JP2011089143A - Method for producing mono-component system and bi-component system cubic type metal nanoparticle - Google Patents
Method for producing mono-component system and bi-component system cubic type metal nanoparticle Download PDFInfo
- Publication number
- JP2011089143A JP2011089143A JP2009240961A JP2009240961A JP2011089143A JP 2011089143 A JP2011089143 A JP 2011089143A JP 2009240961 A JP2009240961 A JP 2009240961A JP 2009240961 A JP2009240961 A JP 2009240961A JP 2011089143 A JP2011089143 A JP 2011089143A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- nanoparticles
- platinum
- cubic
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Inert Electrodes (AREA)
Abstract
Description
本発明は触媒や電子デバイス等に使用される金属ナノ粒子の製造方法に関する。 The present invention relates to a method for producing metal nanoparticles used in catalysts, electronic devices and the like.
白金は自動車排ガス浄化や燃料電池触媒として利用されているが希少で高価なために、重量当たりの触媒能の向上が課題となっている。
白金ナノ粒子は通常立方八面体構造を取り、表面に露出している(111)面と(100)面とでは触媒活性が大きく異なり、例えば燃料電池の酸素極の電極触媒の活性は(100)面の方が(111)面より高いと言われているので、表面全てが(100)面からなる立方体型白金ナノ粒子を用いることで白金使用量の低減が期待できる。
このようなことはパラジウムナノ粒子においても同様のことが期待される。
Platinum is used as an exhaust gas purification for automobiles and as a fuel cell catalyst. However, since it is rare and expensive, improvement in catalytic performance per weight has been an issue.
The platinum nanoparticles usually have a cubic octahedral structure, and the catalytic activity differs greatly between the (111) plane and the (100) plane exposed on the surface. For example, the activity of the electrode catalyst of the oxygen electrode of the fuel cell is (100) Since the surface is said to be higher than the (111) surface, a reduction in the amount of platinum used can be expected by using cubic platinum nanoparticles whose entire surface is a (100) surface.
The same is expected for palladium nanoparticles.
また、二元系のコア・シェル型ナノ粒子においては、粒子径が10nm以上の球状の銀ナノ粒子表面へ、粒子径2nmのロジウムやパラジウム、白金ナノ粒子を自己組織化させることで得られたナノ粒子が例えば非特許文献1に記載されているが、より触媒活性が高い立方体型の二元系ナノ粒子の製造に関する報告はない。 The binary core / shell nanoparticles were obtained by self-organizing rhodium, palladium, and platinum nanoparticles having a particle diameter of 2 nm onto the surface of spherical silver nanoparticles having a particle diameter of 10 nm or more. Nanoparticles are described in, for example, Non-Patent Document 1, but there is no report regarding the production of cubic binary nanoparticles having higher catalytic activity.
非特許文献2は、液相法により、立方体型白金ナノ粒子上へPd粒子を析出させることで、二元系金属ナノ粒子が得られている。
具体的には、塩化白金酸(K2PtCl4)水溶液に長鎖アルキルアンモニウムイオンを添加し、水素化ホウ素ナトリウム還元により立方体型白金ナノ粒子を得た後、溶液をpH9に保ちながら、K2PdCl4及び長鎖アルキルアンモニウムイオンを添加し、アスコルビン酸還元することでPdを立方体型白金ナノ粒子上へ成長させている。
得られたナノ粒子を蟻酸酸化反応に用いた場合、Pdが副反応である一酸化炭素の生成を抑制するため、被毒耐性が向上している。
しかし、本法で得られるナノ粒子は、立方体型白金ナノ粒子上に、立方体型Pdナノ粒子が成長したものであり、Pdの析出部位を制御したものではない。
In Non-Patent Document 2, binary metal nanoparticles are obtained by precipitating Pd particles on cubic platinum nanoparticles by a liquid phase method.
Specifically, after adding long-chain alkylammonium ions to an aqueous chloroplatinic acid (K 2 PtCl 4 ) solution to obtain cubic platinum nanoparticles by sodium borohydride reduction, while maintaining the solution at pH 9, K 2 PdCl 4 and long-chain alkylammonium ions are added, and ascorbic acid reduction is performed to grow Pd on the cubic platinum nanoparticles.
When the obtained nanoparticles are used in the formic acid oxidation reaction, poisoning resistance is improved because Pd suppresses the production of carbon monoxide, which is a side reaction.
However, the nanoparticles obtained by this method are obtained by growing cubic Pd nanoparticles on cubic platinum nanoparticles, and do not control the precipitation site of Pd.
非特許文献3は、八面体金ナノ粒子上へPd,Agをエピタキシャル成長させることで形状制御した二元系金属ナノ粒子が得られている。
本手法では、長鎖アルキルアンモニウムイオンを保護剤とし塩化金酸(HAuCl4)を水素化ホウ素ナトリウム還元し得られたナノ粒子の希薄溶液を種核として用い、HAuCl4存在下ゆっくりと種核を成長させることで八面体型金ナノ粒子を得る。
その後、H2PdCl4、またはAgNO3を加えることで、立方体型Au−Pdコアシェル金属ナノ粒子またはAu−Agコアシェル金属ナノ粒子を調製している。
本手法で得られるナノ粒子は、形状は制御されているが、表面すべてが第二成分(ここではPd,Ag)で覆われており、第二成分の析出部位を制御したものではない。
In Non-patent Document 3, binary metal nanoparticles whose shape is controlled by epitaxially growing Pd and Ag on octahedral gold nanoparticles are obtained.
In this method, a dilute solution of nanoparticles obtained by reducing sodium borohydride with chloroauric acid (HAuCl 4 ) using a long-chain alkylammonium ion as a protective agent is used as a seed nucleus, and the seed nucleus is slowly added in the presence of HAuCl 4. By growing, octahedral gold nanoparticles are obtained.
