[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011086862A - Oligomethyl germane compound for amorphous semiconductor film, and film formation gas using the same - Google Patents

Oligomethyl germane compound for amorphous semiconductor film, and film formation gas using the same Download PDF

Info

Publication number
JP2011086862A
JP2011086862A JP2009240317A JP2009240317A JP2011086862A JP 2011086862 A JP2011086862 A JP 2011086862A JP 2009240317 A JP2009240317 A JP 2009240317A JP 2009240317 A JP2009240317 A JP 2009240317A JP 2011086862 A JP2011086862 A JP 2011086862A
Authority
JP
Japan
Prior art keywords
film
gas
geh
silicon germanium
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009240317A
Other languages
Japanese (ja)
Inventor
Toshihisa Ide
利久 井手
Tatsuya Irie
竜也 入江
Kenji Tanaka
健二 田仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2009240317A priority Critical patent/JP2011086862A/en
Priority to PCT/JP2010/063546 priority patent/WO2011048866A1/en
Publication of JP2011086862A publication Critical patent/JP2011086862A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03765Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table including AIVBIV compounds or alloys, e.g. SiGe, SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • H01L31/204Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table including AIVBIV alloys, e.g. SiGe, SiC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film formation material which is chemically safe and facilitates mass transport as a compound used for a pin-junction amorphous semiconductor film formed as a photoelectric conversion layer of a photovoltaic device. <P>SOLUTION: This oligomethyl germane compound used for a pin-junction amorphous semiconductor film formed as a photoelectric conversion layer of a photovoltaic device, and represented by general formula (1): (CH<SB>3</SB>)<SB>n</SB>GeH<SB>4-n</SB>(1), wherein n is one integer of 1 to 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は太陽電池などの光起電力装置の光電変換層の製造プロセスにおいて、pin接合の非晶質半導体膜の成膜に用いる化合物に関するものである   The present invention relates to a compound used for forming a pin junction amorphous semiconductor film in a process for producing a photoelectric conversion layer of a photovoltaic device such as a solar cell.

近年、クリーンなエネルギーとして、太陽光発電が注目されており、その中でも特に非晶質半導体を用いた太陽電池はコスト面において他の種類の太陽電池よりも有望であり、積極的な研究開発が進められている。   In recent years, solar power generation has attracted attention as a clean energy. Among them, solar cells using amorphous semiconductors are more promising than other types of solar cells in terms of cost, and active research and development are underway. It is being advanced.

一般的に、非晶質半導体を用いる太陽電池はガラス基板上の上に、ITO、SnO、などの透明電極、p型、i型、n型の非晶質シリコン(a−Si)膜、Ag、Auなどの裏面電極を順に積層形成して構成されている。例えば、a−Si膜は、p型、i型、n型の各層を別々のプラズマCVD装置内で順次形成する、連続分離式にて作製されること(例えば、特許文献1)が知られている。 Generally, a solar cell using an amorphous semiconductor has a transparent electrode such as ITO and SnO 2 on a glass substrate, a p-type, i-type, and n-type amorphous silicon (a-Si) film, A back electrode such as Ag and Au is laminated in order. For example, it is known that an a-Si film is produced by a continuous separation method in which p-type, i-type, and n-type layers are sequentially formed in separate plasma CVD apparatuses (for example, Patent Document 1). Yes.

ところで、ゲルマニウム半導体はトランジスタが発明されたときに使われていた半導体材料であり、現在でも光検出器やダイオードなどの用途に使用されているが、工業的な処理のしやすさから、シリコンが半導体の主流となった。しかし近年、上記非晶質半導体としてシリコンとゲルマニウムを組み合わせたSiGe半導体が開発され、優れた半導体特性を示すことがわかってきた。   By the way, germanium semiconductor is a semiconductor material that was used when the transistor was invented and is still used for applications such as photodetectors and diodes. Semiconductor became mainstream. However, in recent years, SiGe semiconductors combining silicon and germanium have been developed as the above-mentioned amorphous semiconductors and have been found to exhibit excellent semiconductor characteristics.

特に水素を含む非晶質水素化シリコンゲルマニウム合金膜は、膜中のシリコン及びゲルマニウムの組成を変化させることにより、光学バンドギャップを1.0eVから1.8eVまでの広い範囲に渡って制御することができる(例えば、特許文献2)。そのため、従来の非晶質シリコン膜(光学バンドギャップ1.7〜1.8eV)と積層させることにより、幅広い波長での光吸収を行うことができる。従って、高効率の薄膜太陽電池を形成することが可能となる。   In particular, in an amorphous hydrogenated silicon germanium alloy film containing hydrogen, the optical band gap is controlled over a wide range from 1.0 eV to 1.8 eV by changing the composition of silicon and germanium in the film. (For example, Patent Document 2). Therefore, light absorption in a wide range of wavelengths can be performed by laminating with a conventional amorphous silicon film (optical band gap 1.7 to 1.8 eV). Therefore, a highly efficient thin film solar cell can be formed.

また、2層以上の吸収波長域の異なる半導体膜を積層して構成することにより、それらの各層を薄く形成することができる。このことにより、光劣化に対する耐久性をもつ薄膜太陽電池の形成が行えるようになる。   Further, by stacking two or more semiconductor films having different absorption wavelength ranges, the respective layers can be formed thin. This makes it possible to form a thin film solar cell having durability against photodegradation.

以上のことから、この非晶質水素化シリコンゲルマニウム合金膜は、高効率でかつ光安定性の高い薄膜太陽電池を形成するための非晶質太陽電池材料として期待されている。そこで、非晶質水素化シリコンゲルマニウム合金膜の品質向上のための努力がなされてきた。   From the above, this amorphous hydrogenated silicon germanium alloy film is expected as an amorphous solar cell material for forming a thin film solar cell with high efficiency and high photostability. Thus, efforts have been made to improve the quality of amorphous hydrogenated silicon germanium alloy films.

