[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011083990A - Gas barrier layer structure - Google Patents

Gas barrier layer structure Download PDF

Info

Publication number
JP2011083990A
JP2011083990A JP2009239071A JP2009239071A JP2011083990A JP 2011083990 A JP2011083990 A JP 2011083990A JP 2009239071 A JP2009239071 A JP 2009239071A JP 2009239071 A JP2009239071 A JP 2009239071A JP 2011083990 A JP2011083990 A JP 2011083990A
Authority
JP
Japan
Prior art keywords
layer
gas barrier
film
barrier layer
layer structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009239071A
Other languages
Japanese (ja)
Inventor
Daisuke Omori
大輔 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2009239071A priority Critical patent/JP2011083990A/en
Publication of JP2011083990A publication Critical patent/JP2011083990A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas barrier layer structure best suited as a barrier layer for electronic device by reducing an amount of water vapor transmission as compared with that of a conventional technique. <P>SOLUTION: A gas barrier layer structure 6 demonstrating gas barrier properties in an electronic device structure is composed of a layer 61 of a passive metal and a layer 62 of an oxide of passive metal laminated in sequence, wherein the passive metal is selected from Al, Cr, Ti, Ni, Fe, Zr and Ta or an alloy of two or more of them. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機エレクトロルミネッセンス(以下、「有機EL」という)素子、太陽電池や薄膜リチウム電池等の電子デバイスにて、特に水蒸気に対してガスバリア性能を発揮するガスバリア層構造体に関する。   The present invention relates to a gas barrier layer structure that exhibits gas barrier performance particularly against water vapor in electronic devices such as organic electroluminescence (hereinafter referred to as “organic EL”) elements, solar cells, and thin film lithium batteries.

この種の電子デバイスには、大気中の水蒸気や酸素等のガスにより劣化し易いものが含まれ、耐久性を高めるために、特に水蒸気を確実に遮断する構造を電子デバイスに設けておく必要があることは従来から知られている。   This type of electronic device includes those that are easily deteriorated by gas such as water vapor and oxygen in the atmosphere, and in order to increase durability, it is necessary to provide the electronic device with a structure that specifically blocks water vapor. It has been known for some time.

ここで、特許文献1には、有機EL素子において、この有機EL素子及びその周囲の基板表面を覆うように高分子化合物膜を設けた後、この高分子化合物膜、その縁部及びその周辺の基板表面を覆うように、アルミナ層等からなる無機バリア膜を設けることが開示されている。   Here, in Patent Document 1, in an organic EL element, a polymer compound film is provided so as to cover the surface of the organic EL element and the surrounding substrate, and then the polymer compound film, its edge and its surroundings are covered. It is disclosed that an inorganic barrier film made of an alumina layer or the like is provided so as to cover the substrate surface.

また、特許文献2には、有機発光デバイス(LED)のピクセルアレイを、インジウム(In)などの安定金属層でキャッピングした後、酸素及び水蒸気に対する拡散障壁として機能する、有機ポリマまたは有機金属錯体のいずれかのバッファ層を設けることが開示されている。   Patent Document 2 discloses an organic polymer or organometallic complex that functions as a diffusion barrier against oxygen and water vapor after a pixel array of an organic light emitting device (LED) is capped with a stable metal layer such as indium (In). It is disclosed to provide either buffer layer.

然しながら、上記従来例のように、酸化物、窒化物の単層や樹脂からバリア層を形成した場合、水蒸気透過量が未だ多く、デバイスの劣化等を確実に防止するのに充分な水蒸気バリア性が得られていないことが判明した。   However, when the barrier layer is formed from a single oxide or nitride layer or resin as in the above conventional example, the water vapor permeation amount is still large, and the water vapor barrier property is sufficient to reliably prevent deterioration of the device. It turned out that was not obtained.

特開2007−134099号公報JP 2007-134099 A 特開平9−185994号公報JP-A-9-185994

本発明は、以上の点に鑑み、特に水蒸気透過量を従来技術のものと比較して少なくでき、電子デバイスのバリア層として最適なガスバリア層構造体を提供することをその課題とするものである。   In view of the above points, it is an object of the present invention to provide a gas barrier layer structure that can reduce the amount of water vapor permeation particularly as compared with that of the prior art and is optimal as a barrier layer for electronic devices. .

