[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011082248A - 半導体発光素子及びその製造方法、並びにランプ - Google Patents

半導体発光素子及びその製造方法、並びにランプ Download PDF

Info

Publication number
JP2011082248A
JP2011082248A JP2009231389A JP2009231389A JP2011082248A JP 2011082248 A JP2011082248 A JP 2011082248A JP 2009231389 A JP2009231389 A JP 2009231389A JP 2009231389 A JP2009231389 A JP 2009231389A JP 2011082248 A JP2011082248 A JP 2011082248A
Authority
JP
Japan
Prior art keywords
thin film
light emitting
layer
semiconductor light
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009231389A
Other languages
English (en)
Inventor
Toshisuke Teranishi
俊輔 寺西
Hidesuke Yokoyama
英祐 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2009231389A priority Critical patent/JP2011082248A/ja
Publication of JP2011082248A publication Critical patent/JP2011082248A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Devices (AREA)

Abstract

【課題】半導体発光素子の垂直方向においても高い光取り出し効率が得られ、発光強度等の素子特性に優れた半導体発光素子及びその製造方法、並びに発光特性に優れたランプを提供する。
【解決手段】結晶成長面12上に複数の凸部13が設けられてなる主面11を有する透明基板10と、透明基板10の主面11上に形成された、少なくとも発光層を含む積層半導体層とを具備してなり、凸部13が、第1薄膜13Aと、該第1薄膜13Aの屈折率とは異なる屈折率を有する第2薄膜13Bとが交互に積層されてなる多層積層体から構成されている。
【選択図】図1

Description

本発明は、発光ダイオード(LED)構造を有する半導体発光素子及びその製造方法、並びにランプに関する。
近年、短波長の光を発する半導体発光素子用の材料としてIII族窒化物半導体が注目を集めている。III族窒化物半導体は、一般式AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)で表され、サファイア単結晶をはじめ種々の酸化物やIII−V族化合物からなる基板の上に、有機金属化学気相成長法(MOCVD法)や分子線エピタキシー法(MBE法)等によって形成される。
上記材料が用いられた一般的な半導体発光素子では、サファイア単結晶等からなる基板の上に、III族窒化物半導体からなるn型半導体層、発光層及びp型半導体層がこの順で積層される。ここで、サファイア単結晶からなる基板は絶縁体であるので、その素子構造は、一般的に、p型半導体層上に形成された正極とn型半導体層上に形成された負極とが同一面上に存在する構造となる。このような半導体発光素子には、正極に透明電極を使用してp型半導体側から光を取り出すフェイスアップ方式と、正極にAgなどの高反射膜を使用して透明基板側から光を取り出すフリップチップ方式との2種類がある。
このような発光素子の出力の指標として、外部量子効率が用いられる。外部量子効率とは、内部量子効率と光取り出し効率とを掛け合わせたものであり、この外部量子効率が高ければ、発光出力の高い半導体発光素子と言うことができる。ここで、内部量子効率とは、素子に注入した電流のエネルギーが発光層で光に変換される割合であり、また、光取り出し効率とは、発光層で発生した光のうち発光素子の外部に取り出すことができる光の割合である。
半導体発光素子の光取り出し効率を向上させる方法としては、例えば、半導体発光素子の半導体層側の光取り出し面に凹凸を形成することにより、半導体発光素子の内部への光の閉じ込めを低減させる技術等が提案されている(例えば、特許文献1を参照)。
また、結晶性の向上を目的として、サファイアからなる基板の表面に凹凸を形成し、その上にIII族窒化物半導体層を成長させる方法が提案されている(例えば、特許文献2を参照)。このような技術によれば、基板の表面に形成された凹凸により、結晶が横方向に成長するのを利用して結晶欠陥を低減させ、内部量子効率を向上させることが可能となる。
ここで、特許文献2に記載の技術のように、基板上に凹凸を設ける場合には、例えば、基板表面をエッチング法等で加工することにより、基板材質と同材質の凸部を基板表面に設けることが一般的である。このように、透明基板上に凸部を設けることにより、発光層から出射された光が、凸部を有する透明基板の表面によって散乱されるので、上述した結晶性向上効果に加え、半導体発光素子の光取り出し性が向上するという効果が得られる。しかしながら、このような構成では、特に、半導体発光素子から垂直方向への光取り出しが十分ではないという問題がある。
また、半導体発光素子の光取り出し効率を向上させる技術としては、その他、各種提案が行われている。例えば、窒化ガリウム層の最上部に、酸化ケイ素と酸化チタンとが交互に積層されてなる、所謂DBR(Distributed Bragg Reflector)構造を有する層を設ける技術が提案されている(例えば、特許文献3を参照)。
また、発光層から出射された光を基板側から効率的に散乱、出射させるため、サファイアからなる透明基板の半導体結晶成長面に、酸化シリコンからなる凸部を形成する技術が提案されている(例えば、特許文献4を参照)。
また、基板と半導体層との間に凹凸が形成されたDBR層を設けることにより、発光層から出射された光を乱反射させ、半導体発光素子表面からの光取り出し効率を向上させる技術が提案されている(例えば、特許文献5を参照)。
また、基板と半導体層との間に、酸化ケイ素と酸化チタンが交互に積層されたDBRミラー層を設けることにより、結晶成長用基板による光の吸収を低減して光取り出し効率の向上を図る技術が提案されている(例えば、特許文献6を参照)。
また、基板上に形成されたバッファ層と半導体層との間に、酸化ケイ素と酸化チタンが交互に積層されたDBR膜を設けることにより、発光層を含む半導体層の結晶性を高めて発光出力を向上させる技術が提案されている(例えば、特許文献7を参照)。
また、基板上に形成されたバッファ層と半導体層との間に、AlGaNとGaNが交互に積層されたDBR反射層を設けることにより、半導体発光素子表面からの光取り出し効率を向上させる技術が提案されている(例えば、特許文献8を参照)。
特許第2836687号公報 特開2002−280611号公報 特開2002−319708号公報 特開2007−109793号公報 特開2008−66442号公報 特開2008−211164号公報 特開2009−16505号公報 特開2003−309287号公報
しかしながら、上記した何れの特許文献に記載の技術においても、半導体発光素子から垂直方向への光取り出しが十分ではなく、発光強度を向上させることが出来ないという問題があった。また、光取り出しが十分な構造とした場合であっても、結晶性の低下を招き内部量子効率を低下させてしまうという問題があった。
本発明は上記課題に鑑みてなされたものであり、半導体発光素子の垂直方向においても高い光取り出し効率が得られ、発光強度等の素子特性に優れた半導体発光素子及びその製造方法を提供することを目的とする。
さらに、本発明は、上記半導体発光素子が用いられてなり、発光特性に優れたランプを提供することを目的とする。
本発明者は、上記問題を解決するために鋭意検討した結果、透明基板の結晶成長面側に設ける凸部の構造や材質を適性化することにより、特に、半導体発光素子の垂直方向における光取り出し効率を向上させることが可能となることを見出し、本発明を完成した。