特開昭60−31082号公報Japanese Patent Laid-Open No. 60-31082 特開平06−283740号公報Japanese Patent Laid-Open No. 06-283740

一般的に、プラズマCVDにより非晶質水素化シリコンゲルマニウム合金膜を得るために、シリコン及びゲルマニウム原料となるガスならびに水素ガスを使用するが、このゲルマニウム原料ガスとして、ゲルマン(GeH)を用いる。しかし、GeHは沸点が−88.4℃の気体であるため、大量に輸送をするためには高圧充填を行う必要がある。また、化学的に不安定であるため高濃度のGeHを高圧充填して扱うことは安全性に問題が生じ、希釈して充填する必要がある。したがって、大量輸送が難しく、輸送コストが大きくなるという問題がある。このため、光起電力装置の光電変換層の製造プロセスのように大量のガス供給が必要なプロセスには不利である。また、GeHは自然発火性、分解爆発性など化学的安定性が極めて低いことから、設備上および取扱い上厳重な安全対策が必要不可欠となっている。 In general, in order to obtain an amorphous hydrogenated silicon germanium alloy film by plasma CVD, a silicon and germanium raw material gas and hydrogen gas are used, and germanium (GeH 4 ) is used as the germanium raw material gas. However, since GeH 4 is a gas having a boiling point of −88.4 ° C., high-pressure filling is necessary to transport a large amount. In addition, since it is chemically unstable, handling with high concentration of GeH 4 under high pressure causes a problem in safety, and it is necessary to dilute and fill. Therefore, there is a problem that mass transportation is difficult and transportation cost is increased. For this reason, it is disadvantageous for a process that requires a large amount of gas supply, such as a manufacturing process of a photoelectric conversion layer of a photovoltaic device. In addition, GeH 4 has extremely low chemical stability such as pyrophoricity and decomposition explosiveness, and therefore, strict safety measures are indispensable for facilities and handling.

本発明は、光起電力装置の光電変換層として成膜されるpin接合の非晶質半導体膜に用いられる化合物で、特に、GeHガスに代わる化学的に安全で、かつ大量輸送しやすい成膜原料を提供することを目的としている。 The present invention is a compound used for an amorphous semiconductor film having a pin junction formed as a photoelectric conversion layer of a photovoltaic device. In particular, it is a chemical safe alternative to GeH 4 gas and is easily transported in large quantities. The object is to provide membrane raw materials.

このような状況に鑑み、本発明者らは、上記課題を解決すべく鋭意検討した結果、オリゴメチルゲルマン化合物が、GeHガスに代わる化学的に安定で、かつ大量輸送しやすい成膜原料となることを見出し、本発明に至った。 In view of such a situation, as a result of intensive studies to solve the above problems, the present inventors have found that an oligomethylgermane compound is a chemically stable and easy-to-transport material that can be transported in large quantities instead of GeH 4 gas. As a result, the present invention has been achieved.

すなわち本発明は、光起電力装置の光電変換層として成膜されるpin接合の非晶質半導体膜に用いられる、一般式(1)
(CHGeH4−n (1)
[式中、nは1〜4のいずれか一つの整数を表す]で表されるオリゴメチルゲルマン化合物を提供するものである。さらには、i型半導体となる非晶質水素化シリコンゲルマニウム合金膜を形成するための成膜ガスとして用いられる、上記一般式(1)で表されるオリゴメチルゲルマン化合物、また、該非晶質水素化シリコンゲルマニウム合金膜を成膜するのに用いられる成膜ガスに、上記一般式(1)で表されるオリゴメチルゲルマン化合物が0.01〜10体積%の範囲内で混合されていることを特徴とする、非晶質水素化シリコンゲルマニウム合金膜の成膜ガスを提供するものである。
That is, the present invention is a general formula (1) used for a pin junction amorphous semiconductor film formed as a photoelectric conversion layer of a photovoltaic device.
(CH 3 ) n GeH 4-n (1)
[Wherein n represents an integer of any one of 1 to 4] is provided. Furthermore, the oligomethylgermane compound represented by the above general formula (1) used as a film forming gas for forming an amorphous hydrogenated silicon germanium alloy film to be an i-type semiconductor, and the amorphous hydrogen That the oligomethylgermane compound represented by the general formula (1) is mixed in the range of 0.01 to 10% by volume in the film forming gas used to form the silicon germanium alloy film. A feature of the present invention is to provide a film forming gas for an amorphous hydrogenated silicon germanium alloy film.

本発明により、光起電力装置の光電変換層として成膜されるpin接合の非晶質半導体膜に用いられる化合物として、化学的に安定な化合物を提供することができる。   According to the present invention, a chemically stable compound can be provided as a compound used for a pin junction amorphous semiconductor film formed as a photoelectric conversion layer of a photovoltaic device.

実施例に用いたプラズマCVDの成膜装置の該略図である。1 is a schematic view of a plasma CVD film forming apparatus used in an example. 実施例で作成した光起電力装置の該略図である。1 is a schematic diagram of a photovoltaic device created in an example.

以下に本発明を詳細に説明する。   The present invention is described in detail below.

本発明で用いられるオリゴメチルゲルマン化合物は一般式(1)
(CHGeH4−n (1)
[式中、nは2〜4のいずれか一つの整数を表す]で表され、具体的には、テトラメチルゲルマン(Ge(CH)、トリメチルゲルマン((CHGeH)、ジメチルゲルマン((CHGeH)、メチルゲルマン(CHGeH)が挙げられる。この中で、CHGeHは沸点−35℃のガス状化合物であり、(CHGeHは沸点6.5℃のガス状化合物であり、(CHGeHは沸点26℃、Ge(CHは沸点44℃である。このため室温(25℃)以上の温度で液体である(CHGeH、Ge(CHが、安全面で特に好ましい化合物である。
The oligomethylgermane compound used in the present invention has the general formula (1)
(CH 3 ) n GeH 4-n (1)
[Wherein, n represents any one integer of 2 to 4], specifically, tetramethylgermane (Ge (CH 3 ) 4 ), trimethylgermane ((CH 3 ) 3 GeH), Examples thereof include dimethylgermane ((CH 3 ) 2 GeH 2 ) and methyl germane (CH 3 GeH 3 ). Among them, CH 3 GeH 3 is a gaseous compound having a boiling point of −35 ° C., (CH 3 ) 2 GeH 2 is a gaseous compound having a boiling point of 6.5 ° C., and (CH 3 ) 3 GeH has a boiling point of 26 ° C. , Ge (CH 3 ) 4 has a boiling point of 44 ° C. For this reason, (CH 3 ) 3 GeH and Ge (CH 3 ) 4 that are liquid at room temperature (25 ° C.) or higher are particularly preferable compounds in terms of safety.