Then, cubic type Au-Pd core-shell metal nanoparticles or Au-Ag core-shell metal nanoparticles are prepared by adding H 2 PdCl 4 or AgNO 3 .
Although the shape of the nanoparticles obtained by this method is controlled, the entire surface is covered with the second component (here, Pd, Ag), and the precipitation site of the second component is not controlled.
非特許文献4は、カーボン担体へ塩化金(AuCl3)および塩化コバルト(CoCl2)を混合し、水素雰囲気・高温下における熱分解により、カーボン担持Au−Coアロイナノ粒子を調製する。
高温処理により粒子表面へ相分離させたAu上へ、アンダーポテンシャルデポジションにより白金単層膜を形成する。
しかし、生成したカーボン担持ナノ粒子は、調製行程が多く、得られるナノ粒子の形状は立方八面体であり、ナノ粒子自体の形状制御はされていない。
また、シェル金属である白金は粒子表面全体を覆っている。
Non-Patent Document 4 prepares carbon-supported Au—Co alloy nanoparticles by mixing gold chloride (AuCl 3 ) and cobalt chloride (CoCl 2 ) into a carbon support and performing thermal decomposition under a hydrogen atmosphere and high temperature.
A platinum monolayer film is formed by underpotential deposition on Au phase-separated to the particle surface by high-temperature treatment.
However, the produced carbon-supported nanoparticles have many preparation steps, and the shape of the obtained nanoparticles is a cubic octahedron, and the shape of the nanoparticles themselves is not controlled.
Further, platinum as a shell metal covers the entire particle surface.
非特許文献5は、金属イオンのエチレングリコール還元によりロジウムをコアとして、白金をシェルとして有する金属ナノ粒子を製造する方法が報告されている。
塩化白金(PtCl2)のエチレングリコール溶液へ、あらかじめ調製したPVP(ポリビニルピロリドン)保護ロジウムナノ粒子溶液を加え、窒素雰囲気下加熱撹拌することで調製される。
加熱時には、80℃から130℃までの温度上昇が必要であり、コアとして用いるRhのサイズにより温度上昇速度の制御が必要である。
しかし、本手法で得られるナノ粒子の形状は立方八面体であり、ナノ粒子自体の形状制御はされておらず、また、シェル金属である白金は粒子表面全体を覆っている。
また、保護剤として高分子であるPVPを使用しているため、触媒活性の低下が懸念される。
Non-Patent Document 5 reports a method for producing metal nanoparticles having rhodium as a core and platinum as a shell by ethylene glycol reduction of metal ions.
It is prepared by adding a PVP (polyvinylpyrrolidone) -protected rhodium nanoparticle solution prepared in advance to an ethylene glycol solution of platinum chloride (PtCl 2 ) and heating and stirring in a nitrogen atmosphere.
During heating, a temperature increase from 80 ° C. to 130 ° C. is necessary, and the temperature increase rate needs to be controlled depending on the size of Rh used as the core.
However, the shape of the nanoparticles obtained by this method is a cubic octahedron, the shape of the nanoparticles themselves is not controlled, and the shell metal platinum covers the entire particle surface.
Moreover, since PVP which is a polymer is used as a protective agent, there is a concern about a decrease in catalytic activity.
本発明は、新規保護剤を用いることで立方体型金属ナノ粒子サイズの制御が可能であり、コア・シェルの二元系金属ナノ粒子においてシェル金属の析出部位及び量の制御が可能な一元系及び二元系の立方体型金属ナノ粒子の製造方法の提供を目的とする。 The present invention can control the size of cubic metal nanoparticles by using a novel protective agent, and can control the deposition site and amount of shell metal in the core-shell binary metal nanoparticles and An object of the present invention is to provide a method for producing binary cubic metal nanoparticles.
本発明に係る一元系の立方体型金属ナノ粒子の製造方法は、白金又はパラジウムのイオン性化合物の溶液に、特異的吸着助剤と、水溶性の二塩基酸塩を混合し、還元条件下で析出させることを特徴とする。
ここで、特異的吸着助剤は、従来一般的に立方八面体構造になろうとする粒子の(100)面の成長を抑え、(111)面が成長するように作用する化学種をいい、ヨウ素イオン及び臭素イオンが好ましく、添加方法としては、ナトリウム塩又はカリウム塩が例として挙げられる。
二塩基酸塩は、金属ナノ粒子の保護剤として作用し、一分子に官能基を2つ有する水溶性の化合物であれば特に限定されないが、代表例としてはジカルボン酸の塩が挙げられる。
具体的には、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等のアルキレンジカルボン酸の塩及びイソフタル酸、テレフタル酸等のメタ、パラ位の芳香族ジカルボン酸の塩が例として挙げられる。
特に好ましいのは、コハク酸の塩である。
この種の保護剤は従来のポリアクリル酸ナトリウムに比較して低分子であり、金属ナノ粒子表面からの除去が容易で活性な表面を得ることができる。
また、立方体型金属ナノ粒子のサイズの微小化、均一化が容易になる。
According to the present invention, a unitary cubic metal nanoparticle production method comprises mixing a specific adsorption aid and a water-soluble dibasic acid salt in a solution of an ionic compound of platinum or palladium, under reducing conditions. It is made to precipitate.
Here, the specific adsorbent is a chemical species that suppresses the growth of the (100) plane of particles that are generally intended to have a cubic octahedral structure and acts to grow the (111) plane. Ions and bromine ions are preferred, and examples of the addition method include sodium salts and potassium salts.
The dibasic acid salt is not particularly limited as long as it is a water-soluble compound that acts as a protective agent for metal nanoparticles and has two functional groups per molecule, but a typical example is a salt of a dicarboxylic acid.