即ち、本発明は以下に関する。
[1] 結晶成長面上に複数の凸部が設けられてなる主面を有する透明基板と、前記透明基板の主面上に形成された、少なくとも発光層を含む積層半導体層と、を具備してなり、前記凸部は、第1薄膜と、該第1薄膜の屈折率とは異なる屈折率を有する第2薄膜とが交互に積層されてなる多層積層体から構成されていることを特徴とする半導体発光素子。
[2] 前記透明基板の前記主面と反対の他面側に、第3薄膜と、該第3薄膜の屈折率とは異なる屈折率を有する第4薄膜とが交互に積層されてなる多層積層膜が備えられていることを特徴とする上記[1]に記載の半導体発光素子。
[3] 前記凸部の上面が平坦面であることを特徴とする上記[1]又は[2]に記載の半導体発光素子。
[4] 前記第1薄膜及び第2薄膜が、それぞれ、酸化チタン、酸化ケイ素、窒化ケイ素、酸化タンタル、酸化ジルコニウム、酸化ニオブの内の何れかの薄膜材料からなることを特徴とする上記[1]〜[3]の何れか1項に記載の半導体発光素子。
[5] 前記第3薄膜及び第4薄膜が、それぞれ、酸化チタン、酸化ケイ素、窒化ケイ素、酸化タンタル、酸化ジルコニウム、酸化ニオブの内の何れかの薄膜材料からなることを特徴とする上記[2]〜[4]の何れか1項に記載の半導体発光素子。
[6] 前記凸部は、前記基部幅が0.05〜4μmとされており、前記結晶成長面からの高さが0.05〜4μmの範囲で且つ前記基部幅の1/4以上とされており、隣接する前記凸部間の間隔が前記基部幅の0.5〜5倍とされていることを特徴とする上記[1]〜[5]の何れか1項に記載の半導体発光素子。
[7] 前記凸部は上部に向かって徐々に外形が小さくなる形状であることを特徴とする上記[1]〜[6]の何れか1項に記載の半導体発光素子。
[8] 前記積層半導体層は、前記透明基板の前記主面の上に、少なくともn型半導体層、前記発光層及びp型半導体層の各層がこの順で積層されてなることを特徴とする上記[1]〜[7]の何れか1項に記載の半導体発光素子。
[9] 前記透明基板の前記主面の上に、前記結晶成長面及び前記凸部を覆うようにバッファ層及び下地層がこの順で積層され、該下地層上に前記積層半導体層が形成されていることを特徴とする上記[8]に記載の半導体発光素子。
[10] 結晶成長面上に、第1薄膜と、該第1薄膜の屈折率とは異なる屈折率を有する第2薄膜とを交互に積層することにより、多層積層体からなる複数の凸部が設けられた主面を有する透明基板を形成する基板形成工程と、前記透明基板の前記主面上に、少なくとも発光層を含む積層半導体層を形成する半導体層形成工程と、を少なくとも具備することを特徴とする半導体発光素子の製造方法。
[11] 前記基板形成工程は、さらに、前記透明基板の前記主面と反対の他面側に、第3薄膜と、該第3薄膜の屈折率とは異なる屈折率を有する第4薄膜とを交互に積層することにより、多層積層膜を形成することを特徴とする上記[10]に記載の半導体発光素子の製造方法。
[12] 前記基板形成工程は、前記第1薄膜及び第2薄膜を、それぞれ、酸化チタン、酸化ケイ素、窒化ケイ素、酸化タンタル、酸化ジルコニウム、酸化ニオブの内の何れかの薄膜材料を用いて形成することを特徴とする上記[10]又は[11]に記載の半導体発光素子の製造方法。
[13] 前記基板形成工程は、前記第3薄膜及び第4薄膜を、それぞれ、酸化チタン、酸化ケイ素、窒化ケイ素、酸化タンタル、酸化ジルコニウム、酸化ニオブの内の何れかの薄膜材料を用いて形成することを特徴とする上記[10]〜[12]の何れか1項に記載の半導体発光素子の製造方法。
[14] 前記基板形成工程は、前記結晶成長面上に第1薄膜及び第2薄膜を構成する薄膜材料を交互に順次堆積させた後、該薄膜材料の上にレジスト層を形成し、次いで、該レジスト層をパターニングした後、前記薄膜材料を、フッ素系エッチングガスを用いてエッチングすることにより、多層積層体からなる前記凸部を形成することを特徴とする上記[10]〜[13]の何れか1項に記載の半導体発光素子の製造方法。
[15] 前記半導体層形成工程は、前記透明基板の前記主面の上に、少なくともn型半導体層、前記発光層及びp型半導体層をこの順で形成することにより、前記積層半導体層を形成することを特徴とする上記[10]〜[14]の何れか1項に記載の半導体発光素子の製造方法。
[16] 前記半導体層形成工程は、前記透明基板の前記主面上に、前記結晶成長面及び前記凸部を覆うようにバッファ層及び下地層をこの順で積層し、該下地層上に前記積層半導体層を形成することを特徴とする上記[15]に記載の半導体発光素子の製造方法。
[17] 上記[10]〜[16]の何れか1項に記載の製造方法によって得られる半導体発光素子。
[18] 上記[1]〜[9]、及び[17]の何れか1項に記載の半導体発光素子が用いられてなることを特徴とするランプ。
本発明の半導体発光素子によれば、結晶成長面上に複数の凸部が設けられた主面を有する透明基板と、この透明基板の主面上に形成された少なくとも発光層を含む積層半導体層とを具備し、結晶成長面上に設けられる凸部が、第1薄膜と、該第1薄膜の屈折率とは異なる屈折率を有する第2薄膜とが交互に積層されてなる、DBR構造の多層積層体から構成されているので、発光層から出射されて凸部に向かう光は、凸部に対して垂直方向の光が全反射する一方、凸部に対して斜め方向から向かう光は透過又は散乱する。これにより、凸部によって全反射された光は、半導体発光素子の垂直方向に向けて出射する光の成分となるので、垂直方向における光取り出し効率が向上し、発光強度の高い半導体発光素子が実現できる。
また、本発明の半導体発光素子の製造方法によれば、結晶成長面上に、第1薄膜と、該第1薄膜の屈折率とは異なる屈折率を有する第2薄膜とを交互に積層することで、多層積層体から構成される複数の凸部が設けられた主面を有する透明基板を形成する基板形成工程と、透明基板の主面上に、少なくとも発光層を含む積層半導体層を形成する半導体層形成工程と、を少なくとも具備する方法なので、上述のような、DBR構造の多層積層体からなる凸部を有する透明基板上に積層半導体層が形成されてなり、発光強度に優れた本発明の半導体発光素子を得ることができる。
さらに、本発明に係るランプは、本発明の半導体発光素子が用いられてなるものであるので、発光特性に優れたものとなる。
本発明に係る半導体発光素子の一例を模式的に説明する図であり、結晶成長面上に多層積層体からなる凸部が設けられた透明基板の断面構造を示す概略図である。 本発明に係る半導体発光素子の一例を模式的に説明する図であり、図1に示す透明基板の上に、バッファ層、下地層及び積層半導体層が形成された半導体発光素子を示す断面図である。 本発明に係る半導体発光素子の一例を模式的に説明する図であり、透明基板の反射率と発光波長との関係を示すグラフである。 本発明に係る半導体発光素子の製造方法の一例を模式的に説明する図である。 本発明に係る半導体発光素子を用いて構成したランプの一例を模式的に説明する概略図である。
以下、本発明に係る半導体発光素子(以下、発光素子と略称することがある)及びその製造方法、並びにランプの一実施形態について、図面を適宜参照しながら説明する。
図1は、本発明に係る発光素子1の要部を説明するための図であり、透明基板10の結晶成長面12上に設けられた凸部13の断面構造を詳細に示す図である。また、図2は、図1に示す透明基板10の主面11上に、バッファ層2及び下地層3が形成され、下地層3の上に、さらに、積層半導体層20が形成されてなる発光素子1を説明するための断面図であり、図中、符号7は透光性正極、符号8は正極を示し、符号9は負極を示している。また、図3は、本発明の発光素子に備えられる透明基板の光の反射率と発光波長との関係を示すグラフである。また、図4は、本発明に係る発光素子1の製造方法の工程を説明する断面図であり、図5は本実施形態の発光素子1が用いられてなるランプ30を示す断面図である。
なお、以下の説明において参照する図面は、半導体発光素子及びその製造方法、並びにランプを説明する図面であって、図示される各部の大きさや厚さや寸法等は、実際の半導体発光素子等の寸法関係とは異なっている。
[半導体発光素子]
本実施形態の半導体発光素子1は、図1及び図2に示す一例のように、結晶成長面12上に複数の凸部13が設けられてなる主面11を有する透明基板10と、この透明基板10の主面11上に形成された少なくとも発光層5を含む積層半導体層20とを具備してなり、凸部13は、第1薄膜13Aと、該第1薄膜13Aの屈折率とは異なる屈折率を有する第2薄膜13Bとが交互に積層されてなる多層積層体から概略構成されている。
