JP2011085150A - Oil temperature sensor breakdown detection device of automatic transmission - Google Patents
Oil temperature sensor breakdown detection device of automatic transmission Download PDFInfo
- Publication number
- JP2011085150A JP2011085150A JP2009235913A JP2009235913A JP2011085150A JP 2011085150 A JP2011085150 A JP 2011085150A JP 2009235913 A JP2009235913 A JP 2009235913A JP 2009235913 A JP2009235913 A JP 2009235913A JP 2011085150 A JP2011085150 A JP 2011085150A
- Authority
- JP
- Japan
- Prior art keywords
- oil temperature
- temperature sensor
- calorific value
- automatic transmission
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Control Of Transmission Device (AREA)
Abstract
Description
この発明は、自動変速機の油温センサ故障検出装置に係り、特に全ての温度域で速やかに油温センサの故障を検出する自動変速機の油温センサ故障検出装置に関する。 The present invention relates to an oil temperature sensor failure detection device for an automatic transmission, and more particularly to an oil temperature sensor failure detection device for an automatic transmission that quickly detects an oil temperature sensor failure in all temperature ranges.
自動変速機が搭載された車両には、自動変速機の作動油の温度を検出する油温センサを設けるとともに、この油温センサの故障を検出する故障検出装置を設けている。
この故障検出装置においては、前進駆動レンジにて、ある積算時間経過後に、エンジン始動時の自動変速機の作動油の温度が規定値以上の温度まで上昇していないとき、故障と判断している。
A vehicle equipped with an automatic transmission is provided with an oil temperature sensor that detects the temperature of hydraulic oil of the automatic transmission, and a failure detection device that detects a failure of the oil temperature sensor.
In this failure detection device, a failure is determined when the temperature of the hydraulic fluid of the automatic transmission at the time of starting the engine does not rise to a temperature equal to or higher than a specified value after a certain cumulative time has elapsed in the forward drive range. .
特許文献1に係る自動変速機の故障診断装置は、作動油の温度の他に判定条件を加味することで、高負荷走行や渋滞路走行等の特殊な走行条件下でも、自動変速機の故障を診断するものである。
特許文献2に係る自動変速機の油温センサ故障検出装置は、エンジンを始動させたときの作動油の温度が高い程、所定の走行時間を短く設定し、エンジン始動時の作動油の温度を、エンジン冷却水温センサ及びエンジン吸気温センサの少なくとも一方の検出結果から導出される車両周辺の雰囲気の気温に基づいて決定し、検出頻度を高くしたものである。
特許文献3に係る油温センサの故障検出装置は、故障検出が遅れたり、検出頻度が少なくなることを抑制しつつ、油温センサの故障が誤って検出されるのを抑制するものである。
The automatic transmission failure diagnosis device according to Patent Document 1 takes into account the determination conditions in addition to the temperature of the hydraulic oil, so that a failure of the automatic transmission can occur even under special driving conditions such as high-load driving and traffic on congested roads. Is to diagnose.
The oil temperature sensor failure detection device for an automatic transmission according to
The failure detection device for an oil temperature sensor according to
ところで、従来、自動変速機の油温センサ故障検出装置においては、油温センサの故障が確定するまでに長い時間がかかってしまったり、検出可能な温度域が限定されていた。例えば、規定値の作動油の温度を常時超えているような環境や、エンジン始動時の作動油の温度が規定値を越えていると、油温センサの故障の診断を行うことができないという不都合があった。 By the way, conventionally, in an oil temperature sensor failure detection device for an automatic transmission, it takes a long time until the failure of the oil temperature sensor is determined, or a detectable temperature range is limited. For example, it is not possible to diagnose the failure of the oil temperature sensor if the environment always exceeds the specified hydraulic fluid temperature or if the hydraulic fluid temperature at engine startup exceeds the specified value. was there.
そこで、この発明の目的は、全ての温度域で速やかに油温センサの故障を検出できる自動変速機の油温センサ故障検出装置を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide an oil temperature sensor failure detection device for an automatic transmission that can quickly detect an oil temperature sensor failure in all temperature ranges.