上記課題を解決するために、本発明は、電子デバイス構造にてガスバリア性能を発揮するガスバリア層構造体であって、不動態化金属の層と、この不動態化金属の酸化物層とを順次積層してなることを特徴とする。   In order to solve the above-described problems, the present invention provides a gas barrier layer structure that exhibits gas barrier performance in an electronic device structure, and includes a passivation metal layer and an oxide layer of the passivation metal in order. It is characterized by being laminated.

本発明によれば、不動態化金属の層上に、この不動態化金属の酸化物層を積層することで、不動態化金属の層と酸化物層との合計厚さと同程度の厚さを有する、酸化物や窒化物の単層からなる上記従来例のバリア層と比較して、1/5程度まで水蒸気透過量を低減できることが確認された。これは、不動態化金属の層上にこの酸化物層を積層したときに両者の界面付近に存する酸化物層が改質されて、強い水蒸気バリア性を発揮するようになったものと考えられる。   According to the present invention, by laminating the passivated metal oxide layer on the passivated metal layer, the thickness is about the same as the total thickness of the passivated metal layer and the oxide layer. It was confirmed that the amount of water vapor permeation can be reduced to about 1/5 as compared with the barrier layer of the above-described conventional example composed of a single layer of oxide or nitride. This is considered that when this oxide layer was laminated on the passivating metal layer, the oxide layer existing in the vicinity of the interface between the two was modified to exert a strong water vapor barrier property. .

なお、本発明における電子デバイスとは、有機EL素子、太陽電池や薄膜リチウム電池等の特定の機能を持った電子部品をいい、前記例示のものに限定されるものではない。また、前記不動態化金属がAlである場合には、このAl層の厚さが、例えば5nm程度と、不動態化金属の酸化物層と比較して薄くする必要がある。ここで、水蒸気透過量を少なくするには、Al層を厚くすればよいが、Al層の厚さが増えるに従い、絶縁性が低下する。このため、用途によっては不向きなものとなる場合がある。また、本発明が適用される電子デバイスにて光透過性が要求されるような場合にもAl層の厚さを調節する必要がある。   In addition, the electronic device in this invention means electronic components with specific functions, such as an organic EL element, a solar cell, and a thin film lithium battery, and is not limited to the thing of the said illustration. Further, when the passivating metal is Al, the thickness of the Al layer needs to be thin, for example, about 5 nm, compared with the oxide layer of the passivating metal. Here, in order to reduce the amount of water vapor permeated, the thickness of the Al layer may be increased. However, as the thickness of the Al layer increases, the insulating property decreases. For this reason, it may become unsuitable depending on a use. Further, it is necessary to adjust the thickness of the Al layer even when optical transparency is required in the electronic device to which the present invention is applied.

本発明においては、前記不動態化金属は、Al、Cr、Ti、Ni、Fe、Zr及びTaの中から選択されたもの、または、これらの二種以上の合金であればよい。   In the present invention, the passivating metal may be selected from Al, Cr, Ti, Ni, Fe, Zr and Ta, or an alloy of two or more of these.

また、本発明においては、前記不動態化金属の層と、この不動態化金属の酸化物層とがスパッタリング法により連続して形成されたものであることが好ましい。これによれば、スパッタリング中に酸素の反応ガスを導入するだけで、緻密な膜からなる不動態化層と酸化物膜層とが真空中で連続して形成でき、製作コストや生産性向上の上で有利である。   In the present invention, the passivating metal layer and the passivating metal oxide layer are preferably formed successively by a sputtering method. According to this, a passivation layer and an oxide film layer made of a dense film can be continuously formed in a vacuum only by introducing an oxygen reactive gas during sputtering, which improves production costs and productivity. This is advantageous.

本発明のガスバリア層構造体を適用した有機EL素子の構成を説明する図。The figure explaining the structure of the organic EL element to which the gas barrier layer structure of this invention is applied. 本発明のガスバリア層構造体による水蒸気透過量の測定結果を示す図。The figure which shows the measurement result of the water vapor transmission rate by the gas barrier layer structure of this invention. 本発明のガスバリア層構造体にて不動態化層の膜厚を変化させたときのシート抵抗値を示すグラフ。The graph which shows a sheet resistance value when the film thickness of a passivation layer is changed in the gas barrier layer structure of the present invention. 本発明のガスバリア層構造体が適用できる薄膜リチウムイオン電池の構成を説明する図。The figure explaining the structure of the thin film lithium ion battery which can apply the gas barrier layer structure of this invention.