本発明の化合物のうち、Ge(CHは、例えばBull.Chem.Soc.Jap.1985,58,3277.に記載されるようにGeClとメチルグリニャール試薬をブチルエーテル中で反応させる方法で、(CHGeH、(CHGeH、或いはCHGeHは、例えばInorg.Chem.1963,2,375.に記載されるように(CH)GeBr、(CH)GeBr、或いはCHGeBrを水溶媒中においてNaBHで還元する方法など、公知の方法で得ることができ、本発明は、該化合物を得る方法に限定されない。 Among the compounds of the present invention, Ge (CH 3 ) 4 is exemplified by Bull. Chem. Soc. Jap. 1985, 58, 3277. (CH 3 ) 3 GeH, (CH 3 ) 2 GeH 2 , or CH 3 GeH 3 can be obtained by reacting GeCl 4 and methyl Grignard reagent in butyl ether as described in, for example, Inorg. Chem. 1963, 2, 375. And (CH 3 ) 3 GeBr, (CH 3 ) 2 GeBr 2 , or CH 3 GeBr 3 can be obtained by a known method such as a method of reducing with NaBH 4 in an aqueous solvent, as described in the present invention. Is not limited to the method of obtaining the compound.

本発明の化合物は、プラズマCVD、熱CVD、光CVDなどpin接合の非晶質半導体膜を成膜する一般的な方法に用いることができる。   The compound of the present invention can be used in a general method for forming a pin junction amorphous semiconductor film such as plasma CVD, thermal CVD, and photo CVD.

本発明の化合物を用いて成形される非晶質半導体膜としては、非晶質水素化シリコンゲルマニウム合金膜、非晶質ゲルマニウム膜、GeO膜、などがある。非晶質水素化シリコンゲルマニウム合金膜としては、a−SiGe、a−SiGeCなどが挙げられ、Si源としては、モノシラン(SiH)など、a−SiGeCのC源としては、エタン、プロパンなどの低級アルカンなどが用いられる。またこの際、モノシランは希釈された状態で成膜装置内に供給され、キャリアガスとして水素、ヘリウム、窒素などが用いられる。
特に本発明の化合物は、非晶質水素化シリコンゲルマニウム合金膜の成膜時のゲルマニウム原料として用いることが有効である。また、ゲルマニウム原料として用いる場合、本発明の化合物を0.01〜10体積%の範囲内で混合させた成膜ガスを用いることが好ましい。0.01体積%未満ではゲルマニウム濃度が低濃度すぎて半導体として移動度等の性能向上が見込めず、10体積%超では、膜中に結合エネルギーの低いGe−Ge結合を形成しやすくなるため、膜質の低下ならびに耐久性の低下をもたらす虞がある。
本発明の化合物を用いて成形される非晶質半導体膜はi型層として用いることができるが、一般的に用いられるドーピングガスと混合して成膜することにより、p型層、n型層として用いることも可能である。
Examples of the amorphous semiconductor film formed using the compound of the present invention include an amorphous hydrogenated silicon germanium alloy film, an amorphous germanium film, and a GeO 2 film. Examples of the amorphous hydrogenated silicon germanium alloy film include a-SiGe and a-SiGeC. Examples of the Si source include monosilane (SiH 4 ). Examples of the C source of the a-SiGeC include ethane and propane. A lower alkane or the like is used. At this time, monosilane is diluted and supplied into the film forming apparatus, and hydrogen, helium, nitrogen, or the like is used as a carrier gas.
In particular, it is effective to use the compound of the present invention as a germanium raw material when forming an amorphous hydrogenated silicon germanium alloy film. Moreover, when using as a germanium raw material, it is preferable to use the film-forming gas which mixed the compound of this invention within the range of 0.01-10 volume%. If it is less than 0.01% by volume, the germanium concentration is too low and it is not expected to improve the performance such as mobility as a semiconductor. If it exceeds 10% by volume, it becomes easy to form a Ge—Ge bond having a low binding energy in the film. There is a possibility that film quality and durability may be lowered.
An amorphous semiconductor film formed using the compound of the present invention can be used as an i-type layer, but can be mixed with a commonly used doping gas to form a p-type layer and an n-type layer. Can also be used.

以下、実施例を挙げ、本発明をより具体的に詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail in detail, this invention is not limited to a following example.

磁製カップの上にろ紙を置き、Gelest社製Ge(CHを注射器で0.5mL滴下し、その様子を観察した。5分後においても、ろ紙が燃えた形跡も焦げた形跡も観測されなかった。この実験を繰り返し3回実施したが同様の結果となった。このことから、自然発火性はない。 A filter paper was placed on the magnetic cup, and 0.5 mL of Gelest (Ge 3 CH 4 ) 4 manufactured by Gelest was dropped with a syringe, and the state was observed. Even after 5 minutes, no evidence of burning or scorching of the filter paper was observed. This experiment was repeated three times with similar results. For this reason, it is not pyrophoric.

磁製カップの上にろ紙を置き、Gelest社製(CHGeHを注射器で0.5mL滴下し、その様子を観察した。5分後においても、ろ紙が燃えた形跡も焦げた形跡も観測されなかった。この実験を繰り返し3回実施したが同様の結果となった。このことから、自然発火性はない。 A filter paper was placed on a magnetic cup, 0.5 mL of Gelest (CH 3 ) 3 GeH was dropped with a syringe, and the state was observed. Even after 5 minutes, no evidence of burning or scorching of the filter paper was observed. This experiment was repeated three times with similar results. For this reason, it is not pyrophoric.

