JP2011086862A - Oligomethyl germane compound for amorphous semiconductor film, and film formation gas using the same - Google Patents
Oligomethyl germane compound for amorphous semiconductor film, and film formation gas using the same Download PDFInfo
- Publication number
- JP2011086862A JP2011086862A JP2009240317A JP2009240317A JP2011086862A JP 2011086862 A JP2011086862 A JP 2011086862A JP 2009240317 A JP2009240317 A JP 2009240317A JP 2009240317 A JP2009240317 A JP 2009240317A JP 2011086862 A JP2011086862 A JP 2011086862A
- Authority
- JP
- Japan
- Prior art keywords
- film
- gas
- geh
- silicon germanium
- amorphous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 24
- 239000004065 semiconductor Substances 0.000 title claims abstract description 24
- 229910000078 germane Inorganic materials 0.000 title claims abstract 3
- 230000015572 biosynthetic process Effects 0.000 title abstract 2
- 238000006243 chemical reaction Methods 0.000 claims abstract description 22
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical class [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 26
- 229910045601 alloy Inorganic materials 0.000 claims description 26
- 239000000956 alloy Substances 0.000 claims description 26
- 239000000463 material Substances 0.000 abstract description 5
- 125000000370 germanetriyl group Chemical group [H][Ge](*)(*)* 0.000 abstract 1
- 239000010408 film Substances 0.000 description 56
- 239000007789 gas Substances 0.000 description 37
- 238000000034 method Methods 0.000 description 15
- 239000011521 glass Substances 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- 229910052732 germanium Inorganic materials 0.000 description 10
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 10
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- 229910021417 amorphous silicon Inorganic materials 0.000 description 6
- 238000009835 boiling Methods 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910003811 SiGeC Inorganic materials 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 239000007818 Grignard reagent Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- RUIGDFHKELAHJL-UHFFFAOYSA-N dimethylgermane Chemical compound C[GeH2]C RUIGDFHKELAHJL-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- -1 methyl Grignard reagent Chemical class 0.000 description 1
- FOTXTBSEOHNRCB-UHFFFAOYSA-N methylgermane Chemical compound [GeH3]C FOTXTBSEOHNRCB-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- ZRLCXMPFXYVHGS-UHFFFAOYSA-N tetramethylgermane Chemical compound C[Ge](C)(C)C ZRLCXMPFXYVHGS-UHFFFAOYSA-N 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- AEOGRWUNSVGMMJ-UHFFFAOYSA-N trimethylgermane Chemical compound C[GeH](C)C AEOGRWUNSVGMMJ-UHFFFAOYSA-N 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02529—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02592—Microstructure amorphous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0376—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
- H01L31/03762—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
- H01L31/03765—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table including AIVBIV compounds or alloys, e.g. SiGe, SiC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/075—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/20—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
- H01L31/202—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
- H01L31/204—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table including AIVBIV alloys, e.g. SiGe, SiC
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Photovoltaic Devices (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は太陽電池などの光起電力装置の光電変換層の製造プロセスにおいて、pin接合の非晶質半導体膜の成膜に用いる化合物に関するものである The present invention relates to a compound used for forming a pin junction amorphous semiconductor film in a process for producing a photoelectric conversion layer of a photovoltaic device such as a solar cell.
近年、クリーンなエネルギーとして、太陽光発電が注目されており、その中でも特に非晶質半導体を用いた太陽電池はコスト面において他の種類の太陽電池よりも有望であり、積極的な研究開発が進められている。 In recent years, solar power generation has attracted attention as a clean energy. Among them, solar cells using amorphous semiconductors are more promising than other types of solar cells in terms of cost, and active research and development are underway. It is being advanced.
一般的に、非晶質半導体を用いる太陽電池はガラス基板上の上に、ITO、SnO2、などの透明電極、p型、i型、n型の非晶質シリコン(a−Si)膜、Ag、Auなどの裏面電極を順に積層形成して構成されている。例えば、a−Si膜は、p型、i型、n型の各層を別々のプラズマCVD装置内で順次形成する、連続分離式にて作製されること(例えば、特許文献1)が知られている。 Generally, a solar cell using an amorphous semiconductor has a transparent electrode such as ITO and SnO 2 on a glass substrate, a p-type, i-type, and n-type amorphous silicon (a-Si) film, A back electrode such as Ag and Au is laminated in order. For example, it is known that an a-Si film is produced by a continuous separation method in which p-type, i-type, and n-type layers are sequentially formed in separate plasma CVD apparatuses (for example, Patent Document 1). Yes.
ところで、ゲルマニウム半導体はトランジスタが発明されたときに使われていた半導体材料であり、現在でも光検出器やダイオードなどの用途に使用されているが、工業的な処理のしやすさから、シリコンが半導体の主流となった。しかし近年、上記非晶質半導体としてシリコンとゲルマニウムを組み合わせたSiGe半導体が開発され、優れた半導体特性を示すことがわかってきた。 By the way, germanium semiconductor is a semiconductor material that was used when the transistor was invented and is still used for applications such as photodetectors and diodes. Semiconductor became mainstream. However, in recent years, SiGe semiconductors combining silicon and germanium have been developed as the above-mentioned amorphous semiconductors and have been found to exhibit excellent semiconductor characteristics.