この発明は、車両に搭載された自動変速機の作動油の温度を検出する油温センサの故障診断装置において、故障診断開始時に前記油温センサにより検出された作動油の温度を初期オイル温度とし、この検出された初期オイル温度毎にこの初期オイル温度の値から予め設定された温度だけ変化するのに必要な熱量を算出する熱量算出手段と、前記初期オイル温度を検出したタイミングから変化するエンジン回転数と自動変速機入力回転数とを用いて算出される単位時間毎の発熱量を算出する発熱量算出手段と、この発熱量算出手段により算出された発熱量を積算する発熱量積算手段と、この発熱量積算手段により積算された発熱量が前記熱量算出手段により算出された熱量に応じて算出される判定値を超えるまで積算し続ける判定タイミング検出手段と、この判定タイミング検出手段により積算された発熱量が判定タイミングであると判定された時に前記油温センサにより検出された作動油の温度を検出オイル温度とし、この検出オイル温度が予め設定された判定オイル温度範囲内に含まれていない場合に前記油温センサが故障していると判定する故障判定手段とを備えることを特徴とする。 The present invention provides an oil temperature sensor failure diagnosis device that detects the temperature of hydraulic oil in an automatic transmission mounted on a vehicle, and uses the temperature of the hydraulic oil detected by the oil temperature sensor at the start of failure diagnosis as an initial oil temperature. A calorific value calculating means for calculating a calorific value required to change from the initial oil temperature value by a preset temperature for each detected initial oil temperature; and an engine that changes from the timing at which the initial oil temperature is detected. A calorific value calculating means for calculating a calorific value per unit time calculated using the rotational speed and the input speed of the automatic transmission; and a calorific value integrating means for integrating the calorific value calculated by the calorific value calculating means; The determination timing detection continues to be integrated until the heat generation amount integrated by the heat generation amount integration means exceeds the determination value calculated in accordance with the heat amount calculated by the heat amount calculation means. And the temperature of the hydraulic oil detected by the oil temperature sensor when it is determined that the amount of heat integrated by the determination timing detection means is the determination timing, and the detected oil temperature is preset. Failure determination means for determining that the oil temperature sensor has failed when not included in the determined oil temperature range.
この発明の自動変速機の油温センサ故障検出装置は、全ての温度域で速やかに油温センサの故障を検出できる。 The oil temperature sensor failure detection device for an automatic transmission according to the present invention can quickly detect an oil temperature sensor failure in all temperature ranges.
この発明は、全ての温度域で速やかに油温センサの故障を検出する目的を、積算された発熱量が判定タイミングであると判定された時に油温センサにより検出された作動油の温度を検出オイル温度とし、この検出オイル温度が予め設定された判定オイル温度範囲内に含まれていない場合に油温センサが故障していると判定して実現する。
以下、図面に基づいてこの発明の実施例を詳細且つ具体的に説明する。
The purpose of this invention is to detect the temperature of the hydraulic oil detected by the oil temperature sensor when it is determined that the integrated heat generation amount is the determination timing for the purpose of quickly detecting the failure of the oil temperature sensor in all temperature ranges. This is realized by determining that the oil temperature sensor is malfunctioning when the detected oil temperature is not included in the preset determination oil temperature range.
Hereinafter, embodiments of the present invention will be described in detail and specifically with reference to the drawings.
図1〜図4は、この発明の実施例を示すものである。
図1において、1は車両、2はこの車両1に搭載されるエンジン、3はこのエンジン2に連結される自動変速機である。
車両1には、エンジン2の前方で、エンジン2の冷却水を冷却するラジエータ4が配置されている。
自動変速機3は、エンジン2に直結するトルクコンバータ5と、このトルクコンバータ5に連結した変速ギヤ装置6とを備えている。
トルクコンバータ5の下部には、自動変速機3の作動油を冷却するオイルクーラ7が取り付けられている。
1 to 4 show an embodiment of the present invention.