図1は、本実施例に用いたプラズマCVDの成膜装置の概略図である。上部放電電極2a、及び温度制御手段を備えた電極ヒータ13を内蔵した下部放電電極2bが対向して配置されている。下部放電電極2b上には成膜対象のガラス基板3が載置されている。真空チャンバ1には高周波電源4により、13.56MHzの高周波電圧が印加される。また、真空チャンバ1には排気システム5が接続されており、その内部が真空状態に維持されている。そして、上部放電電極2a、下部放電電極2b間に真空放電が生じてプラズマが発生するようになっている。   FIG. 1 is a schematic view of a plasma CVD film forming apparatus used in this embodiment. An upper discharge electrode 2a and a lower discharge electrode 2b incorporating an electrode heater 13 provided with a temperature control means are arranged to face each other. A glass substrate 3 to be deposited is placed on the lower discharge electrode 2b. A high frequency voltage of 13.56 MHz is applied to the vacuum chamber 1 by a high frequency power source 4. Further, an exhaust system 5 is connected to the vacuum chamber 1, and the inside thereof is maintained in a vacuum state. A vacuum discharge is generated between the upper discharge electrode 2a and the lower discharge electrode 2b to generate plasma.

真空チャンバ1は、配管10を介してHボンベ6、SiHボンベ7及びGelest社製Ge(CHを充填したGe原料ボンベ8に連結されている。配管10の中途にはHのガス流量を制御するマスフローコントローラ9a、SiHのガス流量を制御するマスフローコントローラ9bとGe(CHのガス量を制御するマスフローコントローラ9cとが設けられている。Ge原料ボンベ8の周囲にはGe(CHを気化するためのヒータ11が設置され、50℃に加温されている。また、配管10には、その内部を加温するためのコイルヒータ12が巻きつけられている。なお、10MPa以上の高圧充填されたGeHとは異なり、Ge(CHは室温で380torr程度の蒸気圧をもつ液体であるため、50℃におけるボンベ内圧力は略0.12MPaである。 The vacuum chamber 1 is connected via a pipe 10 to a Ge raw material cylinder 8 filled with an H 2 cylinder 6, a SiH 4 cylinder 7, and Ge (CH 3 ) 4 manufactured by Gelest. A mass flow controller 9a for controlling the gas flow rate of H 2 , a mass flow controller 9b for controlling the gas flow rate of SiH 4 , and a mass flow controller 9c for controlling the gas amount of Ge (CH 3 ) 4 are provided in the middle of the pipe 10. Yes. A heater 11 for vaporizing Ge (CH 3 ) 4 is installed around the Ge raw material cylinder 8 and heated to 50 ° C. The pipe 10 is wound with a coil heater 12 for heating the inside thereof. Unlike GeH 4 filled with a high pressure of 10 MPa or more, Ge (CH 3 ) 4 is a liquid having a vapor pressure of about 380 torr at room temperature, and therefore the internal pressure of the cylinder at 50 ° C. is about 0.12 MPa.

次に動作について説明する。真空チャンバ1内の下部放電電極2b上に載置されているガラス基板3を電極ヒータ13により200℃に加熱する。排気システム5により真空チャンバ1内を略1Paの真空状態に維持し、高周波電源4により13.56MHzの高周波電圧を出力30Wで印加する。一方、SiHボンベ7からマスフローコントローラ9bにてその流量を制御したSiHガスをコイルヒータ12への通電により内部を50℃程度に維持した配管10を介して真空チャンバ1内に導入する。また、ヒータ11にて50℃に加温して気化させたGe原料ボンベ8内のGe(CHを、マスフローコントローラ9cにてその流量を制御し、配管10を介して真空チャンバ1内に導入する。SiHガスとGe(CHガスの導入量は各マスフローコントローラ9bおよび9cを用いて、トータルガス流量を40sccm、導入されるトータルガス中のGe(CHガスのガス混合率を1体積%に調節する。これらの混合ガスは、同時にHボンベ6からマスフローコントローラ9aにて流量360sccmに調節された水素ガスによって希釈されチャンバ内に導入され、0.8nm/s程度の蒸着速度にて成膜する。このときの真空チャンバ1内は圧力10Paに維持されている。 Next, the operation will be described. The glass substrate 3 placed on the lower discharge electrode 2 b in the vacuum chamber 1 is heated to 200 ° C. by the electrode heater 13. The inside of the vacuum chamber 1 is maintained in a vacuum state of about 1 Pa by the exhaust system 5, and a high frequency voltage of 13.56 MHz is applied by the high frequency power source 4 at an output of 30 W. On the other hand, it is introduced into the vacuum chamber 1 through a pipe 10 which maintains the interior about 50 ° C. The SiH 4 gas controlling the flow rate from the SiH 4 gas cylinder 7 by a mass flow controller 9b by energization of the coil heater 12. Further, the Ge (CH 3 ) 4 in the Ge raw material cylinder 8 heated to 50 ° C. by the heater 11 and vaporized is controlled by the mass flow controller 9c, and the inside of the vacuum chamber 1 through the pipe 10 is controlled. To introduce. The amount of SiH 4 gas and Ge (CH 3 ) 4 gas introduced is determined by using the mass flow controllers 9b and 9c, the total gas flow rate is 40 sccm, and the gas mixing ratio of Ge (CH 3 ) 4 gas in the introduced total gas is Adjust to 1% by volume. These mixed gases are simultaneously diluted from the H 2 cylinder 6 with hydrogen gas adjusted to a flow rate of 360 sccm by the mass flow controller 9a and introduced into the chamber to form a film at a deposition rate of about 0.8 nm / s. The inside of the vacuum chamber 1 at this time is maintained at a pressure of 10 Pa.