特に水素を含む非晶質水素化シリコンゲルマニウム合金膜は、膜中のシリコン及びゲルマニウムの組成を変化させることにより、光学バンドギャップを1.0eVから1.8eVまでの広い範囲に渡って制御することができる(例えば、特許文献2)。そのため、従来の非晶質シリコン膜(光学バンドギャップ1.7〜1.8eV)と積層させることにより、幅広い波長での光吸収を行うことができる。従って、高効率の薄膜太陽電池を形成することが可能となる。 In particular, in an amorphous hydrogenated silicon germanium alloy film containing hydrogen, the optical band gap is controlled over a wide range from 1.0 eV to 1.8 eV by changing the composition of silicon and germanium in the film. (For example, Patent Document 2). Therefore, light absorption in a wide range of wavelengths can be performed by laminating with a conventional amorphous silicon film (optical band gap 1.7 to 1.8 eV). Therefore, a highly efficient thin film solar cell can be formed.
また、2層以上の吸収波長域の異なる半導体膜を積層して構成することにより、それらの各層を薄く形成することができる。このことにより、光劣化に対する耐久性をもつ薄膜太陽電池の形成が行えるようになる。 Further, by stacking two or more semiconductor films having different absorption wavelength ranges, the respective layers can be formed thin. This makes it possible to form a thin film solar cell having durability against photodegradation.
以上のことから、この非晶質水素化シリコンゲルマニウム合金膜は、高効率でかつ光安定性の高い薄膜太陽電池を形成するための非晶質太陽電池材料として期待されている。そこで、非晶質水素化シリコンゲルマニウム合金膜の品質向上のための努力がなされてきた。 From the above, this amorphous hydrogenated silicon germanium alloy film is expected as an amorphous solar cell material for forming a thin film solar cell with high efficiency and high photostability. Thus, efforts have been made to improve the quality of amorphous hydrogenated silicon germanium alloy films.
一般的に、プラズマCVDにより非晶質水素化シリコンゲルマニウム合金膜を得るために、シリコン及びゲルマニウム原料となるガスならびに水素ガスを使用するが、このゲルマニウム原料ガスとして、ゲルマン(GeH4)を用いる。しかし、GeH4は沸点が−88.4℃の気体であるため、大量に輸送をするためには高圧充填を行う必要がある。また、化学的に不安定であるため高濃度のGeH4を高圧充填して扱うことは安全性に問題が生じ、希釈して充填する必要がある。したがって、大量輸送が難しく、輸送コストが大きくなるという問題がある。このため、光起電力装置の光電変換層の製造プロセスのように大量のガス供給が必要なプロセスには不利である。また、GeH4は自然発火性、分解爆発性など化学的安定性が極めて低いことから、設備上および取扱い上厳重な安全対策が必要不可欠となっている。 In general, in order to obtain an amorphous hydrogenated silicon germanium alloy film by plasma CVD, a silicon and germanium raw material gas and hydrogen gas are used, and germanium (GeH 4 ) is used as the germanium raw material gas. However, since GeH 4 is a gas having a boiling point of −88.4 ° C., high-pressure filling is necessary to transport a large amount. In addition, since it is chemically unstable, handling with high concentration of GeH 4 under high pressure causes a problem in safety, and it is necessary to dilute and fill. Therefore, there is a problem that mass transportation is difficult and transportation cost is increased. For this reason, it is disadvantageous for a process that requires a large amount of gas supply, such as a manufacturing process of a photoelectric conversion layer of a photovoltaic device. In addition, GeH 4 has extremely low chemical stability such as pyrophoricity and decomposition explosiveness, and therefore, strict safety measures are indispensable for facilities and handling.
本発明は、光起電力装置の光電変換層として成膜されるpin接合の非晶質半導体膜に用いられる化合物で、特に、GeH4ガスに代わる化学的に安全で、かつ大量輸送しやすい成膜原料を提供することを目的としている。 The present invention is a compound used for an amorphous semiconductor film having a pin junction formed as a photoelectric conversion layer of a photovoltaic device. In particular, it is a chemical safe alternative to GeH 4 gas and is easily transported in large quantities. The object is to provide membrane raw materials.
このような状況に鑑み、本発明者らは、上記課題を解決すべく鋭意検討した結果、オリゴメチルゲルマン化合物が、GeH4ガスに代わる化学的に安定で、かつ大量輸送しやすい成膜原料となることを見出し、本発明に至った。 In view of such a situation, as a result of intensive studies to solve the above problems, the present inventors have found that an oligomethylgermane compound is a chemically stable and easy-to-transport material that can be transported in large quantities instead of GeH 4 gas. As a result, the present invention has been achieved.