また、図2に示す例の発光素子1は、透明基板10の結晶成長面12の上に、凸部13を覆うようにバッファ層2及び下地層3がこの順で積層されており、下地層3の上に、n型半導体層4、発光層5及びp型半導体層6の各層がこの順で積層されてなる積層半導体層20が形成されている。
また、図2に示す例では、透明基板10の主面11と反対の他面15側に、第3薄膜16Aと、この第3薄膜16Aの屈折率とは異なる屈折率を有する第4薄膜16Bとが交互に積層されてなる多層積層膜16が備えられている。
本実施形態で説明する例の発光素子1は、図2に示す例のように、一面電極型のものであり、上述したような透明基板10上に、バッファ層2と、III族元素としてGaを含有するIII族窒化物半導体からなる積層半導体層20とが形成されているものである。
以下、発光素子1の積層構造について詳しく説明する。
『透明基板』
本実施形態で用いられる透明基板10は、基体10Aの結晶成長面12上に凸部13が設けられた主面11を有してなり、図1及び図2に示す例では、凸部13が、上部に向かって徐々に外形が小さくなる形状として形成されている。また、図示例の凸部13は、上面13cが平坦面とされ、基部13aの平面形状が円形とされている。
「基板(基体)材料」
本実施形態の発光素子1において、透明基板10を構成する基体10Aに用いることが可能な基板材料としては、III族窒化物半導体結晶を表面にエピタキシャル成長させることができ、且つ、所定の処理によって高い透明性が得られる基板材料であれば特に限定されず、各種材料を選択して用いることができる。例えば、サファイア、SiC、シリコン、酸化亜鉛、酸化マグネシウム、酸化マンガン、酸化ジルコニウム、酸化マンガン亜鉛鉄、酸化マグネシウムアルミニウム、ホウ化ジルコニウム、酸化ガリウム、酸化インジウム、酸化リチウムガリウム、酸化リチウムアルミニウム、酸化ネオジウムガリウム、酸化ランタンストロンチウムアルミニウムタンタル、酸化ストロンチウムチタン、酸化チタン、ハフニウム、タングステン、モリブデン等が挙げられる。また、上記基板材料の中でも、特に、サファイアを用いることが好ましく、サファイアからなる基体10AのC面上に後述のバッファ層2が形成されることが望ましい。
「凸部」
凸部13は、上述したように、第1薄膜13Aと、この第1薄膜13Aの屈折率とは異なる屈折率を有する第2薄膜13Bとが交互に積層されてなる多層積層体からなる。凸部13は、上記積層構造により、所謂DBR(Distributed Bragg Reflector)構造を有する層として、基体10Aの結晶成長面12上に形成される。
凸部13の材料としては、特に限定されないが、第1薄膜13A及び第2薄膜13Bが、それぞれ、酸化チタン、酸化ケイ素、窒化ケイ素、酸化タンタル、酸化ジルコニウム、酸化ニオブの内の何れかの薄膜材料からなる構成とすることができる。また、この際、第1薄膜13Aの薄膜材料と第2薄膜13Bの薄膜材料とで、それぞれ光の屈折率が異なる薄膜材料を採用する。例えば、第1薄膜13Aを酸化チタンから形成し、第2薄膜13Bを酸化ケイ素から形成する場合には、これらを交互に各々5層ずつ積層してペアとし、計10層で成膜した構成とすることができる。
また、第1薄膜13A及び第2薄膜13Bの各層の膜厚も、特に限定されないが、例えば、1層辺りの膜厚を20〜100nm程度とし、凸部13全体、つまり、凸部13の高さhを100〜4000nm程度とすることが好ましい。凸部13全体、並びに、凸部13を構成する第1薄膜13A及び第2薄膜13Bの各層の膜厚を上記範囲とすることにより、詳細を後述する光取り出し効率が効果的に向上する。
「結晶成長面と凸部とからなる主面」
本実施形態で用いられる透明基板10は、上記構成とされた複数の凸部13が設けられている。そして、透明基板10の主面11において凸部13の形成されていない部分は、C面からなる結晶成長面12とされている。従って、図1及び図2に示す例のように、透明基板10の主面11は、C面からなる結晶成長面12と、複数の凸部13とから構成されている。
図1及び図2に示すように、凸部13は、基部13aの平面形状が略円形であり、上部に向かって徐々に外形が小さくなる形状とされており、側面13bが傾斜した、上部に向かって徐々に外形が小さくなる形状とされている。凸部13の平面配置は、図1及び図2に示すように、略碁盤目状に等間隔に配置されている。
また、図1及び図2に示す例の凸部13は、基部幅dが0.05〜1.5μm、高さhが0.05〜1μmの範囲で且つ基部幅dの1/4以上とされており、隣接する凸部13間の間隔dが基部幅dの0.5〜5倍とされている。ここで、凸部13の基部幅dとは、凸部13の底辺(基部13a)における最大幅の長さのことをいう。また、隣接する凸部13の間隔dとは、最も近接した凸部13の基部13aの縁の間の距離をいう。
隣接する凸部13間の間隔dは、基部幅dの0.5〜5倍の範囲とされることが好ましい。凸部13間の間隔dが基部幅dの0.5倍未満であると、下地層3をエピタキシャル成長させる際に、C面からなる結晶成長面12上からの結晶成長が促進され難くなり、凸部13を、バッファ層2を介して下地層3で完全に覆うことが難しくなり、また、下地層3の表面3aの平坦性が十分に得られない場合がある。このため、凸部13をバッファ層2及び下地層3で覆い、下地層3上に積層半導体層をなす各半導体層の結晶を形成した場合、この結晶に多くのピットが形成され、半導体発光素子の出力や電気特性等が低下する。また、凸部13間の間隔dが基部幅dの5倍を超えると、透明基板10を用いて半導体発光素子を形成した場合に、透明基板10と、透明基板10上に形成された層との界面における光の乱反射作用が低下し、光取り出し効率を十分に向上させることができなくなる虞がある。
凸部13の基部幅dは、0.05〜4μmの範囲とされていることが好ましい。凸部13の基部幅dが0.05μm未満であると、透明基板10を用いて半導体発光素子を形成した場合に、光を乱反射させる作用が十分に得られない虞がある。また、凸部13の基部幅dが4μmを超えると、バッファ層2を介して、凸部13を覆うように下地層3をエピタキシャル成長させるのが困難になる。また、平坦性及び結晶性の良好な下地層が形成できたとしても、下地層と発光層との間の歪みが大きくなり、内部量子効率の低下を招いてしまう。
凸部13の結晶成長面12からの高さhは0.05〜4μmの範囲とされていることが好ましい。凸部13の高さhが0.05μm未満だと、透明基板10を用いて半導体発光素子を形成した場合に、光を乱反射させる作用が充分に得られない虞がある。また、凸部13の高さhが4μmを超えると、バッファ層2を介して、凸部13を覆うように下地層3をエピタキシャル成長させることが困難になり、下地層3の表面3aの平坦性が充分に得られない場合がある。
また、凸部13の結晶成長面12からの高さhは、基部幅dの1/4以上とされることが好ましい。凸部13の高さhが基部幅dの1/4未満だと、透明基板10を用いて半導体発光素子を形成した場合における光を乱反射させる作用や、光取り出し効率を向上させる効果が充分に得られない虞がある。
また、凸部13の結晶成長面12上に占める面積の割合は、その上限を60%程度とすることが好ましい。凸部13の結晶成長面12上に占める面積の割合が60%を越えると、その上に形成されるバッファ層2、下地層3及び積層半導体層20の結晶性が低下し、発光特性が劣化する虞がある。また、本発明による光取り出し効率の向上効果を得るためには、凸部13の結晶成長面12上に占める面積の割合の下限を10%以上とすることが好ましい。
なお、凸部13の形状は、図1及び図2に示す例に限定されるものではなく、いかなる形状であっても、本発明の効果が得られる。例えば、図示例のような基部13aの平面形状が円形とされた形状の他、基部が略多角状とされ、上部に向かって徐々に外形が小さくなる形状とされていてもよいし、また、側面が外側に向かって湾曲している形状であってもよい。また、側面の傾斜角度が2段階的変化する形状であっても良く、さらには、円柱形としても構わない。
また、凸部13の平面配置の形態についても、図1及び図2に示す例に限定されるものではなく、例えば、凸部13の各々の間が等間隔でなくてもよい。また、凸部13の平面配置の形態は、四角形状の配置であってもよいし、三角形状やランダムの配置であってもよい。
