but deodorant performance falls. On the other hand, if the dissolution rate ratio exceeds 5,000 times, it takes time to remove the sea component and fiberization is difficult.
かかる海島型複合繊維を構成するポリマーとして、海成分ポリマーとしては、島成分との溶剤溶解速度差が30倍以上であれば、いかなる繊維形成性ポリマーであってもよく、ポリアミド、ポリスチレン、ポリエチレン、ポリエステルなどいずれのポリマーでも良い。なかでもポリエステルは溶剤溶解性を調節する上で好ましい。例えば、水酸化カリウム、水酸化ナトリウム等のアルカリ水溶液溶解性ポリマーの場合は、ポリ乳酸、ポリエチレングリコール系共重合ポリエステル、5−ナトリウムスルホン酸イソフタル酸の共重合ポリエステルが最適である。特に海島複合繊維とした後、製編織し、公知のアルカリ減量装置を用いて海成分を溶解除去し、極細化することが好ましい。また、ナイロン6はギ酸に溶解し、ポリスチレンはトルエンなど有機溶剤に溶解することができる。 As the polymer constituting the sea-island type composite fiber, the sea component polymer may be any fiber-forming polymer as long as the solvent dissolution rate difference with the island component is 30 times or more, such as polyamide, polystyrene, polyethylene, Any polymer such as polyester may be used. Of these, polyester is preferable for adjusting the solvent solubility. For example, in the case of an alkaline aqueous solution-soluble polymer such as potassium hydroxide or sodium hydroxide, polylactic acid, polyethylene glycol copolymer polyester, and copolymerized polyester of 5-sodium sulfonic acid isophthalic acid are optimal. In particular, it is preferable to make the sea-island composite fiber, then weave and weave it, and dissolve and remove the sea component using a known alkali weight loss device to make it ultrafine. Nylon 6 can be dissolved in formic acid, and polystyrene can be dissolved in an organic solvent such as toluene.
一方、島成分ポリマーについても、いかなる繊維形成性ポリマーであってもよく、ポリアミド系、ポリスチレン系、ポリエチレン系、ポリエステル系などいずれのポリマーでも良い。好ましくはポリエチレンテレフタレートである。 On the other hand, the island component polymer may be any fiber-forming polymer, and may be any polymer such as polyamide, polystyrene, polyethylene, or polyester. Polyethylene terephthalate is preferable.
本発明の消臭機能剤含有極細マルチフィラメントは、繊維の長さ方向の形態が特に制限されるものではない。すなわち、繊維の長さ方向にほぼ同じ直径を有する繊維であってもよく、太細を有するシックアンドシン繊維であってもよく、それ以外の繊維であってもよい。さらに消臭機能剤含有極細繊維は短繊維または長繊維のいずれであってもよく、繊維製品が糸である場合、紡績糸、マルチフィラメント糸、短繊維と長繊維との複合糸であってもよい。さらに本発明の繊維には、用途や繊維の種類に応じて、仮撚加工、インターレース加工などの空気絡合処理、捲縮加工、防縮処理、防皺処理、親水加工、防水加工、防染加工などの任意の加工・処理が施されてもよい。 The deodorant functional agent-containing ultrafine multifilament of the present invention is not particularly limited in the form in the fiber length direction. That is, the fibers may have substantially the same diameter in the fiber length direction, may be thick and thin thick and thin fibers, or may be other fibers. Further, the deodorant functional agent-containing ultrafine fiber may be either a short fiber or a long fiber. When the fiber product is a yarn, it may be a spun yarn, a multifilament yarn, or a composite yarn of short and long fibers. Good. Furthermore, the fiber of the present invention has an air entanglement process such as false twisting and interlace processing, crimping process, crimping process, weathering process, hydrophilic process, waterproofing process and dyeing process depending on the application and type of fiber. Arbitrary processing / processing such as may be performed.