Specifically, salts of alkylene dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid, and meta and para aromatics such as isophthalic acid and terephthalic acid An example is a salt of a dicarboxylic acid.
Particularly preferred are succinic acid salts.
This type of protective agent has a low molecular weight compared to conventional sodium polyacrylate, and can be easily removed from the surface of the metal nanoparticles to obtain an active surface.
In addition, the size and uniformity of the size of the cubic metal nanoparticles are facilitated.
第2の目的として、本発明に係る二元系の立方体型金属ナノ粒子であるコア・シェル金属ナノ粒子は、請求項1〜3のいずれかに記載の製造方法にて立方体型金属ナノ粒子をコア金属として析出し、次に還元条件下、コア金属とは異なるAg,Au,Pd及びRuのいずれかのイオンをシェル金属として加えることでコア金属にシェル金属を部位特異的に析出させることを特徴とする。
このような製造方法を採用すると例えばコア金属が白金でシェル金属が銀であり、水素還元時間、還元温度、Ag/Pt mol比、及び二塩基酸塩/Pt mol比を制御することで立方体型白金ナノ粒子の表面にAgが析出する部位及び量を制御することができる。
ここで、例えば二塩基酸塩としてコハク酸二ナトリウム等の保護剤を用いると、一方の官能基がコア粒子の表面に吸着し、他方の官能基がシェル金属イオンを取り込むように作用すると推定されることから、シェル金属のコア粒子への析出部位が制御できたと思われる。
また、X線回折およびHRTEMによる格子間隔を評価した結果、立方体型白金ナノ粒子の表面に析出したAgはAgIの状態で存在し、電子線照射あるいは、真空条件下でAgに変化することも明らかになった。
As a second object, the core-shell metal nanoparticles, which are binary cubic metal nanoparticles according to the present invention, are obtained by using cubic metal nanoparticles in the production method according to claim 1. Precipitating as a core metal, and then adding any one of Ag, Au, Pd and Ru as a shell metal under reducing conditions to deposit the shell metal site-specifically on the core metal. Features.
When such a production method is adopted, for example, the core metal is platinum and the shell metal is silver, and the cubic reduction is achieved by controlling the hydrogen reduction time, reduction temperature, Ag / Pt mol ratio, and dibasic acid salt / Pt mol ratio. The site | part and quantity which Ag precipitates on the surface of a platinum nanoparticle can be controlled.
Here, for example, when a protective agent such as disodium succinate is used as the dibasic acid salt, it is presumed that one functional group is adsorbed on the surface of the core particle and the other functional group acts to take in the shell metal ion. Therefore, it seems that the deposition site | part to the core particle of shell metal was able to be controlled.
Moreover, as a result of evaluating the lattice spacing by X-ray diffraction and HRTEM, it is clear that Ag deposited on the surface of the cubic platinum nanoparticles exists in an AgI state and changes to Ag under electron beam irradiation or under vacuum conditions. Became.
本発明においては、従来のポリアクリル酸ナトリウムと比較して、低分子の二塩基酸塩を保護剤として用いたことにより、立方体型金属ナノ粒子が製造できるとともに白金又はパラジウムのイオン濃度、特異的吸着助剤の量を調整することで金属ナノ粒子サイズの微小化及び均一化が可能になる。
また、立方体型コア金属粒子の析出後シェル金属イオンを添加した場合には、二塩基酸塩を保護剤として用いたことにより、シェル金属の析出部位及び析出量の制御が可能になる。
生成した立方体型ナノ粒子は、通常得られる立方八面体粒子よりも平らな面のVan der Waals相互作用が大きいので、粒子同士を容易に一時元的に配列させることが可能である。
In the present invention, compared to conventional sodium polyacrylate, by using a low molecular dibasic acid salt as a protective agent, cubic type metal nanoparticles can be produced and the ion concentration of platinum or palladium is specific. By adjusting the amount of the adsorbing aid, the metal nanoparticles can be made smaller and uniform in size.
In addition, when shell metal ions are added after the precipitation of the cubic core metal particles, the use of dibasic acid salt as a protective agent makes it possible to control the deposit site and amount of the shell metal.
The generated cubic nanoparticles have a van der Waals interaction with a flat surface larger than that of the usually obtained cubic octahedral particles, so that the particles can be easily and temporarily arranged.
以下、本発明に係る立方体型金属ナノ粒子の製造方法を一元系の白金ナノ粒子について具体的に説明するが、パラジウムの一元系ナノ粒子にも適用でき、コア・シェル金属ナノ粒子としてはコア金属に白金又はパラジウムを採用し、シェル金属としてAg,Au,Ru,Pd(コアがパラジウムの場合にシェルとしてのPdは除く)を採用することもできる。 Hereinafter, the method for producing cubic metal nanoparticles according to the present invention will be described in detail with respect to a unitary platinum nanoparticle, but it can also be applied to a unitary palladium nanoparticle, and the core-shell metal nanoparticle may be a core metal. It is also possible to adopt platinum or palladium as the shell metal and use Ag, Au, Ru, or Pd as the shell metal (excluding Pd as the shell when the core is palladium).