本発明の半導体発光素子では、上記構成のDBR構造からなる凸部13を有する透明基板10が備えられることにより、積層半導体層20(発光層5)から出射されて凸部13に向かう光は、凸部13に対して垂直方向の光が全反射され、一方、凸部13に対して斜め方向で向かう光は透過又は散乱する。これにより、凸部13によって全反射された光は、半導体発光素子1の垂直方向(図2における上下方向)に向けて出射する光の成分となるので、垂直方向における光取り出し効率が向上し、発光強度の高い半導体発光素子1が実現できる。
また、本発明の半導体発光素子においては、サファイア材料等から構成される基体10Aの結晶成長面12に当たった光は、通常の散乱形態となり、半導体発光素子1の外部に向けて出射される。
また、本発明においては、上述のようなDBR構造とされた凸部の膜構造を制御することにより、全反射する光の波長を調整することができる。この場合、特に、積層半導体層20(発光層5)の直下に配される凸部13が所定の波長の光を全反射するように、その膜構造を制御することにより、所定の波長の光、例えば、450nm前後の青色波長領域の発光強度を高めることが可能となる。
図3(a)は、後述の実施例2に記載の突起部構造と同等な形状を有する透明基板の光の反射率と波長との関係を示すグラフである。図3(a)中に示すように、本発明で規定するDBR構造を有する凸部13を備えた透明基板は、酸化ケイ素の単層構造からなる凸部を備える従来の構成の透明基板(後述の比較例2に記載の突起部構造と同等な構造を有する)に比べ、特に、450nm周辺の青色波長領域における反射率が高いことがわかる。
このような、DBR構造の凸部13が設けられた透明基板10を備える本発明の半導体発光素子は、高い発光出力が得られるものとなる。
またさらに、本発明の半導体発光素子の構成によれば、透明基板10と下地層3との界面が、バッファ層2を介して凹凸とされることにより、光の乱反射によって発光素子の内部への光の閉じ込めが低減され、光取り出し効率がより向上する。
また、本発明においては、透明基板10を、上記構成の結晶成長面12と凸部13とからなる主面10を有する構成とすることにより、C面からなる結晶成長面12上でバッファ層2を介して成長する下地層3が、さらに横成長して凸部13を覆うように形成される。これにより、下地層3が、結晶欠陥が抑制されて良好な結晶性を有する層となるので、その上に形成される、発光層5を含む積層半導体層20の結晶性が向上し、優れた発光特性を備える半導体発光素子1が実現できる。
「他面側の多層積層膜」
本発明の半導体発光素子においては、図1及び図2に例示するように、さらに、透明基板10の主面11と反対の他面15側に、第3薄膜16Aと、この第3薄膜16Aの屈折率とは異なる屈折率を有する第4薄膜16Bとが交互に積層されてなる多層積層膜16が備えられた構成とすることができる。
多層積層膜16の材質としては、上記凸部13と同様に、第3薄膜16A及び第4薄膜16Bが、それぞれ、酸化チタン、酸化ケイ素、窒化ケイ素、酸化タンタル、酸化ジルコニウム、酸化ニオブの内の何れかの薄膜材料からなる。また、多層積層膜16は、他面15側において基体10Aを覆うように形成されている点で、凸部13の構成とは異なる。
図3(b)は、後述の実施例4で用いた裏面DBR(突起部構造を有しないDBR薄膜積層構造)と同等な構造を有する透明基板の光の反射率と波長との関係を示すグラフである。図3(b)中に示すように、本発明で規定するDBR構造を有する第3薄膜16A及び第4薄膜16Bからなる多層積層膜16を備えた透明基板10は、酸化ケイ素の単層構造からなる構成の透明基板に比べ、特に、370〜600nmの波長領域における反射率が高いことがわかる。
本発明においては、上記構成の凸部13に加え、さらに、同様のDBR構造を有する多層積層膜16が備えられた構成とすることにより、凸部13をすり抜けて透明基板10の基体10Aを透過した光が、多層積層膜16で反射される。これにより、半導体発光素子1の外部に効果的に光を出射することが可能となり、光取り出し効率が向上する。
また、上記構成により、透明基板10上に各層が形成されたウェーハを、例えば、レーザスクライブ法等を用いて分割して半導体発光素子チップとして切り出す際に、レーザ光が透明基板10に入り込み易くなるので、所望の位置で確実に裁断してチップとすることが可能となる。
従来の半導体素子においては、透明基板の裏側に金属膜からなる反射膜を貼り付けることにより、透明基板を透過して他面側に向かう光を反射させていた。しかしながら、このような構成では、サファイア等からなる基体から、金属膜が剥がれ易いという問題があった。
本発明においては、上記構成のDBR構造を有する多層積層膜16をサファイア等からなる基体10Aに接合する構成なので、高い接合力が得られる。また、第3薄膜16A及び第4薄膜16Bを、酸化チタン及び酸化ケイ素からなる構成として積層することで、各層間が酸化膜同士で接合されるので、剥がれ難いという効果が得られる。
『バッファ層』
本実施形態では、透明基板10の主面11上に、凸部13を覆うようにバッファ層2及び後述の下地層3が順次積層されている。
バッファ層2は、サファイアからなる基体10Aと下地層3との格子定数の違いを緩和し、C軸を有する透明基板10の主面11上にC軸配向した単結晶を容易に形成できる作用が得られる。従って、バッファ層2の上に単結晶のIII族窒化物半導体層を積層することにより、結晶性に優れた下地層3が形成できる。バッファ層2は、図1及び図2に示す例のように、透明基板10と下地層3の間に形成することが最も好ましいが、素子の仕様を考慮しながら、バッファ層を省略した構成とすることも可能である。
バッファ層2は、AlGa1−XN(0≦x≦1)なる組成で透明基板10の主面11上に積層され、例えば、V族元素を含むガスと金属材料とをプラズマで活性化して反応させる反応性スパッタ法によって形成することができる。このような、プラズマ化した金属原料を用いた方法で成膜された膜は、配向が得られ易いという作用がある。
また、バッファ層2は、上記AlGa1−XN(0≦x≦1)なる組成のIII族窒化物化合物であれば、如何なる材料でも用いることができる。また、バッファ層2を、Alを含んだ組成とすることが好ましく、この場合には、Alの組成が50%以上とされていることがより好ましい。また、バッファ層2は、AlNからなる構成とすることが最も好ましい。
バッファ層2は、単結晶構造であることが、バッファ機能の面から好ましい。このようなバッファ層2をなすIII族窒化物の結晶は、六方晶系の結晶構造を持ち、成膜条件をコントロールすることで単結晶膜とすることができる一方、六角柱を基本とした集合組織からなる柱状結晶(多結晶)とすることも可能である。
本実施形態の発光素子1に備えられる下地層3及び積層半導体層20をなすIII族窒化物結晶は、一般に、成膜条件等を制御することにより、上方向だけではなく、面内方向にも成長した結晶を成膜することが可能となる。上述のような単結晶構造を有するバッファ層2を透明基板10の主面11上に成膜した場合、バッファ層2のバッファ機能が有効に作用するため、その上に成長する下地層3及び積層半導体層20は、良好な配向性及び結晶性を持つ層となる。
『下地層』
本実施形態で説明する下地層3は、III族窒化物半導体からなり、上述したように、透明基板10の主面11上に、バッファ層2を介して、結晶成長面12及び凸部13を覆うようにIII族窒化物半導体がエピタキシャル成長することによって形成される。
下地層3の材料としては、例えば、AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)なる組成のIII族窒化物化合物を用いることができる。また、下地層3として、AlGa1―yN層(0≦y≦1、好ましくは0≦y≦0.5、さらに好ましくは0≦y≦0.1)なる組成の材料を用いることが、結晶性の良好な下地層3を形成できる点でより好ましく、例えば、AlGaN又はGaN等を採用することができる。また、下地層3の材料は、上記組成のようにバッファ層2と異なる材料を用いても良いが、バッファ層2と同じ材料を用いることも可能である。
『積層半導体層』
本実施形態で説明する例では、下地層3の上に積層半導体層20を積層することにより、LED構造を備える半導体発光素子1を構成することができる。積層半導体層20を構成する各層は、各々III族窒化物半導体からなり、上述したように、n型半導体層4、発光層5及びp型半導体層6が順次積層されてなるものである。このような積層半導体層20の各層は、MOCVD法で形成することにより、より結晶性の高いものが得られる。