In FIG. 1, reference numeral 1 denotes a vehicle, 2 denotes an engine mounted on the
In the vehicle 1, a
The
An
自動変速機3においては、図1に示すように、各箇所で発熱量や放熱量が生ずる。
つまり、トルクコンバータ5では、自動変速機入力回転数、エンジン回転数と自動変速機入力回転数との差回転等による発熱量(Qtc)が生ずる。
また、変速ギヤ装置6では、メカニカルロス等による発熱量(Qmc)が生ずるとともに、外気での冷却による放熱量(Qair)が生ずる。
更に、オイルクーラ7では、オイルクーラ7による放熱量(Qoc)が生ずる。
In the
That is, in the torque converter 5, a heat generation amount (Qtc) is generated due to the automatic transmission input rotation speed, the differential rotation between the engine rotation speed and the automatic transmission input rotation speed, and the like.
Further, in the
Further, in the
車両1には、自動変速機3の油温センサ故障検出装置8が設けられる。
この油温センサ故障検出装置8には、自動変速機3に取り付けられて作動油の温度(油温)を検出する油温センサ9と、エンジン2に取り付けられてエンジン回転数を検出するエンジン回転数センサ10と、自動変速機3に取り付けられて自動変速機入力回転数を検出する自動変速機入力回転数センサ11とが連絡している。
The vehicle 1 is provided with an oil temperature sensor failure detection device 8 for the
The oil temperature sensor failure detection device 8 includes an
油温センサ故障検出装置8は、故障診断開始時に油温センサ9により検出された作動油の温度を初期オイル温度(Ti)とし、この検出された初期オイル温度(Ti)毎にこの初期オイル温度(Ti)の値から予め設定された温度(△T)だけ変化するのに必要な熱量(Qa)を算出する熱量算出手段12と、前記初期オイル温度(Ti)を検出したタイミングから変化するエンジン回転数と自動変速機入力回転数とを用いて算出される単位時間毎の発熱量(Qb)を算出する発熱量算出手段13と、この発熱量算出手段13により算出された発熱量(Qb)を積算する発熱量積算手段14と、この発熱量積算手段14により積算された発熱量(ΣQb)が熱量算出手段12により算出された熱量(Qa)に応じて算出される判定値を超えるまで積算し続ける判定タイミング検出手段15と、この判定タイミング検出手段15により積算された発熱量(ΣQb)が判定タイミングであると判定された時に油温センサ9により検出された作動油の温度を検出オイル温度(Tm)とし、この検出オイル温度(Tm)が予め設定された判定オイル温度範囲内に含まれていない場合に油温センサ9が故障していると判定する故障判定手段16とを備える。これは、全て温度域において、作動油の温度が上昇する場合でも下降する場合でも、時間をかけずに、油温センサ9の故障検出が可能とするためである。
また、油温センサ故障検出装置8は、発熱量積算手段14により積算された発熱量(ΣQb)の正負に基づいて、前記熱量(Qa)を補正する熱量補正手段17を備える。これは、精度良く、油温センサ9の故障検出が可能とするためである。
更に、油温センサ故障検出装置8は、発熱量積算手段14により積算された発熱量(ΣQb)の正負に基づいて、前記判定オイル温度範囲を補正する温度範囲補正手段18を備える。これは、油温センサ9を誤って故障と判定することを防止するためである。
The oil temperature sensor failure detection device 8 sets the temperature of the hydraulic oil detected by the
Further, the oil temperature sensor failure detection device 8 includes a calorific
Further, the oil temperature sensor failure detection device 8 includes a temperature
油温センサ故障検出装置8では、以下の計算が実行される。
ΔT℃上昇に必要な熱量(Qa)は、
Qa=Tmc×ΔT
で算出される。
ここで、
Tmc:作動油の温度が1℃上昇するのに必要な熱量を、安全率や作動油だけでなく、自動変速機assy全体で考慮した理論的な値(安全率×自動変速機assy全体の比熱×質量)
ΔT:初期温度(Ti)の温度毎に、温度変化し難い点等を考慮した値を、テーブルで設定した値
また、外乱等を考慮した発熱量(Qb)は、
Qb=Acons×A_TC×TC_capacity×EGrpm2×absolute(EGrpm−(inRpm×TC_trqRatio))−T_Cool
ここで、
Acons×A_TC×TC_capacity×EGrpm2×absolute(EGrpm−(inRpm×TC_trqRatio))=Qtc+Qmc
T_Cool=Qoc+Qair
Acons:単位合わせのための係数
A_TC:係数
TC_capacity:トルクコンバータ5の容量(速度比(自動変速機入力回転数/エンジン回転数)より算出)
TC_trqRatio:トルク比(速度比(自動変速機入力回転数/エンジン回転数)より算出)
T_Cool:放熱量
EGrpm:エンジン回転数
inRpm:入力回転数
更に、熱量補正値(Qc)は、熱量(Qa)に対するヒステリシス、初期温度(Ti)毎にテーブルを持つ(図5参照)。
また、ΣQb下降時のTm下限閾値(Tdmin)、ΣQb上昇時のTm下限閾値(Tumin)、ΣQb下降時のTm上限閾値(Tdmax)、ΣQb上昇時のTm上限閾値(Tumax)は、熱量(Qa)に対するヒステリシス、Tiの温度毎にテーブルを持つ(図6参照)。
Tm:測定油温
ΣQb:Qbを積算した発熱量
In the oil temperature sensor failure detection device 8, the following calculation is executed.