白金コア粒子に対してAgを析出させる場合に水素還元時間及び温度、Ag前駆体の添加量Ag/Pt mol比及びコハク酸/Pt mol比を制御することでAgの析出部位及び析出量を制御することができる。
相互の条件の組み合せにて具体的な条件も変化するが、他の条件を標準値(中央値)とした場合に概ね以下のことが言える。
Agの析出量は水素還元時間20〜40分の範囲で析出部位が制御でき、40分を超えると白金ナノ粒子の全体を覆ったAgの厚みが増す。
また、水素還元温度は、20〜80℃の範囲で制御するのがよい。
添加するAg前駆体は、Ag/Pt mol比で0.1〜5の範囲で制御するのがよく、コハク酸/Pt mol比で1〜4の範囲に制御するのがよい。
これらの関係を図1にまとめた。
Agは、コハク酸の作用により立方体型白金ナノ粒子のコーナー部に析出しはじめ、Agが成長するとエッジ部がつながるようになり、その次に面に析出し、厚みが増す。
When depositing Ag on the platinum core particles, control the hydrogen reduction time and temperature, the amount of Ag precursor added, the Ag / Pt mol ratio, and the succinic acid / Pt mol ratio, thereby controlling the Ag precipitation site and amount. can do.
Although specific conditions also change depending on the combination of the mutual conditions, the following can be said generally when other conditions are standard values (median values).
The precipitation amount of Ag can be controlled at a hydrogen reduction time in the range of 20 to 40 minutes, and when it exceeds 40 minutes, the thickness of Ag covering the entire platinum nanoparticles increases.
The hydrogen reduction temperature is preferably controlled in the range of 20 to 80 ° C.
The Ag precursor to be added is preferably controlled in the range of 0.1 to 5 in terms of Ag / Pt mol ratio, and is preferably controlled in the range of 1 to 4 in terms of succinic acid / Pt mol ratio.
These relationships are summarized in FIG.
Ag begins to precipitate at the corners of the cubic platinum nanoparticles due to the action of succinic acid, and when Ag grows, the edges become connected, and then precipitates on the surface, increasing the thickness.
(実施例1)
コハク酸ナトリウム保護立方体型白金ナノ粒子制御
(白金イオン濃度1.0mMでコハク酸二ナトリウム保護立方体型白金ナノ粒子の調製(粒子サイズ10nm))
Pt:コハク酸二ナトリウム:NaI=1:2:10(モル比)
(1)茄子型フラスコに5mlのK2PtCl4溶液(20mM)、0.15gのNaI粉末、4mlのコハク酸ナトリウム(50mM)、91mlの純水を入れた。
(2)オイルバスの温度を40℃にし、撹拌した。
(3)Arガスで30分間バブリングした。
(4)H2ガスで20分間バブリングした。
(5)H2ガス雰囲気下で5〜15時間撹拌した。
粒子が分散した溶液を得るには5時間程で撹拌を止めると良い。
TEMグリッドは溶液をパスツールでグリッド上に1滴乗せ、一晩自然乾燥を行うことで作成した。
TEM観察は10万〜40万倍で行い、白金ナノ粒子径および形状を計測し、平均粒子径および立方体型白金ナノ粒子の占める割合を算出した。
結果を表1に示す。
なお、実施例1及び後述する実施例2〜5の結果を表1にまとめた。
既に粒子が沈殿している場合は、濾紙を用いて濾過を行い、純水で数回洗浄を行った。
溶液に分散している場合は溶液をエバポレーターで濃縮し、その後濾紙を用いて濾過を行い、純水で数回洗浄を行う、または遠心分離管に溶液を入れ遠心分離を行い(6,000rpm,5〜10分)、純水で数回洗浄を行った。
そのTEM写真を図2に示す。
Example 1
Sodium succinate-protected cubic platinum nanoparticles control (Preparation of disodium succinate-protected cubic platinum nanoparticles with a platinum ion concentration of 1.0 mM (particle size 10 nm))
Pt: disodium succinate: NaI = 1: 2: 10 (molar ratio)
(1) 5 ml of K 2 PtCl 4 solution (20 mM), 0.15 g of NaI powder, 4 ml of sodium succinate (50 mM) and 91 ml of pure water were placed in an insulator-type flask.
(2) The temperature of the oil bath was set to 40 ° C. and stirred.
(3) Bubbling with Ar gas for 30 minutes.
(4) Bubbling with H 2 gas for 20 minutes.
(5) The mixture was stirred for 5 to 15 hours in an H 2 gas atmosphere.
In order to obtain a solution in which particles are dispersed, stirring is preferably stopped in about 5 hours.
The TEM grid was prepared by placing one drop of the solution on the grid with a Pasteur and air drying overnight.
The TEM observation was performed at a magnification of 100,000 to 400,000, the platinum nanoparticle diameter and shape were measured, and the average particle diameter and the proportion of cubic platinum nanoparticles were calculated.
The results are shown in Table 1.
The results of Example 1 and Examples 2 to 5 described later are summarized in Table 1.
When the particles had already precipitated, it was filtered using filter paper and washed several times with pure water.
If dispersed in a solution, the solution is concentrated with an evaporator, then filtered using filter paper, washed several times with pure water, or placed in a centrifuge tube and centrifuged (6,000 rpm, 5-10 minutes) and washed several times with pure water.
The TEM photograph is shown in FIG.
(実施例2)
(白金イオン濃度0.5mMでコハク酸二ナトリウム保護立方体型白金ナノ粒子の調製(粒子サイズ5nm))
Pt:コハク酸二ナトリウム:NaI=1:2:10(モル比)
(1)茄子型フラスコに2.5mlのK2PtCl4溶液(20mM)、0.075gのNaI粉末、2mlのコハク酸ナトリウム(50mM)、95.5mlの純水を入れた。
(2)オイルバスの温度を60℃にし、撹拌した。
(3)Arガスで30分間バブリングした。
(4)H2ガスで5分間バブリングした。
(5)H2ガス開放を行った。
(6)室温で5分〜15時間撹拌した。
溶液の色は10nm立方体型白金ナノ粒子と比較して、やや茶色である。
このときのTEM写真を図3に示す。
撹拌時間が15時間では立方体型粒子が丸みを帯びた。
(Example 2)
(Preparation of disodium succinate protected cubic platinum nanoparticles with a platinum ion concentration of 0.5 mM (particle size 5 nm))
Pt: disodium succinate: NaI = 1: 2: 10 (molar ratio)
(1) An insulator-type flask was charged with 2.5 ml of a K 2 PtCl 4 solution (20 mM), 0.075 g of NaI powder, 2 ml of sodium succinate (50 mM), and 95.5 ml of pure water.