「n型半導体層」
n型半導体層4は、n型コンタクト層4a及びn型クラッド層4bが順次積層されてなる。また、本実施形態においては、n型コンタクト層4aがn型クラッド層4bを兼ねた構成とすることも可能である。
n型コンタクト層4aは、負極を設けるための層である。n型コンタクト層4aは、AlGa1−xN層(0≦x<1、好ましくは0≦x≦0.5、さらに好ましくは0≦x≦0.1)なる組成の材料から構成されることが好ましい。また、n型コンタクト層4aには、n型不純物がドープされていることが好ましく、n型不純物を1×1017〜1×1020/cm、好ましくは1×1018〜1×1019/cmの濃度で含有すると、負極との良好なオーミック接触が維持できる点から好ましい。また、n型コンタクト層4aにドープするn型不純物としては、特に限定されないが、例えば、Si、Ge又はSn等が挙げられ、Si又はGeが好ましい。
次に、n型コンタクト層4aと発光層5との間には、n型クラッド層4bを設けることが好ましい。n型クラッド層4bは、発光層5へのキャリアの注入とキャリアの閉じ込めを行なうための層であり、AlGaN、GaN又はGaInN等の材料から形成することが可能である。また、n型クラッド層4bは、上記材料からなる層構造のヘテロ接合や、複数回積層した超格子構造としても良い。また、n型クラッド層4bをGaInNから形成する場合には、後述の発光層5を構成するGaInNのバンドギャップよりも大きくすることが好ましいことは言うまでもない。
ここで、半導体結晶の結晶性を表す指標として、一般に、X線ロッキングカーブ(XRC)半値幅が用いられる。このXRC半値幅が小さな数値であるほど、結晶性の優れたものと言うことができる。本実施形態においては、バッファ層2を介して、結晶成長面12及び凸部13を覆うように下地層3を形成し、その上にn型コンタクト層4aを形成した状態におけるXRC半値幅は、透明基板10に設けられる凸部13の基部幅dによって適正に制御することが可能である。
一方、基板に凸部を形成せず、C面の結晶成長面のみからなる主面上に、バッファ層、下地層及びn型コンタクト層を形成した場合には、半導体発光素子としての光取り出し効率が低下するとともに、下地層の結晶欠陥を抑制するのが困難となる。このため、下地層の結晶性が低下し、その上に形成されるn型コンタクト層の結晶性も低下するので、上述のXRC半値幅も大きな数値となってしまう。
本実施形態では、結晶成長面12上にDBR構造を有する凸部13が設けられた透明基板10を用いることにより、下地層3の結晶性が向上するので、その上のn型コンタクト層4aも結晶性に優れた層となる。これにより、さらに、この上に積層されるn型クラッド層4b、発光層5、p型半導体層6の各層も結晶性に優れた層となるので、発光特性に非常に優れた半導体発光素子1が実現できる。
「発光層」
n型半導体層4の上に積層される発光層5としては、単一量子井戸構造あるいは多重量子井戸構造等の構造を採用することができる。例えば、図2に示す例の発光素子1における量子井戸構造の井戸層(図2中の符号5bを参照)としては、青色発光を呈する構成とする場合には、通常、Ga1−yInN(0<y<0.4)なる組成のIII族窒化物半導体が用いられる。また、図2に示す例では、発光層5が、障壁層5aと井戸層5bとが交互に積層され、n型半導体層4側及びp型半導体層6側に障壁層5aが配される順で積層されてなる。
本発明のような多重量子井戸構造の発光層5の場合は、上記Ga1−yInNを井戸層5bとし、井戸層5bよりバンドギャップエネルギーが大きいAlGa1−xN(0≦z<0.3)を障壁層5aとすることが好ましい。また、井戸層5bおよび障壁層5aには、設計により不純物をドープしてもしなくてもよい。
本発明においては、上述したように、結晶成長面12上にDBR構造を有する凸部13が設けられた透明基板10を用い、バッファ層2を介して結晶成長面12及び凸部13を覆って埋め込むように下地層3が形成されている。ここで、サファイアからなる基体10Aの結晶成長面12上に単結晶のIII族窒化物半導体層をエピタキシャル成長させる場合、サファイアC面からはC軸方向に配向した単結晶がエピタキシャル成長するが、凸部13からはエピタキシャル成長しない。このため、下地層3が成長する際、サファイアC面からなる結晶成長面12からのみ、C軸方向に配向した結晶がエピタキシャル成長することになる。従って、下地層3は、結晶成長面12上において凸部13を覆うようにエピタキシャル成長するので、結晶中に転位等の結晶欠陥が生じるのが抑制され、結晶性が良好になるという効果も得られる。
そして、上述のように結晶性が良好に制御された下地層3の上に、n型コンタクト層4aを始めとする、積層半導体層20を構成する各層を形成することにより、発光層5は、結晶欠陥等が抑制された、結晶性に優れる層となる。これにより、内部量子効率の低下を抑制することができるので、発光出力が高い発光素子1とすることが可能となる。
「p型半導体層」
p型半導体層6は、通常、p型クラッド層6a及びp型コンタクト層6bから構成される。また、本実施形態においては、p型コンタクト層6bがp型クラッド層6aを兼ねた構成とすることも可能である。
p型クラッド層6aは、発光層5へのキャリアの閉じ込めとキャリアの注入を行なう層である。p型クラッド層6aの組成としては、発光層5のバンドギャップエネルギーより大きくなる組成で、発光層5へのキャリアの閉じ込めができるものであれば、特に限定されないが、AlGa1−xN(0<x≦0.4)なる組成とすることが好ましい。また、p型クラッド層6aのp型ドープ濃度は、1×1018〜1×1021/cmの範囲であることが好ましく、より好ましくは1×1019〜1×1020/cmの範囲である。p型ドープ濃度が上記範囲であると、結晶性を低下させることなく良好なp型結晶が得られる。また、p型クラッド層6aにドープするp型不純物としては、例えばMgを用いることができる。また、p型クラッド層6aは、上記材料からなる層構造を複数回積層した超格子構造を含む層としても良い。
p型コンタクト層6bは、正極(電極)を設けるための層であり、例えば、AlGa1−xN(0≦x≦0.4)なる組成の材料から形成することが好ましい。p型コンタクト層6bにおけるAl組成を上記範囲とすることで、良好な結晶性を維持できるとともに、その上に形成される透光性正極7との良好なオーミック接触が実現できる。また、p型コンタクト層6bは、p型不純物を1×1018〜1×1021/cmの濃度、好ましくは5×1019〜5×1020/cmの濃度で含有することが、良好なオーミック接触の維持、クラック発生の防止、良好な結晶性の維持等の観点から好ましい。p型コンタクト層6bにドープされるp型不純物としては、特に限定されないが、例えば、Mgを用いることが好ましい。
『透光性正極』
透光性正極7は、p型コンタクト層6b上に設けられる透光性のp型電極である。
透光性正極7としては、例えば、ITO(In−SnO)、AZO(ZnO−Al)、IZO(In−ZnO)、GZO(ZnO−Ga)から選ばれる少なくとも一種類を含んだ材料を、この技術分野でよく知られた慣用の手段で設けることができる。また、透光性正極7の構造も、従来公知の構造を含めて如何なる構造のものも何ら制限なく用いることができる。また、透光性正極7は、p型コンタクト層6b上のほぼ全面を覆うように形成しても構わないし、隙間を開けて格子状や樹形状に形成しても良い。また、透光性正極7を成膜した後に、合金化や透明化を目的とした熱アニールを施しても良いし、施さなくても構わない。
『正極及び負極』
正極8は、透光性正極7上に形成され、回路基板やリードフレーム等との電気接続のために設けられるp型電極である。正極8としては、Au、Al、Ni及びCu等を用いた各種構造が周知であり、これら周知の材料、構造のものを何ら制限無く用いることができる。
負極9は、n型半導体層4のn型コンタクト層4bに接するように形成されるn型電極である。負極9を設ける際は、p型半導体層6、発光層5及びn型半導体層4の一部を除去してn型コンタクト層4bの露出領域4cを形成し、この上に負極9を形成する。負極9の材料としては、各種組成および構造の負極が周知であり、これら周知の負極を何ら制限無く用いることができる。