このようにしてガラス基板3上に成膜された膜厚1000Åの膜について、暗導電率測定を行い、1.2×10−8S/cmの暗導電率が得られる。 The dark conductivity measurement is performed on the film having a thickness of 1000 mm formed on the glass substrate 3 in this manner, and a dark conductivity of 1.2 × 10 −8 S / cm is obtained.

Ge(CHガス混合率を3体積%とした以外は実施例3と同じように非晶質水素化シリコンゲルマニウム合金膜を成膜した。このようにしてガラス基板3上に成膜された膜厚1000Åの膜について、暗導電率測定を行い、2.5×10−8S/cmの暗導電率が得られる。 An amorphous hydrogenated silicon germanium alloy film was formed in the same manner as in Example 3 except that the mixing ratio of Ge (CH 3 ) 4 gas was 3% by volume. The dark conductivity measurement is performed on the film having a film thickness of 1000 mm formed on the glass substrate 3 in this manner, and a dark conductivity of 2.5 × 10 −8 S / cm is obtained.

Ge(CHガス混合率を5体積%とした以外は実施例3と同じように非晶質水素化シリコンゲルマニウム合金膜を成膜した。このようにしてガラス基板3上に成膜された膜厚1000Åの膜について、暗導電率測定を行い、1.8×10−8S/cmの暗導電率が得られる。 An amorphous hydrogenated silicon germanium alloy film was formed in the same manner as in Example 3 except that the mixing ratio of Ge (CH 3 ) 4 gas was 5% by volume. The dark conductivity measurement is performed on the film having a thickness of 1000 mm formed on the glass substrate 3 in this manner, and a dark conductivity of 1.8 × 10 −8 S / cm is obtained.

Ge(CHガス混合率を8体積%とした以外は実施例3と同じように非晶質水素化シリコンゲルマニウム合金膜を成膜した。このようにしてガラス基板3上に成膜された膜厚1000Åの膜について、暗導電率測定を行い、1.0×10−8S/cmの暗導電率が得られる。 An amorphous hydrogenated silicon germanium alloy film was formed in the same manner as in Example 3 except that the mixing ratio of Ge (CH 3 ) 4 gas was 8% by volume. The dark conductivity measurement is performed on the film having a thickness of 1000 mm formed on the glass substrate 3 in this manner, and a dark conductivity of 1.0 × 10 −8 S / cm is obtained.

Ge(CHを、STREM社製(CHGeHに代え、ガス混合率を0.85体積%とし、ヒータ10およびヒータ11の温度を35℃に設定した以外は、実施例3と同じように非晶質水素化シリコンゲルマニウム合金膜を成膜した。このようにしてガラス基板3上に成膜された膜厚1000Åの膜について、暗導電率測定を行い、1.0×10−8S/cmの暗導電率が得られる。 Example 3 except that Ge (CH 3 ) 4 was replaced with (CH 3 ) 3 GeH manufactured by STREM, the gas mixing ratio was 0.85 vol%, and the temperatures of the heater 10 and the heater 11 were set to 35 ° C. In the same manner as described above, an amorphous hydrogenated silicon germanium alloy film was formed. The dark conductivity measurement is performed on the film having a thickness of 1000 mm formed on the glass substrate 3 in this manner, and a dark conductivity of 1.0 × 10 −8 S / cm is obtained.

Ge(CHを、Inorg.Chem.1963,2,375.に記載されている方法を用いて得られた(CHGeHに代え、ガス混合率を0.7体積%とし、ヒータ10およびヒータ11をはずした以外は、実施例3と同じように非晶質水素化シリコンゲルマニウム合金膜を形成した。このようにしてガラス基板3上に成膜された膜厚1000Åの膜について、暗導電率測定を行い、1.1×10−8S/cmの暗導電率が得られる。 Ge (CH 3 ) 4 was obtained from Inorg. Chem. 1963, 2, 375. As in Example 3, except that (CH 3 ) 2 GeH 2 obtained by using the method described in 1 was replaced with a gas mixing ratio of 0.7% by volume and the heater 10 and the heater 11 were removed. An amorphous hydrogenated silicon germanium alloy film was formed. The dark conductivity measurement is performed on the film having a thickness of 1000 mm formed on the glass substrate 3 in this manner, and a dark conductivity of 1.1 × 10 −8 S / cm is obtained.

Ge(CHを、Inorg.Chem.1963,2,375.に記載されている方法を用いて得られたCHGeHに代え、ガス混合率を0.6体積%とし、ヒータ10およびヒータ11をはずした以外は、実施例3と同じように非晶質水素化シリコンゲルマニウム合金膜を形成した。このようにしてガラス基板3上に成膜された膜厚1000Åの膜について、暗導電率測定を行い、1.2×10−8S/cmの暗導電率が得られる。 Ge (CH 3 ) 4 was obtained from Inorg. Chem. 1963, 2, 375. In the same manner as in Example 3, except that CH 3 GeH 3 obtained by using the method described in Section 3 was replaced with a gas mixing ratio of 0.6% by volume and the heater 10 and the heater 11 were removed. A hydrogenated silicon germanium alloy film was formed. The dark conductivity measurement is performed on the film having a thickness of 1000 mm formed on the glass substrate 3 in this manner, and a dark conductivity of 1.2 × 10 −8 S / cm is obtained.