(2) The temperature of the oil bath was set to 60 ° C. and stirred.
(3) Bubbling with Ar gas for 30 minutes.
(4) Bubbling with H 2 gas for 5 minutes.
(5) H 2 gas was released.
(6) The mixture was stirred at room temperature for 5 minutes to 15 hours.
The color of the solution is slightly brown compared to 10 nm cubic platinum nanoparticles.
A TEM photograph at this time is shown in FIG.
When the stirring time was 15 hours, the cubic particles were rounded.
(実施例3)
(白金イオン濃度0.25mMでコハク酸二ナトリウム保護立方体型白金ナノ粒子の調製(粒子サイズ2.5nm))
Pt:コハク酸二ナトリウム:NaI=1:2:10(モル比)
(1)茄子型フラスコに1.25mlのK2PtCl4溶液(20mM)、0.0375gのNaI粉末、1mlのコハク酸ナトリウム(50mM)、97.8mlの純水を入れた。
(2)オイルバスの温度を60℃にし、撹拌した。
(3)Arガスで30分間バブリングした。
(4)H2ガスで5分間バブリングした。
(5)室温で5分〜15時間撹拌した。
このときのTEM写真を図4に示す。
60℃の温度にて2.5nmのナノ粒子が選択率52%で得られた。
(Example 3)
(Preparation of disodium succinate-protected cubic platinum nanoparticles with a platinum ion concentration of 0.25 mM (particle size 2.5 nm))
Pt: disodium succinate: NaI = 1: 2: 10 (molar ratio)
(1) 1.25 ml of K 2 PtCl 4 solution (20 mM), 0.0375 g of NaI powder, 1 ml of sodium succinate (50 mM), and 97.8 ml of pure water were placed in an insulator-type flask.
(2) The temperature of the oil bath was set to 60 ° C. and stirred.
(3) Bubbling with Ar gas for 30 minutes.
(4) Bubbling with H 2 gas for 5 minutes.
(5) The mixture was stirred at room temperature for 5 minutes to 15 hours.
A TEM photograph at this time is shown in FIG.
At a temperature of 60 ° C., 2.5 nm nanoparticles were obtained with a selectivity of 52%.
(実施例4,5)
実施例1の操作(1)で、コハク酸の代わりにアジピン酸またはアゼライン酸の50mM水溶液を4ml加え撹拌した。
表1に示すとおり、得られた立方型白金ナノ粒子の平均粒子径は、コハク酸では10.2nm、アジピン酸では14.8nm、アゼライン酸では16.3nmとジカルボン酸のアルキル鎖長が長くなるにつれ、粒子径が大きくなった。
(Examples 4 and 5)
In the operation (1) of Example 1, 4 ml of 50 mM aqueous solution of adipic acid or azelaic acid was added instead of succinic acid and stirred.
As shown in Table 1, the average particle size of the obtained cubic platinum nanoparticles is 10.2 nm for succinic acid, 14.8 nm for adipic acid, and 16.3 nm for azelaic acid, which increases the alkyl chain length of the dicarboxylic acid. As the particle size increased.
(実施例6)
コハク酸二ナトリウム保護立方体型白金ナノ粒子の銀との複合化
Pt:コハク酸二ナトリウム:NaI=1:2:10(モル比)
(1)三つ口フラスコに5mlのK2PtCl4溶液(20mM)、0.15gのNaI粉末、4mlのコハク酸ナトリウム(50mM)、86mlの水を入れた。
(2)オイルバスの温度を40℃にし、撹拌した。
(3)Arガスで30分間バブリングした。
(4)H2ガスで20分間バブリングした。
(5)所定量のAgNO3(20mM)をシリンジで加えた。
(6)H2ガス雰囲気下で撹拌した。
(Example 6)
Compounding of disodium succinate protected cubic platinum nanoparticles with silver Pt: disodium succinate: NaI = 1: 2: 10 (molar ratio)
(1) A three-necked flask was charged with 5 ml of a K 2 PtCl 4 solution (20 mM), 0.15 g of NaI powder, 4 ml of sodium succinate (50 mM), and 86 ml of water.
(2) The temperature of the oil bath was set to 40 ° C. and stirred.
(3) Bubbling with Ar gas for 30 minutes.
(4) Bubbling with H 2 gas for 20 minutes.
(5) A predetermined amount of AgNO 3 (20 mM) was added by syringe.
(6) The mixture was stirred under an H 2 gas atmosphere.
(Ag量変化)
(5)で加えるAgNO3水溶液の量を変化、すなわちAg/Pt比を変化させて調製を行った。
Ag/Pt=1/10,1/5,1,2,4はそれぞれ操作(5)でAgNO3水溶液を0.5ml,1ml,5ml,10ml,20ml加えた条件である。
Agの量が多いほど、立方体型白金ナノ粒子を覆うAgの量が多いことが、TEM像とEDXスペクトルより確認できた。
TEMの結果を図5に、EDXの結果を表2に示す。
まず、Agが立方体型白金ナノ粒子のコーナーに析出し、徐々に全体を覆うようになると考えられる。
表2のEDXスペクトルの結果から、Agの析出量が多い程、ヨウ素の量も多くなっていることから、ヨウ素はAgに付き易い、または、AgIが析出していると考えられる。
The amount of the AgNO 3 aqueous solution added in (5) was changed, that is, the Ag / Pt ratio was changed.