The amount of heat (Qa) required to increase ΔT ° C is
Qa = Tmc × ΔT
Is calculated by
here,
Tmc: Theoretical value considering the amount of heat required for the hydraulic oil temperature to rise by 1 ° C. not only in the safety factor and hydraulic oil but in the entire automatic transmission assy (safety factor x specific heat of the entire automatic transmission assy) × mass)
ΔT: A value that takes into account the point at which the temperature is difficult to change for each temperature of the initial temperature (Ti), etc., is a value set in the table.
Qb = Acons * A_TC * TC_capacity * EGrpm2 * absolute (EGrpm- (inRpm * TC_trqRatio))-T_Cool
here,
Acons × A_TC × TC_capacity × EGrpm2 × absolute (EGrpm− (inRpm × TC_trqRatio)) = Qtc + Qmc
T_Cool = Qoc + Qair
Acons: Coefficient for unit alignment A_TC: Coefficient TC_capacity: Capacity of torque converter 5 (calculated from speed ratio (automatic transmission input rotational speed / engine rotational speed))
TC_trqRatio: Torque ratio (calculated from speed ratio (automatic transmission input rotational speed / engine rotational speed))
T_Cool: Heat dissipation amount EGrpm: Engine rotation speed inRpm: Input rotation speed Further, the heat amount correction value (Qc) has a table for each hysteresis and initial temperature (Ti) with respect to the heat amount (Qa) (see FIG. 5).
Further, the Tm lower limit threshold (Tdmin) when ΣQb is lowered, the Tm lower limit threshold (Tumin) when ΣQb is raised, the Tm upper threshold (Tdmax) when ΣQb is lowered, and the Tm upper limit threshold (Tumax) when ΣQb is raised are the amount of heat (Qa ) And a table for each Ti temperature (see FIG. 6).