本実施例で作成した光起電力装置の断面の概略図を図2に示す。ガラス基板21上に、ITOからなる透明電極22、1層目の光起電力素子を構成する膜厚100ÅのB(ボロン)ドープのa−Si膜からなるp型層23をプラズマCVD法により透明電極22上に形成する。続いて、実施例3と同様の手法により膜厚1000Åの非晶質水素化シリコンゲルマニウム合金膜からなるi型層24を形成した。その後、膜厚100ÅのP(リン)ドープのa−Siからなるn型層25をプラズマCVD法により形成した。引き続きAgの金属から成る金属電極26をこの順序で積層して光起電力装置を形成した。得られた光起電力装置に東京インスツルメンツ製300Wソーラーシミュレータを用い発生させたAM(エアマス)1.5Gの基準太陽光のスペクトルに準じた擬似太陽光を、強度100mW/cmで照射し、その光電変換特性を測定したところ、短絡電流密度18mA/cm、開放電圧0.70V、フィルファクター0.75、光電変換効率9.45%となり、既存のモノゲルマンガスを用いた場合と同等の性能を示した。 A schematic view of a cross section of the photovoltaic device produced in this example is shown in FIG. A transparent electrode 22 made of ITO and a p-type layer 23 made of a B (boron) -doped a-Si film constituting the first photovoltaic element are made transparent on the glass substrate 21 by plasma CVD. It is formed on the electrode 22. Subsequently, an i-type layer 24 made of an amorphous hydrogenated silicon germanium alloy film having a thickness of 1000 mm was formed by the same method as in Example 3. Thereafter, an n-type layer 25 made of P (phosphorus) -doped a-Si having a thickness of 100 mm was formed by plasma CVD. Subsequently, a metal electrode 26 made of Ag metal was laminated in this order to form a photovoltaic device. The resulting photovoltaic device was irradiated with simulated sunlight according to AM (air mass) 1.5G standard sunlight spectrum generated using a 300 W solar simulator made by Tokyo Instruments at an intensity of 100 mW / cm 2. When the photoelectric conversion characteristics were measured, the short-circuit current density was 18 mA / cm 2 , the open-circuit voltage was 0.70 V, the fill factor was 0.75, and the photoelectric conversion efficiency was 9.45%, which is the same performance as when using an existing monogerman gas. showed that.

実施例4と同じ手法で成膜した非晶質水素化シリコンゲルマニウム合金膜をi型層25として用いた以外は実施例10と同じように光起電力装置を作製した。得られた光起電力装置に東京インスツルメンツ製300Wソーラーシミュレータを用い発生させたAM(エアマス)1.5Gの基準太陽光のスペクトルに準じた擬似太陽光を、強度100W/cmで照射し、その光電変換特性を測定したところ、短絡電流密度19.5mA/cm、開放電圧0.67V、フィルファクター0.71、光電変換効率9.28%となり、既存のモノゲルマンガスを用いた場合と同等の性能を示した。 A photovoltaic device was produced in the same manner as in Example 10 except that an amorphous hydrogenated silicon germanium alloy film formed by the same method as in Example 4 was used as the i-type layer 25. The resulting photovoltaic device was irradiated with simulated sunlight according to AM (air mass) 1.5G reference sunlight spectrum generated using a 300 W solar simulator made by Tokyo Instruments at an intensity of 100 W / cm 2. When the photoelectric conversion characteristics were measured, the short-circuit current density was 19.5 mA / cm 2 , the open-circuit voltage was 0.67 V, the fill factor was 0.71, and the photoelectric conversion efficiency was 9.28%, which is the same as when using an existing monogerman gas. Showed the performance.

実施例5と同じ手法で成膜した非晶質水素化シリコンゲルマニウム合金膜をi型層25として用いた以外は実施例10と同じように光起電力装置を作製した。得られた光起電力装置に東京インスツルメンツ製300Wソーラーシミュレータを用い発生させたAM(エアマス)1.5Gの基準太陽光のスペクトルに準じた擬似太陽光を、強度100W/cmで照射し、その光電変換特性を測定したところ、短絡電流密度20.3mA/cm、開放電圧0.65V、フィルファクター0.68、光電変換効率8.97%となり、既存のモノゲルマンガスを用いた場合と同等の性能を示した。 A photovoltaic device was produced in the same manner as in Example 10 except that an amorphous hydrogenated silicon germanium alloy film formed by the same method as in Example 5 was used as the i-type layer 25. The resulting photovoltaic device was irradiated with simulated sunlight according to AM (air mass) 1.5G reference sunlight spectrum generated using a 300 W solar simulator made by Tokyo Instruments at an intensity of 100 W / cm 2. When the photoelectric conversion characteristics were measured, the short-circuit current density was 20.3 mA / cm 2 , the open circuit voltage was 0.65 V, the fill factor was 0.68, and the photoelectric conversion efficiency was 8.97%, which is the same as when using an existing monogerman gas. Showed the performance.

実施例6と同じ手法で成膜した非晶質水素化シリコンゲルマニウム合金膜をi型層25として用いた以外は実施例10と同じように光起電力装置を作製した。得られた光起電力装置に東京インスツルメンツ製300Wソーラーシミュレータを用い発生させたAM(エアマス)1.5Gの基準太陽光のスペクトルに準じた擬似太陽光を、強度100W/cmで照射し、その光電変換特性を測定したところ、短絡電流密度21.5mA/cm、開放電圧0.62V、フィルファクター0.67、光電変換効率8.93%となり、既存のモノゲルマンガスを用いた場合と同等の性能を示した。 A photovoltaic device was produced in the same manner as in Example 10 except that an amorphous hydrogenated silicon germanium alloy film formed by the same method as in Example 6 was used as the i-type layer 25. The resulting photovoltaic device was irradiated with simulated sunlight according to AM (air mass) 1.5G reference sunlight spectrum generated using a 300 W solar simulator made by Tokyo Instruments at an intensity of 100 W / cm 2. When the photoelectric conversion characteristics were measured, the short-circuit current density was 21.5 mA / cm 2 , the open-circuit voltage was 0.62 V, the fill factor was 0.67, and the photoelectric conversion efficiency was 8.93%, which is the same as when using an existing monogerman gas. Showed the performance.