Ag / Pt = 1/10, 1/5, 1, 2, and 4 are conditions in which 0.5 ml, 1 ml, 5 ml, 10 ml, and 20 ml of an AgNO 3 aqueous solution were added in the operation (5), respectively.
It was confirmed from the TEM image and the EDX spectrum that the greater the amount of Ag, the greater the amount of Ag covering the cubic platinum nanoparticles.
TEM results are shown in FIG. 5 and EDX results are shown in Table 2.
First, it is considered that Ag precipitates at the corners of cubic platinum nanoparticles and gradually covers the whole.
From the results of the EDX spectrum of Table 2, it can be considered that iodine is easily attached to Ag or AgI is precipitated because the amount of iodine is increased as the amount of precipitated Ag is increased.
(実施例7,8)
(保護剤量変化)
実施例6の操作(1)でコハク酸二ナトリウム/Pt=1,4に変化させて調製を行った。
実施例6〜8及び後述する実施例9,10のEDXの結果を表3にまとめた。
コハク酸二ナトリウム/Pt=4の条件ではAgが立方体型白金ナノ粒子全体を覆って丸みを帯びており、もとの立方体型白金ナノ粒子の形状が確認できなかった。
立方体型白金ナノ粒子上へのAgの析出にはコハク酸二ナトリウムが深く関係していることが分かる。
(Examples 7 and 8)
(Change in amount of protective agent)
Preparation was performed by changing to disodium succinate / Pt = 1, 4 in the procedure (1) of Example 6.
Table 3 summarizes the EDX results of Examples 6 to 8 and Examples 9 and 10 described below.
Under the condition of disodium succinate / Pt = 4, Ag covered the entire cubic platinum nanoparticles and was rounded, and the shape of the original cubic platinum nanoparticles could not be confirmed.
It can be seen that disodium succinate is closely related to the precipitation of Ag on the cubic platinum nanoparticles.
(実施例9,10)
(温度変化)
実験例6操作(5)の後(Agを加えた後)、温度を25、80℃に変化させた。
25℃の条件では、TEM像からAgが部位特異的に析出しているナノ粒子もみられるが、Agのみのナノ粒子も見られた。
表3に示すEDXの結果から25℃の条件ではAgが多く含まれる。
一方、80℃では、立方体型白金ナノ粒子上へのAgの析出量が多く凝集が進む。
低温では、立方体型白金上のコハク酸が安定化し白金上へのAgの析出を妨げ、温度を上げることで、コハク酸の不安定化が進み、実施例6の40℃ではコハク酸密度の低いコーナー部から析出し、80℃ではナノ粒子全体を覆うように析出したと考えられる。
Agの部位特異的な析出には、40℃が最適条件である。
(Examples 9 and 10)
(Temperature change)
Experimental Example 6 After operation (5) (after adding Ag), the temperature was changed to 25 and 80 ° C.
Under the condition of 25 ° C., nanoparticles in which Ag was deposited in a site-specific manner were also seen from the TEM image, but nanoparticles containing only Ag were also seen.
From the results of EDX shown in Table 3, a large amount of Ag is contained at 25 ° C.
On the other hand, at 80 ° C., the amount of Ag deposited on the cubic platinum nanoparticles is large and aggregation proceeds.
At low temperatures, the succinic acid on the cubic platinum is stabilized, preventing the precipitation of Ag on the platinum, and the succinic acid becomes more unstable by raising the temperature. At 40 ° C. in Example 6, the succinic acid density is low. It is thought that it was deposited from the corner and deposited so as to cover the entire nanoparticle at 80 ° C.
40 ° C. is the optimum condition for site-specific precipitation of Ag.
次に立方体型白金ナノ粒子のコーナー部に析出したAgをXRD測定及びHRTEM測定した結果を図6、7に示す。
XRDスペクトルからPt金属に由来するピークの他に、β−AgIに対応するピークが認められた。
HRTEMによって見積もったPt−Ag立方体型二元系金属ナノ粒子の格子間距離は、立方体中心部は0.195nm、コーナー部は0.202nmであり、これらの距離は各々バルク金属のPt(200)とAg(200)に対応している。
従って、Ag種は立方体型Ptナノ粒子上にAgIとして析出するが、TEM観察のために電子線照射することでAgイオンが金属Agに還元されたと推察される。
Next, the results of XRD measurement and HRTEM measurement of Ag deposited on the corners of the cubic platinum nanoparticles are shown in FIGS.
From the XRD spectrum, in addition to the peak derived from Pt metal, a peak corresponding to β-AgI was observed.
The interstitial distance of the Pt-Ag cubic binary metal nanoparticles estimated by HRTEM is 0.195 nm at the center of the cube and 0.202 nm at the corner, and these distances are respectively Pt (200) of bulk metal. And Ag (200).
Therefore, although Ag seed | precipitates as AgI on the cubic type Pt nanoparticle, it is guessed that Ag ion was reduce | restored to metal Ag by electron beam irradiation for TEM observation.
本発明に係る製造方法にて得られた一元系又は二元系の立方体型金属ナノ粒子は粒子サイズ2.5〜3nmレベルまで微小化でき、均一な立方体型であることから触媒活性が高く、また並列しやすいことから電子デバイスの用途も期待される。 The one-dimensional or binary cubic metal nanoparticles obtained by the production method according to the present invention can be miniaturized to a particle size of 2.5 to 3 nm, and have a high catalytic activity because of the uniform cubic shape. In addition, it is expected to be used for electronic devices because it is easy to parallel.