以下、図面を参照して、本発明のガスバリア層構造体を有機EL素子に適用した場合を例として、本発明の実施形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings, taking as an example the case where the gas barrier layer structure of the present invention is applied to an organic EL element.

図1を参照して、D1は、有機EL素子である。有機EL素子D1は、ガラスなどの無機物等の基板1表面に、陽極を構成する第1の表示電極2と、有機化合物から構成される1層以上の有機機能層3と、陰極を構成する第2の表示電極4とを順次積層して構成され、有機機能層3を陽極及び陰極で挟んだ形態である。   Referring to FIG. 1, D1 is an organic EL element. The organic EL element D1 includes a first display electrode 2 constituting an anode, one or more organic functional layers 3 composed of an organic compound, and a cathode constituting a cathode on the surface of a substrate 1 such as an inorganic substance such as glass. 2 display electrodes 4 are sequentially stacked, and the organic functional layer 3 is sandwiched between an anode and a cathode.

第1の表示電極2は、例えばITO膜から構成され、EB蒸着法、スパッタリング法などの公知の方法で形成され、フォトリソグラフィー工程で所定形状にパターニングされている。有機機能層3は、公知の構造を有し、例えば、蒸着法によって、銅フタロシアニンからなる正孔注入層と、TPD(トリフェニルアミン誘導体)からなる正孔輸送層と、Alq3(アルミキレート錯体)からなる発光層と、LiOからなる電子注入層とを順次積層して構成される。第2の表示電極4は、例えばAl膜から構成され、EB蒸着法、スパッタリング法などの公知の方法で形成され、フォトリソグラフィー工程で所定形状にパターニングされている。 The first display electrode 2 is made of, for example, an ITO film, is formed by a known method such as an EB vapor deposition method or a sputtering method, and is patterned into a predetermined shape by a photolithography process. The organic functional layer 3 has a known structure, for example, by a vapor deposition method, a hole injection layer made of copper phthalocyanine, a hole transport layer made of TPD (triphenylamine derivative), and Alq3 (aluminum chelate complex). And a light emitting layer made of Li and an electron injection layer made of Li 2 O are sequentially stacked. The second display electrode 4 is made of, for example, an Al film, is formed by a known method such as EB vapor deposition or sputtering, and is patterned into a predetermined shape by a photolithography process.

また、有機EL素子D1及びその周囲を含む基板1表面には、高分子化合物膜5と、この高分子化合物膜5、その縁部及びその周辺の基板1表面を覆うバリア膜6とが順次積層されている。そして、このバリア膜6が、水蒸気や酸素等のガスに対してガスバリア性能を発揮する。なお、高分子化合物膜5については、本出願人より特許出願がなされ、出願公開された特開2007−134099号に記載のものを例えば利用できるため、ここでは詳細な説明を省略する。   Further, on the surface of the substrate 1 including the organic EL element D1 and the periphery thereof, a polymer compound film 5 and a barrier film 6 covering the polymer compound film 5, an edge thereof, and the substrate 1 surface in the periphery thereof are sequentially laminated. Has been. The barrier film 6 exhibits gas barrier performance against gases such as water vapor and oxygen. As for the polymer compound film 5, since a patent application has been filed by the present applicant and a film described in Japanese Patent Application Laid-Open No. 2007-134099 can be used, for example, detailed description is omitted here.

バリア膜6は、不動態化金属の層たるAl層61と、このAl酸化物(Al)層62とを順次積層してなるガスバリア層構造体で構成されている。Al層61と、Al層62とは、同一のスパッタリング装置にて真空中で連続して形成される。即ち、ターゲットとしてAl(99.99%)製のものが装着された公知のスパッタリング装置(図示せず)を用いて成膜される。 The barrier film 6 is composed of a gas barrier layer structure in which an Al layer 61 as a passivating metal layer and an Al oxide (Al 2 O 3 ) layer 62 are sequentially stacked. The Al layer 61 and the Al 2 O 3 layer 62 are continuously formed in a vacuum using the same sputtering apparatus. That is, the film is formed using a known sputtering apparatus (not shown) equipped with a target made of Al (99.99%).