すなわち本発明は、光起電力装置の光電変換層として成膜されるpin接合の非晶質半導体膜に用いられる、一般式(1)
(CH3)nGeH4−n (1)
[式中、nは1〜4のいずれか一つの整数を表す]で表されるオリゴメチルゲルマン化合物を提供するものである。さらには、i型半導体となる非晶質水素化シリコンゲルマニウム合金膜を形成するための成膜ガスとして用いられる、上記一般式(1)で表されるオリゴメチルゲルマン化合物、また、該非晶質水素化シリコンゲルマニウム合金膜を成膜するのに用いられる成膜ガスに、上記一般式(1)で表されるオリゴメチルゲルマン化合物が0.01〜10体積%の範囲内で混合されていることを特徴とする、非晶質水素化シリコンゲルマニウム合金膜の成膜ガスを提供するものである。
That is, the present invention is a general formula (1) used for a pin junction amorphous semiconductor film formed as a photoelectric conversion layer of a photovoltaic device.
(CH 3 ) n GeH 4-n (1)
[Wherein n represents an integer of any one of 1 to 4] is provided. Furthermore, the oligomethylgermane compound represented by the above general formula (1) used as a film forming gas for forming an amorphous hydrogenated silicon germanium alloy film to be an i-type semiconductor, and the amorphous hydrogen That the oligomethylgermane compound represented by the general formula (1) is mixed in the range of 0.01 to 10% by volume in the film forming gas used to form the silicon germanium alloy film. A feature of the present invention is to provide a film forming gas for an amorphous hydrogenated silicon germanium alloy film.
本発明により、光起電力装置の光電変換層として成膜されるpin接合の非晶質半導体膜に用いられる化合物として、化学的に安定な化合物を提供することができる。 According to the present invention, a chemically stable compound can be provided as a compound used for a pin junction amorphous semiconductor film formed as a photoelectric conversion layer of a photovoltaic device.
以下に本発明を詳細に説明する。 The present invention is described in detail below.
本発明で用いられるオリゴメチルゲルマン化合物は一般式(1)
(CH3)nGeH4−n (1)
[式中、nは2〜4のいずれか一つの整数を表す]で表され、具体的には、テトラメチルゲルマン(Ge(CH3)4)、トリメチルゲルマン((CH3)3GeH)、ジメチルゲルマン((CH3)2GeH2)、メチルゲルマン(CH3GeH3)が挙げられる。この中で、CH3GeH3は沸点−35℃のガス状化合物であり、(CH3)2GeH2は沸点6.5℃のガス状化合物であり、(CH3)3GeHは沸点26℃、Ge(CH3)4は沸点44℃である。このため室温(25℃)以上の温度で液体である(CH3)3GeH、Ge(CH3)4が、安全面で特に好ましい化合物である。
The oligomethylgermane compound used in the present invention has the general formula (1)
(CH 3 ) n GeH 4-n (1)
[Wherein, n represents any one integer of 2 to 4], specifically, tetramethylgermane (Ge (CH 3 ) 4 ), trimethylgermane ((CH 3 ) 3 GeH), Examples thereof include dimethylgermane ((CH 3 ) 2 GeH 2 ) and methyl germane (CH 3 GeH 3 ). Among them, CH 3 GeH 3 is a gaseous compound having a boiling point of −35 ° C., (CH 3 ) 2 GeH 2 is a gaseous compound having a boiling point of 6.5 ° C., and (CH 3 ) 3 GeH has a boiling point of 26 ° C. , Ge (CH 3 ) 4 has a boiling point of 44 ° C. For this reason, (CH 3 ) 3 GeH and Ge (CH 3 ) 4 that are liquid at room temperature (25 ° C.) or higher are particularly preferable compounds in terms of safety.
本発明の化合物のうち、Ge(CH3)4は、例えばBull.Chem.Soc.Jap.1985,58,3277.に記載されるようにGeCl4とメチルグリニャール試薬をブチルエーテル中で反応させる方法で、(CH3)3GeH、(CH3)2GeH2、或いはCH3GeH3は、例えばInorg.Chem.1963,2,375.に記載されるように(CH3)3GeBr、(CH3)2GeBr2、或いはCH3GeBr3を水溶媒中においてNaBH4で還元する方法など、公知の方法で得ることができ、本発明は、該化合物を得る方法に限定されない。 Among the compounds of the present invention, Ge (CH 3 ) 4 is exemplified by Bull. Chem. Soc. Jap. 1985, 58, 3277. (CH 3 ) 3 GeH, (CH 3 ) 2 GeH 2 , or CH 3 GeH 3 can be obtained by reacting GeCl 4 and methyl Grignard reagent in butyl ether as described in, for example, Inorg. Chem. 1963, 2, 375. And (CH 3 ) 3 GeBr, (CH 3 ) 2 GeBr 2 , or CH 3 GeBr 3 can be obtained by a known method such as a method of reducing with NaBH 4 in an aqueous solvent, as described in the present invention. Is not limited to the method of obtaining the compound.
本発明の化合物は、プラズマCVD、熱CVD、光CVDなどpin接合の非晶質半導体膜を成膜する一般的な方法に用いることができる。 The compound of the present invention can be used in a general method for forming a pin junction amorphous semiconductor film such as plasma CVD, thermal CVD, and photo CVD.