Tm: measured oil temperature ΣQb: calorific value obtained by integrating Qb
次に、この実施例に係る故障検出を、図2のフローチャートに基づいて説明する。
図2に示すように、プログラムがスタートすると(ステップA01)、先ず、エンジン始動時の作動油の温度(現在の油温)である初期油温(Ti)からΔT℃変化(上昇)するのに必要な熱量(Qa)を算出し、また、自動変速機入力回転数、エンジン回転数と自動変速機入力回転数との差回転数等による発熱及び冷却等による放熱から発熱量(Qb)を演算し、更に、熱量補正値(Qc)を設定し、そして、ΣQb下降時のQc閾値(Qcd)及びΣQb上昇時のQc閾値(Qcu)を算出し、また、積算された発熱量(ΣQb)の計算誤差等を考慮し、初期油温(Ti)からΔT℃変化後(Ti+ΔT)の故障閾値として、下限閾値(Tmin)、上限閾値(Tmax)を算出するとともに、この下限閾値(Tmin)、上限閾値(Tmax)を熱量補正値(Qc)と同様に、ΣQbの正負で分けられるものとし、ΣQb下降時のTm下限閾値(Tdmin)、ΣQb下降時のTm上限閾値(Tdmax)、ΣQb上昇時のTm下限閾値(Tumin)、ΣQb上昇時のTm上限閾値(Tumax)を算出する(ステップA02)。
これにより、故障判定時間の短縮ができ、また、従来では、温度の上昇側でしか検出できなかったが、この実施例においては、全ての油温領域でも、温度の上昇・下降の両方で故障判定ができる。
そして、発熱量(Qb)を積算した発熱量(ΣQb)を算出し(ステップA03)、ΣQb≦0か否かを判断する(ステップA04)。
このステップA04がYESの場合には、熱量補正値(Qc)を、Qc=Qcd(Qbが負のときに用いる熱量補正値)で設定し(図4(A)参照)、ΣQb≦Qa+Qcdか否かを判断する(ステップA05)。ΣQb≦Qa+Qcdになったときの実温度を、Tmとする。
このステップA05がNOの場合には、前記ステップA03に戻す。
このステップA05がYESの場合には、Tdmin<Tm<Tdmaxか否かを判断する(ステップA06)。
このステップA06がNOの場合には、故障と判定する(ステップA07)(図4(B)参照)。
このステップA06がYESの場合には、正常を検出したとし、累積発熱量をリセットし(ステップA08)、前記ステップA02に戻す。
一方、前記ステップA04がNOの場合には、熱量補正値(Qc)を、Qc=Qcu(Qbが正のときに用いる熱量補正値)で設定し(図3(A)参照)、ΣQb≧Qa+Qcuか否かを判断する(ステップA09)。ΣQb≧Qa+Qcuになったときの実温度を、Tmとする。
このステップA09がNOの場合には、前記ステップA03に戻す。
このステップA09がYESの場合には、Tumin<Tm<Tumaxか否かを判断する(ステップA10)。
このステップA10がNOの場合には、故障と判定する(ステップA07)(図3(B)参照)。
このステップA10がYESの場合には、正常を検出したとし、累積発熱量をリセットし(ステップA08)、前記ステップA02に戻す。
Next, failure detection according to this embodiment will be described based on the flowchart of FIG.
As shown in FIG. 2, when the program starts (step A01), first, a change of ΔT ° C. from the initial oil temperature (Ti), which is the temperature of the hydraulic oil at the time of engine start (current oil temperature), is increased (increased). Calculates the required amount of heat (Qa) and calculates the amount of heat generated (Qb) from the heat generated by the automatic transmission input speed, the difference between the engine speed and the automatic transmission input speed, and the heat released from cooling. Further, a calorific value correction value (Qc) is set, and a Qc threshold value (Qcd) when ΣQb is lowered and a Qc threshold value (Qcu) when ΣQb is raised are calculated, and the integrated calorific value (ΣQb) is calculated. In consideration of calculation errors and the like, the lower threshold (Tmin) and the upper threshold (Tmax) are calculated as the failure threshold after the change of ΔT ° C. from the initial oil temperature (Ti) (Ti + ΔT). Threshold (Tma ) Is divided into positive and negative values of ΣQb, similarly to the calorie correction value (Qc), Tm lower limit threshold (Tdmin) when ΣQb is lowered, Tm upper limit threshold (Tdmax) when ΣQb is lowered, and Tm lower limit threshold when ΣQb is raised (Tumin), Tm upper limit threshold value (Tumax) when ΣQb rises is calculated (step A02).
As a result, the failure determination time can be shortened, and in the past, it could be detected only on the temperature rise side, but in this embodiment, the failure occurred both in the temperature rise and fall in all oil temperature regions. Judgment is possible.
Then, a calorific value (ΣQb) obtained by integrating the calorific value (Qb) is calculated (step A03), and it is determined whether ΣQb ≦ 0 (step A04).
When this step A04 is YES, the heat amount correction value (Qc) is set as Qc = Qcd (heat amount correction value used when Qb is negative) (see FIG. 4A), and whether ΣQb ≦ Qa + Qcd is satisfied. Is determined (step A05). The actual temperature when ΣQb ≦ Qa + Qcd is assumed to be Tm.
If step A05 is NO, the process returns to step A03.