つまり、スパッタリングによりガスバリア層構造体を形成する当初は、Ar等のスパッタガスのみをスパッタリング装置の真空チャンバ内に導入し、所定電力をターゲットに投入してAlからなるAl層61を形成する。次に、ターゲットへの投入電力やチャンバ圧力等から算出されるスパッタレートから、Al層61が所定厚さに達すると、酸素からなる反応ガスを真空チャンバ内に導入して反応性スパッタリングによりAl層62を所定厚さで形成する。この場合、Al層61の厚さが5nm以下とすることが好ましい。Al層61の厚さが5nmを超えると、絶縁性が低下するという不具合が生じる。 That is, at the beginning of forming the gas barrier layer structure by sputtering, only the sputtering gas such as Ar is introduced into the vacuum chamber of the sputtering apparatus, and predetermined power is supplied to the target to form the Al layer 61 made of Al. Next, when the Al layer 61 reaches a predetermined thickness from the sputtering rate calculated from the input power to the target, the chamber pressure, and the like, a reactive gas composed of oxygen is introduced into the vacuum chamber and Al 2 is formed by reactive sputtering. The O 3 layer 62 is formed with a predetermined thickness. In this case, the thickness of the Al layer 61 is preferably 5 nm or less. When the thickness of the Al layer 61 exceeds 5 nm, there arises a problem that the insulating property is lowered.

次に、本実施形態のガスバリア層構造体6のガスバリア性能を評価するため、次の実験を行った。基板として、厚さ50μmのPET製フィルムを用いた。そして、Al(99.99%)製のターゲットを装着した公知のスパッタリング装置にてこのフィルム表面にAl膜を3nmの膜厚で形成し、引き続き、酸素からなる反応ガスを導入して反応性スパッタリングにて50nmの膜厚でAl層を形成した(発明品)。 Next, in order to evaluate the gas barrier performance of the gas barrier layer structure 6 of the present embodiment, the following experiment was performed. A PET film having a thickness of 50 μm was used as the substrate. Then, an Al film having a film thickness of 3 nm is formed on the surface of the film by a known sputtering apparatus equipped with an Al (99.99%) target, and then reactive gas consisting of oxygen is introduced to perform reactive sputtering. An Al 2 O 3 layer having a thickness of 50 nm was formed (invention product).

比較実験として、上記と同一のフィルム表面に、同一のスパッタリング装置を用い、反応性スパッタリングにて50nmの膜厚でAl層を形成したもの(比較品1)と、上記と同一のフィルム表面に、同一のスパッタリング装置を用い、反応性スパッタリングにて50nmの膜厚でAl層を形成し、引き続き、酸素の導入を停止して、Al膜を3nmの膜厚で形成したもの(比較品2)とを作製した。 As a comparative experiment, the same film surface as described above, the same sputtering apparatus, and an Al 2 O 3 layer with a thickness of 50 nm formed by reactive sputtering (Comparative product 1) and the same film as above An Al 2 O 3 layer having a thickness of 50 nm was formed by reactive sputtering on the surface using reactive sputtering, and then the introduction of oxygen was stopped to form an Al film with a thickness of 3 nm. (Comparative product 2) was produced.

図2は、発明品並びに比較品1及び比較品2の水蒸気透過量の測定結果を示す。なお、水蒸気透過量は、圧力上昇法(真空第35巻第3号 317頁(1992))により測定した。これによれば、発明品は、その水蒸気透過量が、5.0×10−2 g/cm/dayであり、従来から広く利用されている比較品1と比較して、1/5倍にできたことが判る。また、発明品と、Al層及びAl層の積層順序の異なる比較品2と比較結果から、保護しようとするもの(基板や有機El素子等のデバイス構造)に対して、Al層、Al層の積層順序の積層体としなければ、充分なガスバリア性を発揮しないことが確認された。 FIG. 2 shows the measurement results of the water vapor permeation amount of the inventive product and the comparative product 1 and the comparative product 2. The amount of water vapor permeation was measured by the pressure increase method (Vacuum Volume 35, No. 3, page 317 (1992)). According to this, the water vapor permeation amount of the inventive product is 5.0 × 10 −2 g / cm 2 / day, which is 1/5 times that of the comparative product 1 that has been widely used conventionally. You can see that In addition, from the comparison product 2 with the product according to the invention and the comparison product 2 in which the stacking order of the Al layer and the Al 2 O 3 layer is different (device structure such as a substrate or an organic El element), an Al layer, It was confirmed that sufficient gas barrier properties would not be exhibited unless the laminate was formed in the stacking order of Al 2 O 3 layers.