本発明の化合物を用いて成形される非晶質半導体膜としては、非晶質水素化シリコンゲルマニウム合金膜、非晶質ゲルマニウム膜、GeO2膜、などがある。非晶質水素化シリコンゲルマニウム合金膜としては、a−SiGe、a−SiGeCなどが挙げられ、Si源としては、モノシラン(SiH4)など、a−SiGeCのC源としては、エタン、プロパンなどの低級アルカンなどが用いられる。またこの際、モノシランは希釈された状態で成膜装置内に供給され、キャリアガスとして水素、ヘリウム、窒素などが用いられる。
特に本発明の化合物は、非晶質水素化シリコンゲルマニウム合金膜の成膜時のゲルマニウム原料として用いることが有効である。また、ゲルマニウム原料として用いる場合、本発明の化合物を0.01〜10体積%の範囲内で混合させた成膜ガスを用いることが好ましい。0.01体積%未満ではゲルマニウム濃度が低濃度すぎて半導体として移動度等の性能向上が見込めず、10体積%超では、膜中に結合エネルギーの低いGe−Ge結合を形成しやすくなるため、膜質の低下ならびに耐久性の低下をもたらす虞がある。
本発明の化合物を用いて成形される非晶質半導体膜はi型層として用いることができるが、一般的に用いられるドーピングガスと混合して成膜することにより、p型層、n型層として用いることも可能である。
Examples of the amorphous semiconductor film formed using the compound of the present invention include an amorphous hydrogenated silicon germanium alloy film, an amorphous germanium film, and a GeO 2 film. Examples of the amorphous hydrogenated silicon germanium alloy film include a-SiGe and a-SiGeC. Examples of the Si source include monosilane (SiH 4 ). Examples of the C source of the a-SiGeC include ethane and propane. A lower alkane or the like is used. At this time, monosilane is diluted and supplied into the film forming apparatus, and hydrogen, helium, nitrogen, or the like is used as a carrier gas.
In particular, it is effective to use the compound of the present invention as a germanium raw material when forming an amorphous hydrogenated silicon germanium alloy film. Moreover, when using as a germanium raw material, it is preferable to use the film-forming gas which mixed the compound of this invention within the range of 0.01-10 volume%. If it is less than 0.01% by volume, the germanium concentration is too low and it is not expected to improve the performance such as mobility as a semiconductor. If it exceeds 10% by volume, it becomes easy to form a Ge—Ge bond having a low binding energy in the film. There is a possibility that film quality and durability may be lowered.
An amorphous semiconductor film formed using the compound of the present invention can be used as an i-type layer, but can be mixed with a commonly used doping gas to form a p-type layer and an n-type layer. Can also be used.
以下、実施例を挙げ、本発明をより具体的に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail in detail, this invention is not limited to a following example.
磁製カップの上にろ紙を置き、Gelest社製Ge(CH3)4を注射器で0.5mL滴下し、その様子を観察した。5分後においても、ろ紙が燃えた形跡も焦げた形跡も観測されなかった。この実験を繰り返し3回実施したが同様の結果となった。このことから、自然発火性はない。 A filter paper was placed on the magnetic cup, and 0.5 mL of Gelest (Ge 3 CH 4 ) 4 manufactured by Gelest was dropped with a syringe, and the state was observed. Even after 5 minutes, no evidence of burning or scorching of the filter paper was observed. This experiment was repeated three times with similar results. For this reason, it is not pyrophoric.
磁製カップの上にろ紙を置き、Gelest社製(CH3)3GeHを注射器で0.5mL滴下し、その様子を観察した。5分後においても、ろ紙が燃えた形跡も焦げた形跡も観測されなかった。この実験を繰り返し3回実施したが同様の結果となった。このことから、自然発火性はない。 A filter paper was placed on a magnetic cup, 0.5 mL of Gelest (CH 3 ) 3 GeH was dropped with a syringe, and the state was observed. Even after 5 minutes, no evidence of burning or scorching of the filter paper was observed. This experiment was repeated three times with similar results. For this reason, it is not pyrophoric.