Claims (6)
特異的吸着助剤と、
水溶性の二塩基酸塩を混合し、還元条件下で析出させることを特徴とする立方体型金属ナノ粒子の製造方法。 In a solution of an ionic compound of platinum or palladium,
A specific adsorption aid,
A method for producing cubic metal nanoparticles, comprising mixing water-soluble dibasic acid salts and precipitating them under reducing conditions.
水素還元時間、還元温度、Ag/Pt mol比、及び二塩基酸塩/Pt mol比を制御することで立方体型白金ナノ粒子の表面にAgが析出する部位及び量を制御することを特徴とする請求項4記載のコア・シェル金属ナノ粒子の製造方法。 The core metal is platinum and the shell metal is silver,
By controlling the hydrogen reduction time, the reduction temperature, the Ag / Pt mol ratio, and the dibasic acid salt / Pt mol ratio, the site and amount of Ag deposited on the surface of the cubic platinum nanoparticles are controlled. The manufacturing method of the core-shell metal nanoparticle of Claim 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009240961A JP2011089143A (en) | 2009-10-20 | 2009-10-20 | Method for producing mono-component system and bi-component system cubic type metal nanoparticle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009240961A JP2011089143A (en) | 2009-10-20 | 2009-10-20 | Method for producing mono-component system and bi-component system cubic type metal nanoparticle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011089143A true JP2011089143A (en) | 2011-05-06 |
Family
ID=44107649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009240961A Pending JP2011089143A (en) | 2009-10-20 | 2009-10-20 | Method for producing mono-component system and bi-component system cubic type metal nanoparticle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011089143A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014516465A (en) * | 2011-04-18 | 2014-07-10 | ユーティーシー パワー コーポレイション | Shape control core shell catalyst |
WO2014178283A1 (en) * | 2013-05-01 | 2014-11-06 | 国立大学法人山梨大学 | Production method for fine metal particles, production method for fuel cell electrode catalyst, supported fine metal particle catalyst, and fuel cell electrode catalyst |
JP2014239033A (en) * | 2013-05-10 | 2014-12-18 | 日本ゴア株式会社 | Electrode catalyst for fuel battery, and method for activation of catalyst |
JP5701466B1 (en) * | 2013-12-27 | 2015-04-15 | 昭和電工株式会社 | Method for producing electrode catalyst for fuel cell |
JP2015099784A (en) * | 2015-01-09 | 2015-05-28 | ユーティーシー パワー コーポレイション | Shape controlled palladium and palladium alloy nanoparticle catalyst |
WO2015098181A1 (en) * | 2013-12-27 | 2015-07-02 | 昭和電工株式会社 | Method for producing electrode catalyst for fuel cells |
JP2015155361A (en) * | 2014-02-21 | 2015-08-27 | トヨタ紡織株式会社 | Tabular inorganic fine particle, aggregate of inorganic fine particle and manufacturing method of inorganic fine particle |
WO2016039361A1 (en) * | 2014-09-09 | 2016-03-17 | 国立大学法人京都大学 | Alloy microparticles and method for producing same, alloy microparticle cluster, catalyst, and method for producing same |
US9663600B2 (en) | 2012-12-21 | 2017-05-30 | Audi Ag | Method of fabricating an electrolyte material |
CN107755711A (en) * | 2017-10-20 | 2018-03-06 | 昆明理工大学 | A kind of square micro-nano silver powder, preparation method thereof |
US9923223B2 (en) | 2012-12-21 | 2018-03-20 | Audi Ag | Electrolyte membrane, dispersion and method therefor |
US9923224B2 (en) | 2012-12-21 | 2018-03-20 | Audi Ag | Proton exchange material and method therefor |
CN110202163A (en) * | 2019-05-21 | 2019-09-06 | 山东理工大学 | A kind of preparation method of Ag@Au@Pd nano cubic hollow shell structure |
US10505197B2 (en) | 2011-03-11 | 2019-12-10 | Audi Ag | Unitized electrode assembly with high equivalent weight ionomer |
CN113036168A (en) * | 2021-03-04 | 2021-06-25 | 合肥工业大学 | Cubic PtPd @ Pt core-shell nano cage electrocatalyst and preparation method and application thereof |
CN114497605A (en) * | 2022-01-26 | 2022-05-13 | 江苏擎动新能源科技有限公司 | Platinum-rhodium alloy and preparation method thereof, platinum-rhodium alloy composite material and application thereof |
JP7154668B1 (en) | 2021-05-06 | 2022-10-18 | 燕山大学 | Method for producing porous nanotubes |
-
2009
- 2009-10-20 JP JP2009240961A patent/JP2011089143A/en active Pending
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10505197B2 (en) | 2011-03-11 | 2019-12-10 | Audi Ag | Unitized electrode assembly with high equivalent weight ionomer |
JP2014516465A (en) * | 2011-04-18 | 2014-07-10 | ユーティーシー パワー コーポレイション | Shape control core shell catalyst |
US9923224B2 (en) | 2012-12-21 | 2018-03-20 | Audi Ag | Proton exchange material and method therefor |
US9663600B2 (en) | 2012-12-21 | 2017-05-30 | Audi Ag | Method of fabricating an electrolyte material |
US9923223B2 (en) | 2012-12-21 | 2018-03-20 | Audi Ag | Electrolyte membrane, dispersion and method therefor |
WO2014178283A1 (en) * | 2013-05-01 | 2014-11-06 | 国立大学法人山梨大学 | Production method for fine metal particles, production method for fuel cell electrode catalyst, supported fine metal particle catalyst, and fuel cell electrode catalyst |
US10693146B2 (en) | 2013-05-01 | 2020-06-23 | University Of Yamanashi | Production method for fine metal particles, production method for fuel cell electrode catalyst, supported fine metal particle catalyst, and fuel cell electrode catalyst |