If step A05 is YES, it is determined whether Tdmin <Tm <Tdmax (step A06).
When this step A06 is NO, it is determined as a failure (step A07) (see FIG. 4B).
If step A06 is YES, it is assumed that normality is detected, the accumulated heat generation amount is reset (step A08), and the process returns to step A02.
On the other hand, when the step A04 is NO, the heat amount correction value (Qc) is set as Qc = Qcu (heat amount correction value used when Qb is positive) (see FIG. 3A), and ΣQb ≧ Qa + Qcu. (Step A09). The actual temperature when ΣQb ≧ Qa + Qcu is assumed to be Tm.
If step A09 is NO, the process returns to step A03.
If this step A09 is YES, it is determined whether Tumin <Tm <Tumax (step A10).
When this step A10 is NO, it determines with it being a failure (step A07) (refer FIG. 3 (B)).
If step A10 is YES, it is determined that normality is detected, the accumulated heat generation amount is reset (step A08), and the process returns to step A02.
この結果、油温センサ故障検出装置8においては、故障診断開始時に油温センサ9により検出された作動油の温度を初期オイル温度(Ti)とし、この検出された初期オイル温度(Ti)毎にこの初期オイル温度(Ti)の値から予め設定された温度(△T)だけ変化するのに必要な熱量(Qa)を算出する熱量算出手段12と、前記初期オイル温度(Ti)を検出したタイミングから変化するエンジン回転数と自動変速機入力回転数とを用いて算出される単位時間毎の発熱量(Qb)を算出する発熱量算出手段13と、この発熱量算出手段13により算出された発熱量(Qb)を積算する発熱量積算手段14と、この発熱量積算手段14により積算された発熱量(ΣQb)が熱量算出手段12により算出された熱量(Qa)に応じて算出される判定値を超えるまで積算し続ける判定タイミング検出手段15と、この判定タイミング検出手段15により積算された発熱量(ΣQb)が判定タイミングであると判定された時に油温センサ9により検出された作動油の温度を検出オイル温度(Tm)とし、この検出オイル温度(Tm)が予め設定された判定オイル温度範囲内に含まれていない場合に油温センサ9が故障していると判定する故障判定手段16とを備える。
これにより、全ての温度域において、作動油の温度が上昇する場合でも下降する場合でも、時間をかけずに、油温センサ9の故障検出が可能となる。
即ち、ΔT℃上昇(もしくは下降)に必要な熱量を求めることから、全ての温度域において、温度の上昇及び下降(放熱が発熱を上回っているとき)でも故障検出できることを可能とする。また、熱量補正値(Qc)を閾値Qcd、閾値Qcuと場合分けのできるものとすることから、温度ΔTに対し、外気温度、冷却水温度、吸気温度、発熱の量、放熱の量により、各閾値の範囲を変更できる(例:温度の上昇側に対しては厳しく、下降側に対しては緩く。外気温が高いときと低いときで変更する。冷機始動、暖機始動。等)。更に、ΔT℃変化後のTm許容範囲Tmin,Tmaxを設定することから、診断中に故障が発生し、測定温度が急変し、固着した場合でも、誤診断を予防できる。
As a result, in the oil temperature sensor failure detection device 8, the temperature of the hydraulic oil detected by the
As a result, in all temperature ranges, it is possible to detect a failure of the
In other words, since the amount of heat necessary for increasing (or decreasing) ΔT ° C. is obtained, it is possible to detect a failure even when the temperature increases and decreases (when heat dissipation exceeds heat generation) in all temperature ranges. In addition, since the calorie correction value (Qc) can be divided into the threshold value Qcd and the threshold value Qcu, each of the temperature ΔT depends on the outside air temperature, the cooling water temperature, the intake air temperature, the heat generation amount, and the heat release amount. The threshold range can be changed (eg, it is stricter on the rising side of the temperature and looser on the lowering side. It is changed when the outside air temperature is high or low. Cold start, warm start, etc.) Furthermore, since the Tm allowable ranges Tmin and Tmax after the change of ΔT ° C. are set, it is possible to prevent erroneous diagnosis even when a failure occurs during diagnosis, the measured temperature suddenly changes, and is fixed.