以上説明したような、本発明に係る半導体発光素子1によれば、結晶成長面12上に複数の凸部13が設けられた主面11を有する透明基板10と、この透明基板10の主面11上に形成された少なくとも発光層5を含む積層半導体層20とを具備し、結晶成長面12上に設けられる凸部13が、第1薄膜13Aと、この第1薄膜13Aの屈折率とは異なる屈折率を有する第2薄膜13Bとが交互に積層されてなる、DBR構造の多層積層体から構成されているので、発光層5から出射されて凸部13に向かう光は、凸部13に対して垂直方向で向かう光が全反射する一方、凸部13に対して斜め方向で向かう光は透過又は散乱する。これにより、凸部13によって全反射された光は、半導体発光素子1の垂直方向に向けて出射する光の成分となるので、垂直方向における光取り出し効率が向上し、発光強度の高い半導体発光素子1が実現できる。
[半導体発光素子の製造方法]
本発明に係る半導体発光素子の製造方法は、上述したような本発明の半導体発光素子を製図する際、結晶成長面12上に、第1薄膜13Aと、この第1薄膜13Aの屈折率とは異なる屈折率を有する第2薄膜13Bとを交互に積層することにより、多層積層体からなる複数の凸部13が設けられた主面11を有する透明基板10を形成する基板形成工程と、透明基板10の主面11上に、少なくとも発光層5を含む積層半導体層20を形成する半導体層形成工程と、を少なくとも具備する方法である。また、本実施形態においては、透明基板10の主面11上に、凸部13を覆うようにバッファ層2及び下地層3をこの順で積層し、この下地層3上に積層半導体層20を形成する例を挙げて説明する。
以下、本発明の製造方法に備えられる各工程について詳しく説明する。
『基板形成工程』
図4(a)〜(d)は、図1の模式図に示すDBR構造を有する凸部13が設けられてなる透明基板10を製造する工程の一例を説明するための図であり、本実施形態の製造方法において準備する透明基板10を示す断面図である。この透明基板10は、基体10AのC面からなる結晶成長面12と、この結晶成長面12上に形成される複数の凸部13とからなる主面11を有してなる。
以下、図1に示すような透明基板10を製造する方法の一例を説明する。
本実施形態の基板形成工程では、例えば、サファイアからなる基体10AのC面からなる結晶成長面12上に、上述のDBR構造を有する複数の凸部13を形成することにより、C面からなる結晶成長面12と凸部13とからなる主面11を形成して透明基板10を製造する。このような基板形成工程は、図4(a)〜(d)に示す例のように、結晶成長面12上に屈折率の異なる薄膜材料を交互に堆積させた後、この薄膜材料の上にレジスト層18を形成し、次いで、レジスト層18をパターニングした後、薄膜材料をエッチング除去することにより、凸部13を形成する方法とすることができる。
本実施形態の基板形成工程においては、まず、図4(a)に示すように、サファイアからなる基体10Aの結晶成長面12上に、薄膜材料を堆積させる。具体的には、酸化チタン、酸化ケイ素、窒化ケイ素、酸化タンタル、酸化ジルコニウム、酸化ニオブの内の何れかの薄膜材料を用いて、第1薄膜13A及び第2薄膜13Bをなす薄膜材料を、従来公知の方法で交互に順次堆積させる。この際、第1薄膜13A及び第2薄膜13Bの薄膜材料として、それぞれ光の屈折率が異なる薄膜材料を選択し、これらの材料を、例えば、5層ずつのペアとして計10層で、結晶成長面12全体に交互に成膜する。
次いで、図4(b)に示すように、結晶成長面12上に堆積させた薄膜材料の積層構造の上に、従来公知の方法及び材料を用いてレジスト層18を形成する。具体的には、レジスト材料を薄膜材料(図4(b)中の符号13A、13Bを参照)上に堆積させた後、結晶成長面12上に形成する凸部13の形状及び配置に合わせ、一般的なフォトリソグラフィー法を用いてパターニングを行ない、レジスト層18を形成する。
この際、結晶成長面12の全面を均一にパターニングするためには、フォトリソグラフィー法の中でもステッパー露光法を用いることが好ましい。しかしながら、基部幅dが1μmとされた凸部13のパターンを形成する場合には高価なステッパー装置が必要となり、製造コストが上昇する虞がある。このため、1μm以下とされた凸部13の基部幅dのマスクパターンを形成する場合には、光ディスクの分野で使用されているレーザ露光法、もしくはナノインプリント法の他、電子ビーム(EB)露光法等を用いることがより好ましい。
次いで、図4(c)に示すように、交互に堆積させた薄膜材料をエッチングすることにより、DBR構造を有する複数の凸部13を形成する。この際、上記薄膜材料をエッチングする方法としては、従来公知のドライエッチング法やウェットエッチング法を用いることができる。本実施形態では、これらの方法の中でもドライエッチング法を用いることが、均一な凸部13を形成でき、また、C面からなる結晶成長面12を効果的に露出できる点から好ましい。また、ドライエッチングに用いるエッチングガスとしては、トリフルオロメタン(CHF)等のフッ素系エッチングガスを用いることが好ましい。
一般に、サファイア基板をドライエッチングする場合には、エッチングガスとしてClが用いられるが、本実施形態においてClを用いると、薄膜材料のみならず、サファイアからなる基体10Aもエッチングされてしまうという問題がある。本実施形態では、エッチングガスとしてCHFを用いて薄膜材料をエッチングすることにより、上記薄膜材料の一部をエッチング除去する際に、基体10Aがエッチングストッパとして機能する。このような方法とすることにより、複数の凸部13を間隔の狭いピッチで配置した場合であっても、C面からなる結晶成長面12を確実に露出させることが可能となる。
また、基板形成工程においては、上記フッ素系エッチングガスを用いてエッチングを行なう際の条件を調整することにより、図1及び図2に示すような上部に向かって徐々に外形が小さくなる形状とされた凸部3を形成することが可能となる。基板形成工程では、エッチングの処理時間等の各条件を適宜調整することにより、図示例のような形状に制御することが可能となる。
また、基板形成工程においては、図4(d)に示すように、さらに、透明基板10の主面11と反対の他面15側に、第3薄膜16Aと、この第3薄膜16Aの屈折率とは異なる屈折率を有する第4薄膜16Bとを交互に積層することにより、他面15側において基体10Aを覆うように、多層積層膜16を形成する方法とすることができる。この際、第3薄膜16A及び第4薄膜16Bをなす薄膜材料や、形成方法については、凸部13と同じ材料及び方法を採用することができる。
また、第3薄膜16A及び第4薄膜16B、並びに多層積層膜16全体の膜厚については、特に制限されないが、生産性や光の反射性能等を考慮した場合、第3薄膜16A及び第4薄膜16Bの膜厚を1層あたりで20〜100nm、多層積層膜16全体の膜厚を、100〜4000nmの範囲とすることが好ましい。
なお、チップ状に分割する前に基板の裏面を研削・研磨して、基板の厚さを薄くする工程がある場合には、基板を薄くした後に多層積層膜16を形成することが好ましい。
『バッファ層の形成』
次に、バッファ層形成工程では、上記方法によって準備された透明基板10の主面11をなす結晶成長面12上に、図2に示すようなバッファ層2を形成する。
まず、透明基板10の表面に各種前処理を施した後、透明基板10を、例えば、スパッタリング装置のチャンバ内に導入し、スパッタリング法によって単結晶のAlNからなるバッファ層2を成膜する。この際の、透明基板10の主面11の前処理方法としては、例えば、従来公知のRCA洗浄方法等の湿式処理や、プラズマ中に透明基板10の主面11を曝す方法等を用いることができる。バッファ層2を透明基板10上に成膜する方法としては、スパッタリング法の他、例えば、MOCVD法、パルスレーザーデポジション(PLD)法、パルス電子線堆積(PED)法等が挙げられ、適宜選択して用いることができる。
なお、本発明においては、上述したようにバッファ層を省略した構成とすることも可能なので、この場合にはバッファ層形成工程を行なわなくても良い。
『下地層の形成〜半導体層形成工程』
次に、下地層3を形成する工程においては、透明基板10上にバッファ層2が形成されたウェーハを図示略のMOCVD装置の反応炉内に導入し、バッファ層2上に、AlGa1−XN(0≦x≦1)なる組成の下地層3を形成する。