本発明の消臭機能剤含有極細マルチフィラメントは上述の消臭機能剤の他に、繊維の種類に応じて通常用いられている各種の添加剤、たとえば酸化防止剤、難燃剤、帯電防止剤、着色剤、滑剤、防虫・防ダニ剤、防カビ剤、紫外線吸収剤、艶消剤等を含有してもよい。 The deodorant functional agent-containing ultrafine multifilament of the present invention is not only the above-mentioned deodorant functional agent, but also various additives usually used according to the type of fiber, for example, an antioxidant, a flame retardant, an antistatic agent, Coloring agents, lubricants, insect and acaricides, fungicides, UV absorbers, matting agents and the like may be included.
また本発明の消臭機能剤含有極細マルチフィラメントは種々の繊維製品として利用することができ、糸、織布、編布、不織布等の布帛、パイル織物、パイル編物等のパイル布帛、これらのものから形成された衣類やその他の身体着用品、インテリア製品類、寝具類、食品用包装材などを挙げることができる。具体的には下着、セーター、ジャケット、パジャマ、浴衣、白衣、スラックス、靴下、手袋、ストッキング、エプロン、マスク、タオル、ハンカチ、サポーター、ヘッドハンド、帽子、靴のインソール、芯地等の衣類や身体着用品、各種カーペット、カーテン、のれん、壁紙、障子紙、襖、繊維製ブラインド、人工観葉植物、椅子等の布張用生地、テーブルクロス、電気製品カバー、畳、布団の中詰材(詰綿等)、布団の側地、シーツ、毛布、布団カバー、枕、枕カバー、ベッドカバー、ベッドの中詰材、マット、衛生材料、便座カバー、ワイピングクロス、空気清浄機やエアーコンディショナー等のフィルターなどを挙げることができる。 Further, the deodorant functional agent-containing ultrafine multifilament of the present invention can be used as various fiber products, such as yarns, woven fabrics, knitted fabrics, non-woven fabrics, pile fabrics, pile fabrics such as pile knitted fabrics, and the like. Garments and other body-worn items, interior products, bedding, food packaging materials, and the like formed from the above. Specifically, clothing and body such as underwear, sweater, jacket, pajamas, yukata, white robe, slacks, socks, gloves, stockings, apron, mask, towel, handkerchief, supporter, head hand, hat, shoe insole, interlining Wearing items, various carpets, curtains, goodwill, wallpaper, shoji paper, cocoons, textile blinds, artificial ornamental plants, fabrics for upholstery such as chairs, table cloths, electrical product covers, tatami mats, futon filling Etc.), Duvet side, sheets, blankets, duvet covers, pillows, pillow covers, bed covers, bed filling materials, mats, sanitary materials, toilet seat covers, wiping cloths, filters such as air purifiers and air conditioners Can be mentioned.
本発明の消臭機能剤含有極細マルチフィラメントおよび該繊維を用いた繊維製品の性能として、例えば、太陽光、蛍光灯、紫外線ランプ等の光照射により、アンモニア、アミン類等の塩基性臭気成分、酢酸等の酸性臭気成分、ホルマリン、アセトアルデヒド等の中性臭気成分などの多くに臭気成分を速やかに、しかも長期に亘り分解し、無臭化することができる。そのため、多数の臭気成分を含むたばこ臭等であっても効率よく除去でき、室内や車内の消臭に有効である。また家具や新建材などから発生するホルマリン、アセトアルデヒド等のアルデヒド類の消臭に対しても有効である。 As the performance of the deodorant functional agent-containing ultrafine multifilament and the fiber product using the fiber of the present invention, for example, basic odor components such as ammonia and amines by light irradiation of sunlight, fluorescent lamp, ultraviolet lamp, etc. The odorous component can be decomposed quickly and over a long period of time to many components such as acidic odorous components such as acetic acid and neutral odorous components such as formalin and acetaldehyde. Therefore, even tobacco odors containing a large number of odor components can be efficiently removed, and it is effective for deodorizing indoors and cars. It is also effective for deodorizing aldehydes such as formalin and acetaldehyde generated from furniture and new building materials.