また、油温センサ故障検出装置8においては、発熱量積算手段14により積算された発熱量の正負に基づいて、熱量(Qa)を補正する熱量補正手段17を備える。これにより、精度良く、油温センサ9の故障検出が可能となる。
In addition, the oil temperature sensor failure detection device 8 includes a calorific
更に、油温センサ故障検出装置8においては、発熱量積算手段14により積算された発熱量の正負に基づいて、判定オイル温度範囲を補正する温度範囲補正手段18を備える。これにより、油温センサ9を誤って故障と判定することを防止する。
Further, the oil temperature sensor failure detection device 8 includes a temperature
この発明の油温センサ故障検出装置は、各種車両に適用可能である。 The oil temperature sensor failure detection device of the present invention can be applied to various vehicles.
1 車両
2 エンジン
3 自動変速機
5 トルクコンバータ
6 変速ギヤ装置
8 油温センサ故障検出装置
9 油温センサ
10 エンジン回転数センサ
11 自動変速機入力回転数センサ
12 熱量算出手段
13 発熱量算出手段
14 発熱量積算手段
15 判定タイミング検出手段
16 故障判定手段
17 熱量補正手段
18 温度範囲補正手段
DESCRIPTION OF SYMBOLS 1
Claims (3)
故障診断開始時に前記油温センサにより検出された作動油の温度を初期オイル温度とし、この検出された初期オイル温度毎にこの初期オイル温度の値から予め設定された温度だけ変化するのに必要な熱量を算出する熱量算出手段と、
前記初期オイル温度を検出したタイミングから変化するエンジン回転数と自動変速機入力回転数とを用いて算出される単位時間毎の発熱量を算出する発熱量算出手段と、
この発熱量算出手段により算出された発熱量を積算する発熱量積算手段と、
この発熱量積算手段により積算された発熱量が前記熱量算出手段により算出された熱量に応じて算出される判定値を超えるまで積算し続ける判定タイミング検出手段と、
この判定タイミング検出手段により積算された発熱量が判定タイミングであると判定された時に前記油温センサにより検出された作動油の温度を検出オイル温度とし、この検出オイル温度が予め設定された判定オイル温度範囲内に含まれていない場合に前記油温センサが故障していると判定する故障判定手段とを備えることを特徴とする自動変速機の油温センサ故障検出装置。 In an oil temperature sensor failure diagnosis device that detects the temperature of hydraulic oil of an automatic transmission mounted on a vehicle,
The temperature of the hydraulic oil detected by the oil temperature sensor at the start of failure diagnosis is set as the initial oil temperature, and it is necessary to change only the preset temperature from the value of the initial oil temperature for each detected initial oil temperature. A calorific value calculating means for calculating a calorific value;
A calorific value calculation means for calculating a calorific value per unit time calculated using the engine speed and the automatic transmission input speed that change from the timing at which the initial oil temperature is detected;
A calorific value integrating means for integrating the calorific value calculated by the calorific value calculating means;
A determination timing detection unit that continues to accumulate until the heat generation amount integrated by the heat generation amount integration unit exceeds a determination value calculated according to the heat amount calculated by the heat amount calculation unit;
The hydraulic oil temperature detected by the oil temperature sensor when the calorific value integrated by the determination timing detection means is determined to be the determination timing is set as the detected oil temperature, and the detected oil temperature is set in advance. An oil temperature sensor failure detection device for an automatic transmission, comprising: failure determination means for determining that the oil temperature sensor has failed when not included in a temperature range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009235913A JP5206642B2 (en) | 2009-10-13 | 2009-10-13 | Oil temperature sensor failure detection device for automatic transmission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009235913A JP5206642B2 (en) | 2009-10-13 | 2009-10-13 | Oil temperature sensor failure detection device for automatic transmission |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011085150A true JP2011085150A (en) | 2011-04-28 |
JP5206642B2 JP5206642B2 (en) | 2013-06-12 |
Family
ID=44078249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009235913A Active JP5206642B2 (en) | 2009-10-13 | 2009-10-13 | Oil temperature sensor failure detection device for automatic transmission |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5206642B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5411998B1 (en) * | 2012-12-28 | 2014-02-12 | 富士重工業株式会社 | Temperature sensor diagnostic device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0842660A (en) * | 1994-08-04 | 1996-02-16 | Nissan Motor Co Ltd | Overheat detection and overheat countermeasure device for torque converter |