図1は、本実施例に用いたプラズマCVDの成膜装置の概略図である。上部放電電極2a、及び温度制御手段を備えた電極ヒータ13を内蔵した下部放電電極2bが対向して配置されている。下部放電電極2b上には成膜対象のガラス基板3が載置されている。真空チャンバ1には高周波電源4により、13.56MHzの高周波電圧が印加される。また、真空チャンバ1には排気システム5が接続されており、その内部が真空状態に維持されている。そして、上部放電電極2a、下部放電電極2b間に真空放電が生じてプラズマが発生するようになっている。
FIG. 1 is a schematic view of a plasma CVD film forming apparatus used in this embodiment. An
真空チャンバ1は、配管10を介してH2ボンベ6、SiH4ボンベ7及びGelest社製Ge(CH3)4を充填したGe原料ボンベ8に連結されている。配管10の中途にはH2のガス流量を制御するマスフローコントローラ9a、SiH4のガス流量を制御するマスフローコントローラ9bとGe(CH3)4のガス量を制御するマスフローコントローラ9cとが設けられている。Ge原料ボンベ8の周囲にはGe(CH3)4を気化するためのヒータ11が設置され、50℃に加温されている。また、配管10には、その内部を加温するためのコイルヒータ12が巻きつけられている。なお、10MPa以上の高圧充填されたGeH4とは異なり、Ge(CH3)4は室温で380torr程度の蒸気圧をもつ液体であるため、50℃におけるボンベ内圧力は略0.12MPaである。
The vacuum chamber 1 is connected via a
次に動作について説明する。真空チャンバ1内の下部放電電極2b上に載置されているガラス基板3を電極ヒータ13により200℃に加熱する。排気システム5により真空チャンバ1内を略1Paの真空状態に維持し、高周波電源4により13.56MHzの高周波電圧を出力30Wで印加する。一方、SiH4ボンベ7からマスフローコントローラ9bにてその流量を制御したSiH4ガスをコイルヒータ12への通電により内部を50℃程度に維持した配管10を介して真空チャンバ1内に導入する。また、ヒータ11にて50℃に加温して気化させたGe原料ボンベ8内のGe(CH3)4を、マスフローコントローラ9cにてその流量を制御し、配管10を介して真空チャンバ1内に導入する。SiH4ガスとGe(CH3)4ガスの導入量は各マスフローコントローラ9bおよび9cを用いて、トータルガス流量を40sccm、導入されるトータルガス中のGe(CH3)4ガスのガス混合率を1体積%に調節する。これらの混合ガスは、同時にH2ボンベ6からマスフローコントローラ9aにて流量360sccmに調節された水素ガスによって希釈されチャンバ内に導入され、0.8nm/s程度の蒸着速度にて成膜する。このときの真空チャンバ1内は圧力10Paに維持されている。
Next, the operation will be described. The
このようにしてガラス基板3上に成膜された膜厚1000Åの膜について、暗導電率測定を行い、1.2×10−8S/cmの暗導電率が得られる。
The dark conductivity measurement is performed on the film having a thickness of 1000 mm formed on the
Ge(CH3)4ガス混合率を3体積%とした以外は実施例3と同じように非晶質水素化シリコンゲルマニウム合金膜を成膜した。このようにしてガラス基板3上に成膜された膜厚1000Åの膜について、暗導電率測定を行い、2.5×10−8S/cmの暗導電率が得られる。
An amorphous hydrogenated silicon germanium alloy film was formed in the same manner as in Example 3 except that the mixing ratio of Ge (CH 3 ) 4 gas was 3% by volume. The dark conductivity measurement is performed on the film having a film thickness of 1000 mm formed on the
Ge(CH3)4ガス混合率を5体積%とした以外は実施例3と同じように非晶質水素化シリコンゲルマニウム合金膜を成膜した。このようにしてガラス基板3上に成膜された膜厚1000Åの膜について、暗導電率測定を行い、1.8×10−8S/cmの暗導電率が得られる。
An amorphous hydrogenated silicon germanium alloy film was formed in the same manner as in Example 3 except that the mixing ratio of Ge (CH 3 ) 4 gas was 5% by volume. The dark conductivity measurement is performed on the film having a thickness of 1000 mm formed on the
Ge(CH3)4ガス混合率を8体積%とした以外は実施例3と同じように非晶質水素化シリコンゲルマニウム合金膜を成膜した。このようにしてガラス基板3上に成膜された膜厚1000Åの膜について、暗導電率測定を行い、1.0×10−8S/cmの暗導電率が得られる。
An amorphous hydrogenated silicon germanium alloy film was formed in the same manner as in Example 3 except that the mixing ratio of Ge (CH 3 ) 4 gas was 8% by volume. The dark conductivity measurement is performed on the film having a thickness of 1000 mm formed on the
Ge(CH3)4を、STREM社製(CH3)3GeHに代え、ガス混合率を0.85体積%とし、ヒータ10およびヒータ11の温度を35℃に設定した以外は、実施例3と同じように非晶質水素化シリコンゲルマニウム合金膜を成膜した。このようにしてガラス基板3上に成膜された膜厚1000Åの膜について、暗導電率測定を行い、1.0×10−8S/cmの暗導電率が得られる。
Example 3 except that Ge (CH 3 ) 4 was replaced with (CH 3 ) 3 GeH manufactured by STREM, the gas mixing ratio was 0.85 vol%, and the temperatures of the
Ge(CH3)4を、Inorg.Chem.1963,2,375.に記載されている方法を用いて得られた(CH3)2GeH2に代え、ガス混合率を0.7体積%とし、ヒータ10およびヒータ11をはずした以外は、実施例3と同じように非晶質水素化シリコンゲルマニウム合金膜を形成した。このようにしてガラス基板3上に成膜された膜厚1000Åの膜について、暗導電率測定を行い、1.1×10−8S/cmの暗導電率が得られる。
Ge (CH 3 ) 4 was obtained from Inorg. Chem. 1963, 2, 375. As in Example 3, except that (CH 3 ) 2 GeH 2 obtained by using the method described in 1 was replaced with a gas mixing ratio of 0.7% by volume and the
Ge(CH3)4を、Inorg.Chem.1963,2,375.に記載されている方法を用いて得られたCH3GeH3に代え、ガス混合率を0.6体積%とし、ヒータ10およびヒータ11をはずした以外は、実施例3と同じように非晶質水素化シリコンゲルマニウム合金膜を形成した。このようにしてガラス基板3上に成膜された膜厚1000Åの膜について、暗導電率測定を行い、1.2×10−8S/cmの暗導電率が得られる。