なお光照射においては消臭機能剤に応じた波長の光線が利用できる。この光線の波長は消臭触媒機能を励起する波長であればよいが、通常、紫外線を含む光線である場合が多い。消臭機能剤として酸化チタンを用いた場合、太陽光や蛍光灯の光でも十分その触媒機能を有効に働かせることができる。なお、光照射は、通常、酸素、空気等の酸素含有基体の存在下で行われる。 In light irradiation, a light beam having a wavelength corresponding to the deodorant functional agent can be used. The wavelength of the light beam may be a wavelength that excites the deodorizing catalyst function, but is usually a light beam including ultraviolet rays. When titanium oxide is used as the deodorizing functional agent, the catalytic function can be made to work effectively even with sunlight or light from a fluorescent lamp. In addition, light irradiation is normally performed in presence of oxygen containing base | substrates, such as oxygen and air.
以下、実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明の範囲は、その要旨を超えない限りこれらに何ら限定されるものではない。なお、実施例中の各特性値は下記の方法で測定した。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, unless the range of this invention exceeds the summary, it is not limited to these at all. In addition, each characteristic value in an Example was measured with the following method.
(1)消臭性能
消臭性繊維の消臭性能は下記の測定法により消臭率で評価した。
臭気成分の初期濃度をアンモニア100ppmとした総量3リットル分を、試料量1gの筒網状試料と共にテドラーバッグ内に封入し、消臭機能剤として光触媒を用いた場合のみ紫外線ランプを1.2mW/cm2・hrの強度で照射し、24hr後の容器中の臭気成分の残存濃度を検知管を用いて測定して求めた。空試験として試料を入れないで同様の測定を実施し、以下の式にて消臭率を算出した。
消臭率(%)=100×(C0−C1)/C0
C0:空試験の24時間後濃度
C1:試料を入れたテドラーバッグの24時間後濃度
(1) Deodorization performance The deodorization performance of the deodorant fiber was evaluated by the deodorization rate by the following measurement method.
A total amount of 3 liters with an initial odor component concentration of 100 ppm of ammonia was enclosed in a Tedlar bag together with a 1 g sample of a cylindrical net sample, and an ultraviolet lamp was 1.2 mW / cm 2 only when a photocatalyst was used as a deodorizing functional agent. Irradiation was performed at an intensity of hr, and the residual concentration of odorous components in the container after 24 hours was measured using a detector tube. The same measurement was carried out as a blank test without putting a sample, and the deodorization rate was calculated by the following formula.
Deodorization rate (%) = 100 × (C 0 −C 1 ) / C 0
C 0 : Concentration after 24 hours of blank test C 1 : Concentration after 24 hours of Tedlar bag containing sample
(2)露出している粒子の個数
引き揃えた延伸糸の側面を走査型電子顕微鏡にて5000倍にて撮影し、繊維表面が裂けて粒子が剥き出しになっている部分の個数を数え、25μm2当たりの個数としてn=10にて測定し、平均値として算出した。
(2) Number of exposed particles The side surfaces of the drawn drawn yarns were photographed with a scanning electron microscope at a magnification of 5000 times, and the number of portions where the fiber surface was torn and the particles were exposed was counted. The number per 2 was measured at n = 10 and calculated as an average value.
(3)単糸径より太い部分の個数
露出している粒子の個数と同様に、写真から平均単糸径より明らかに太くなっている部分の個数を数え、25μm2当たりの個数としてn=10にて測定し、平均値として算出した。
(3) Number of portions thicker than single yarn diameter Similar to the number of exposed particles, the number of portions clearly thicker than the average single yarn diameter is counted from the photograph, and n = 10 as the number per 25 μm 2. And calculated as an average value.