JPH09329221A (en) * | 1996-06-11 | 1997-12-22 | Mazda Motor Corp | Failure judging device of oil temperature detecting means in automatic transmission |
JPH10111182A (en) * | 1996-10-03 | 1998-04-28 | Nissan Motor Co Ltd | Abnormality judging device for car temperature sensor |
JP2002130452A (en) * | 2000-10-24 | 2002-05-09 | Honda Motor Co Ltd | Control device for vehicular hydraulically operable transmission |
JP2007518036A (en) * | 2004-01-07 | 2007-07-05 | ケフィコ コーポレーション | Oil temperature sensor defect detection method for automatic transmission |
-
2009
- 2009-10-13 JP JP2009235913A patent/JP5206642B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0842660A (en) * | 1994-08-04 | 1996-02-16 | Nissan Motor Co Ltd | Overheat detection and overheat countermeasure device for torque converter |
JPH09329221A (en) * | 1996-06-11 | 1997-12-22 | Mazda Motor Corp | Failure judging device of oil temperature detecting means in automatic transmission |
JPH10111182A (en) * | 1996-10-03 | 1998-04-28 | Nissan Motor Co Ltd | Abnormality judging device for car temperature sensor |
JP2002130452A (en) * | 2000-10-24 | 2002-05-09 | Honda Motor Co Ltd | Control device for vehicular hydraulically operable transmission |
JP2007518036A (en) * | 2004-01-07 | 2007-07-05 | ケフィコ コーポレーション | Oil temperature sensor defect detection method for automatic transmission |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5411998B1 (en) * | 2012-12-28 | 2014-02-12 | 富士重工業株式会社 | Temperature sensor diagnostic device |
Also Published As
Publication number | Publication date |
---|---|
JP5206642B2 (en) | 2013-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102862473B (en) | A kind of axial fan method for controlling number of revolution and motor vehicle driven by mixed power | |
US8055392B2 (en) | Electronic device | |
JP5553632B2 (en) | Cooling control method for power conversion device of hybrid vehicle | |
EP2950626B1 (en) | Error detection system for cooling apparatus | |
US20140161152A1 (en) | Thermal monitoring of a converter | |
US8620516B2 (en) | System and method for performing engine material temperature sensor diagnostics | |
US7747366B2 (en) | Oil temperature prediction and vehicle protection | |
KR101691211B1 (en) | Fault diagnosis apparatus of thermal sensor for hybrid and electronic vehicle and method of the same | |
US20170088137A1 (en) | Method for protecting clutch of vehicle | |
JP6088170B2 (en) | Control device for electric oil pump for vehicle | |
JP6299368B2 (en) | Semiconductor device temperature estimation device | |
JP5206642B2 (en) | Oil temperature sensor failure detection device for automatic transmission | |
JP3903388B2 (en) | Thermostat failure diagnosis method | |
WO2020208726A1 (en) | Power conversion device | |
JP6471014B2 (en) | Electric motor temperature estimation device and electric motor control device | |
JPH0842660A (en) | Overheat detection and overheat countermeasure device for torque converter | |
CN101741067A (en) | Overheating protection device and method of electronic device | |
JP2007040109A5 (en) | ||
JP5630453B2 (en) | Degradation detection circuit and semiconductor integrated device | |
JP2010276074A (en) | Part temperature estimating device and part temperature estimating method | |
JP2012052633A (en) | Failure determining device of oil temperature sensor | |
CN106297205A (en) | A kind of machine frame detecting clogging of dust screen and detection device | |
KR101747835B1 (en) | Remote server | |
KR101368168B1 (en) | Setting method for initial temperature of clutch of transmission Control Unit | |
JP4233516B2 (en) | Data processing apparatus having a cooling fan |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120511 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130204 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160301 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5206642 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160301 Year of fee payment: 3 |