Ge (CH 3 ) 4 was obtained from Inorg. Chem. 1963, 2, 375. In the same manner as in Example 3, except that CH 3 GeH 3 obtained by using the method described in Section 3 was replaced with a gas mixing ratio of 0.6% by volume and the
本実施例で作成した光起電力装置の断面の概略図を図2に示す。ガラス基板21上に、ITOからなる透明電極22、1層目の光起電力素子を構成する膜厚100ÅのB(ボロン)ドープのa−Si膜からなるp型層23をプラズマCVD法により透明電極22上に形成する。続いて、実施例3と同様の手法により膜厚1000Åの非晶質水素化シリコンゲルマニウム合金膜からなるi型層24を形成した。その後、膜厚100ÅのP(リン)ドープのa−Siからなるn型層25をプラズマCVD法により形成した。引き続きAgの金属から成る金属電極26をこの順序で積層して光起電力装置を形成した。得られた光起電力装置に東京インスツルメンツ製300Wソーラーシミュレータを用い発生させたAM(エアマス)1.5Gの基準太陽光のスペクトルに準じた擬似太陽光を、強度100mW/cm2で照射し、その光電変換特性を測定したところ、短絡電流密度18mA/cm2、開放電圧0.70V、フィルファクター0.75、光電変換効率9.45%となり、既存のモノゲルマンガスを用いた場合と同等の性能を示した。
A schematic view of a cross section of the photovoltaic device produced in this example is shown in FIG. A transparent electrode 22 made of ITO and a p-type layer 23 made of a B (boron) -doped a-Si film constituting the first photovoltaic element are made transparent on the
実施例4と同じ手法で成膜した非晶質水素化シリコンゲルマニウム合金膜をi型層25として用いた以外は実施例10と同じように光起電力装置を作製した。得られた光起電力装置に東京インスツルメンツ製300Wソーラーシミュレータを用い発生させたAM(エアマス)1.5Gの基準太陽光のスペクトルに準じた擬似太陽光を、強度100W/cm2で照射し、その光電変換特性を測定したところ、短絡電流密度19.5mA/cm2、開放電圧0.67V、フィルファクター0.71、光電変換効率9.28%となり、既存のモノゲルマンガスを用いた場合と同等の性能を示した。
A photovoltaic device was produced in the same manner as in Example 10 except that an amorphous hydrogenated silicon germanium alloy film formed by the same method as in Example 4 was used as the i-
実施例5と同じ手法で成膜した非晶質水素化シリコンゲルマニウム合金膜をi型層25として用いた以外は実施例10と同じように光起電力装置を作製した。得られた光起電力装置に東京インスツルメンツ製300Wソーラーシミュレータを用い発生させたAM(エアマス)1.5Gの基準太陽光のスペクトルに準じた擬似太陽光を、強度100W/cm2で照射し、その光電変換特性を測定したところ、短絡電流密度20.3mA/cm2、開放電圧0.65V、フィルファクター0.68、光電変換効率8.97%となり、既存のモノゲルマンガスを用いた場合と同等の性能を示した。
A photovoltaic device was produced in the same manner as in Example 10 except that an amorphous hydrogenated silicon germanium alloy film formed by the same method as in Example 5 was used as the i-
実施例6と同じ手法で成膜した非晶質水素化シリコンゲルマニウム合金膜をi型層25として用いた以外は実施例10と同じように光起電力装置を作製した。得られた光起電力装置に東京インスツルメンツ製300Wソーラーシミュレータを用い発生させたAM(エアマス)1.5Gの基準太陽光のスペクトルに準じた擬似太陽光を、強度100W/cm2で照射し、その光電変換特性を測定したところ、短絡電流密度21.5mA/cm2、開放電圧0.62V、フィルファクター0.67、光電変換効率8.93%となり、既存のモノゲルマンガスを用いた場合と同等の性能を示した。
A photovoltaic device was produced in the same manner as in Example 10 except that an amorphous hydrogenated silicon germanium alloy film formed by the same method as in Example 6 was used as the i-
実施例7と同じ手法で成膜した非晶質水素化シリコンゲルマニウム合金膜をi型層25として用いた以外は実施例10と同じように光起電力装置を作製した。得られた光起電力装置に東京インスツルメンツ製300Wソーラーシミュレータを用い発生させたAM(エアマス)1.5Gの基準太陽光のスペクトルに準じた擬似太陽光を、強度100W/cm2で照射し、その光電変換特性を測定したところ、短絡電流密度18.7mA/cm2、開放電圧0.71V、フィルファクター0.73、光電変換効率9.69%となり、既存のモノゲルマンガスを用いた場合と同等の性能を示した。
A photovoltaic device was produced in the same manner as in Example 10 except that an amorphous hydrogenated silicon germanium alloy film formed by the same method as in Example 7 was used as the i-
実施例8と同じ手法で成膜した非晶質水素化シリコンゲルマニウム合金膜をi型層25として用いた以外は実施例10と同じように光起電力装置を作製した。得られた光起電力装置に東京インスツルメンツ製300Wソーラーシミュレータを用い発生させたAM(エアマス)1.5Gの基準太陽光のスペクトルに準じた擬似太陽光を、強度100W/cm2で照射し、その光電変換特性を測定したところ、短絡電流密度18.5mA/cm2、開放電圧0.70V、フィルファクター0.74、光電変換効率9.58%となり、既存のモノゲルマンガスを用いた場合と同等の性能を示した。
A photovoltaic device was produced in the same manner as in Example 10 except that an amorphous hydrogenated silicon germanium alloy film formed by the same method as in Example 8 was used as the i-
実施例9と同じ手法で成膜した非晶質水素化シリコンゲルマニウム合金膜をi型層25として用いた以外は実施例10と同じように光起電力装置を作製した。得られた光起電力装置に東京インスツルメンツ製300Wソーラーシミュレータを用い発生させたAM(エアマス)1.5Gの基準太陽光のスペクトルに準じた擬似太陽光を、強度100W/cm2で照射し、その光電変換特性を測定したところ、短絡電流密度18.1mA/cm2、開放電圧0.72V、フィルファクター0.73、光電変換効率9.51%となり、既存のモノゲルマンガスを用いた場合と同等の性能を示した。
A photovoltaic device was produced in the same manner as in Example 10 except that an amorphous hydrogenated silicon germanium alloy film formed by the same method as in Example 9 was used as the i-