(4)消臭機能剤平均2次粒子径
消臭機能剤の平均2次粒子径は各種測定法により測定することができる。一例を挙げれば、動的光散乱式粒度分布測定装置によって測定することができ、この動的光散乱式粒度分布測定装置としては、例えば、日機装株式会社製 MICROTRAC UPA(model:9340−UPA150)が挙げられる。
(4) Deodorant functional agent average secondary particle size The average secondary particle size of the deodorant functional agent can be measured by various measuring methods. As an example, it can be measured by a dynamic light scattering particle size distribution measuring device. As this dynamic light scattering particle size distribution measuring device, for example, MICROTRAC UPA (model: 9340-UPA150) manufactured by Nikkiso Co., Ltd. is available. Can be mentioned.
(5)繊維強度
20℃、65%RHの雰囲気下で、引張試験機により、試料長20cm、速度20cm/分の条件で破断時の強度を測定した。測定数は10とし、その平均をそれぞれの強度とした。
(5) Fiber strength Under an atmosphere of 20 ° C. and 65% RH, the strength at break was measured with a tensile tester under the conditions of a sample length of 20 cm and a speed of 20 cm / min. The number of measurements was 10, and the average was taken as each intensity.
[実施例1]
固有粘度0.64(35℃、オルソクロロフェノール中)のポリエチレンテレフタレートに対し、このポリマーをベースポリマーとし、吸着剤である水澤化学製“ミズカナイトHF”(平均2次粒子径:2.7μm)をセイシン企業製 ジェットミル(model:STJ−200)で粉砕し、日機装株式会社製 MICROTRACUPA(model:9340−UPA150)を用いて測定した平均2次粒子径が1.4μmの消臭機能剤10重量部を用いて作成したマスターバッチを、上記ベースポリマーに対して10重量%チップブレンドした後、溶融温度285℃で押出機にて溶融した。
他方、海成分として285℃での溶融粘度が1600poiseである平均分子量4000のポリエチレングリコール(PEG)4wt%、5−ナトリウムスルホイソフタル酸(SIP)を8mol%共重合した改質ポリエチレンテレフタレートを別の押出機にて溶融した。
[Example 1]
With respect to polyethylene terephthalate having an intrinsic viscosity of 0.64 (35 ° C. in orthochlorophenol), this polymer is used as a base polymer, and “Mizukanite HF” (average secondary particle size: 2.7 μm) made by Mizusawa Chemical is an adsorbent. 10 parts by weight of a deodorizing functional agent having an average secondary particle size of 1.4 μm, pulverized with a jet mill (model: STJ-200) manufactured by Seishin Corporation and measured using MICROTRACUPA (model: 9340-UPA150) manufactured by Nikkiso Co., Ltd. The masterbatch prepared using the above was subjected to 10% by weight chip blending with the base polymer and then melted in an extruder at a melting temperature of 285 ° C.
On the other hand, a modified polyethylene terephthalate obtained by copolymerizing 4 mol% of polyethylene glycol (PEG) having an average molecular weight of 4000 having a melt viscosity of 1600 poise at 285 ° C. and 8 mol% of 5-sodium sulfoisophthalic acid (SIP) as a sea component is subjected to another extrusion. Melted in the machine.