次に、半導体層形成工程においては、下地層3の上に、n型半導体層4、発光層5及びp型半導体層6の各層を順次積層して成膜する。ここで、上述の下地層3と、n型半導体層4、発光層5及びp型半導体層6を形成する際の窒化ガリウム系化合物半導体(III族窒化物半導体)の成長方法は特に限定されず、反応性スパッタ法、MOCVD(有機金属化学気相成長)法、HVPE(ハイドライド気相成長)法、MBE(分子線エピタキシー)法等、窒化物半導体を成長させることが知られている全ての方法を適用できる。これらの方法の内、MOCVD法によって窒化ガリウム系化合物半導体を形成する場合には、キャリアガスとして水素(H)又は窒素(N)、III族原料であるGa源としてトリメチルガリウム(TMG)またはトリエチルガリウム(TEG)、Al源としてトリメチルアルミニウム(TMA)またはトリエチルアルミニウム(TEA)、In源としてトリメチルインジウム(TMI)またはトリエチルインジウム(TEI)、V族原料であるN源としてアンモニア(NH)、ヒドラジン(N)などが用いられる。また、ドーパントとしては、n型にはSi原料としてモノシラン(SiH)またはジシラン(Si)を、Ge原料としてゲルマンガス(GeH)や、テトラメチルゲルマニウム((CHGe)やテトラエチルゲルマニウム((CGe)等の有機ゲルマニウム化合物を利用できる。
また、上述したような窒化ガリウム系化合物半導体は、Al、GaおよびIn以外に他のIII族元素を含有することができ、必要に応じてGe、Si、Mg、Ca、Zn、及びBe等のドーパント元素を含有することができる。さらに、意図的に添加した元素に限らず、成膜条件等に依存して必然的に含まれる不純物、並びに原料、反応管材質に含まれる微量不純物を含む場合もある。
具体的には、まず、図示略のMOCVD装置の反応炉内部に供給する原料ガス及び有機金属原料を選択、調整することにより、中間層3上に、単結晶のAlGa1―XN(0≦x≦1)からなるn型コンタクト層4a及びn型クラッド層4bを順次積層する。この際、上述したようなn型不純物(ドーパント)を反応炉内に供給することにより、n型コンタクト層4a及びn型クラッド層4bにn型不純物をドープする。
次いで、同じMOCVD装置を用いて、n型クラッド層4b上に、障壁層5a及び井戸層5bを交互に積層することにより、発光層5を形成する。図2中に例示する発光層5を形成する場合には、SiドープのGaNからなる6層の障壁層5aと、ノンドープのIn0.2Ga0.8Nからなる5層の井戸層5bとを交互に積層して形成する。
次いで、発光層5上、つまり、発光層5の最上層となる障壁層5a上に、同じMOCVD装置を用いて、p型クラッド層6a及びp型コンタクト層6bからなるp型半導体層6を形成する。p型半導体層6を形成する際は、例えば、Al0.1Ga0.9Nからなるp型クラッド層6aを発光層5(最上層の障壁層5a)上に形成し、その上に、Al0.02Ga0.98Nからなるp型コンタクト層6bを形成する。また、この際、反応炉内にMg等のp型不純物を供給することにより、p型クラッド層6a及びp型コンタクト層6bにp型不純物をドープする。
『透光性正極の形成』
次に、p型半導体層6のp型コンタクト層6b上に、透光性並びに導電性を有する材料からなる透光性正極7を形成する。
透光性正極7の形成方法としては、特に限定されず、この技術分野でよく知られた慣用の手段で設けることができる。また、その構造や材質も、従来公知のものを含め、如何なるものも何ら制限なく用いることができる。
具体的には、例えば、ITOの他、AZO、IZO、GZO等の材料を用いて、スパッタ法等の方法により、透光性正極7を成膜する。また、透光性正極7を形成した後、合金化や透明化を目的とした熱アニールを施しても良いし、又は、施さなくても構わない。
「正極及び負極の形成」
次いで、透光性正極7上に正極8を形成する。この正極8は、例えば、透光性正極7の表面側から順に、Ti、Al、Auの各材料を従来公知の方法で積層することにより、詳細な図示を省略する3層構造の電極とすることができる。
また、負極9を形成する際は、まず、透明基板10上に形成されたp型半導体層6、発光層5及びn型半導体層4からなる半導体層20の一部をドライエッチング等の方法によって除去することにより、n型コンタクト層4bの露出領域4dを形成する。そして、この露出領域4d上に、例えば、n型コンタクト層4b側から順に、Ni、Al、Ti及びAuの各材料を、従来公知の方法で積層することにより、詳細な図示を省略する4層構造の負極9を形成することができる。
そして、上記各工程によって得られたウェーハを、透明基板10の裏面を研削及び研磨してミラー状の面とした後、レーザスクライブ法等を用いて、例えば、350μm角の正方形に切断することにより、チップ状の半導体発光素子1とすることができる。
以上説明したような、本実施形態の半導体発光素子の製造方法によれば、結晶成長面上12に、第1薄膜13Aと、この第1薄膜13Aの屈折率とは異なる屈折率を有する第2薄膜13Bとを交互に積層することで、多層積層体から構成される複数の凸部13が設けられた主面10を有する透明基板10を形成する基板形成工程と、透明基板10の主面11上に、少なくとも発光層5を含む積層半導体層20を形成する半導体層形成工程と、を少なくとも具備する方法なので、上述のような、DBR構造の多層積層体からなる凸部13を有する透明基板10上に積層半導体層が形成されてなり、発光強度に優れた半導体発光素子1を得ることができる。
[ランプ]
本発明のランプは、本発明の半導体発光素子が用いられてなるものである。
本発明のランプとしては、例えば、本発明の半導体発光素子と蛍光体とを組み合わせてなるものを挙げることができる。半導体発光素子と蛍光体とを組み合わせたランプは、当業者周知の手段により、周知の構成とすることができる。また、従来より、半導体発光素子と蛍光体と組み合わせることによって発光色を変える技術が知られており、本発明のランプにおいてもこのような技術を何ら制限されることなく採用することが可能である。
図5は、本発明に係る半導体発光素子を用いて構成したランプの一例を模式的に示した概略図である。図5に示すランプ30は砲弾型のものであり、図2に示す発光素子1が用いられてなる。図5に示すように、半導体発光素子1の正極8がワイヤー33で2本のフレーム31、32の内の一方(図5ではフレーム31)に接合され、発光素子1の負極9がワイヤー34で他方のフレーム32に接合されることにより、発光素子1が実装されている。また、発光素子1の周辺は、透明な樹脂からなるモールド35で封止されている。
本発明のランプは、本発明の半導体発光素子1が用いられてなるものであるので、優れた発光特性を備えたものとなる。
なお、本発明のランプは、一般用途の砲弾型、携帯のバックライト用途のサイドビュー型、表示器に用いられるトップビュー型等いかなる用途にも用いることができる。
次に、本発明の半導体発光素子及びその製造方法、並びにランプを、実施例及び比較例を示してより詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。また、本実施例においては、図1〜5を適宜参照しながら説明する。
[実施例1〜4]
本実施例においては、以下に説明するような手順によって半導体発光素子を作製した(図1及び図2、図5を参照)
(基板形成工程)
まず、サファイアからなる基体10Aの(0001)C面からなる結晶成長面12上に、以下に説明する材料及び構造を有する複数の凸部13を形成した。この際、複数の凸部13を、下記表1に示す「基部幅」、「高さ」、「隣接する凸部間の間隔」とすることにより、実施例1〜4の透明基板10を形成した。
即ち、まず、直径4インチのC面サファイアからなる基体10Aの結晶成長面12上に、従来公知のスパッタ法を用いて、第1薄膜13Aを構成する薄膜材料として酸化チタンを、また、第2薄膜13Bを構成する薄膜材料として酸化ケイ素を堆積させた。この際、酸化チタンと酸化ケイ素を、5層ずつのペアとして、計10層で結晶成長面12全体に交互に成膜した。
次いで、結晶成長面12上に積層した薄膜材料の上に、従来公知のフォトリソグラフィー法を用いてレジスト層18を積層した後、結晶成長面12上に形成する凸部13の形状及び配置に合わせてパターニングを行なった。
次いで、パターニングされたレジスト層18をマスクとして、薄膜材料をドライエッチングすることによって凸部13を形成し、透明基板10上に、結晶成長面12及び凸部13からなる主面11を形成した。この際、エッチングガスとして、フッ素系エッチングガスであるトリフルオロメタン(CHF)を用い、また、露光法として、紫外光によるステッパー露光法を用いた。