なお、上述の実施例では、成膜方法としてプラズマCVD法を用いたが、公知の光CVD法またはマイクロCVD法等を用いても同様の効果が得られた。 In the above-described embodiment, the plasma CVD method is used as the film forming method. However, the same effect can be obtained by using a known photo-CVD method or micro-CVD method.
1・・・真空チャンバ
2a・・・上部放電電極
2b・・・下部放電電極
3・・・ガラス基板
4・・・高周波電源
5・・・排気システム
6・・・H2ボンベ
7・・・SiH4ボンベ
8・・・Ge原料ボンベ
9a、9b、9c・・・マスフローコントローラ
10・・・配管
11・・・ヒータ
12・・・コイルヒータ
13・・・電極ヒータ
21・・・ガラス基板
22・・・透明電極
23・・・p型層
24・・・i型層
25・・・n型層
26・・・金属電極
1 ...
Claims (3)
(CH3)nGeH4−n (1)
[式中、nは1〜4のいずれか一つの整数を表す。]で表されるオリゴメチルゲルマン化合物。 General formula (1) used for a pin junction amorphous semiconductor film formed as a photoelectric conversion layer of a photovoltaic device
(CH 3 ) n GeH 4-n (1)
[Wherein, n represents any one integer of 1 to 4. ] The oligomethylgermane compound represented by this.
A film forming gas used for forming an amorphous hydrogenated silicon germanium alloy film to be an i-type semiconductor contains 0.01 to 10% by volume of the oligomethyl germane compound according to claim 1 as a film forming gas. A gas for forming an amorphous hydrogenated silicon germanium alloy film, characterized by being mixed within a range.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009240317A JP2011086862A (en) | 2009-10-19 | 2009-10-19 | Oligomethyl germane compound for amorphous semiconductor film, and film formation gas using the same |
PCT/JP2010/063546 WO2011048866A1 (en) | 2009-10-19 | 2010-08-10 | Oligomethyl germane compound for amorphous semiconductor film, and film formation gas using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009240317A JP2011086862A (en) | 2009-10-19 | 2009-10-19 | Oligomethyl germane compound for amorphous semiconductor film, and film formation gas using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011086862A true JP2011086862A (en) | 2011-04-28 |
Family
ID=43900106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009240317A Pending JP2011086862A (en) | 2009-10-19 | 2009-10-19 | Oligomethyl germane compound for amorphous semiconductor film, and film formation gas using the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2011086862A (en) |
WO (1) | WO2011048866A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015142053A1 (en) * | 2014-03-18 | 2015-09-24 | 주식회사 유진테크 머티리얼즈 | Organic germanium amine compound and method for depositing thin film using same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01103831A (en) * | 1987-07-27 | 1989-04-20 | Nippon Telegr & Teleph Corp <Ntt> | Formation of semiconductor film |
JPH04291967A (en) * | 1991-03-20 | 1992-10-16 | Sanyo Electric Co Ltd | Manufacture of photovoltaic device |
JPH0513346A (en) * | 1991-06-28 | 1993-01-22 | Toshiba Corp | Production of semiconductor device |
WO2007002040A2 (en) * | 2005-06-21 | 2007-01-04 | Applied Materials, Inc. | Method for forming silicon-containing materials during a photoexcitation deposition process |
-
2009
- 2009-10-19 JP JP2009240317A patent/JP2011086862A/en active Pending
-
2010
- 2010-08-10 WO PCT/JP2010/063546 patent/WO2011048866A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01103831A (en) * | 1987-07-27 | 1989-04-20 | Nippon Telegr & Teleph Corp <Ntt> | Formation of semiconductor film |
JPH04291967A (en) * | 1991-03-20 | 1992-10-16 | Sanyo Electric Co Ltd | Manufacture of photovoltaic device |
JPH0513346A (en) * | 1991-06-28 | 1993-01-22 | Toshiba Corp | Production of semiconductor device |
WO2007002040A2 (en) * | 2005-06-21 | 2007-01-04 | Applied Materials, Inc. | Method for forming silicon-containing materials during a photoexcitation deposition process |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015142053A1 (en) * | 2014-03-18 | 2015-09-24 | 주식회사 유진테크 머티리얼즈 | Organic germanium amine compound and method for depositing thin film using same |