それぞれの溶融ポリマーを、消臭機能剤を含有するポリエステルが島成分となるようにして、海成分:島成分を30:70の重量比率で、島数836の紡糸口金を用いて紡糸温度285℃で溶融吐出させ、紡糸速度1000m/分にて引き取った後、一旦巻き取ることなく、予熱温度90℃、熱セット温度140℃、延伸倍率4.0倍で延伸し、3950m/分の速度で巻き取り56dtex/10filの延伸糸を得た。
得られた延伸糸を用いて筒編みを作成し2.5%NaOH水溶液で55℃にて30%減量した。繊維断面を観察したところ、均一な極細繊維群を形成しており、極細単糸繊維の平均直径は690nmであった。また、繊維側面においては繊維直径より大きな消臭機能剤による太細部分が確認され、また一方では繊維直径より小さな消臭機能剤が繊維表面の裂け目から直接観測される状態で存在していた。この筒編を用いて消臭性を評価したところ、100%の消臭率を示した。結果を表1に示す。
Spinning temperature of each molten polymer is 285 ° C. using a spinneret with 836 islands in a weight ratio of 30:70 sea component: island component so that the polyester containing the deodorizing functional agent becomes an island component. After being melted and discharged at a spinning speed of 1000 m / min, the film was drawn at a preheating temperature of 90 ° C., a heat setting temperature of 140 ° C. and a draw ratio of 4.0 times without winding once, and wound at a speed of 3950 m / min. A drawn yarn of 56 dtex / 10 fil was obtained.
A cylindrical knitting was made using the drawn yarn obtained, and the weight was reduced by 30% at 55 ° C. with a 2.5% NaOH aqueous solution. When the cross section of the fiber was observed, a uniform ultrafine fiber group was formed, and the average diameter of the ultrafine single yarn fiber was 690 nm. Further, on the fiber side surface, thick and thin portions due to the deodorizing functional agent larger than the fiber diameter were confirmed, and on the other hand, the deodorizing functional agent smaller than the fiber diameter was present in a state directly observed from the fissure on the fiber surface. When the deodorizing property was evaluated using this tubular knitting, a deodorizing rate of 100% was shown. The results are shown in Table 1.
[実施例2]
実施例1において、吐出量を変更して極細単糸繊維の平均直径を385nmとした以外は同様に行った。結果を表1に示す。
[Example 2]
In Example 1, it carried out similarly except having changed the discharge amount and having set the average diameter of the ultrafine single yarn fiber to 385 nm. The results are shown in Table 1.
[比較例1]
実施例1において、消臭機能剤マスターバッチを添加せずに作成した以外は同様に行った。結果を表1に示す。
[Comparative Example 1]
In Example 1, it carried out similarly except having created without adding a deodorant functional agent masterbatch. The results are shown in Table 1.
[比較例2]
実施例1において、紡糸時に異なる口金を用い、極細単糸繊維の平均直径を2510nmとした以外は同様に行った。結果を表1に示す。
[Comparative Example 2]
In Example 1, the same procedure was performed except that a different die was used for spinning and the average diameter of the ultrafine single yarn fiber was 2510 nm. The results are shown in Table 1.
[比較例3]
実施例1において、吐出量を大きく減少させて、極細単糸繊維の平均直径を153nmとしたが、紡糸および延伸時の単糸切れがかなり大きく、消臭性を測ることのできる試料作成までには至らなかった。結果を表1に示す。
[Comparative Example 3]
In Example 1, the discharge amount was greatly reduced, and the average diameter of the ultrafine single yarn fiber was set to 153 nm. However, until the sample was prepared, the single yarn breakage during spinning and drawing was considerably large, and the deodorizing property could be measured. Did not come. The results are shown in Table 1.
[実施例3]
実施例1において、消臭機能剤をライオン製“ライオナイトPC”(平均2次粒子径:3μm)に変更し、セイシン企業製 ジェットミル(model:STJ−200)で粉砕し、平均粒子径を1.9μmとしたものを用いた以外は同様に行った。結果を表1に示す。
[Example 3]
In Example 1, the deodorant functional agent was changed to “Lionite PC” manufactured by Lion (average secondary particle size: 3 μm), and pulverized by a jet mill (model: STJ-200) manufactured by Seishin Corporation. It carried out similarly except having used what was set to 1.9 micrometers. The results are shown in Table 1.