実施例7と同じ手法で成膜した非晶質水素化シリコンゲルマニウム合金膜をi型層25として用いた以外は実施例10と同じように光起電力装置を作製した。得られた光起電力装置に東京インスツルメンツ製300Wソーラーシミュレータを用い発生させたAM(エアマス)1.5Gの基準太陽光のスペクトルに準じた擬似太陽光を、強度100W/cmで照射し、その光電変換特性を測定したところ、短絡電流密度18.7mA/cm、開放電圧0.71V、フィルファクター0.73、光電変換効率9.69%となり、既存のモノゲルマンガスを用いた場合と同等の性能を示した。 A photovoltaic device was produced in the same manner as in Example 10 except that an amorphous hydrogenated silicon germanium alloy film formed by the same method as in Example 7 was used as the i-type layer 25. The resulting photovoltaic device was irradiated with simulated sunlight according to AM (air mass) 1.5G reference sunlight spectrum generated using a 300 W solar simulator made by Tokyo Instruments at an intensity of 100 W / cm 2. When the photoelectric conversion characteristics were measured, the short-circuit current density was 18.7 mA / cm 2 , the open-circuit voltage was 0.71 V, the fill factor was 0.73, and the photoelectric conversion efficiency was 9.69%, which is the same as when using an existing monogerman gas. Showed the performance.

実施例8と同じ手法で成膜した非晶質水素化シリコンゲルマニウム合金膜をi型層25として用いた以外は実施例10と同じように光起電力装置を作製した。得られた光起電力装置に東京インスツルメンツ製300Wソーラーシミュレータを用い発生させたAM(エアマス)1.5Gの基準太陽光のスペクトルに準じた擬似太陽光を、強度100W/cmで照射し、その光電変換特性を測定したところ、短絡電流密度18.5mA/cm、開放電圧0.70V、フィルファクター0.74、光電変換効率9.58%となり、既存のモノゲルマンガスを用いた場合と同等の性能を示した。 A photovoltaic device was produced in the same manner as in Example 10 except that an amorphous hydrogenated silicon germanium alloy film formed by the same method as in Example 8 was used as the i-type layer 25. The resulting photovoltaic device was irradiated with simulated sunlight according to AM (air mass) 1.5G reference sunlight spectrum generated using a 300 W solar simulator made by Tokyo Instruments at an intensity of 100 W / cm 2. When the photoelectric conversion characteristics were measured, the short-circuit current density was 18.5 mA / cm 2 , the open circuit voltage was 0.70 V, the fill factor was 0.74, and the photoelectric conversion efficiency was 9.58%, which is the same as when using an existing monogerman gas. Showed the performance.

実施例9と同じ手法で成膜した非晶質水素化シリコンゲルマニウム合金膜をi型層25として用いた以外は実施例10と同じように光起電力装置を作製した。得られた光起電力装置に東京インスツルメンツ製300Wソーラーシミュレータを用い発生させたAM(エアマス)1.5Gの基準太陽光のスペクトルに準じた擬似太陽光を、強度100W/cmで照射し、その光電変換特性を測定したところ、短絡電流密度18.1mA/cm、開放電圧0.72V、フィルファクター0.73、光電変換効率9.51%となり、既存のモノゲルマンガスを用いた場合と同等の性能を示した。 A photovoltaic device was produced in the same manner as in Example 10 except that an amorphous hydrogenated silicon germanium alloy film formed by the same method as in Example 9 was used as the i-type layer 25. The resulting photovoltaic device was irradiated with simulated sunlight according to AM (air mass) 1.5G reference sunlight spectrum generated using a 300 W solar simulator made by Tokyo Instruments at an intensity of 100 W / cm 2. When the photoelectric conversion characteristics were measured, the short-circuit current density was 18.1 mA / cm 2 , the open circuit voltage was 0.72 V, the fill factor was 0.73, and the photoelectric conversion efficiency was 9.51%, which is the same as when using an existing monogerman gas. Showed the performance.

なお、上述の実施例では、成膜方法としてプラズマCVD法を用いたが、公知の光CVD法またはマイクロCVD法等を用いても同様の効果が得られた。   In the above-described embodiment, the plasma CVD method is used as the film forming method. However, the same effect can be obtained by using a known photo-CVD method or micro-CVD method.

1・・・真空チャンバ
2a・・・上部放電電極
2b・・・下部放電電極
3・・・ガラス基板
4・・・高周波電源
5・・・排気システム
6・・・Hボンベ
7・・・SiHボンベ
8・・・Ge原料ボンベ
9a、9b、9c・・・マスフローコントローラ
10・・・配管
11・・・ヒータ
12・・・コイルヒータ
13・・・電極ヒータ
21・・・ガラス基板
22・・・透明電極
23・・・p型層
24・・・i型層
25・・・n型層
26・・・金属電極
1 ... vacuum chamber 2a ... upper discharge electrode 2b ... lower discharge electrode 3 ... glass substrate 4 ... high-frequency power supply 5 ... exhaust system 6 ... H 2 gas cylinder 7 ... SiH 4 cylinder 8 ... Ge material cylinders 9a, 9b, 9c ... mass flow controller 10 ... piping 11 ... heater 12 ... coil heater 13 ... electrode heater 21 ... glass substrate 22 ... Transparent electrode 23 ... p-type layer 24 ... i-type layer 25 ... n-type layer 26 ... metal electrode

Claims (3)

光起電力装置の光電変換層として成膜されるpin接合の非晶質半導体膜に用いられる、一般式(1)
(CHGeH4−n (1)
[式中、nは1〜4のいずれか一つの整数を表す。]で表されるオリゴメチルゲルマン化合物。
General formula (1) used for a pin junction amorphous semiconductor film formed as a photoelectric conversion layer of a photovoltaic device
(CH 3 ) n GeH 4-n (1)
[Wherein, n represents any one integer of 1 to 4. ] The oligomethylgermane compound represented by this.
i型半導体となる非晶質水素化シリコンゲルマニウム合金膜を形成するための成膜ガスとして用いられる、請求項1に記載のオリゴメチルゲルマン化合物。 The oligomethylgermane compound according to claim 1, which is used as a film forming gas for forming an amorphous hydrogenated silicon germanium alloy film to be an i-type semiconductor. i型半導体となる非晶質水素化シリコンゲルマニウム合金膜を成膜するのに用いられる成膜ガスに、請求項1に記載のオリゴメチルゲルマン化合物が成膜ガスとして0.01〜10体積%の範囲内で混合されていることを特徴とする、非晶質水素化シリコンゲルマニウム合金膜の成膜ガス。
A film forming gas used for forming an amorphous hydrogenated silicon germanium alloy film to be an i-type semiconductor contains 0.01 to 10% by volume of the oligomethyl germane compound according to claim 1 as a film forming gas. A gas for forming an amorphous hydrogenated silicon germanium alloy film, characterized by being mixed within a range.
JP2009240317A 2009-10-19 2009-10-19 Oligomethyl germane compound for amorphous semiconductor film, and film formation gas using the same Pending JP2011086862A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009240317A JP2011086862A (en) 2009-10-19 2009-10-19 Oligomethyl germane compound for amorphous semiconductor film, and film formation gas using the same
PCT/JP2010/063546 WO2011048866A1 (en) 2009-10-19 2010-08-10 Oligomethyl germane compound for amorphous semiconductor film, and film formation gas using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009240317A JP2011086862A (en) 2009-10-19 2009-10-19 Oligomethyl germane compound for amorphous semiconductor film, and film formation gas using the same