JPWO2014178283A1 (en) * | 2013-05-01 | 2017-02-23 | 国立大学法人山梨大学 | Method for producing metal fine particles, method for producing fuel cell electrode catalyst, supported metal fine particle catalyst, and fuel cell electrode catalyst |
JP2014239033A (en) * | 2013-05-10 | 2014-12-18 | 日本ゴア株式会社 | Electrode catalyst for fuel battery, and method for activation of catalyst |
US10158124B2 (en) | 2013-05-10 | 2018-12-18 | W.L. Gore & Associates, Co., Ltd. | Fuel cell electrode catalyst and method for activating catalyst |
JP5701466B1 (en) * | 2013-12-27 | 2015-04-15 | 昭和電工株式会社 | Method for producing electrode catalyst for fuel cell |
US9947940B2 (en) | 2013-12-27 | 2018-04-17 | Showa Denko K.K. | Method for producing fuel cell electrode catalyst |
WO2015098181A1 (en) * | 2013-12-27 | 2015-07-02 | 昭和電工株式会社 | Method for producing electrode catalyst for fuel cells |
JP2015155361A (en) * | 2014-02-21 | 2015-08-27 | トヨタ紡織株式会社 | Tabular inorganic fine particle, aggregate of inorganic fine particle and manufacturing method of inorganic fine particle |
WO2016039361A1 (en) * | 2014-09-09 | 2016-03-17 | 国立大学法人京都大学 | Alloy microparticles and method for producing same, alloy microparticle cluster, catalyst, and method for producing same |
US9962683B2 (en) | 2014-09-09 | 2018-05-08 | Kyoto University | Alloy microparticles and method for producing same, alloy microparticle cluster, catalyst, and method for producing same |
JP2015099784A (en) * | 2015-01-09 | 2015-05-28 | ユーティーシー パワー コーポレイション | Shape controlled palladium and palladium alloy nanoparticle catalyst |
CN107755711A (en) * | 2017-10-20 | 2018-03-06 | 昆明理工大学 | A kind of square micro-nano silver powder, preparation method thereof |
CN107755711B (en) * | 2017-10-20 | 2019-07-05 | 昆明理工大学 | A kind of pros' micro-nano silver powder, preparation method thereof |
CN110202163A (en) * | 2019-05-21 | 2019-09-06 | 山东理工大学 | A kind of preparation method of Ag@Au@Pd nano cubic hollow shell structure |
CN110202163B (en) * | 2019-05-21 | 2023-03-21 | 山东理工大学 | Preparation method of Ag @ Au @ Pd nano cubic hollow shell structure |
CN113036168A (en) * | 2021-03-04 | 2021-06-25 | 合肥工业大学 | Cubic PtPd @ Pt core-shell nano cage electrocatalyst and preparation method and application thereof |
JP7154668B1 (en) | 2021-05-06 | 2022-10-18 | 燕山大学 | Method for producing porous nanotubes |
JP2022173115A (en) * | 2021-05-06 | 2022-11-17 | 燕山大学 | Preparation method for porous nanotube |
CN114497605A (en) * | 2022-01-26 | 2022-05-13 | 江苏擎动新能源科技有限公司 | Platinum-rhodium alloy and preparation method thereof, platinum-rhodium alloy composite material and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011089143A (en) | Method for producing mono-component system and bi-component system cubic type metal nanoparticle | |
Kim et al. | Noble metal‐based multimetallic nanoparticles for electrocatalytic applications | |
Pal et al. | Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis | |
Shao et al. | Platinum group nanowires for efficient electrocatalysis | |
Wu et al. | Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications | |
Sun et al. | Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties | |
CN102553579B (en) | Preparation method of high-dispersity supported nano metal catalyst | |
US20050065026A1 (en) | Precious metal - metal oxide composite cluster | |
JP5894233B2 (en) | Supported catalysts with controlled metal cluster size | |
Li et al. | Shape-controlled synthesis of platinum-based nanocrystals and their electrocatalytic applications in fuel cells | |
US20130133483A1 (en) | Synthesis of Nanoparticles Using Reducing Gases | |
JP5665743B2 (en) | Continuous production method of catalyst | |
CN107537517B (en) | Alloy colloid and preparation method and application thereof | |
JP5778129B2 (en) | Precious metal fine particle supported catalyst, method for producing the same, and purification catalyst | |
Gebre et al. | Trimetallic nanostructures and their applications in electrocatalytic energy conversions | |
Kim et al. | An overview of one-dimensional metal nanostructures for electrocatalysis | |
JP5251227B2 (en) | Manufacturing method of alloy fine particles, alloy fine particles, catalyst for polymer electrolyte fuel cell containing the alloy fine particles, and metal colloid solution containing the alloy fine particles | |
Feng et al. | A universal approach to the synthesis of nanodendrites of noble metals | |
Xu et al. | Recent advances and perspective on heterogeneous catalysis using metals and oxide nanocrystals | |
Jiang et al. | Synergism of multicomponent catalysis: one-dimensional Pt-Rh-Pd nanochain catalysts for efficient methanol oxidation | |
Song et al. | Controlled synthesis of PtNi hexapods for enhanced oxygen reduction reaction | |
Li et al. | Recent progress on the synthesis of metal alloy nanowires as electrocatalysts | |
Ding et al. | Non-aqueous solution synthesis of Pt-based nanostructures for fuel cell catalysts | |
Huang et al. | A simple wet-chemical strategy for facile fabrication of hierarchical PdAu nanodentrites as excellent electrocatalyst for oxygen reduction reaction | |
Zhou et al. | Low‐Temperature Carbon Monoxide Oxidation with Au–Cu Meatball‐Like Cages Prepared by Galvanic Replacement |