[比較例4]
実施例1において、水澤化学製“ミズカナイトHF”(平均2次粒子径:2.7μm)を粉砕しないで用いた以外は同様に行ったが、紡糸および延伸時の単糸切れがかなり大きく、消臭性を測ることのできる試料作成までには至らなかった。結果を表1に示す。
[Comparative Example 4]
In Example 1, “Mizukanite HF” (average secondary particle size: 2.7 μm) manufactured by Mizusawa Chemical Co., Ltd. was used in the same manner except that it was not pulverized. However, the single yarn breakage during spinning and drawing was considerably large. It did not lead to the preparation of a sample that could measure odor. The results are shown in Table 1.
[比較例5]
実施例3において、ライオン製“ライオナイトPC”(平均2次粒子径:3μm)を粉砕しないで用いた以外は同様に行ったが、紡糸および延伸時の単糸切れがかなり大きく、消臭性を測ることのできる試料作成までには至らなかった。結果を表1に示す。
[Comparative Example 5]
In Example 3, the same procedure was followed except that Lion's “Lionite PC” (average secondary particle size: 3 μm) was used without pulverization, but the single yarn breakage during spinning and drawing was considerably large and deodorant. It was not possible to make a sample that can measure The results are shown in Table 1.
[実施例4]
実施例1において、消臭性機能剤を東亞合成製“ケスモンNS−10”(平均2次粒子径:0.9μm)に変更したものを用いた以外は同様に行った。結果を表1に示す。
[Example 4]
In Example 1, it carried out similarly except having used what changed the deodorizing functional agent into "Kesmon NS-10" (average secondary particle diameter: 0.9 micrometer) by Toagosei. The results are shown in Table 1.
[実施例5]
実施例1において、消臭機能剤を抗菌剤である東亞合成製“ノバロンAG300”(平均2次粒子径:0.9μm)に変更したものを用いた以外は同様に行った。結果を表1に示す。
[Example 5]
In Example 1, it carried out similarly except having used what changed the deodorizing functional agent to "Novaron AG300" (average secondary particle diameter: 0.9 micrometer) by Toagosei Co., Ltd. which is an antibacterial agent. The results are shown in Table 1.
本発明の範囲内である実施例2〜6においては、実施例1と同様に優れた消臭性を示すものを得ることができたが、消臭機能剤のない比較例1や、消臭機能剤の露出および繊維径より太い部分が非常に少ない比較例2においては消臭性に大きく劣るものとなった。結果を表1に示す。 In Examples 2 to 6 which are within the scope of the present invention, it was possible to obtain the same deodorizing property as in Example 1, but Comparative Example 1 having no deodorizing functional agent and deodorizing. In Comparative Example 2 in which the exposure of the functional agent and the portion thicker than the fiber diameter were very few, the deodorizing property was greatly inferior. The results are shown in Table 1.
本発明のマルチフィラメントから構成される布帛は耐久性を有する消臭性能を有し、かつ強度や風合いにも優れるポリエステル布帛として、スポーツ用、カジュアル用、紳士婦人スーツ等の衣料用途をはじめ、メディカル用途、インテリア用途、などの用途に対して有用である。 The fabric composed of the multifilament of the present invention has a durable deodorizing performance and is excellent in strength and texture, and is used for sports use, casual use, men's and women's suits, and other medical applications. It is useful for applications such as applications and interior applications.
1:分配前島成分ポリマー溜め部分
2:島成分分配用パイプ
3:海成分導入孔
4:分配前海成分ポリマー溜め部分
5:個別海/島構造形成部
6:海島全体合流絞り部
1: pre-distribution island component polymer reservoir portion 2: island component distribution pipe 3: sea component introduction hole 4: pre-distribution sea component polymer reservoir portion 5: individual sea / island structure formation portion 6: entire sea island constriction constriction portion
Claims (5)
a)極細単糸繊維の平均直径が200〜2000nmであること。
b)消臭機能剤の平均2次粒子径が0.1〜2μmであること。
c)極細単糸繊維直径以上の2次粒子径を有する消臭機能剤を含み、該消臭機能剤のうち繊維ポリマーに被覆されることなく繊維表面に露出している部分が存在するものの個数が5〜25ケ/25μm2であること。 An ultra-thin multifilament containing a deodorizing functional agent that satisfies the following requirements.