次に、本実施形態のガスバリア層構造体6の絶縁性を評価するため、次の実験を行った。基板として、厚さ50μmのPET製フィルムを用いた。そして、Al(99.99%)製のターゲットを装着した公知のスパッタリング装置にてこのフィルム表面にAl膜を所定膜厚で形成し、引き続き、酸素からなる反応ガスを導入して反応性スパッタリングにて50nmの膜厚でAl層を形成した。図3は、Al膜の膜厚を変化させてシート抵抗値(Ω/□)を測定したときのグラフである。尚、シート抵抗値は、四端子四探針法により測定した。これによれば、Al層の膜厚が5nmを超えると、シート抵抗値が急激に低下していくことが確認された。これにより、本実施形態のガスバリア層構造体6を特定のデバイス構造に用いる場合には、Al層の膜厚を考慮する必要があることが判る。 Next, in order to evaluate the insulation of the gas barrier layer structure 6 of the present embodiment, the following experiment was performed. A PET film having a thickness of 50 μm was used as the substrate. Then, an Al film having a predetermined thickness is formed on the surface of the film with a known sputtering apparatus equipped with a target made of Al (99.99%), and subsequently, reactive gas composed of oxygen is introduced for reactive sputtering. An Al 2 O 3 layer having a thickness of 50 nm was formed. FIG. 3 is a graph when the sheet resistance value (Ω / □) is measured by changing the thickness of the Al film. The sheet resistance value was measured by a four-terminal four-probe method. According to this, it was confirmed that when the thickness of the Al layer exceeds 5 nm, the sheet resistance value rapidly decreases. Thereby, when using the gas barrier layer structure 6 of this embodiment for a specific device structure, it turns out that it is necessary to consider the film thickness of an Al layer.

以上説明したように、上記実施形態によれば、不動態化金属たるAl層61上に、この不動態化金属の酸化物層たるAl層62を積層することと、これらのAl膜61とAl層62とを同一のスパッタリング装置にて連続して形成することで緻密な膜となることとが相俟って、不動態化金属の層と酸化物層との合計膜厚が同程度の従来例と比較して、水蒸気透過量を大きく低下できる。 As described above, according to the above embodiment, the Al 2 O 3 layer 62 that is the passivated metal oxide layer is laminated on the Al layer 61 that is the passivated metal, and these Al films 61 and the Al 2 O 3 layer 62 are continuously formed by the same sputtering apparatus to form a dense film, so that the total film of the passivation metal layer and the oxide layer is formed. Compared with the conventional example having the same thickness, the water vapor transmission amount can be greatly reduced.

なお、上記実施形態では、ガスバリア層構造体6を有機EL素子に適用したものを例に説明したが、本発明はこれに限定されるものではない。例えば、図4に示すように、基材上に正極集電層と、結晶化させた正極と、固体電解質層と、負極集電層と、Li負極を順次形成した薄膜リチウムイオン電池D2にて封止膜として本発明のガスバリア層構造体60を適用することができる。   In the above embodiment, the gas barrier layer structure 6 is applied to an organic EL element as an example, but the present invention is not limited to this. For example, as shown in FIG. 4, in a thin film lithium ion battery D2 in which a positive electrode current collecting layer, a crystallized positive electrode, a solid electrolyte layer, a negative electrode current collecting layer, and a Li negative electrode are sequentially formed on a substrate. The gas barrier layer structure 60 of the present invention can be applied as a sealing film.

また、上記実施形態では、不動態化金属としてAlを用いたものを例に説明したが、これに限定されるものではなく、Cr、Ti、Ni、Fe、Zr及びTaの中から選択されたもの、または、これらの二種以上の合金であっても、上記効果を奏することができる。この場合、不動態化金属たるCr、Ti、Ni、Fe、ZrやTaの膜厚は、上記と同様、使用するデバイスに応じて適宜設定される。   In the above-described embodiment, the case where Al is used as the passivating metal has been described as an example. However, the present invention is not limited to this and is selected from Cr, Ti, Ni, Fe, Zr, and Ta. Even if it is a thing or these 2 or more types of alloys, there can exist the said effect. In this case, the film thicknesses of the passivating metals Cr, Ti, Ni, Fe, Zr and Ta are appropriately set according to the device to be used, as described above.