KR20150108779A (en) * | 2014-03-18 | 2015-09-30 | 주식회사 유진테크 머티리얼즈 | Organo germanium compounds and method of depositing thin film using them as precursors |
KR101659610B1 (en) * | 2014-03-18 | 2016-09-23 | 주식회사 유진테크 머티리얼즈 | Organo germanium compounds and method of depositing thin film using them as precursors |
CN106103456A (en) * | 2014-03-18 | 2016-11-09 | 株式会社Eugene科技材料 | Organic germanium amines and the method with its deposition thin film |
JP2017511308A (en) * | 2014-03-18 | 2017-04-20 | ユージーン テクノロジー マテリアルズ カンパニー リミテッドEugene Technology Materials Co., Ltd. | Organic germanium amine compound and thin film deposition method using the same |
Also Published As
Publication number | Publication date |
---|---|
WO2011048866A1 (en) | 2011-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200950126A (en) | Plasma inside vapor deposition apparatus and method for making multi-junction silicon thin film solar cell modules and panels | |
CN103000742A (en) | Solar battery with band gap gradual changing silicon quantum dot multilayer film and production method thereof | |
CN102656707B (en) | Thin-film silicon tandem solar cell and method for manufacturing the same | |
JPH02192771A (en) | Photovoltaic element | |
JPH04266066A (en) | Photoelectromotive force element | |
CN104733548B (en) | There is silicon-based film solar cells and its manufacture method of quantum well structure | |
US20110114177A1 (en) | Mixed silicon phase film for high efficiency thin film silicon solar cells | |
Ma et al. | Size-controlled nc-Si: H/a-SiC: H quantum dots superlattice and its application to hydrogenated amorphous silicon solar cells | |
WO2011048866A1 (en) | Oligomethyl germane compound for amorphous semiconductor film, and film formation gas using same | |
CN101840941B (en) | Iron-doped carbon thin-film material with photovoltaic and photoconductive effects and preparation method thereof | |
Benigno et al. | Effect of intrinsic layer energy gap and thicknesses optimization on the efficiency of pin amorphous silicon solar cell | |
Gudovskikh et al. | n‐GaP/p‐Si Heterojunction Solar Cells Fabricated by PE‐ALD | |
Qi et al. | Influence of substrate on the growth of microcrystalline silicon thin films deposited by plasma enhanced chemical vapor deposition | |
WO2011036957A1 (en) | Oligomethylphosphine compound for amorphous semiconductor film and film deposition gas containing same | |
Wang et al. | Triple Radial Junction Hydrogenated Amorphous Silicon Solar Cells with> 2 V Open‐Circuit Voltage | |
JP2011181658A (en) | Oligomethyl arsine compound for amorphous semiconductor film, and film forming gas using the same | |
TWI511309B (en) | Tandem type thin film silicon solar cell with double layer cell structure | |
Yoshinaga et al. | Fabrication of silicon and carbon based wide-gap semiconductor thin films for high conversion efficiency | |
JPH04192373A (en) | Photovoltaic element | |
Shen | Radial junction solar cells based on heterojunction with intrinsic thin layer (HIT) structure | |
Lee et al. | Characterization of microcrystalline silicon thin film solar cells prepared by high working pressure plasma-enhanced chemical vapor deposition | |
JP3487580B2 (en) | Deposited film forming method and deposited film forming apparatus | |
CN104779309B (en) | Silicon-based film solar cells and its manufacturing method with gradient-structure | |
Stepanov et al. | Lowest surface recombination velocity on n-type crystalline silicon using PECVD a-Si: H/SiNx bi-layer passivation | |
TWI407578B (en) | Chemical vapor deposition process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120724 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130507 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130910 |