a) The average diameter of the ultrafine single yarn fibers is 200 to 2000 nm.
b) The average secondary particle diameter of the deodorant functional agent is 0.1 to 2 μm.
c) The number of deodorizing functional agents having a secondary particle diameter equal to or larger than the diameter of the ultrafine single yarn fiber, and the portions exposed to the fiber surface without being coated with the fiber polymer. 5 to 25/25 μm 2 .
a)島成分からなる極細単糸繊維の平均直径が200〜2000nmであること。
b)島成分に極細単糸繊維直径以上の2次粒子径を有する消臭機能剤を含むこと。
c)海島型複合繊維が溶融紡糸し、一旦巻き取ることなく直接延伸することにより得られたものであること。 Deodorizing functional agent-containing ultrafine, which satisfies the following requirements in a method for producing ultrafine multifilaments, which are made from ultrafine multifilaments consisting of island components by removing sea components from sea-island composite fibers composed of sea and island components Multifilament manufacturing method.
a) The average diameter of the ultrafine single yarn fibers made of island components is 200 to 2000 nm.
b) The island component contains a deodorizing functional agent having a secondary particle diameter equal to or larger than the diameter of the ultrafine single yarn fiber.
c) The sea-island type composite fiber is obtained by melt spinning and drawing directly without winding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009242557A JP5385085B2 (en) | 2009-10-21 | 2009-10-21 | Deodorant functional agent-containing ultrafine fiber and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009242557A JP5385085B2 (en) | 2009-10-21 | 2009-10-21 | Deodorant functional agent-containing ultrafine fiber and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011089222A true JP2011089222A (en) | 2011-05-06 |
JP5385085B2 JP5385085B2 (en) | 2014-01-08 |
Family
ID=44107710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009242557A Expired - Fee Related JP5385085B2 (en) | 2009-10-21 | 2009-10-21 | Deodorant functional agent-containing ultrafine fiber and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5385085B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014125699A (en) * | 2012-12-26 | 2014-07-07 | Kuraray Co Ltd | Antibacterial nanofiber sheet, method for manufacturing the same, and filter |
JP2016183423A (en) * | 2015-03-25 | 2016-10-20 | パナソニックIpマネジメント株式会社 | Nonwoven fabric and carbon fiber nonwoven fabric |
CN111020741A (en) * | 2019-12-13 | 2020-04-17 | 上海德福伦化纤有限公司 | Antibacterial heating regenerated polyester fiber and preparation method thereof |
CN115044991A (en) * | 2022-06-24 | 2022-09-13 | 狮丹努集团股份有限公司 | Preparation method of zinc ion antibacterial fine denier polyester yarn and polyester yarn |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58149315A (en) * | 1982-03-01 | 1983-09-05 | Toray Ind Inc | Polyester fiber having silky feeling and improved color developing property and preparation thereof |
JPH08284011A (en) * | 1995-02-15 | 1996-10-29 | Takeda Chem Ind Ltd | Deodorizing fiber and its production |
JPH09176949A (en) * | 1995-12-25 | 1997-07-08 | Unitika Ltd | Antimicrobial non-woven fabric obtained from split type conjugate fiber and its production |
WO2005095686A1 (en) * | 2004-03-30 | 2005-10-13 | Teijin Fibers Limited | Composite fabric of island-in-sea type and process for producing the same |
JP2006328583A (en) * | 2005-05-26 | 2006-12-07 | Toray Ind Inc | Sea-island type conjugate fiber having excellent anti-transparent property |
JP2010053470A (en) * | 2008-08-27 | 2010-03-11 | Teijin Fibers Ltd | Photocatalyst-containing ultrafine fiber and method for producing the same |
-
2009
- 2009-10-21 JP JP2009242557A patent/JP5385085B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58149315A (en) * | 1982-03-01 | 1983-09-05 | Toray Ind Inc | Polyester fiber having silky feeling and improved color developing property and preparation thereof |