D1…有機EL素子、D2…薄膜リチウムイオン電池、6、60…ガスバリア層構造体、61…Al層(不動態化金属の層)、62…Al層(不動態化金属の酸化物層) D1 ... organic EL element, D2 ... thin-film lithium ion battery, 6,60 ... gas barrier layer structure, 61 ... Al layer (passivation layer of metal), 62 ... Al 2 O 3 layer (oxide of passive metal layer)

Claims (3)

電子デバイス構造にてガスバリア性能を発揮するガスバリア層構造体であって、
不動態化金属の層と、この不動態化金属の酸化物層とを順次積層してなることを特徴とするガスバリア層構造体。
A gas barrier layer structure that exhibits gas barrier performance in an electronic device structure,
A gas barrier layer structure comprising a passivating metal layer and an oxide layer of the passivating metal sequentially laminated.
前記不動態化金属は、Al、Cr、Ti、Ni、Fe、Zr及びTaの中から選択されたもの、または、これらの二種以上の合金であることを特徴とする請求項1記載のガスバリア層構造体。   2. The gas barrier according to claim 1, wherein the passivating metal is selected from Al, Cr, Ti, Ni, Fe, Zr and Ta, or an alloy of two or more thereof. Layer structure. 前記不動態化金属の層と、この不動態化金属の酸化物層とがスパッタリング法により連続して形成されたものであることを特徴とする請求項1または請求項2記載のガスバリア層構造体。   The gas barrier layer structure according to claim 1 or 2, wherein the passivating metal layer and the passivating metal oxide layer are continuously formed by a sputtering method. .
JP2009239071A 2009-10-16 2009-10-16 Gas barrier layer structure Pending JP2011083990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009239071A JP2011083990A (en) 2009-10-16 2009-10-16 Gas barrier layer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009239071A JP2011083990A (en) 2009-10-16 2009-10-16 Gas barrier layer structure

Publications (1)

Publication Number Publication Date
JP2011083990A true JP2011083990A (en) 2011-04-28

Family

ID=44077310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009239071A Pending JP2011083990A (en) 2009-10-16 2009-10-16 Gas barrier layer structure

Country Status (1)

Country Link
JP (1) JP2011083990A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020893A (en) * 2011-07-13 2013-01-31 Ulvac Japan Ltd Sealing film, method for producing the same, electric apparatus and method for manufacturing the same
JP2013222794A (en) * 2012-04-16 2013-10-28 Shin Etsu Chem Co Ltd Solar cell manufacturing method
JP2014035799A (en) * 2012-08-07 2014-02-24 Seiko Epson Corp Light-emitting device, manufacturing method therefor, electronic apparatus
US10322928B2 (en) 2016-11-29 2019-06-18 Taiwan Semiconductor Manufacturing Co., Ltd. Multi-layer sealing film for high seal yield