Publications (1)

Publication Number Publication Date
JP2011086862A true JP2011086862A (en) 2011-04-28

Family

ID=43900106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009240317A Pending JP2011086862A (en) 2009-10-19 2009-10-19 Oligomethyl germane compound for amorphous semiconductor film, and film formation gas using the same

Country Status (2)

Country Link
JP (1) JP2011086862A (en)
WO (1) WO2011048866A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015142053A1 (en) * 2014-03-18 2015-09-24 주식회사 유진테크 머티리얼즈 Organic germanium amine compound and method for depositing thin film using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103831A (en) * 1987-07-27 1989-04-20 Nippon Telegr & Teleph Corp <Ntt> Formation of semiconductor film
JPH04291967A (en) * 1991-03-20 1992-10-16 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JPH0513346A (en) * 1991-06-28 1993-01-22 Toshiba Corp Production of semiconductor device
WO2007002040A2 (en) * 2005-06-21 2007-01-04 Applied Materials, Inc. Method for forming silicon-containing materials during a photoexcitation deposition process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103831A (en) * 1987-07-27 1989-04-20 Nippon Telegr & Teleph Corp <Ntt> Formation of semiconductor film
JPH04291967A (en) * 1991-03-20 1992-10-16 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JPH0513346A (en) * 1991-06-28 1993-01-22 Toshiba Corp Production of semiconductor device
WO2007002040A2 (en) * 2005-06-21 2007-01-04 Applied Materials, Inc. Method for forming silicon-containing materials during a photoexcitation deposition process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015142053A1 (en) * 2014-03-18 2015-09-24 주식회사 유진테크 머티리얼즈 Organic germanium amine compound and method for depositing thin film using same
KR20150108779A (en) * 2014-03-18 2015-09-30 주식회사 유진테크 머티리얼즈 Organo germanium compounds and method of depositing thin film using them as precursors
KR101659610B1 (en) * 2014-03-18 2016-09-23 주식회사 유진테크 머티리얼즈 Organo germanium compounds and method of depositing thin film using them as precursors
CN106103456A (en) * 2014-03-18 2016-11-09 株式会社Eugene科技材料 Organic germanium amines and the method with its deposition thin film
JP2017511308A (en) * 2014-03-18 2017-04-20 ユージーン テクノロジー マテリアルズ カンパニー リミテッドEugene Technology Materials Co., Ltd. Organic germanium amine compound and thin film deposition method using the same

Also Published As

Publication number Publication date
WO2011048866A1 (en) 2011-04-28

Similar Documents

Publication Publication Date Title
TW200950126A (en) Plasma inside vapor deposition apparatus and method for making multi-junction silicon thin film solar cell modules and panels
CN103000742A (en) Solar battery with band gap gradual changing silicon quantum dot multilayer film and production method thereof
CN102656707B (en) Thin-film silicon tandem solar cell and method for manufacturing the same
JPH02192771A (en) Photovoltaic element
JPH04266066A (en) Photoelectromotive force element
CN104733548B (en) There is silicon-based film solar cells and its manufacture method of quantum well structure
US20110114177A1 (en) Mixed silicon phase film for high efficiency thin film silicon solar cells
Ma et al. Size-controlled nc-Si: H/a-SiC: H quantum dots superlattice and its application to hydrogenated amorphous silicon solar cells
WO2011048866A1 (en) Oligomethyl germane compound for amorphous semiconductor film, and film formation gas using same
CN101840941B (en) Iron-doped carbon thin-film material with photovoltaic and photoconductive effects and preparation method thereof
Benigno et al. Effect of intrinsic layer energy gap and thicknesses optimization on the efficiency of pin amorphous silicon solar cell
Gudovskikh et al. n‐GaP/p‐Si Heterojunction Solar Cells Fabricated by PE‐ALD
Qi et al. Influence of substrate on the growth of microcrystalline silicon thin films deposited by plasma enhanced chemical vapor deposition
WO2011036957A1 (en) Oligomethylphosphine compound for amorphous semiconductor film and film deposition gas containing same
Wang et al. Triple Radial Junction Hydrogenated Amorphous Silicon Solar Cells with> 2 V Open‐Circuit Voltage
JP2011181658A (en) Oligomethyl arsine compound for amorphous semiconductor film, and film forming gas using the same
TWI511309B (en) Tandem type thin film silicon solar cell with double layer cell structure
Yoshinaga et al. Fabrication of silicon and carbon based wide-gap semiconductor thin films for high conversion efficiency
JPH04192373A (en) Photovoltaic element
Shen Radial junction solar cells based on heterojunction with intrinsic thin layer (HIT) structure
Lee et al. Characterization of microcrystalline silicon thin film solar cells prepared by high working pressure plasma-enhanced chemical vapor deposition
JP3487580B2 (en) Deposited film forming method and deposited film forming apparatus
CN104779309B (en) Silicon-based film solar cells and its manufacturing method with gradient-structure
Stepanov et al. Lowest surface recombination velocity on n-type crystalline silicon using PECVD a-Si: H/SiNx bi-layer passivation
TWI407578B (en) Chemical vapor deposition process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910