JPH08284011A (en) * | 1995-02-15 | 1996-10-29 | Takeda Chem Ind Ltd | Deodorizing fiber and its production |
JPH09176949A (en) * | 1995-12-25 | 1997-07-08 | Unitika Ltd | Antimicrobial non-woven fabric obtained from split type conjugate fiber and its production |
WO2005095686A1 (en) * | 2004-03-30 | 2005-10-13 | Teijin Fibers Limited | Composite fabric of island-in-sea type and process for producing the same |
JP2006328583A (en) * | 2005-05-26 | 2006-12-07 | Toray Ind Inc | Sea-island type conjugate fiber having excellent anti-transparent property |
JP2010053470A (en) * | 2008-08-27 | 2010-03-11 | Teijin Fibers Ltd | Photocatalyst-containing ultrafine fiber and method for producing the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014125699A (en) * | 2012-12-26 | 2014-07-07 | Kuraray Co Ltd | Antibacterial nanofiber sheet, method for manufacturing the same, and filter |
JP2016183423A (en) * | 2015-03-25 | 2016-10-20 | パナソニックIpマネジメント株式会社 | Nonwoven fabric and carbon fiber nonwoven fabric |
CN111020741A (en) * | 2019-12-13 | 2020-04-17 | 上海德福伦化纤有限公司 | Antibacterial heating regenerated polyester fiber and preparation method thereof |
CN115044991A (en) * | 2022-06-24 | 2022-09-13 | 狮丹努集团股份有限公司 | Preparation method of zinc ion antibacterial fine denier polyester yarn and polyester yarn |
Also Published As
Publication number | Publication date |
---|---|
JP5385085B2 (en) | 2014-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5400330B2 (en) | Photocatalyst-containing ultrafine fiber and method for producing the same | |
KR20120078238A (en) | Method for manufacturing controlled-release skin-core type composite fiber and composite fiber made thereof | |
JP5385085B2 (en) | Deodorant functional agent-containing ultrafine fiber and method for producing the same | |
JP3301706B2 (en) | Deodorant composite fiber and method for producing the same | |
JP2010275649A (en) | Fiber structure and textile product | |
JP2010119970A (en) | Deodorizing fiber and manufacturing method therefor | |
KR20130060609A (en) | Polyester twisted yarn four making method antibacterial and deodorant properties | |
JP2011179143A (en) | Ultrafine polylactic acid fiber | |
JP2012193476A (en) | Polyester microfiber | |
JP2011058123A (en) | Method for producing polylactic acid microfiber | |
JP5341673B2 (en) | Deodorant fiber and method for producing the same | |
JP2005133250A (en) | Core-sheath conjugate fiber | |
JP2010053471A (en) | Photocatalyst-containing ultrafine fiber | |
JP2011042908A (en) | Deodorant sheath-core conjugated fiber and method for producing the same | |
JP4115880B2 (en) | Special cross-section fiber | |
JP2010031403A (en) | Photocatalyst-containing shath-core conjugate fiber and method for producing the same | |
JP2011058124A (en) | Polylactic acid microfiber | |
JP2010121245A (en) | Deodorizing sheath-core conjugate fiber and method for producing the same | |
JP2004332186A (en) | Nanoporous fiber | |
JP2005226176A (en) | Polyamide fiber having photocatalyst function and method for producing the same | |
JP2012207361A (en) | Ultra fine fiber and wiping cloth containing ultra fine fiber | |
JP5260192B2 (en) | Textile structures and textile products | |
JP4100180B2 (en) | Polymer alloy fiber | |
JP2005015969A (en) | Nano-porous fiber composite woven or knitted fabric | |
JP2022181224A (en) | Photocatalyst-containing fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110701 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20110701 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20130122 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20130213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130910 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131003 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5385085 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |