[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011082226A - Catalytic chemical vapor deposition device - Google Patents

Catalytic chemical vapor deposition device Download PDF

Info

Publication number
JP2011082226A
JP2011082226A JP2009230949A JP2009230949A JP2011082226A JP 2011082226 A JP2011082226 A JP 2011082226A JP 2009230949 A JP2009230949 A JP 2009230949A JP 2009230949 A JP2009230949 A JP 2009230949A JP 2011082226 A JP2011082226 A JP 2011082226A
Authority
JP
Japan
Prior art keywords
chemical vapor
vapor deposition
catalyst wire
catalyst
catalytic chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009230949A
Other languages
Japanese (ja)
Other versions
JP5350164B2 (en
Inventor
Shuji Osono
修司 大園
Tomohiko Okayama
智彦 岡山
Hideyuki Ogata
英之 小形
Shuichi Okano
秀一 岡野
Masaki Shima
正樹 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Ulvac Inc
Original Assignee
Sanyo Electric Co Ltd
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Ulvac Inc filed Critical Sanyo Electric Co Ltd
Priority to JP2009230949A priority Critical patent/JP5350164B2/en
Publication of JP2011082226A publication Critical patent/JP2011082226A/en
Application granted granted Critical
Publication of JP5350164B2 publication Critical patent/JP5350164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalytic chemical vapor deposition device that can form a film with desired precision while suppressing twisting of a catalyst line suspended in a chamber to be folded back in a vertical direction, especially, a catalytic chemical vapor deposition device which is effective for forming the film in a film formation region of large area. <P>SOLUTION: When the catalyst line 6 is twisted clockwise on a Z axis, a folded-back part 63 leaves columnar parts 30b and 30c and rotates around the Z axis in a direction as shown by an arrow in the figure so as to approach the columnar parts 30a and 30b. An end of the folded-back part 63, having rotated, on the side of a droop part 61 abuts against the columnar part 30a, and an end on the side of a droop part 62 abuts against the columnar part 30d to restrict the twisting of the catalyst line 6 in a Y-axial direction. At this time, the droop pat 62 leaves a flat plate part 20 and the droop part 61 shifts in position to approach the flat plate part 20. The droop part 61 of the catalyst line 6 which has shifted in position abuts against an end 21c of the flat plate part 20 to restrict the position shift of the catalyst line 6 in an X-axial direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、チャンバ内に設置された発熱した触媒線に原料ガスを供給し、生成した分解種をチャンバ内の被成膜基材上に堆積させて成膜を行う触媒化学気相成長装置に関する。   The present invention relates to a catalytic chemical vapor deposition apparatus for forming a film by supplying a source gas to a heated catalyst wire installed in a chamber and depositing the generated decomposition species on a film formation substrate in the chamber. .

チャンバ内の触媒線に原料ガスを供給し、原料ガスの触媒反応もしくは熱分解反応を利用して生成した分解種(堆積種)を被成膜基板上に堆積させる成膜法である触媒化学気相成長法(CAT−CVD:catalytic-Chemical Vapor Deposition)を用いた成膜装置が知られている(例えば、特許文献1参照。)。   Catalytic chemical vapor is a film forming method in which a source gas is supplied to a catalyst wire in a chamber, and decomposition species (deposition species) generated by using a catalytic reaction or thermal decomposition reaction of the source gas are deposited on a deposition target substrate. A film forming apparatus using a phase growth method (CAT-CVD: catalytic-Chemical Vapor Deposition) is known (for example, see Patent Document 1).

特許文献1に記載の触媒化学気相成長装置では、処理チャンバ内で基板ホルダーにより基板が垂直な姿勢で保持され、通電されて発熱することで原料ガスを分解可能な触媒線がその基板に対向するように配置されている。この触媒線はU字状に形成され、触媒線の両端は上側に位置し、折り返されたU字状の部分が下側に位置している。   In the catalytic chemical vapor deposition apparatus described in Patent Document 1, a substrate wire is held in a vertical position by a substrate holder in a processing chamber, and a catalyst wire capable of decomposing a source gas when energized to generate heat opposes the substrate. Are arranged to be. The catalyst wire is formed in a U shape, both ends of the catalyst wire are located on the upper side, and the folded U-shaped portion is located on the lower side.

特開2000−303182号公報(段落[0024]、図2)Japanese Unexamined Patent Publication No. 2000-303182 (paragraph [0024], FIG. 2)

このような触媒化学気相成長装置では、触媒線は通電によりおよそ2000℃程度に発熱する。このとき、触媒線に大電流が供給されるため、触媒線の周囲に強い磁場が発生して、磁場と電流との相互作用により電磁力が発生する。電磁力を受け、下部に自由端を持って吊り下げられた長尺の触媒線は、垂直軸回りにねじれる場合がある。触媒線がねじれると、触媒線と基板との距離が不均一となり分解種の基板への到達確率や輻射熱による基板の温度上昇が不均一になって、成膜の膜厚分布に変動が生じる等、所望の精度で成膜を行うことができなくなるおそれがある。この触媒線のねじれによる膜厚分布の変動等の問題は、大面積の成膜領域に成膜を行う場合に、特に顕著である。   In such a catalytic chemical vapor deposition apparatus, the catalyst wire generates heat to about 2000 ° C. when energized. At this time, since a large current is supplied to the catalyst wire, a strong magnetic field is generated around the catalyst wire, and an electromagnetic force is generated by the interaction between the magnetic field and the current. A long catalyst wire that receives electromagnetic force and is suspended with a free end underneath may twist around a vertical axis. If the catalyst wire is twisted, the distance between the catalyst wire and the substrate will be non-uniform, the probability that the decomposition species will reach the substrate and the temperature rise of the substrate due to radiant heat will become non-uniform, and the film thickness distribution will vary. There is a possibility that the film formation cannot be performed with a desired accuracy. Problems such as fluctuations in the film thickness distribution due to twisting of the catalyst wire are particularly noticeable when a film is formed in a large-area film formation region.

以上のような事情に鑑み、本発明の目的は、垂直方向に折り返すようにチャンバの内部に吊り下げられた触媒線のねじれを抑制し、所望の精度で成膜を行うことが可能な触媒化学気相成長装置、特に、大面積の成膜領域に成膜を行う場合に有効な触媒線化学気相成長装置を提供することにある。   In view of the circumstances as described above, an object of the present invention is to provide a catalyst chemistry capable of suppressing the twist of the catalyst wire suspended in the chamber so as to be folded in the vertical direction and performing film formation with a desired accuracy. An object of the present invention is to provide a vapor phase growth apparatus, particularly a catalytic beam chemical vapor deposition apparatus that is effective when a film is formed in a large area film formation region.

上記目的を達成するため、本発明の一形態に係る触媒化学気相成長装置は、チャンバと、保持機構と、第1の触媒線と、第1の規制部とを有する。
上記保持機構は、上記チャンバ内で基板を立てた状態で保持する。
上記第1の触媒線は、電源に接続される両端部を有し、上記保持機構により保持された上記基板に対向して、垂直方向に折り返すように上記チャンバの内部に吊り下げられ、上記両端部間に電力を印加することで上記チャンバに導入された原料ガスの分解温度に発熱可能である。
上記第1の規制部は、上記第1の触媒線に接触可能に配置され、上記第1の触媒線の垂直軸回りのねじれを規制する。
In order to achieve the above object, a catalytic chemical vapor deposition apparatus according to an embodiment of the present invention includes a chamber, a holding mechanism, a first catalyst line, and a first regulating unit.
The holding mechanism holds the substrate upright in the chamber.
The first catalyst wire has both ends connected to a power source, and is suspended inside the chamber so as to be folded in a vertical direction so as to face the substrate held by the holding mechanism, and the both ends Heat can be generated at the decomposition temperature of the raw material gas introduced into the chamber by applying electric power between the parts.
The first restricting portion is disposed so as to be in contact with the first catalyst wire, and restricts twisting of the first catalyst wire around a vertical axis.

本発明の一実施形態に係る触媒化学気相成長装置の概略構成を示す正面図である。1 is a front view showing a schematic configuration of a catalytic chemical vapor deposition apparatus according to an embodiment of the present invention. 図1の触媒化学気相成長装置の概略構成を示す側面図である。It is a side view which shows schematic structure of the catalytic chemical vapor deposition apparatus of FIG. 規制部及び触媒線を示す斜視図である。It is a perspective view which shows a control part and a catalyst wire. 図3の規制部及び触媒線をY軸方向から示す概略構成図である。It is a schematic block diagram which shows the control part and catalyst wire of FIG. 3 from a Y-axis direction. 図3の規制部及び触媒線をZ軸方向から示す概略構成図である。It is a schematic block diagram which shows the control part and catalyst wire of FIG. 3 from a Z-axis direction. 規制部の部分断面図である。It is a fragmentary sectional view of a control part. 触媒線がZ軸回りにねじれたときの規制部及び触媒線をZ軸方向から示す概略図である。It is the schematic which shows a control part and catalyst wire from the Z-axis direction when a catalyst wire twists around a Z-axis. 図7の規制部及び触媒線をY軸方向から示す概略図である。It is the schematic which shows the control part and catalyst wire of FIG. 7 from a Y-axis direction. 規制部を設けた場合の成膜の膜厚分布の変動及び規制部を設けない場合の成膜の膜厚分布の変動を示す図である。It is a figure which shows the fluctuation | variation of the film thickness distribution of the film-forming when a control part is provided, and the fluctuation | variation of the film thickness distribution of the film-forming when a control part is not provided. 規制部に原料ガスの分解種が堆積した様子を示す部分断面図である。It is a fragmentary sectional view which shows a mode that the decomposition | disassembly seed | species of source gas deposited on the control part. 本発明の別の実施形態に係る規制部及び触媒線を示す斜視図である。It is a perspective view which shows the control part and catalyst wire which concern on another embodiment of this invention. 触媒線がZ軸回りにねじれたときの図11の規制部及び触媒線をZ軸方向から示す概略図である。It is the schematic which shows the control part and catalyst wire of FIG. 11 when a catalyst wire twists around a Z-axis from a Z-axis direction. 本発明の別の実施形態に係る規制部及び触媒線を示す斜視図である。It is a perspective view which shows the control part and catalyst wire which concern on another embodiment of this invention. 本発明の別の実施形態に係る規制部及び触媒線を示す斜視図である。It is a perspective view which shows the control part and catalyst wire which concern on another embodiment of this invention. 本発明の別の実施形態に係る規制部及び触媒線を示す斜視図である。It is a perspective view which shows the control part and catalyst wire which concern on another embodiment of this invention. 本発明の別の実施形態に係る規制部及び触媒線を示す斜視図である。It is a perspective view which shows the control part and catalyst wire which concern on another embodiment of this invention. 本発明の別の実施形態に係る触媒化学気相成長装置の概略構成を示す正面図である。It is a front view which shows schematic structure of the catalytic chemical vapor deposition apparatus which concerns on another embodiment of this invention.

本発明の一実施形態に係る触媒化学気相成長装置は、チャンバと、保持機構と、第1の触媒線と、第1の規制部とを有する。
上記保持機構は、上記チャンバ内で基板を立てた状態で保持する。
上記第1の触媒線は、電源に接続される両端部を有し、上記保持機構により保持された上記基板に対向して、垂直方向に折り返すように上記チャンバの内部に吊り下げられ、上記両端部間に電力を印加することで上記チャンバに導入された原料ガスの分解温度に発熱可能である。
上記第1の規制部は、上記第1の触媒線に接触することで上記第1の触媒線の垂直軸回りのねじれを規制する。
この触媒化学気相成長装置によれば、第1の規制部により、第1の触媒線の垂直軸回りのねじれを基板に直交する方向で規制することができるので、基板と第1の触媒線との距離が大きく変動するのを抑えることができる。これにより、原料ガスの分解種の基板への到達確率の変動や、触媒線からの輻射熱による基板の局所的な温度上昇を防止でき、成膜の膜厚分布が不均一となるのを抑えることができる。
A catalytic chemical vapor deposition apparatus according to an embodiment of the present invention includes a chamber, a holding mechanism, a first catalyst wire, and a first regulating unit.
The holding mechanism holds the substrate upright in the chamber.
The first catalyst wire has both ends connected to a power source, and is suspended inside the chamber so as to be folded in a vertical direction so as to face the substrate held by the holding mechanism, and the both ends Heat can be generated at the decomposition temperature of the raw material gas introduced into the chamber by applying electric power between the parts.
The first restricting portion restricts torsion around the vertical axis of the first catalyst wire by contacting the first catalyst wire.
According to this catalytic chemical vapor deposition apparatus, the first restricting portion can restrict the torsion around the vertical axis of the first catalyst wire in a direction perpendicular to the substrate, so that the substrate and the first catalyst wire can be controlled. It is possible to suppress the fluctuation of the distance from As a result, fluctuations in the arrival probability of the source gas decomposition species to the substrate and local temperature rise of the substrate due to radiant heat from the catalyst wire can be prevented, and uneven film thickness distribution can be suppressed. Can do.

上記第1の規制部は、上記第1の触媒線が所定以上ねじれたときに上記第1の触媒線に接触して上記第1の触媒線のねじれを規制してもよい。
この触媒化学気相成長装置によれば、例えば、電圧を印加し、第1の触媒線が所定以上ねじれたときのみ第1の規制部が第1の触媒線に接触するので、第1の規制部の接触に起因する第1の触媒線の温度低下等を抑制することができる。
The first restricting unit may restrict the twist of the first catalyst line by contacting the first catalyst line when the first catalyst line is twisted more than a predetermined amount.
According to this catalytic chemical vapor deposition apparatus, for example, the first restriction portion contacts the first catalyst line only when a voltage is applied and the first catalyst line is twisted more than a predetermined amount. It is possible to suppress a temperature drop of the first catalyst wire due to contact of the parts.

上記チャンバは、上記保持機構に保持された上記基板と対向する第1の領域と、上記第1の領域よりも上方側であって、上記両端部が位置する第2の領域と、上記第1の領域よりも下方側であって、上記第1の触媒線の折り返し領域が位置する第3の領域とを有してもよい。
上記第1の規制部は、上記第3の領域に設けられてもよい。
この触媒化学気相成長装置によれば、第1の規制部を基板と対向する第1の領域よりも下方側の第3の領域に設けることにより、第1の規制部が成膜の際に基板に対する障害となるのを防止できる。さらに、移動の自由度が高い触媒線の自由端を第1の規制部で拘束するため、触媒線のねじれをより効果的に規制することができる。
The chamber includes a first region facing the substrate held by the holding mechanism, a second region above the first region and having both ends positioned therein, and the first region. And a third region where the folded region of the first catalyst line is located.
The first restriction portion may be provided in the third region.
According to this catalytic chemical vapor deposition apparatus, the first restricting portion is provided in the third region below the first region facing the substrate, so that the first restricting portion is formed at the time of film formation. It is possible to prevent an obstacle to the substrate. Furthermore, since the free end of the catalyst wire having a high degree of freedom of movement is restrained by the first restricting portion, the twist of the catalyst wire can be more effectively regulated.

上記第1の規制部は、上記第1の触媒線を挟んで対向する第1及び第2の部材を含んでもよい。
この触媒化学気相成長装置によれば、折り返し部を挟んで対向する第1及び第2の部材により、第1の触媒線のねじれを基板面に直交する方向で規制することができる。したがって、簡素な構成で、触媒線のねじれを規制することができる。
The first restricting portion may include first and second members that face each other with the first catalyst wire interposed therebetween.
According to this catalytic chemical vapor deposition apparatus, the twist of the first catalyst wire can be regulated in the direction perpendicular to the substrate surface by the first and second members facing each other with the folded portion interposed therebetween. Therefore, the twist of the catalyst wire can be regulated with a simple configuration.

上記第1及び第2の部材は、垂直方向又は水平方向に延びる軸状部材であってもよい。
この触媒化学気相成長装置によれば、第1及び第2の部材を垂直方向に延びる軸状部材とした場合、ねじれた第1の触媒線の折り返された部位が第1及び第2の部材に当接して、第1の触媒線のねじれを規制することができる。また、第1及び第2の部材を水平方向に延びる軸状部材とした場合、ねじれた第1の触媒線の垂直方向に吊り下げられた部位が第1及び第2の部材に当接して、第1の触媒線のねじれを規制することができる。
The first and second members may be shaft-like members extending in the vertical direction or the horizontal direction.
According to this catalytic chemical vapor deposition apparatus, when the first and second members are axial members extending in the vertical direction, the folded portions of the twisted first catalyst wire are the first and second members. The twist of the first catalyst wire can be regulated by abutting against. Further, when the first and second members are axial members extending in the horizontal direction, the portion suspended in the vertical direction of the twisted first catalyst wire is in contact with the first and second members, The twist of the first catalyst wire can be regulated.

上記触媒化学気相成長装置は、上記電源に接続される両端部を有し、上記保持機構により保持された上記基板に対向して、垂直方向に折り返すように上記チャンバの内部に吊り下げられた第2の触媒線をさらに有してもよい。
上記第1及び第2の部材は、上記第1及び第2の触媒線を横切るように水平方向に延在する軸状部材であってもよい。
この触媒化学気相成長装置によれば、触媒線を複数備えているので、大面積の成膜領域にも対応することができる。また、第1及び第2の部材により、第1及び第2の触媒線のねじれを共通に規制することができる。
The catalytic chemical vapor deposition apparatus has both ends connected to the power source, and is suspended inside the chamber so as to be folded in a vertical direction so as to face the substrate held by the holding mechanism. You may further have a 2nd catalyst wire.
The first and second members may be shaft-like members extending in the horizontal direction so as to cross the first and second catalyst wires.
According to this catalytic chemical vapor deposition apparatus, since a plurality of catalyst wires are provided, it is possible to deal with a film formation region having a large area. Moreover, the twist of the first and second catalyst wires can be commonly controlled by the first and second members.

上記触媒化学気相成長装置は、上記第1の触媒線に接触可能に配置され、上記両端部を支点とする上記第1の触媒線の位置ずれを、上記保持機構により保持された上記基板に平行な方向で規制する第2の規制部をさらに有してもよい。
この触媒化学気相成長装置によれば、第2の規制部により、触媒線の垂直軸回りのねじれによる位置ずれを基板に平行な方向で規制することができる。
The catalytic chemical vapor deposition apparatus is disposed so as to be in contact with the first catalyst line, and the displacement of the first catalyst line with the both ends as fulcrums is applied to the substrate held by the holding mechanism. You may further have the 2nd control part which controls in a parallel direction.
According to this catalytic chemical vapor deposition apparatus, the second restricting portion can restrict misalignment due to twisting around the vertical axis of the catalyst wire in a direction parallel to the substrate.

上記第2の規制部は、上記チャンバの一部に固定されてもよい。
上記第1及び第2の部材は、上記第2の規制部に支持されてもよい。
この触媒化学気相成長装置によれば、第1及び第2の規制部を一体的に構成することができるので、組み立て時の作業性が向上する。
The second restricting portion may be fixed to a part of the chamber.
The first and second members may be supported by the second restricting portion.
According to this catalytic chemical vapor deposition apparatus, the first and second restricting portions can be configured integrally, so that workability during assembly is improved.

以下、図面を参照しながら、本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[触媒化学気相成長装置の構成]
図1は、本発明の一実施形態に係る触媒化学気相成長装置10の概略構成を示す正面図であり、図2は、図1の触媒化学気相成長装置10の概略構成を示す側面図である。
これらの図に示すように、触媒化学気相成長装置10は、真空チャンバ3を有する。真空チャンバ3は、防着板5により区画された反応室2を内部に有し、反応室2を所定の真空度に真空排気可能な真空ポンプ4が真空チャンバ3に接続されている。
[Configuration of catalytic chemical vapor deposition system]
FIG. 1 is a front view showing a schematic configuration of a catalytic chemical vapor deposition apparatus 10 according to an embodiment of the present invention, and FIG. 2 is a side view showing a schematic configuration of the catalytic chemical vapor deposition apparatus 10 of FIG. It is.
As shown in these drawings, the catalytic chemical vapor deposition apparatus 10 has a vacuum chamber 3. The vacuum chamber 3 has a reaction chamber 2 defined by an adhesion prevention plate 5 inside, and a vacuum pump 4 capable of evacuating the reaction chamber 2 to a predetermined degree of vacuum is connected to the vacuum chamber 3.

真空チャンバ3には、例えばタンタル、タングステン、モリブデン、イリジウム等の高融点金属からなる複数の触媒線6a,6b,6cが設置されている。各複数の触媒線6a,6b,6cは、防着板5の天面に形成された通し穴(図示せず。)を貫通して、反応室2内を垂直方向(本実施形態では重力方向とする。)に垂下し、反応室2内の下部の領域で垂直方向に折り返されるようにして吊り下げられる。各触媒線6a,6b,6cは、垂直方向に垂下する垂下部61,62と、垂下部61,62の間の折り返し部63とを有する。この折り返しの形状は、U字状、クランク状等にすればよい。触媒線6の線径は特に限定されず、例えば0.5mmである。
また、触媒線6の長さも特には限定されないが、一本の触媒線6の長さが2m以上となる大面積の成膜領域に成膜を行う場合に本発明は特に有効である。これは、触媒線6の長さが2m以上となると、電流が印加された場合に発生する触媒線6のねじれや振動が特に大きくなるからである。触媒線6の長さは2m〜5mとすることができ、本実施形態では、長さ2mの触媒線6が用いられる。なお、一本の触媒線6において、垂下部61と62の長さは、お互いに等しくなるように配置されている。
The vacuum chamber 3 is provided with a plurality of catalyst wires 6a, 6b, 6c made of a refractory metal such as tantalum, tungsten, molybdenum, iridium or the like. Each of the plurality of catalyst wires 6a, 6b, 6c passes through a through hole (not shown) formed on the top surface of the deposition preventing plate 5 and vertically passes through the reaction chamber 2 (in this embodiment, the direction of gravity). And hung so as to be folded in the vertical direction in the lower region in the reaction chamber 2. Each catalyst wire 6a, 6b, 6c has a hanging portion 61, 62 that hangs down in the vertical direction, and a folded portion 63 between the hanging portions 61, 62. The folded shape may be a U shape, a crank shape, or the like. The wire diameter of the catalyst wire 6 is not specifically limited, For example, it is 0.5 mm.
The length of the catalyst wire 6 is not particularly limited, but the present invention is particularly effective when a film is formed in a large-area film formation region in which the length of one catalyst wire 6 is 2 m or more. This is because when the length of the catalyst wire 6 is 2 m or more, the twist and vibration of the catalyst wire 6 generated when a current is applied are particularly increased. The length of the catalyst wire 6 can be set to 2 m to 5 m. In the present embodiment, the catalyst wire 6 having a length of 2 m is used. In addition, in one catalyst wire 6, the lengths of the hanging portions 61 and 62 are arranged to be equal to each other.

触媒線6の設置本数(ユニット数)は、特に限定されないが、図1では説明をわかりやすくするため3ユニットの触媒線6a,6b,6cが列設された様子を示している。触媒線6の設置本数は、基板の大きさに応じて適宜設定することができる。例えば1290mm×880mmの成膜領域の広い基板に成膜する場合、触媒線6は例えば8ユニット程度設ければよい。   The number of installed catalyst wires 6 (number of units) is not particularly limited, but FIG. 1 shows a state in which three units of catalyst wires 6a, 6b, and 6c are arranged in a row for easy understanding of the explanation. The number of catalyst wires 6 can be set as appropriate according to the size of the substrate. For example, when a film is formed on a substrate having a wide film formation area of 1290 mm × 880 mm, about 8 units of catalyst wires 6 may be provided.

真空チャンバ3には、さらに、複数の触媒線6a,6b,6cに対応して、触媒線6a,6b,6cのねじれをそれぞれ規制するための規制部100a,100b,100cが設けられている。規制部100a,100b,100cの構成等については後で詳細に説明する。   The vacuum chamber 3 is further provided with restricting portions 100a, 100b, and 100c for restricting twisting of the catalyst wires 6a, 6b, and 6c, respectively, corresponding to the plurality of catalyst wires 6a, 6b, and 6c. The configuration and the like of the regulation units 100a, 100b, and 100c will be described in detail later.

なお、以下の説明において、複数の触媒線6a,6b,6cの列設方向を「X軸方向」、垂直方向を「Z軸方向」、これらに直交する方向を「Y軸方向」と呼ぶものとする。また、触媒線6a,6b,6cはそれぞれ同様の構成を有し、規制部100a,100b,100cもまたそれぞれ同様の構成を有する。従って、以下の説明において、触媒線6a,6b,6cのうちのいずれか1つについて説明する場合には「触媒線6」と総称し、規制部100a,100b,100cのうちのいずれか1つについて説明する場合には「規制部100」と総称するものとする。また、後に説明する各部材においても、同様の趣旨により同様の総称をする場合がある。   In the following description, the arrangement direction of the plurality of catalyst wires 6a, 6b, and 6c is referred to as "X-axis direction", the vertical direction is referred to as "Z-axis direction", and the direction orthogonal thereto is referred to as "Y-axis direction". And Further, the catalyst wires 6a, 6b, and 6c have the same configuration, and the regulation portions 100a, 100b, and 100c also have the same configuration. Accordingly, in the following description, when any one of the catalyst wires 6a, 6b, and 6c is described, it is collectively referred to as “catalyst wire 6”, and any one of the regulation portions 100a, 100b, and 100c. Will be collectively referred to as “regulator 100”. In addition, members described later may have the same general name for the same purpose.

触媒線6の両端部64,64は、真空チャンバ3の外部に設置されている電源8に接続されている。電源8は、電流供給源及び供給電流を調整可能な制御部(図示せず。)を含んでもよい。電源8は、触媒線6の両端部64,64間に電力を印加することで、触媒線6を反応室2に導入される原料ガス(後述する。)の分解温度に発熱させることが可能である。電源8は、直流電源とされるが、交流電源であってもよい。   Both end portions 64, 64 of the catalyst wire 6 are connected to a power supply 8 installed outside the vacuum chamber 3. The power supply 8 may include a current supply source and a control unit (not shown) that can adjust the supply current. The power source 8 can generate heat at the decomposition temperature of a raw material gas (described later) introduced into the reaction chamber 2 by applying electric power between both ends 64 and 64 of the catalyst wire 6. is there. The power source 8 is a DC power source, but may be an AC power source.

防着板5には、複数のガス導入配管7が設置されている。ガス導入配管7には、原料ガスを噴出可能な複数の原料ガス噴出孔(図示せず。)が設けられており、反応室2に原料ガスを導入可能である。ガス導入配管7は、ガス供給ラインを介して真空チャンバ3の外部に設置された原料ガス供給部9に接続されている。   A plurality of gas introduction pipes 7 are installed on the deposition preventing plate 5. The gas introduction pipe 7 is provided with a plurality of source gas ejection holes (not shown) through which the source gas can be ejected, and the source gas can be introduced into the reaction chamber 2. The gas introduction pipe 7 is connected to a source gas supply unit 9 installed outside the vacuum chamber 3 through a gas supply line.

反応室2の内部には、例えば1290mm×880mmの成膜領域の広いガラス基板Sを保持可能なフレーム状のホルダ1が設けられる。ホルダ1は触媒線6を挟んでY軸方向で対向するように2つ設けられている。ホルダ1は、基板SをX軸とZ軸とがなす平面上に立てた状態で保持可能である。このように保持された基板Sの間の空間には、ガス導入配管7から噴出した原料ガスが導入される。   Inside the reaction chamber 2, for example, a frame-shaped holder 1 capable of holding a glass substrate S having a wide film formation area of 1290 mm × 880 mm is provided. Two holders 1 are provided so as to face each other in the Y-axis direction with the catalyst wire 6 interposed therebetween. The holder 1 can hold the substrate S in a standing state on a plane formed by the X axis and the Z axis. The source gas ejected from the gas introduction pipe 7 is introduced into the space between the substrates S thus held.

ホルダ1は、基板Sの温度調節を行うためのヒータを内蔵していてもよく、これに限定されず、ホルダ1の近傍にヒータを設けてもよい。ホルダ1に保持された基板は、複数の触媒線6の列設方向と平行な方向(X軸方向)に移動可能とされる。ホルダ1の搬送機構は特に限定されない。例えば、真空チャンバ3の底部に敷設されたレール(図示略)に沿ってホルダ1を搬送するようにしてもよい。あるいは、反応室2の直上を移動可能なキャリヤ(図示略)によりホルダ1を支持してもよい。   The holder 1 may incorporate a heater for adjusting the temperature of the substrate S, and is not limited thereto, and a heater may be provided in the vicinity of the holder 1. The substrate held by the holder 1 is movable in a direction (X-axis direction) parallel to the arrangement direction of the plurality of catalyst wires 6. The conveyance mechanism of the holder 1 is not particularly limited. For example, the holder 1 may be transported along a rail (not shown) laid on the bottom of the vacuum chamber 3. Alternatively, the holder 1 may be supported by a carrier (not shown) that can move directly above the reaction chamber 2.

真空チャンバ3内において、ホルダ1に保持された基板Sと、触媒線6と、規制部100は、以下のような位置関係を有する。すなわち、ホルダ1に保持された基板Sが位置する第1の領域には、触媒線6の垂下部61,62が位置する。触媒線6の両端部64,64は、基板Sが配置される第1の領域よりもZ軸方向で上方側の第2の領域に位置する。触媒線6の折り返し部63及び規制部100は、基板Sが配置される第1の領域よりもZ軸方向で下方側の第3の領域に位置する。   In the vacuum chamber 3, the substrate S held by the holder 1, the catalyst wire 6, and the regulating unit 100 have the following positional relationship. That is, the hanging portions 61 and 62 of the catalyst wire 6 are located in the first region where the substrate S held by the holder 1 is located. Both end portions 64 and 64 of the catalyst wire 6 are located in a second region above the first region where the substrate S is arranged in the Z-axis direction. The folded portion 63 and the regulating portion 100 of the catalyst wire 6 are located in a third region that is lower in the Z-axis direction than the first region where the substrate S is disposed.

以上のように構成された触媒化学気相成長装置10を用いて、次のように触媒化学気相成長が行われる。   Using the catalytic chemical vapor deposition apparatus 10 configured as described above, catalytic chemical vapor deposition is performed as follows.

まず、真空ポンプ4を作動させて真空チャンバ3の内部を真空排気し、反応室2を所定の真空度(例えば1Pa)に減圧する。次に、電源8により両端部64,64間に直流又は交流電力を印加して触媒線6に電流を供給し、触媒線6を所定温度(例えば2000℃)以上に発熱させる。この触媒線6の発熱温度は、原料ガスが熱分解が可能な程度の温度に選定されたものである。また、基板Sを上記ヒータにより所定温度(例えば300℃程度)に加熱する。次に、原料ガス供給部9から、ガス導入配管7を介して、反応室2内の互いに対向配置された2枚の基板Sの間の空間に原料ガスを導入する。この原料ガスは、発熱した触媒線6に接触する。これにより、触媒反応もしくは熱分解反応により生成された原料ガスの分解種が基板S上に堆積して成膜される。   First, the vacuum pump 4 is operated to evacuate the inside of the vacuum chamber 3, and the reaction chamber 2 is depressurized to a predetermined degree of vacuum (for example, 1 Pa). Next, direct current or alternating current power is applied between the both ends 64 and 64 by the power source 8 to supply current to the catalyst wire 6, and the catalyst wire 6 is heated to a predetermined temperature (for example, 2000 ° C.) or more. The heat generation temperature of the catalyst wire 6 is selected to such a temperature that the raw material gas can be thermally decomposed. Further, the substrate S is heated to a predetermined temperature (for example, about 300 ° C.) by the heater. Next, the source gas is introduced from the source gas supply unit 9 into the space between the two substrates S arranged opposite to each other in the reaction chamber 2 through the gas introduction pipe 7. This raw material gas contacts the exothermic catalyst wire 6. Thereby, the decomposition species of the source gas generated by the catalytic reaction or the thermal decomposition reaction are deposited on the substrate S to form a film.

原料ガスとしては、例えば、シラン(SiH)ガスと水素(H)の混合ガスを用いて、基板Sの表面にシリコン(Si)膜を成膜する。なお、基板Sの表面に形成する膜は、シラン、水素、アンモニア(NH)を用いて成膜した窒化シリコン膜(SiN)、トリシリルアミン((SiHN)、アンモニア、水素を用いて成膜した窒化シリコン膜、ヘキサメチルジシラザン((CHSiNHSi(CH、略してHMDS)を用いて成膜した窒化シリコン膜、シラン、水素と酸素(O)又は一酸化二窒素(NO)を用いて成膜した酸化シリコン膜(SiO)、シランと正珪酸四エチル(Si(OC、略してTEOS)を用いて成膜した酸化シリコン膜、シラン、水素とホスフィン(PH)又はジボランを用いて成膜したリンドープシリコン膜(n型)やボロンドープシリコン(p型)、シラン、水素とアセチレン又はメタンを用いて成膜した炭化シリコン膜、シラン、水素、ゲルマンを用いて成膜したシリコンゲルマニウム膜、シラン、ヘキサフルオロプロピレンオキサイド(略してHFPO)を用いて成膜したポリテトラフルオロエチレン膜等であってもよい。なお、水素ガスを使用した水素処理を行った場合には、シリコン膜の膜中欠陥の終端や自然酸化膜除去という目的を達成できる。また、アンモニアガスを使用した窒化処理を行った場合には、シリコンの窒化を図ることができる。 As the source gas, for example, a silicon (Si) film is formed on the surface of the substrate S using a mixed gas of silane (SiH 4 ) gas and hydrogen (H 2 ). Note that a film formed on the surface of the substrate S includes a silicon nitride film (SiN), trisilylamine ((SiH 3 ) 3 N), ammonia, and hydrogen formed using silane, hydrogen, and ammonia (NH 3 ). A silicon nitride film formed using hexamethyldisilazane ((CH 3 ) 3 SiNHSi (CH 3 ) 3 , abbreviated HMDS), silane, hydrogen and oxygen (O 2 ) or Silicon oxide film (SiO) formed using dinitrogen monoxide (N 2 O), silicon oxide formed using silane and tetraethyl orthosilicate (Si (OC 2 H 5 ) 4 , TEOS for short) membrane, silane, hydrogen and phosphine (PH 3) or phosphorus-doped silicon film formed using diborane (n-type) or boron-doped silicon (p-type), silane, hydrogen and acetylene or meta A silicon carbide film formed using silane, hydrogen, a germanium film formed using germane, a polytetrafluoroethylene film formed using silane, hexafluoropropylene oxide (abbreviated HFPO), etc. May be. When hydrogen treatment using hydrogen gas is performed, the purpose of terminating defects in the silicon film and removing the natural oxide film can be achieved. In addition, when nitriding using ammonia gas is performed, silicon can be nitrided.

ここで、垂直方向に折り返すように吊り下げられた触媒線6を通電加熱するに際しては、触媒線6を流れる電流に起因して触媒線6の周囲に磁場が発生する。この磁場は、垂下部61を流れる電流によって発生する磁場と垂下部62を流れる電流によって発生する磁場との合成磁場となり、磁場の大きさは、垂下部61,62を流れる電流の大きさに比例する。この磁場に起因して、触媒線6がZ軸回りにねじれることがある。ねじれの原因は必ずしも一義的でないが、上記電流により発生する磁場のほか、地磁気、複数の触媒線6相互間で発生する静電力、さらにこれらの磁場によって触媒線6内を流れる電子が受けるローレンツ力等の電磁力によるものと考えられる。ねじれの方向も一様ではなく、時計回り、反時計回りがあり得る。   Here, when the catalyst wire 6 suspended so as to be folded in the vertical direction is energized and heated, a magnetic field is generated around the catalyst wire 6 due to the current flowing through the catalyst wire 6. This magnetic field is a combined magnetic field of the magnetic field generated by the current flowing through the hanging part 61 and the magnetic field generated by the current flowing through the hanging part 62, and the magnitude of the magnetic field is proportional to the magnitude of the current flowing through the hanging parts 61, 62. To do. Due to this magnetic field, the catalyst wire 6 may twist around the Z axis. The cause of the twist is not necessarily unambiguous, but besides the magnetic field generated by the current, the geomagnetic field, the electrostatic force generated between the plurality of catalyst wires 6, and the Lorentz force received by the electrons flowing in the catalyst wire 6 by these magnetic fields. This is considered to be due to electromagnetic force such as. The direction of twist is not uniform and can be clockwise or counterclockwise.

触媒線6がZ軸回りにねじれると、触媒線6と基板Sとの距離が不均一となり分解種の基板Sへの到達確率の変動や、触媒線6からの輻射熱による基板Sの局所的な温度上昇を招き、所望の精度で成膜を行うことができなくなるおそれがある。この触媒線6のZ軸回りのねじれを規制するために複数の触媒線6のそれぞれに設けられた規制部100について次に説明する。   When the catalyst wire 6 is twisted around the Z axis, the distance between the catalyst wire 6 and the substrate S becomes non-uniform, and the arrival probability of the decomposed species to the substrate S varies, or the substrate S is locally affected by radiant heat from the catalyst wire 6. The temperature rises, and there is a possibility that the film cannot be formed with a desired accuracy. Next, the regulation part 100 provided in each of the plurality of catalyst wires 6 in order to regulate the twist of the catalyst wire 6 around the Z axis will be described.

[規制部の構成]
以下、規制部100の構成及び規制部100と触媒線6との位置関係等について説明する。
[Configuration of the Regulatory Department]
Hereinafter, the configuration of the restriction unit 100 and the positional relationship between the restriction unit 100 and the catalyst wire 6 will be described.

図3は、規制部100及び触媒線6を示す斜視図である。図4は、規制部100及び触媒線6をY軸方向から見たときの概略構成図であり、図5はこれらをZ軸方向から見たときの概略構成図である。
これらの図に示すように、規制部100は、平板部20(第2の規制部)と、互いに等しい形状を有する4つの円柱部30a,30b,30c,30d(以下、「円柱部30」と総称することがある。)(第1の規制部)を有する。平板部20及び円柱部30は、それぞれ例えばセラミックス等の絶縁材料よりなる。セラミックス材料としては、アルミナや石英などが挙げられる。
FIG. 3 is a perspective view showing the regulating part 100 and the catalyst wire 6. FIG. 4 is a schematic configuration diagram when the regulation unit 100 and the catalyst wire 6 are viewed from the Y-axis direction, and FIG. 5 is a schematic configuration diagram when they are viewed from the Z-axis direction.
As shown in these drawings, the restricting portion 100 includes a flat plate portion 20 (second restricting portion) and four cylindrical portions 30a, 30b, 30c, and 30d (hereinafter referred to as "cylindrical portion 30") having the same shape. (They may be collectively called.) (First restriction part). The flat plate portion 20 and the cylindrical portion 30 are each made of an insulating material such as ceramics. Examples of the ceramic material include alumina and quartz.

平板部20は、例えばX軸及びY軸にそれぞれ平行な辺からなる矩形面を有するプレート状の部材である。平板部20のX軸方向の辺の長さは、触媒線6の垂下部61,62間の距離より小さい。平板部20は、垂下部61,62間に配置される。詳細には、平板部20は、電圧を印加しない状態では、垂下部61,62の何れに対しても非接触であるが、垂下部61,62が両端部64,64を支点としてX軸方向に所定距離位置ずれしたとき等に平板部20の側面に接触する距離で配置される。   The flat plate portion 20 is a plate-like member having a rectangular surface composed of sides parallel to the X axis and the Y axis, for example. The length of the side in the X-axis direction of the flat plate portion 20 is smaller than the distance between the hanging portions 61 and 62 of the catalyst wire 6. The flat plate portion 20 is disposed between the hanging portions 61 and 62. Specifically, the flat plate portion 20 is not in contact with any of the hanging portions 61 and 62 in a state where no voltage is applied, but the hanging portions 61 and 62 have both ends 64 and 64 as fulcrums as X-axis directions. Are arranged at a distance that contacts the side surface of the flat plate portion 20 when the position is displaced by a predetermined distance.

平板部20は、X軸方向の辺に対応する端部21a,21bが、真空チャンバ3の底部に設置された支持部材90(図1、図2)により支持されて、反応室2内に水平に支持固定される。支持部材90は、例えば、上記レール等の基台の一部として構成されてもよい。ここで、平板部20のY軸方向の辺に対応する端部21c,21dはそれぞれ垂下部61,62に対して略均等に離間しつつ対向し、平板部20の下面部22は折り返し部63に対して離間しつつ対向するように配置される。   The flat plate portion 20 has end portions 21 a and 21 b corresponding to the sides in the X-axis direction supported by a support member 90 (FIG. 1 and FIG. 2) installed at the bottom of the vacuum chamber 3, and horizontally in the reaction chamber 2. Supported and fixed. For example, the support member 90 may be configured as a part of a base such as the rail. Here, the end portions 21c and 21d corresponding to the sides in the Y-axis direction of the flat plate portion 20 face the hanging portions 61 and 62, respectively, while being spaced substantially evenly, and the lower surface portion 22 of the flat plate portion 20 is the folded portion 63. Are arranged so as to face each other while being separated from each other.

平板部20には、4つの円柱部30a,30b,30c,30dをそれぞれ挿入可能な4つの円形の貫通孔23a,23b,23c,23d(以下、「貫通孔23」と総称することがある。)が形成されている。貫通孔23a,23bは、互いに近接して端部21cに設けられる。貫通孔23a,23bは、平板部20のY軸方向の辺から互いに等しい距離で離間している。貫通孔23a,23bは、また、平板部20のX軸方向の辺からも等しい距離だけ離間している。   The flat plate portion 20 may be collectively referred to as four circular through holes 23a, 23b, 23c, and 23d (hereinafter referred to as “through holes 23”) into which the four cylindrical portions 30a, 30b, 30c, and 30d can be respectively inserted. ) Is formed. The through holes 23a and 23b are provided in the end 21c close to each other. The through holes 23 a and 23 b are separated from the side in the Y-axis direction of the flat plate portion 20 by an equal distance. The through holes 23a and 23b are also separated from the side in the X-axis direction of the flat plate portion 20 by an equal distance.

貫通孔23c,23dは、貫通孔23a,23bと同様の位置関係をもって平板部20の端部21dに設けられている。これら貫通孔23a,23b,23c,23dはそれぞれ等しい形状を有しており、この形状等については後に図示と共に説明する。   The through holes 23c and 23d are provided in the end portion 21d of the flat plate portion 20 with the same positional relationship as the through holes 23a and 23b. These through holes 23a, 23b, 23c, and 23d have the same shape, which will be described later with reference to the drawings.

円柱部30は、長尺状の軸状部材であるロッド31(第1及び第2の部材)と、頭部32とを有する。   The cylindrical portion 30 includes a rod 31 (first and second members) that is a long shaft-shaped member, and a head portion 32.

ロッド31は、折り返し部63を横切るようにしてZ軸方向に延在する。ロッド31の長さは、熱膨張、クリープ等の影響により生じる触媒線6の変形を考慮して適宜選定すればよい。ロッド31は、貫通孔23に挿通可能である。   The rod 31 extends in the Z-axis direction so as to cross the folded portion 63. The length of the rod 31 may be appropriately selected in consideration of the deformation of the catalyst wire 6 caused by the effects of thermal expansion and creep. The rod 31 can be inserted into the through hole 23.

頭部32は、ロッド31の一方の端部に設けられる。頭部32は、円柱部30の貫通孔23からの抜け落ちを規制する。円柱部30は、頭部32が上面部24側に位置するように貫通孔23に挿入されることで、平板部20に取り付けられる。   The head 32 is provided at one end of the rod 31. The head 32 regulates the dropout of the cylindrical portion 30 from the through hole 23. The cylindrical portion 30 is attached to the flat plate portion 20 by being inserted into the through hole 23 so that the head portion 32 is positioned on the upper surface portion 24 side.

このように円柱部30が平板部20に対して支持されたとき、円柱部30a,30bは、平板部20の下面部22の下方に位置する折り返し部63を挟んで対向する。円柱部30c,30dもまた、折り返し部63を挟んで対向する。   Thus, when the cylindrical part 30 is supported with respect to the flat plate part 20, cylindrical part 30a, 30b opposes on both sides of the folding | turning part 63 located under the lower surface part 22 of the flat plate part 20. As shown in FIG. The cylindrical portions 30c and 30d also face each other with the folded portion 63 interposed therebetween.

このとき折り返し部63は、円柱部30a,30b間の略中央に位置するとともに円柱部30c,30d間の略中央に位置する。折り返し部63は、円柱部30a,30b,30c,30dの何れに対しても非接触であるが、折り返し部63が位置ずれしたとき等に円柱部30a,30b,30c,30dに接触可能となるような距離で配置されている。   At this time, the folded-back portion 63 is located at the approximate center between the cylindrical portions 30a and 30b and at the approximate center between the cylindrical portions 30c and 30d. The folded portion 63 is not in contact with any of the cylindrical portions 30a, 30b, 30c, and 30d, but can come into contact with the cylindrical portions 30a, 30b, 30c, and 30d when the folded portion 63 is displaced. It is arranged at such a distance.

なお、上記各部材の寸法及び距離等は、上記趣旨を逸脱しない範囲で適宜選定可能である。例えば、平板部20のX軸方向の幅をおよそ50mmとしたとき、触媒線6の垂下部61,62間の距離はおよそ60mm程度とすればよい。平板部20の下面部22と折り返し部63とは、Z軸方向に例えばおよそ50cm程度離間するように配置されればよい。このとき、折り返し部63からロッド31の下端までの距離はおよそ200mm程度とすればよい。貫通孔23a,23b及び貫通孔23c,23dの孔中心間の距離は、それぞれおよそ10mm程度とすればよい。貫通孔23a,23b,23c,23dは、孔中心が平板部20のY軸方向の辺からおよそ7mm程度離間した位置にそれぞれ設けられればよい。   In addition, the dimension of each said member, distance, etc. can be suitably selected in the range which does not deviate from the said meaning. For example, when the width of the flat plate portion 20 in the X-axis direction is about 50 mm, the distance between the hanging portions 61 and 62 of the catalyst wire 6 may be about 60 mm. The lower surface portion 22 and the folded portion 63 of the flat plate portion 20 may be disposed so as to be separated from each other by about 50 cm in the Z-axis direction, for example. At this time, the distance from the folded portion 63 to the lower end of the rod 31 may be about 200 mm. The distance between the hole centers of the through holes 23a, 23b and the through holes 23c, 23d may be about 10 mm. The through holes 23 a, 23 b, 23 c, and 23 d may be provided at positions where the hole centers are separated from the side in the Y axis direction of the flat plate portion 20 by about 7 mm.

次に、規制部100における平板部20及び円柱部30の形状及び係合の関係等をより詳細に説明する。   Next, the shape of the flat plate part 20 and the cylindrical part 30 in the restricting part 100, the relationship of engagement, and the like will be described in more detail.

図6は、規制部100の部分断面図である。
同図に示すように、平板部20に設けられた円形の貫通孔23は、上面部24側の大径孔部25と、下面部22側の小径孔部26とを有する。大径孔部25及び小径孔部26は同心円状に形成され、間に平板部20と平行な段差面27が設けられる。
FIG. 6 is a partial cross-sectional view of the restricting portion 100.
As shown in the figure, the circular through hole 23 provided in the flat plate portion 20 has a large diameter hole portion 25 on the upper surface portion 24 side and a small diameter hole portion 26 on the lower surface portion 22 side. The large-diameter hole portion 25 and the small-diameter hole portion 26 are formed concentrically, and a step surface 27 parallel to the flat plate portion 20 is provided therebetween.

円柱部30の頭部32は、ロッド31から連続して形成された小径頭部34と、小径頭部34から連続して形成された中径頭部36と、中径頭部36から連続して形成された大径頭部33とを有する。大径頭部33、中径頭部36及び小径頭部34は同心の円柱状に形成される。小径頭部34と中径頭部36との間に、ロッド31の軸方向に対して直交する第1の段差面35が設けられる。中径頭部36と大径頭部33との間に、第1の段差面35と平行な第2の段差面37が設けられる。   The head portion 32 of the cylindrical portion 30 is continuous from the small diameter head portion 34 formed continuously from the rod 31, the medium diameter head portion 36 formed continuously from the small diameter head portion 34, and the medium diameter head portion 36. And a large-diameter head 33 formed in the above manner. The large-diameter head 33, the medium-diameter head 36, and the small-diameter head 34 are formed in a concentric columnar shape. A first step surface 35 that is orthogonal to the axial direction of the rod 31 is provided between the small-diameter head 34 and the medium-diameter head 36. A second step surface 37 parallel to the first step surface 35 is provided between the medium diameter head portion 36 and the large diameter head portion 33.

円柱部30は、貫通孔23に対して以下のような寸法となるように形成される。ロッド31の直径は小径孔部26の直径より小さく形成される。小径頭部34の直径は小径孔部26の直径と略等しく形成される。より詳細には、小径頭部34が小径孔部26に挿入可能であり、小径頭部34が小径孔部26に挿入されたときに小径頭部34の外周面が小径孔部26の内周面に当接可能となるように小径頭部34及び小径孔部26の直径が選定される。小径頭部34の高さは小径孔部26の高さより小さく形成される。中径頭部36の直径は小径孔部26の直径より大きく且つ大径孔部25の直径より小さく、中径頭部36の高さは大径孔部25の高さより大きく形成される。大径頭部33の直径は大径孔部25の直径より大きく形成される。   The cylindrical portion 30 is formed to have the following dimensions with respect to the through hole 23. The diameter of the rod 31 is smaller than the diameter of the small diameter hole portion 26. The diameter of the small diameter head 34 is formed approximately equal to the diameter of the small diameter hole 26. More specifically, the small-diameter head portion 34 can be inserted into the small-diameter hole portion 26, and when the small-diameter head portion 34 is inserted into the small-diameter hole portion 26, the outer peripheral surface of the small-diameter head portion 34 is the inner periphery of the small-diameter hole portion 26. The diameters of the small-diameter head portion 34 and the small-diameter hole portion 26 are selected so that they can come into contact with the surface. The height of the small-diameter head 34 is formed smaller than the height of the small-diameter hole 26. The diameter of the medium-diameter head 36 is larger than the diameter of the small-diameter hole 26 and smaller than the diameter of the large-diameter hole 25, and the height of the medium-diameter head 36 is formed larger than the height of the large-diameter hole 25. The diameter of the large-diameter head 33 is formed larger than the diameter of the large-diameter hole 25.

この円柱部30は、貫通孔23に挿入されて平板部20に取り付けられる。詳細には、小径頭部34が小径孔部26に挿入されたときにこれらが面当接するので、小径頭部34のX軸方向及びY軸方向への移動が規制される。これにより、円柱部30がX軸及びY軸方向で位置決めされる。小径頭部34の下部と連続するロッド31及び小径孔部26は、上記位置決めされたときに所定の距離だけ離間するように直径が選定されている。   The cylindrical portion 30 is inserted into the through hole 23 and attached to the flat plate portion 20. Specifically, when the small-diameter head portion 34 is inserted into the small-diameter hole portion 26, they come into surface contact with each other, so that the movement of the small-diameter head portion 34 in the X-axis direction and the Y-axis direction is restricted. Thereby, the cylindrical portion 30 is positioned in the X-axis and Y-axis directions. The diameters of the rod 31 and the small-diameter hole 26 that are continuous with the lower portion of the small-diameter head 34 are selected so as to be separated by a predetermined distance when positioned.

中径頭部36の直径は小径孔部26の直径より大きく且つ大径孔部25の直径より小さいので、上記のように小径頭部34が小径孔部26に挿入されたときに、中径頭部36は大径孔部25に収容される。このとき、中径頭部36の底面である第1の段差面35が大径孔部25の底部としての段差面27に当接する。これにより、中径頭部36のZ軸方向への移動が規制され、円柱部30のZ軸方向への抜け落ちが規制される。これにより、円柱部30が平板部20に対して3軸方向にて支持される。中径頭部36及び大径孔部25は、このように係合されたときに所定の距離だけ互いに離間するように直径が選定されている。   Since the diameter of the medium-diameter head portion 36 is larger than the diameter of the small-diameter hole portion 26 and smaller than the diameter of the large-diameter hole portion 25, when the small-diameter head portion 34 is inserted into the small-diameter hole portion 26 as described above, The head 36 is accommodated in the large diameter hole 25. At this time, the first step surface 35, which is the bottom surface of the medium diameter head portion 36, abuts on the step surface 27 as the bottom portion of the large diameter hole portion 25. Thereby, the movement in the Z-axis direction of the medium-diameter head 36 is restricted, and the dropout of the cylindrical part 30 in the Z-axis direction is restricted. Thereby, the cylindrical portion 30 is supported in the triaxial direction with respect to the flat plate portion 20. The diameters of the medium-diameter head 36 and the large-diameter hole 25 are selected so as to be separated from each other by a predetermined distance when engaged.

中径頭部36の高さは大径孔部25の高さより大きいので、中径頭部36が大径孔部25に収容されたときに、中径頭部36の上部が大径孔部25の上端すなわち平板部20の上面部24から突出する。この中径頭部36上部に連続する大径頭部33の直径は大径孔部25の直径よりも大きいので、中径頭部36が大径孔部25に収容されたときに、大径頭部33の底部である第2の段差面37が平板部20の上面部24に対して所定の距離をあけて対向する。   Since the height of the medium diameter head portion 36 is larger than the height of the large diameter hole portion 25, when the medium diameter head portion 36 is accommodated in the large diameter hole portion 25, the upper portion of the medium diameter head portion 36 is the large diameter hole portion. It projects from the upper end of 25, that is, the upper surface portion 24 of the flat plate portion 20. Since the diameter of the large-diameter head 33 that is continuous with the upper portion of the medium-diameter head 36 is larger than the diameter of the large-diameter hole 25, the large-diameter head 36 has a large diameter when accommodated in the large-diameter hole 25. A second step surface 37 that is a bottom portion of the head portion 33 is opposed to the upper surface portion 24 of the flat plate portion 20 with a predetermined distance.

この規制部100によれば、円柱部30を平板部20の貫通孔23に挿入することで、平板部20により円柱部30を支持している。これにより、円柱部30及び平板部20が一体的に構成されるので、組み立て時、メンテナンス時等の作業性が向上する。   According to the restricting portion 100, the cylindrical portion 30 is supported by the flat plate portion 20 by inserting the cylindrical portion 30 into the through hole 23 of the flat plate portion 20. Thereby, since the cylindrical part 30 and the flat plate part 20 are comprised integrally, workability | operativity at the time of an assembly, a maintenance, etc. improves.

[規制部によるねじれの規制]
次に、規制部100による触媒線6のねじれの規制について説明する。
[Regulation of torsion by regulation part]
Next, regulation of the twist of the catalyst wire 6 by the regulation unit 100 will be described.

図7は、触媒線6がZ軸を中心に時計回りにねじれたときの様子を示す概略平面図である。
触媒線6の折り返し部63に着目すると、同図に示すように、触媒線6がZ軸を中心に矢印で示す時計回りの方向にねじれるとき、折り返し部63は、円柱部30b,30cから離れ、円柱部30a,30dに近づくように回転する。回転した折り返し部63の垂下部61側の端部が円柱部30aに当接し、垂下部62側の端部が円柱部30dに当接して触媒線6のねじれがY軸方向で規制される。
FIG. 7 is a schematic plan view showing a state when the catalyst wire 6 is twisted clockwise around the Z axis.
Focusing on the folded portion 63 of the catalyst wire 6, as shown in the figure, when the catalyst wire 6 is twisted in the clockwise direction indicated by the arrow about the Z axis, the folded portion 63 is separated from the cylindrical portions 30b and 30c. Rotate to approach the cylindrical portions 30a and 30d. The end portion of the rotated folded portion 63 on the hanging portion 61 side contacts the cylindrical portion 30a, the end portion on the hanging portion 62 side contacts the cylindrical portion 30d, and the twist of the catalyst wire 6 is restricted in the Y-axis direction.

次に、触媒線6の垂下部61,62に着目する。
図8は、図7の規制部100及び触媒線6をY軸方向から示す概略図である。
同図に示すように、触媒線6がZ軸を中心に時計回りの方向にねじれたとき、垂下部62が平板部20から離れ、垂下部61が平板部20に近づく如く、触媒線6がX軸方向に位置ずれする場合がある。位置ずれした触媒線6の垂下部61が平板部20の端部21cに当接して触媒線6の位置ずれがX軸方向で規制される。
Next, attention is paid to the hanging portions 61 and 62 of the catalyst wire 6.
FIG. 8 is a schematic view showing the restriction portion 100 and the catalyst wire 6 of FIG. 7 from the Y-axis direction.
As shown in the figure, when the catalyst wire 6 is twisted clockwise about the Z axis, the catalyst wire 6 is moved so that the drooping portion 62 is separated from the flat plate portion 20 and the drooping portion 61 is close to the flat plate portion 20. There may be a positional shift in the X-axis direction. The suspended portion 61 of the displaced catalyst wire 6 contacts the end portion 21c of the flat plate portion 20, and the displacement of the catalyst wire 6 is restricted in the X-axis direction.

本実施形態によれば、規制部100の円柱部30により触媒線6のZ軸回りのねじれがY軸方向で規制されるので、基板Sと触媒線6の各部分とのY軸方向での距離が大きく変動するのを抑えることができる。また、規制部100の平板部20により触媒線6の位置ずれがX軸方向で規制されるので、触媒線6がX軸方向における所定の位置から大きく移動するのを規制することができる。これにより、分解種の基板Sへの到達確率の変動や、触媒線6からの輻射熱による基板Sの局所的な温度上昇を防止し、成膜の膜厚分布が不均一となるのを抑えることができる。   According to the present embodiment, the torsion around the Z-axis of the catalyst wire 6 is restricted in the Y-axis direction by the cylindrical portion 30 of the restriction portion 100, so that the substrate S and each part of the catalyst wire 6 in the Y-axis direction are restricted. It is possible to prevent the distance from fluctuating greatly. Further, since the displacement of the catalyst wire 6 is restricted in the X-axis direction by the flat plate portion 20 of the restricting portion 100, it is possible to restrict the catalyst wire 6 from greatly moving from a predetermined position in the X-axis direction. As a result, fluctuations in the arrival probability of the decomposition species to the substrate S and local temperature rise of the substrate S due to radiant heat from the catalyst wire 6 are prevented, and the film thickness distribution of the film formation is suppressed from becoming non-uniform. Can do.

また、規制部100は基板Sの下方の第3の領域に設けられているため、成膜の際に基板Sに対する障害となることがない。これにより、分解種の基板Sへの到達確率の変動、触媒線6からの輻射熱による基板Sの局所的な温度上昇等をさらに確実に抑制することができる。   Further, since the restricting portion 100 is provided in the third region below the substrate S, it does not become an obstacle to the substrate S during film formation. Thereby, the fluctuation | variation of the arrival probability of the decomposition | disassembly seed | species to the board | substrate S, the local temperature rise of the board | substrate S by the radiant heat from the catalyst wire 6, etc. can be suppressed further more reliably.

さらに、規制部100により、ねじれた触媒線6が真空チャンバ3内の各部材等に対する接触も防止される。触媒線6が各部材等に接触すると、触媒線6から熱が奪われてシリコンとの反応温度にまで温度が低下し、触媒線6とシリコンとの合金化反応(シリサイド化)が起こり、触媒線6の表面にクラックが発生するおそれがある。本実施形態によれば、触媒線6の真空チャンバ3内の各部材等に対する接触が防止されるので、触媒線6の機械的強度の低下や、寿命の短縮を防止することができる。   Further, the restricting portion 100 prevents the twisted catalyst wire 6 from contacting each member or the like in the vacuum chamber 3. When the catalyst wire 6 comes into contact with each member or the like, the heat is removed from the catalyst wire 6 and the temperature is lowered to the reaction temperature with silicon, and an alloying reaction (silicidation) between the catalyst wire 6 and silicon occurs. There is a risk of cracks occurring on the surface of the wire 6. According to the present embodiment, the contact of the catalyst wire 6 with each member in the vacuum chamber 3 is prevented, so that it is possible to prevent the mechanical strength of the catalyst wire 6 from being lowered and the life from being shortened.

なお、交流電力を印加して触媒線6に電流を供給する場合等は、触媒線6のねじれの方向が周期的に変化する場合がある。この場合も、折り返し部63の垂下部61側の端部が円柱部30aまたは30bに当接し、垂下部62側の端部が円柱部30dまたは30cに当接して触媒線6のねじれがY軸方向で規制される。また、垂下部62が平板部20の端部21cまたは21dに当接して触媒線6の位置ずれがX軸方向で規制される。   In addition, when applying alternating current power and supplying an electric current to the catalyst wire 6, the twist direction of the catalyst wire 6 may change periodically. Also in this case, the end of the folded portion 63 on the hanging portion 61 side is in contact with the cylindrical portion 30a or 30b, the end on the hanging portion 62 side is in contact with the cylindrical portion 30d or 30c, and the twist of the catalyst wire 6 is Regulated by direction. Further, the hanging portion 62 abuts against the end portion 21c or 21d of the flat plate portion 20, and the displacement of the catalyst wire 6 is restricted in the X-axis direction.

また、規制部100は、上記説明した触媒線6の電磁力等によるねじれだけでなく、何らかの外力による揺動その他の位置ずれも規制可能であることは勿論である。   In addition, the regulating unit 100 can regulate not only the twisting due to the electromagnetic force or the like of the catalyst wire 6 described above, but also the oscillation and other positional deviations caused by some external force.

図9は、規制部100を設けた場合の成膜の膜厚分布の変動及び規制部100を設けない場合の成膜の膜厚分布の変動を示す図である。
なお、同図は、基板の成膜領域の水平方向幅がおよそ1400mmであり、7ユニットの触媒線6が列設された場合を例示している。
FIG. 9 is a diagram illustrating fluctuations in the film thickness distribution of the film formation when the restriction unit 100 is provided and fluctuations in the film thickness distribution of the film formation when the restriction unit 100 is not provided.
This figure illustrates the case where the horizontal width of the film formation region of the substrate is about 1400 mm and seven units of catalyst wires 6 are arranged in a row.

規制部100を設けない場合、触媒線6がねじれることで、触媒線6の各部分と基板SとのY軸方向での距離の差異が大きくなるとともに、触媒線6がX軸方向における所定の位置から大きく移動する。その結果、成膜の膜厚分布が不均一となる(>40A)。 When the restriction portion 100 is not provided, the catalyst wire 6 is twisted to increase the difference in distance between each portion of the catalyst wire 6 and the substrate S in the Y-axis direction, and the catalyst wire 6 has a predetermined length in the X-axis direction. Moves greatly from the position. As a result, the film thickness distribution of the film is non-uniform (> 40A).

これに対して、本実施形態の規制部100を設けた場合、規制部100により触媒線6のねじれがX軸方向及びY軸方向に規制されるので、成膜の膜厚分布が不均一となるのを抑えることができる(<20A)。   On the other hand, when the restricting portion 100 of the present embodiment is provided, the restricting portion 100 restricts the twist of the catalyst wire 6 in the X-axis direction and the Y-axis direction. (<20A).

一方、本実施形態の触媒化学気相成長装置10においては、基板Sの間の空間に導入された原料ガスが発熱した触媒線6に接触して、触媒反応もしくは熱分解反応により原料ガスの分解種が生成される。この分解種は、基板S上に堆積するのみならず、反応室2内の規制部100等の各部材にも堆積する。上述のように、触媒線6のねじれが規制部100により規制されるとき、折り返し部63は円柱部30に当接する。したがって、原料ガスの分解種が規制部100に堆積すると、この堆積した分解種を介して触媒線6が短絡するおそれがある。   On the other hand, in the catalytic chemical vapor deposition apparatus 10 of the present embodiment, the raw material gas introduced into the space between the substrates S comes into contact with the heated catalyst wire 6 and decomposes the raw material gas by catalytic reaction or thermal decomposition reaction. A seed is generated. This decomposed species is deposited not only on the substrate S but also on each member such as the regulating portion 100 in the reaction chamber 2. As described above, when the twist of the catalyst wire 6 is restricted by the restriction part 100, the folded part 63 comes into contact with the cylindrical part 30. Therefore, when the decomposition species of the source gas are deposited on the regulation unit 100, the catalyst wire 6 may be short-circuited through the accumulated decomposition species.

図10は、規制部100に原料ガスの分解種Mが堆積した様子を示す部分断面図である。
本実施形態によれば、ロッド31の外周面と小径孔部26の内周面とは、互いに離間している。このため、規制部100に分解種が堆積したとき、ロッド31の外周面に堆積した分解種M1と、平板部20の下面部22に堆積した分解種M2とが、図中領域Aで示すように、ロッド31の外周面と小径孔部26の内周面との間の隙間を隔てて互いに分離する。これにより、ロッド31と平板部20との絶縁が維持される。
FIG. 10 is a partial cross-sectional view showing a state in which the source gas decomposition species M is deposited on the regulation unit 100.
According to this embodiment, the outer peripheral surface of the rod 31 and the inner peripheral surface of the small diameter hole portion 26 are separated from each other. For this reason, when decomposed species are deposited on the restriction portion 100, the decomposed species M1 deposited on the outer peripheral surface of the rod 31 and the decomposed species M2 deposited on the lower surface portion 22 of the flat plate portion 20 are indicated by a region A in the figure. In addition, the gaps between the outer peripheral surface of the rod 31 and the inner peripheral surface of the small diameter hole portion 26 are separated from each other. Thereby, the insulation with the rod 31 and the flat plate part 20 is maintained.

また、中径頭部36の外周面及び大径孔部25の内周面と、第2の段差面37及び平板部20の上面部24とは、互いに離間している。このため、大径頭部33の外周面に堆積した分解種M3と、平板部20の上面部24に堆積した分解種M4とが、図中領域Bで示すように、第2の段差面37と上面部24との間の隙間及び中径頭部36と大径孔部25との間の隙間を隔てて互いに分離する。これにより、頭部32と平板部20との絶縁が維持される。   Further, the outer peripheral surface of the medium-diameter head portion 36 and the inner peripheral surface of the large-diameter hole portion 25 are separated from the second step surface 37 and the upper surface portion 24 of the flat plate portion 20. Therefore, the decomposed species M3 deposited on the outer peripheral surface of the large-diameter head 33 and the decomposed species M4 deposited on the upper surface portion 24 of the flat plate portion 20 are, as shown by the region B in the figure, the second step surface 37. And the upper surface portion 24 and the clearance between the medium diameter head portion 36 and the large diameter hole portion 25 are separated from each other. Thereby, the insulation with the head 32 and the flat plate part 20 is maintained.

この結果、規制部100に分解種が堆積した場合でも、円柱部30と平板部20との間が導通することなく絶縁状態が維持される。   As a result, even when decomposed species are deposited on the regulating portion 100, the insulating state is maintained without conduction between the cylindrical portion 30 and the flat plate portion 20.

従って、本実施形態によれば、触媒線6の垂下部61と平板部20とが導通され、折り返し部63と円柱部30とが導通されたとしても、円柱部30と平板部20との絶縁状態を維持することにより、触媒線6の短絡の発生を防止することができる。   Therefore, according to this embodiment, even if the hanging portion 61 of the catalyst wire 6 and the flat plate portion 20 are electrically connected, and the folded portion 63 and the cylindrical portion 30 are electrically connected, the insulation between the cylindrical portion 30 and the flat plate portion 20 is achieved. By maintaining the state, occurrence of a short circuit of the catalyst wire 6 can be prevented.

また、円柱部30の外周面が曲面であるので、折り返し部63が円柱部30に接触したときの接触面積を小さくすることができる、これにより、折り返し部63と円柱部30との絶縁状態をさらに確実に維持することができる。なお、同様の趣旨で、平板部20の端部21c,21dに相当する側面を曲面としてもよく、これにより、垂下部61,62と平板部20との絶縁状態をさらに確実に維持することができる。   Moreover, since the outer peripheral surface of the cylindrical part 30 is a curved surface, the contact area when the folding | returning part 63 contacts the cylindrical part 30 can be made small, Thereby, the insulation state of the folding | returning part 63 and the cylindrical part 30 can be made. Furthermore, it can maintain reliably. For the same purpose, the side surfaces corresponding to the end portions 21c and 21d of the flat plate portion 20 may be curved surfaces, whereby the insulation state between the hanging portions 61 and 62 and the flat plate portion 20 can be more reliably maintained. it can.

[別の実施形態]
本発明に係る実施形態は、以上説明した実施形態に限定されず、他の種々の実施形態が考えられる。例えば、上記実施形態では、複数の触媒線6a,6b,6cに、規制部100a,100b,100cをそれぞれ設けた。しかしながら、触媒線6のねじれを規制するための規制部はこれに限定されない。
[Another embodiment]
The embodiment according to the present invention is not limited to the above-described embodiment, and various other embodiments are conceivable. For example, in the above embodiment, the restriction portions 100a, 100b, and 100c are provided on the plurality of catalyst wires 6a, 6b, and 6c, respectively. However, the restricting portion for restricting the twist of the catalyst wire 6 is not limited to this.

図11は、本発明の別の実施形態に係る規制部200及び触媒線6を示す斜視図である。
同図に示すように、本発明の別の実施形態に係る規制部200(第1の規制部)は、長尺状の軸状部材である2つの円柱部40a,40b(以下、「円柱部40」と総称することがある。)(第1及び第2の部材)を有する。円柱部40は、等しい形状であり、例えばセラミックス等の絶縁材料よりなる。
FIG. 11 is a perspective view showing a restricting portion 200 and a catalyst wire 6 according to another embodiment of the present invention.
As shown in the figure, a restricting portion 200 (first restricting portion) according to another embodiment of the present invention includes two cylindrical portions 40a and 40b (hereinafter referred to as “cylindrical portions”) that are long shaft-like members. 40 ”(first and second members). The cylindrical portion 40 has an equal shape and is made of an insulating material such as ceramics.

これ以降の説明では、上記実施形態に係る触媒化学気相成長装置10の部材や機能等について同様のものは同様の参照符号を付した上で説明を簡略または省略し、異なる点を中心に説明する。   In the following description, the same components and functions of the catalytic chemical vapor deposition apparatus 10 according to the above embodiment are denoted by the same reference numerals, and the description will be simplified or omitted, and the description will focus on the different points. To do.

円柱部40は、基板Sが配置される第1の領域よりもZ軸方向で下方側の第3の領域に設けられる。円柱部40は、それぞれX軸方向に配設され、触媒線6の垂下部61,62を挟んで互いに対向する。円柱部40は、例えば同じ高さに設ければよいが、これに限定されない。触媒線6は、円柱部40a,40bの略中央に位置する。   The cylindrical portion 40 is provided in a third region on the lower side in the Z-axis direction than the first region where the substrate S is disposed. The cylindrical portions 40 are respectively disposed in the X-axis direction and face each other with the hanging portions 61 and 62 of the catalyst wire 6 interposed therebetween. The cylindrical portion 40 may be provided at the same height, for example, but is not limited thereto. The catalyst wire 6 is located approximately at the center of the cylindrical portions 40a and 40b.

次に、規制部200による触媒線6のねじれの規制について説明する。
図12は、触媒線6がZ軸回りにねじれたときの規制部200及び触媒線6をZ軸方向から示す概略図である。
同図に示すように、触媒線6は、垂下部61が円柱部40aから離れて円柱部40bに近づき、垂下部62が円柱部40bから離れて円柱部40aに近づくように、図中矢印で示す方向(時計回りの方向)にZ軸回りにねじれる。触媒線6がさらにねじれると、垂下部61が円柱部40bに当接し、垂下部62が円柱部40aに当接して触媒線6のねじれがY軸方向で規制される。
Next, regulation of twisting of the catalyst wire 6 by the regulation unit 200 will be described.
FIG. 12 is a schematic view showing the restriction portion 200 and the catalyst wire 6 from the Z-axis direction when the catalyst wire 6 is twisted around the Z-axis.
As shown in the figure, the catalyst wire 6 has an arrow in the figure so that the hanging portion 61 is separated from the cylindrical portion 40a and approaches the cylindrical portion 40b, and the hanging portion 62 is separated from the cylindrical portion 40b and approaches the cylindrical portion 40a. Twist around the Z axis in the direction shown (clockwise). When the catalyst wire 6 is further twisted, the drooping portion 61 comes into contact with the cylindrical portion 40b, the drooping portion 62 comes into contact with the cylindrical portion 40a, and the twisting of the catalyst wire 6 is restricted in the Y-axis direction.

この実施形態によっても、上記実施形態と同様に、規制部200により触媒線6のZ軸回りのねじれがY軸方向で規制されるので、基板Sと触媒線6の各部分とのY軸方向での距離が大きく変動するのを抑えることができる。これにより、成膜の膜厚分布が不均一となるのを抑えることができる。また、規制部200により、ねじれた触媒線6が真空チャンバ3内の各部材等に対する接触も防止されるので、触媒線6の機械的強度の低下や、寿命の短縮を防止することができる。さらに、触媒線6のねじれの方向が反時計回りとなる場合も、垂下部61が円柱部40aに当接し、垂下部62が円柱部40bに当接して、規制部200により触媒線6のねじれをY軸方向で規制することができる。   Also in this embodiment, since the torsion around the Z axis of the catalyst wire 6 is restricted in the Y axis direction by the restricting portion 200 as in the above embodiment, the Y axis direction between the substrate S and each portion of the catalyst wire 6 It is possible to suppress a large fluctuation in the distance at. Thereby, it can suppress that the film thickness distribution of film-forming becomes non-uniform | heterogenous. Further, since the twisted catalyst wire 6 is prevented from coming into contact with each member or the like in the vacuum chamber 3 by the restricting portion 200, it is possible to prevent the mechanical strength of the catalyst wire 6 from being lowered and the life from being shortened. Further, also when the direction of twisting of the catalyst wire 6 is counterclockwise, the drooping portion 61 comes into contact with the cylindrical portion 40a, the drooping portion 62 comes into contact with the cylindrical portion 40b, and the restriction portion 200 twists the catalyst wire 6. Can be regulated in the Y-axis direction.

なお、この実施形態においても、上記実施形態に係る平板部20のように、触媒線6のX軸方向への位置ずれを規制する第2の規制部を設けてもよい。例えば、円柱部40a,40bの間に、平板部20に相当する部材を渡し設けてもよい。この場合、上記実施形態のように、1つの触媒線6の垂下部61,62の間に平板部20に相当する部材を渡し設ければよい。あるいは、触媒線6の垂下部61と、隣り合う他の触媒線6の垂下部62との間に平板部20に相当する部材を渡し設けてもよい。   Also in this embodiment, a second restricting portion that restricts the displacement of the catalyst wire 6 in the X-axis direction may be provided as in the flat plate portion 20 according to the above embodiment. For example, a member corresponding to the flat plate portion 20 may be provided between the cylindrical portions 40a and 40b. In this case, as in the above embodiment, a member corresponding to the flat plate portion 20 may be provided between the hanging portions 61 and 62 of one catalyst wire 6. Alternatively, a member corresponding to the flat plate portion 20 may be provided between the hanging portion 61 of the catalyst wire 6 and the hanging portion 62 of another adjacent catalyst wire 6.

図13は、本発明の別の実施形態に係る規制部300及び触媒線6を示す斜視図である。
同図に示すように、本発明の別の実施形態に係る規制部300は、平板部320と、例えば互いに等しい形状を有する4つの円柱部330(第1の規制部)を有する。
FIG. 13 is a perspective view showing a regulating portion 300 and a catalyst wire 6 according to another embodiment of the present invention.
As shown in the figure, a restricting portion 300 according to another embodiment of the present invention includes a flat plate portion 320 and, for example, four cylindrical portions 330 (first restricting portions) having the same shape.

平板部320は、触媒線6の折り返し部63の下方に、折り返し部63に対して離間しつつ対向するように配置される。円柱部330は、平板部320の上面に略垂直に設けられ、折り返し部63を横切るようにしてZ軸方向に延在する。平板部320と折り返し部63との間の距離及び円柱部330の長さは、熱膨張、クリープ等の影響により生じる触媒線6の変形を考慮して適宜選定すればよい。   The flat plate portion 320 is disposed below the folded portion 63 of the catalyst wire 6 so as to face the folded portion 63 while being spaced apart. The cylindrical portion 330 is provided substantially perpendicularly to the upper surface of the flat plate portion 320 and extends in the Z-axis direction so as to cross the folded portion 63. The distance between the flat plate portion 320 and the folded portion 63 and the length of the cylindrical portion 330 may be appropriately selected in consideration of deformation of the catalyst wire 6 caused by the effects of thermal expansion, creep, and the like.

この実施形態によっても、上記実施形態と同様に、規制部300により触媒線6のZ軸回りのねじれがY軸方向で規制されるので、基板Sと触媒線6の各部分とのY軸方向での距離が大きく変動するのを抑えることができる。なお、この実施形態においても、触媒線6のX軸方向への位置ずれを規制する第2の規制部を設けてもよい。   Also in this embodiment, since the torsion around the Z axis of the catalyst wire 6 is restricted in the Y axis direction by the restricting portion 300 as in the above embodiment, the Y axis direction of the substrate S and each part of the catalyst wire 6 is restricted. It is possible to suppress a large fluctuation in the distance at. Also in this embodiment, a second restricting portion that restricts the displacement of the catalyst wire 6 in the X-axis direction may be provided.

図14は、本発明の別の実施形態に係る規制部400及び触媒線6を示す斜視図である。
同図に示すように、本発明の別の実施形態に係る規制部400は、第1の平板部420と、互いに等しい形状を有する2つの第2の平板部430(第1の規制部)を有する。
FIG. 14 is a perspective view showing a regulating portion 400 and a catalyst wire 6 according to another embodiment of the present invention.
As shown in the figure, a restricting portion 400 according to another embodiment of the present invention includes a first flat plate portion 420 and two second flat plate portions 430 (first restricting portions) having the same shape. Have.

第1の平板部420は、触媒線6の折り返し部63の下方に、折り返し部63に対して離間しつつ対向するように配置される。第2の平板部430は、第1の平板部420の上面に略垂直に設けられ、折り返し部63を横切るようにしてZ軸方向に延在する。第1の平板部420と折り返し部63との間の距離及び第2の平板部430の長さは、熱膨張、クリープ等の影響により生じる触媒線6の変形を考慮して適宜選定すればよい。   The first flat plate portion 420 is disposed below the folded portion 63 of the catalyst wire 6 so as to face the folded portion 63 while being spaced apart. The second flat plate portion 430 is provided substantially perpendicularly to the upper surface of the first flat plate portion 420 and extends in the Z-axis direction so as to cross the folded portion 63. The distance between the first flat plate portion 420 and the folded portion 63 and the length of the second flat plate portion 430 may be appropriately selected in consideration of the deformation of the catalyst wire 6 caused by the effects of thermal expansion, creep, and the like. .

この実施形態によっても、上記実施形態と同様に、規制部400により触媒線6のZ軸回りのねじれがY軸方向で規制されるので、基板Sと触媒線6の各部分とのY軸方向での距離が大きく変動するのを抑えることができる。なお、この実施形態においても、触媒線6のX軸方向への位置ずれを規制する第2の規制部を設けてもよい。   Also in this embodiment, since the torsion around the Z axis of the catalyst wire 6 is restricted in the Y axis direction by the restricting portion 400 as in the above embodiment, the Y axis direction between the substrate S and each portion of the catalyst wire 6 is restricted. It is possible to suppress a large fluctuation in the distance at. Also in this embodiment, a second restricting portion that restricts the displacement of the catalyst wire 6 in the X-axis direction may be provided.

図15は、本発明の別の実施形態に係る規制部500及び触媒線6を示す斜視図である。
同図に示すように、本発明の別の実施形態に係る規制部500は、2つの貫通孔523が設けられた平板部520(第1の規制部、第2の規制部)を有する。
FIG. 15 is a perspective view showing a regulating portion 500 and a catalyst wire 6 according to another embodiment of the present invention.
As shown in the figure, a restricting portion 500 according to another embodiment of the present invention has a flat plate portion 520 (a first restricting portion, a second restricting portion) provided with two through holes 523.

平板部520は、例えばX軸及びY軸にそれぞれ平行な辺からなる矩形面を有するプレート状の部材である。平板部520のX軸方向の辺の長さは、触媒線6の垂下部61,62間の距離より大きい。平板部520は、触媒線6の折り返し部63の上方に、折り返し部63に対して離間しつつ対向するように配置される。平板部520と折り返し部63との間の距離は、熱膨張、クリープ等の影響により生じる触媒線6の変形を考慮して適宜選定すればよい。   The flat plate portion 520 is a plate-like member having a rectangular surface composed of sides parallel to the X axis and the Y axis, for example. The length of the side of the flat plate portion 520 in the X-axis direction is larger than the distance between the hanging portions 61 and 62 of the catalyst wire 6. The flat plate portion 520 is disposed above the folded portion 63 of the catalyst wire 6 so as to face the folded portion 63 while being separated. The distance between the flat plate portion 520 and the folded portion 63 may be appropriately selected in consideration of deformation of the catalyst wire 6 caused by the effects of thermal expansion, creep, and the like.

平板部520には、触媒線6の垂下部61,62をそれぞれ挿入可能な、例えば円形の2つの貫通孔523が形成されている。貫通孔523の位置及び大きさは、内周面が垂下部61,62の何れに対しても非接触であるが、垂下部61,62がX軸方向及びY軸方向に所定距離位置ずれしたとき等に、垂下部61,62が貫通孔23の内周面に接触可能となるように選定される。なお、本図では貫通孔523を円形としているが、これに限定されず、矩形等でもよい。   The flat plate portion 520 is formed with, for example, two circular through holes 523 into which the hanging portions 61 and 62 of the catalyst wire 6 can be inserted. As for the position and size of the through hole 523, the inner peripheral surface is not in contact with any of the hanging parts 61 and 62, but the hanging parts 61 and 62 are displaced by a predetermined distance in the X axis direction and the Y axis direction. Sometimes, the hanging portions 61 and 62 are selected so as to be able to contact the inner peripheral surface of the through hole 23. In addition, although the through-hole 523 is circular in this figure, it is not limited to this, A rectangle etc. may be sufficient.

この実施形態によっても、上記実施形態と同様に、規制部500により触媒線6のZ軸回りのねじれがX軸方向及びY軸方向で規制されるので、基板Sと触媒線6の各部分とのX軸方向及びY軸方向での距離が大きく変動するのを抑えることができる。   Also in this embodiment, the torsion around the Z-axis of the catalyst wire 6 is restricted in the X-axis direction and the Y-axis direction by the restricting portion 500 as in the above-described embodiment. It is possible to prevent the distance in the X-axis direction and the Y-axis direction from greatly fluctuating.

図16は、本発明の別の実施形態に係る規制部600及び触媒線6を示す斜視図である。
同図に示すように、本発明の別の実施形態に係る規制部600は、2つの切欠き部623が設けられた平板部620(第1の規制部、第2の規制部)を有する。
FIG. 16 is a perspective view showing a regulating portion 600 and a catalyst wire 6 according to another embodiment of the present invention.
As shown in the figure, a restriction part 600 according to another embodiment of the present invention has a flat plate part 620 (first restriction part, second restriction part) provided with two notches 623.

平板部620は、例えばX軸及びY軸にそれぞれ平行な辺からなる矩形面を有するプレート状の部材である。平板部620のX軸方向の辺の長さは、触媒線6の垂下部61,62間の距離より大きい。平板部620は、触媒線6の折り返し部63の上方に、折り返し部63に対して離間しつつ対向するように配置される。平板部620と折り返し部63との間の距離は、熱膨張、クリープ等の影響により生じる触媒線6の変形を考慮して適宜選定すればよい。   The flat plate portion 620 is a plate-like member having a rectangular surface composed of sides parallel to the X axis and the Y axis, for example. The length of the side of the flat plate portion 620 in the X-axis direction is larger than the distance between the hanging portions 61 and 62 of the catalyst wire 6. The flat plate portion 620 is disposed above the folded portion 63 of the catalyst wire 6 so as to face the folded portion 63 while being spaced apart. The distance between the flat plate portion 620 and the folded portion 63 may be appropriately selected in consideration of deformation of the catalyst wire 6 caused by the effects of thermal expansion, creep, and the like.

平板部620には、触媒線6の垂下部61,62をそれぞれ挿入可能な、例えばU字形の2つの切欠き部623が形成されている。切欠き部623の位置及び大きさは、内周面が垂下部61,62の何れに対しても非接触であるが、垂下部61,62がX軸方向及びY軸方向に所定距離位置ずれしたとき等に、垂下部61,62が切欠き部623の内周面に接触可能となるように選定される。なお、本図では切欠き部623をU字形としているが、これに限定されず、矩形等でもよい。   The flat plate portion 620 is formed with, for example, two U-shaped notches 623 into which the hanging portions 61 and 62 of the catalyst wire 6 can be inserted. The position and size of the notch 623 are such that the inner peripheral surface is not in contact with any of the hanging parts 61 and 62, but the hanging parts 61 and 62 are displaced by a predetermined distance in the X-axis direction and the Y-axis direction. The hanging portions 61 and 62 are selected so as to be able to contact the inner peripheral surface of the cutout portion 623. In addition, although the notch part 623 is made into U shape in this figure, it is not limited to this, A rectangle etc. may be sufficient.

この実施形態によっても、上記実施形態と同様に、規制部600により触媒線6のZ軸回りのねじれがX軸方向及びY軸方向で規制されるので、基板Sと触媒線6の各部分とのX軸方向及びY軸方向での距離が大きく変動するのを抑えることができる。   Also in this embodiment, the torsion around the Z-axis of the catalyst wire 6 is restricted in the X-axis direction and the Y-axis direction by the restricting portion 600 as in the above-described embodiment. It is possible to prevent the distance in the X-axis direction and the Y-axis direction from greatly fluctuating.

図17は、本発明の別の実施形態に係る触媒化学気相成長装置10の概略構成を示す正面図である。
図1に示した触媒化学気相成長装置10では、3ユニットの触媒線6がそれぞれ両端部64,64を有し、この両端部64,64がそれぞれ電源8に接続されたが、これに限定されない。図17に示すように、電源8に接続される両端部64,64を有する1本の触媒線6を複数回折り返すことで、3ユニットの触媒線6を構成してもよい。この場合、触媒線6は、その上方側の折り返し部分で図示しない支持部材により支持されてもよい。この場合、上記支持部材を断熱材料で構成することにより、支持点における触媒線6の温度低下を抑制することができる。
FIG. 17 is a front view showing a schematic configuration of a catalytic chemical vapor deposition apparatus 10 according to another embodiment of the present invention.
In the catalytic chemical vapor deposition apparatus 10 shown in FIG. 1, three units of the catalyst wire 6 have both end portions 64 and 64, respectively, and both end portions 64 and 64 are connected to the power source 8, respectively. Not. As shown in FIG. 17, three units of the catalyst wire 6 may be configured by bending a plurality of one catalyst wire 6 having both end portions 64 and 64 connected to the power supply 8. In this case, the catalyst wire 6 may be supported by a support member (not shown) at the folded portion on the upper side. In this case, the temperature drop of the catalyst wire 6 at the support point can be suppressed by configuring the support member with a heat insulating material.

1…ホルダ
2…反応室
3…真空チャンバ
4…真空ポンプ
5…防着板
6,6a,6b,6c…触媒線
7…ガス導入配管
8…電源
9…原料ガス供給部
10…触媒化学気相成長装置
20,320,520,620…平板部
23,23a,23b,23c,23d,523…貫通孔
25…大径孔部
26…小径孔部
27…段差面
30,30a,30b,30c,30d,330…円柱部
31…ロッド
32…頭部
33…大径頭部
34…小径頭部
35…第1の段差面
36…中径頭部
37…第2の段差面
40,40a,40b…円柱部(第1及び第2の部材)
61,62…垂下部
63…折り返し部
64…両端部
100,100a,100b,100c,200,300,400,500,600…規制部
DESCRIPTION OF SYMBOLS 1 ... Holder 2 ... Reaction chamber 3 ... Vacuum chamber 4 ... Vacuum pump 5 ... Deposition plate 6, 6a, 6b, 6c ... Catalyst wire 7 ... Gas introduction piping 8 ... Power supply 9 ... Raw material gas supply part 10 ... Catalyst chemical vapor phase Growth device 20, 320, 520, 620 ... flat plate portion 23, 23a, 23b, 23c, 23d, 523 ... through hole 25 ... large diameter hole portion 26 ... small diameter hole portion 27 ... step surface 30, 30a, 30b, 30c, 30d , 330 ... cylindrical part 31 ... rod 32 ... head 33 ... large diameter head 34 ... small diameter head 35 ... first step surface 36 ... medium diameter head 37 ... second step surface 40, 40a, 40b ... cylinder Part (first and second members)
61, 62 ... hanging part 63 ... folded part 64 ... both ends 100, 100a, 100b, 100c, 200, 300, 400, 500, 600 ... regulating part

Claims (8)

チャンバと、
前記チャンバ内で基板を立てた状態で保持する保持機構と、
電源に接続される両端部を有し、前記保持機構により保持された前記基板の主面に対向して、垂直方向に折り返すように前記チャンバの内部に吊り下げられ、前記両端部間に電力を印加することで前記チャンバに導入された原料ガスの分解温度に発熱可能な第1の触媒線と、
前記第1の触媒線に接触することで前記第1の触媒線の垂直軸回りのねじれを規制する第1の規制部と
を具備する触媒化学気相成長装置。
A chamber;
A holding mechanism for holding the substrate upright in the chamber;
Both ends connected to a power source are opposed to the main surface of the substrate held by the holding mechanism and are suspended in the chamber so as to be folded in the vertical direction, and power is supplied between the both ends. A first catalyst wire capable of generating heat at a decomposition temperature of the raw material gas introduced into the chamber by applying;
A catalytic chemical vapor deposition apparatus comprising: a first restricting unit that restricts twisting of the first catalyst line around a vertical axis by contacting the first catalyst line.
請求項1に記載の触媒化学気相成長装置であって、
前記第1の規制部は、前記第1の触媒線が所定以上ねじれたときに前記第1の触媒線に接触して前記第1の触媒線のねじれを規制する
触媒化学気相成長装置。
The catalytic chemical vapor deposition apparatus according to claim 1,
The first restricting unit contacts the first catalyst line when the first catalyst line is twisted more than a predetermined amount, and restricts the twist of the first catalyst line.
請求項2に記載の触媒化学気相成長装置であって、
前記チャンバは、
前記保持機構に保持された前記基板の主面と対向する第1の領域と、
前記第1の領域よりも上方側であって、前記両端部が位置する第2の領域と、
前記第1の領域よりも下方側であって、前記第1の触媒線の折り返し領域が位置する第3の領域とを有し、
前記第1の規制部は、前記第3の領域に設けられている
触媒化学気相成長装置。
The catalytic chemical vapor deposition apparatus according to claim 2,
The chamber is
A first region facing the main surface of the substrate held by the holding mechanism;
A second region above the first region and where the both ends are located;
A third region that is below the first region and in which the folded region of the first catalyst wire is located,
The first restricting portion is provided in the third region. A catalytic chemical vapor deposition apparatus.
請求項3に記載の触媒化学気相成長装置であって、
前記第1の規制部は、前記第1の触媒線を挟んで対向する第1及び第2の部材を含む
触媒化学気相成長装置。
The catalytic chemical vapor deposition apparatus according to claim 3,
The first regulating unit includes first and second members facing each other with the first catalyst wire interposed therebetween. Catalytic chemical vapor deposition apparatus.
請求項4に記載の触媒化学気相成長装置であって、
前記第1及び第2の部材は、垂直方向又は水平方向に延びる軸状部材である
触媒化学気相成長装置。
The catalytic chemical vapor deposition apparatus according to claim 4,
The first and second members are axial members extending in a vertical direction or a horizontal direction.
請求項5に記載の触媒化学気相成長装置であって、
前記電源に接続される両端部を有し、前記保持機構により保持された前記基板の前記主面に対向して、垂直方向に折り返すように前記チャンバの内部に吊り下げられた第2の触媒線をさらに具備し、
前記第1及び第2の部材は、前記第1及び第2の触媒線を横切るように延在する軸状部材である
触媒化学気相成長装置。
The catalytic chemical vapor deposition apparatus according to claim 5,
A second catalyst wire that has both ends connected to the power supply and is suspended in the chamber so as to be folded in a vertical direction so as to face the main surface of the substrate held by the holding mechanism. Further comprising
The said 1st and 2nd member is a shaft-shaped member extended so that the said 1st and 2nd catalyst line may be crossed. Catalytic chemical vapor deposition apparatus.
請求項4に記載の触媒化学気相成長装置であって、
前記第1の触媒線に接触可能に配置され、前記両端部を支点とする前記第1の触媒線の位置ずれを、前記保持機構により保持された前記基板の前記主面に平行な方向で規制する第2の規制部
をさらに具備する触媒化学気相成長装置。
The catalytic chemical vapor deposition apparatus according to claim 4,
Positional displacement of the first catalyst wire, which is disposed so as to be in contact with the first catalyst wire and has both ends as fulcrums, is regulated in a direction parallel to the main surface of the substrate held by the holding mechanism. A catalytic chemical vapor deposition apparatus further comprising a second regulating unit.
請求項7に記載の触媒化学気相成長装置であって、
前記第2の規制部は、前記チャンバの一部に固定され、
前記第1及び第2の部材は、前記第2の規制部に支持される
触媒化学気相成長装置。
The catalytic chemical vapor deposition apparatus according to claim 7,
The second restricting portion is fixed to a part of the chamber;
The first and second members are supported by the second restricting portion. Catalytic chemical vapor deposition apparatus.
JP2009230949A 2009-10-02 2009-10-02 Catalytic chemical vapor deposition system Active JP5350164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009230949A JP5350164B2 (en) 2009-10-02 2009-10-02 Catalytic chemical vapor deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009230949A JP5350164B2 (en) 2009-10-02 2009-10-02 Catalytic chemical vapor deposition system

Publications (2)

Publication Number Publication Date
JP2011082226A true JP2011082226A (en) 2011-04-21
JP5350164B2 JP5350164B2 (en) 2013-11-27

Family

ID=44076005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009230949A Active JP5350164B2 (en) 2009-10-02 2009-10-02 Catalytic chemical vapor deposition system

Country Status (1)

Country Link
JP (1) JP5350164B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016003A (en) * 2000-06-29 2002-01-18 Hitachi Kokusai Electric Inc Semiconductor manufacturing device
JP2002356777A (en) * 2001-05-31 2002-12-13 Matsushita Electric Ind Co Ltd Wire arranging method, catalyst chemical vapor phase deposition method using the same, and catalytic chemical vapor deposition method
JP2006179819A (en) * 2004-12-24 2006-07-06 Tokyo Electron Ltd Deposition apparatus, deposition method, and storage medium
JP2009182150A (en) * 2008-01-30 2009-08-13 Ulvac Japan Ltd Film-forming apparatus and film-forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016003A (en) * 2000-06-29 2002-01-18 Hitachi Kokusai Electric Inc Semiconductor manufacturing device
JP2002356777A (en) * 2001-05-31 2002-12-13 Matsushita Electric Ind Co Ltd Wire arranging method, catalyst chemical vapor phase deposition method using the same, and catalytic chemical vapor deposition method
JP2006179819A (en) * 2004-12-24 2006-07-06 Tokyo Electron Ltd Deposition apparatus, deposition method, and storage medium
JP2009182150A (en) * 2008-01-30 2009-08-13 Ulvac Japan Ltd Film-forming apparatus and film-forming method

Also Published As

Publication number Publication date
JP5350164B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
US11795545B2 (en) Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
JP4929199B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
EP2896718A1 (en) Method for manufacturing heat resistant composite material and manufacturing device
EP1370709B1 (en) Method and Apparatus for Synthesizing Diamond by Chemical Vapor Deposition
JP2009120859A (en) Atomic layer deposition apparatus
JP2015530742A (en) Flowable carbon for semiconductor processing
JP4728345B2 (en) Plasma processing apparatus and plasma processing method
JP5350164B2 (en) Catalytic chemical vapor deposition system
JP6570971B2 (en) Plasma processing apparatus and focus ring
KR20150001781U (en) Heater assembly
JP2010116606A (en) Vapor phase deposition system and gas feeding method
JP2013004593A (en) Substrate support apparatus and vapor deposition apparatus
US20130068164A1 (en) Heating unit and film-forming apparatus
KR101874168B1 (en) Heater and apparatus for manufacturing semiconductor apparatus using the same
JP2004055896A (en) Heating device
CN111261502B (en) SiC epitaxial growth device
JP2009287064A (en) Catalyst cvd apparatus
JP2011082207A (en) Catalytic chemical vapor deposition apparatus
JP6045035B2 (en) Substrate processing apparatus and system
JP2013149572A (en) Heating apparatus
JP6129666B2 (en) Vapor growth apparatus and heating apparatus for vapor growth
JP5950110B2 (en) Sample holder
JP4374347B2 (en) Substrate processing equipment
JP2002356777A (en) Wire arranging method, catalyst chemical vapor phase deposition method using the same, and catalytic chemical vapor deposition method
JP2015046428A (en) Jig, and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R150 Certificate of patent or registration of utility model

Ref document number: 5350164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250