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228462A (en) * 1986-03-31 1987-10-07 Toyo Metaraijingu Kk Metallic vapor deposited film and its production
JPH11300875A (en) * 1998-04-23 1999-11-02 Toppan Printing Co Ltd High barrier polymer composite film and package
JP2000006297A (en) * 1998-06-18 2000-01-11 Dainippon Printing Co Ltd Gas barrier film and its manufacture, and laminated material in which gas barrier film is used
JP2000185366A (en) * 1998-12-24 2000-07-04 Dainippon Printing Co Ltd Gas barrier film, its production and laminated material using gas barrier film
JP2003326636A (en) * 2002-05-16 2003-11-19 Toppan Printing Co Ltd Strong adhesion gas barrier transparent laminate
JP2004181793A (en) * 2002-12-04 2004-07-02 Dainippon Printing Co Ltd Gas barrier laminated material and its manufacturing process
JP2008087163A (en) * 2006-09-29 2008-04-17 Fujifilm Corp Gas barrier laminated film and image display element using it
JP2009023114A (en) * 2007-07-17 2009-02-05 Toray Advanced Film Co Ltd Gas-barrir film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228462A (en) * 1986-03-31 1987-10-07 Toyo Metaraijingu Kk Metallic vapor deposited film and its production
JPH11300875A (en) * 1998-04-23 1999-11-02 Toppan Printing Co Ltd High barrier polymer composite film and package
JP2000006297A (en) * 1998-06-18 2000-01-11 Dainippon Printing Co Ltd Gas barrier film and its manufacture, and laminated material in which gas barrier film is used
JP2000185366A (en) * 1998-12-24 2000-07-04 Dainippon Printing Co Ltd Gas barrier film, its production and laminated material using gas barrier film
JP2003326636A (en) * 2002-05-16 2003-11-19 Toppan Printing Co Ltd Strong adhesion gas barrier transparent laminate
JP2004181793A (en) * 2002-12-04 2004-07-02 Dainippon Printing Co Ltd Gas barrier laminated material and its manufacturing process
JP2008087163A (en) * 2006-09-29 2008-04-17 Fujifilm Corp Gas barrier laminated film and image display element using it
JP2009023114A (en) * 2007-07-17 2009-02-05 Toray Advanced Film Co Ltd Gas-barrir film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020893A (en) * 2011-07-13 2013-01-31 Ulvac Japan Ltd Sealing film, method for producing the same, electric apparatus and method for manufacturing the same
JP2013222794A (en) * 2012-04-16 2013-10-28 Shin Etsu Chem Co Ltd Solar cell manufacturing method
JP2014035799A (en) * 2012-08-07 2014-02-24 Seiko Epson Corp Light-emitting device, manufacturing method therefor, electronic apparatus
US9166193B2 (en) 2012-08-07 2015-10-20 Seiko Epson Corporation Light emitting device, method of manufacturing the same, and electronic apparatus
US10322928B2 (en) 2016-11-29 2019-06-18 Taiwan Semiconductor Manufacturing Co., Ltd. Multi-layer sealing film for high seal yield
US10676343B2 (en) 2016-11-29 2020-06-09 Taiwan Semiconductor Manufacturing Co., Ltd. Multi-layer sealing film for high seal yield
US11034578B2 (en) 2016-11-29 2021-06-15 Taiwan Semiconductor Manufacturing Co., Ltd. Multi-layer sealing film for high seal yield
TWI732961B (en) * 2016-11-29 2021-07-11 台灣積體電路製造股份有限公司 Microelectromechanical systems package and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US10069109B2 (en) Organic light emitting device and method of fabricating the same
US8574662B2 (en) Substrate section for flexible display device, method of manufacturing substrate section, and method of manufacturing organic light emitting display device including substrate
TW201638259A (en) Film for transparent conductive layer lamination, method for manufacturing same, and transparent conductive film
US10804404B2 (en) Thin film transistor array panel and manufacturing method thereof
WO2013099654A1 (en) Translucent gas barrier film, method for producing translucent gas barrier film, organic el element, solar cell, and thin-film cell
Seok et al. Zno: Ga-graded ITO electrodes to control interface between PCBM and ITO in planar perovskite solar cells
CN110224082B (en) Thin film packaging structure, manufacturing method of thin film packaging structure and display device
JP5740179B2 (en) Transparent gas barrier film, method for producing transparent gas barrier film, organic electroluminescence element, solar cell and thin film battery
US20160225996A1 (en) Display device and method of manufacturing the same
JP2011083990A (en) Gas barrier layer structure
CN107369776A (en) The encapsulating structure and OLED of OLED
JP2012206380A (en) Transparent gas barrier film, method of forming transparent gas barrier film, organic electroluminescence element, solar battery, and thin film battery
EP2908348A1 (en) Thin film transistor and manufacturing method thereof, array substrate and display device
JP2005268113A (en) Oxide sintered body target for manufacturing transparent conductive thin film, transparent conductive thin film, transparent conductive base, display device, and organic electroluminescent element
CN116347908B (en) Perovskite solar cell, preparation method thereof and photovoltaic module
CN108777265A (en) A kind of electrode and preparation method thereof and organic electroluminescence device
CN101065239B (en) Gas barrier transparent resin substrate, method for manufacture thereof, and flexible display element using gas barrier transparent resin substrate
KR20150105798A (en) Transparent electrode and manufacturing method thereof
JP5114683B2 (en) Back electrode of glass substrate for solar cell and manufacturing method thereof
JPWO2019181940A1 (en) Solar cell manufacturing method and solar cell
KR100784487B1 (en) Anode fabricating method of organic light emitting device and organic light emitting device including the anode
KR101517784B1 (en) Thermoelectric materials having high figure of merit and manufacturing method thereof
JP2022141883A (en) Thin film transistor and method for producing thin film transistor
Park et al. Resistive switching functional quantum-dot light-emitting diodes
CN104218174A (en) Flexible substrate and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130723