このようにして得られた透明基板10は、結晶成長面12上に形成された凸部13が、上部に向かうに従って徐々に外径が小さくなる形状であり、また、その上面13cが平面とされていた。
そして、得られた透明基板10の光の反射率を、反射分光膜厚装置(大塚電子株式会社製)を用いて、発光波長を450nmとして測定し、結果を下記表1に示した。
(バッファ層及び下地層の形成)
次いで、複数の凸部13が形成された透明基板10をスパッタ成膜装置のチャンバ内へ導入して500℃まで加熱した。そして、チャンバ内に窒素ガスを導入した後、内圧を1Paに保持し、基板側に500Wの高周波バイアスを印加して透明基板10を窒素プラズマに曝すことで、透明基板10の表面を洗浄した(前処理)。
そして、基板10の主面上に、RFスパッタリング法を用いて、単結晶構造を有するAlNからなる厚さ50nmのバッファ層2を形成した。
次いで、バッファ層2上に、減圧MOCVD法を用いて下地層3を形成した。この際、まず、バッファ層2が形成された基板10をMOCVD装置の反応炉内に導入した後、アンモニアガスの流通を続けながら、水素雰囲気中において基板10の温度を1120℃に昇温させ、トリメチルガリウム(TMG)を反応炉内に供給した。これにより、バッファ層2上に、3μmの膜厚のアンドープのGaNからなる下地層3を成長させた。
(半導体層形成工程)
次いで、下地層3の形成に用いた装置と同じMOCVD装置により、GaNからなるn型コンタクト層4aの初期層を形成した。この際、n型コンタクト層4aにはSiをドープし、結晶成長は、Siのドーパント原料としてSiHを流通させた以外は、下地層と同じ条件によって行った。
次いで、n型コンタクト層4a上に、同じMOCVD装置を用いてn型クラッド層4bを積層した。
次いで、n型クラッド層4b上に、同じMOCVD装置を用いて発光層5を積層した。本実施例では、GaNからなる障壁層5aと、Ga0.85In0.15Nからなる井戸層5bとから構成される多重量子井戸構造を有する発光層5を形成した。この発光層5の形成にあたっては、まず、n型クラッド層4b上に障壁層5aを形成し、この障壁層5a上に、Ga0.85In0.15Nからなる井戸層5bを形成した。このような積層手順を5回繰り返した後、5番目に積層した井戸層5b上に、6番目の障壁層5aを形成し、多重量子井戸構造を有する発光層5の両側に障壁層5aを配した構造とした。
次いで、上記各工程と同じMOCVD装置を用いて、発光層5上に、MgをドープしたGaNよりなるp型クラッド層6aを成膜した。そして、このp型クラッド層6aの上に、MgドープGaNからなるp型コンタクト層6bを成膜し、p型半導体層6とした。
このような手順により、下地層3上に、n型半導体層4、発光層5及びp型半導体層6が順次積層されてなる半導体層20を形成した。
(透光性正極の形成)
次いで、上記手順で得られたウェーハ上に透光性正極7を形成した。この際、スパッタ法を用いて、ITOからなる透光性正極7を、p型半導体層6の上面全体を覆うように、従来公知の条件で成膜した。また、成膜後の透光性正極7に、合金化及び透明化のためのアニール処理を施した。
(正極及び負極の形成)
次いで、公知のフォトリソグラフィー技術によって、透光性正極7の表面に、Ti、Al及びAuを順に積層することにより、3層構造の正極8を形成した。
また、透光性正極7及び半導体層20の一部をドライエッチングによって除去することにより、n型コンタクト層4aが露出した露出領域4dを形成した後、この上にNi、Al、Ti及びAuの各層を順次積層することにより、図2に示すような負極9を形成した。
(半導体発光素子チップへの分割)
次いで、各電極が形成されたウェーハの透明基板10の裏面側を研削及び研磨してミラー状の面とした。
また、実施例4においては、透明基板10の結晶成長面12上に形成した凸部13に加え、さらに、他面15側に、凸部13と同じ材質及び積層構造を有する多層積層膜16を形成した。そして、このウェーハを、レーザスクライブ法によって240μm×600μm角の長方形のチップに切断し、LED(発光ダイオード)のチップ(半導体発光素子1)とした。
(半導体発光素子によるLEDランプの作製)
そして、このチップ(半導体発光素子1)を、図5に示すように、正極8及び負極9側が上になるようにリードフレーム31上に載置し、金線でリードフレームに結線することによってランプ30を作製した。
そして、上記方法で作製したランプ30のp側(正極8)及びn側(負極9)の電極間に20mAの順方向電流を流した際の駆動電圧Vf(mV)を測定するとともに、発光出力Po(mW)を測定し、結果を下記表1に示した。
[比較例1、2]
比較例1、2においては、透明基板の作製条件を下記表1に示す条件とした点を除き、上記実施例1と同様の方法で、240μm×600μm角の長方形とされた半導体発光素子チップを作製した。そして、上記同様、この半導体発光素子チップを用いてランプを作製した。
そして、上記同様の方法で、ランプのp側(正極)及びn側(負極)の電極間に20mAの順方向電流を流した際の駆動電圧Vf(mV)を測定するとともに、発光出力Po(mW)を測定し、結果を下記表1に示した。
Figure 2011082248
[評価結果]
表1に示すように、本発明で規定する条件で作製した、凸部13を有する透明基板10上に積層半導体層20を形成して作製した実施例1〜4の半導体発光素子は、順方向電流(I)20mAにおける駆動電圧Vfが3.0〜3.1Vと低く、また、発光出力Poが20.5〜22.5mWであり、非常に高い発光出力が得られた。また、実施例1〜4において作製した透明基板10は、青色発光領域である450nmの発光波長における反射率が10〜15%と、非常に高い反射率を有していることがわかる。
ここで、実施例4は、結晶成長面12上の凸部13に加え、他面15側にも同様の積層構造を有する多層積層膜16が形成されているので、発光出力Poが22.5mWと非常に高い数値を示している。
これに対して、凸部が設けられていない透明基板の上に積層半導体層が形成された比較例1では、駆動電圧Vfは3.1Vと、上記実施例1〜4と同等であるが、発光出力Poが18.2mWと、上記実施例1〜4の半導体素子に比べて低出力となっている。
また、基体上に形成された凸部が、従来公知の酸化シリコンからなる単層構造とされ、このような凸部を有する透明基板上に積層半導体層が形成された比較例2においては、上記比較例1と同様、駆動電圧Vfが3.1Vと実施例1〜4と同等であるが、発光出力Poが19mWと、上記各実施例に比べて低出力となっている。
また、比較例1、2において作製した透明基板は、青色発光領域である450nmの発光波長における反射率が2〜3%と、上記実施例1〜4で作製した透明基板に比べ、著しく低い反射率となっていることがわかる。
比較例1、2では、透明基板に凸部が備えられていないか、又は、凸部における光の反射特性が適正でないため、上記反射率が低下し、特に、半導体発光素子の垂直方向における光取り出し効率が低くなり、発光出力が低くなっているものと考えられる。
上記実施例の結果により、本発明の半導体発光素子が、特に、半導体発光素子の垂直方向においても高い光取り出し効率が得られ、発光出力等の素子特性に優れていることが明らかである。
1…半導体発光素子、2…バッファ層、3…下地層、4…n型半導体層、5…発光層、6…p型半導体層、7…透光性正極、10…基板、11…主面、12…結晶成長面、13…凸部、13A…第1薄膜(薄膜材料)、13B…第2薄膜(薄膜材料)、15…他面、16…多層積層膜、16A…第3薄膜(薄膜材料)、16B…第4薄膜(薄膜材料)、18…レジスト層、20…半導体層、30…ランプ

Claims (18)

  1. 結晶成長面上に複数の凸部が設けられてなる主面を有する透明基板と、
    前記透明基板の主面上に形成された、少なくとも発光層を含む積層半導体層と、を具備してなり、
    前記凸部は、第1薄膜と、該第1薄膜の屈折率とは異なる屈折率を有する第2薄膜とが交互に積層されてなる多層積層体から構成されていることを特徴とする半導体発光素子。
  2. 前記透明基板の前記主面と反対の他面側に、第3薄膜と、該第3薄膜の屈折率とは異なる屈折率を有する第4薄膜とが交互に積層されてなる多層積層膜が備えられていることを特徴とする請求項1に記載の半導体発光素子。
  3. 前記凸部の上面が平坦面であることを特徴とする請求項1又は請求項2に記載の半導体発光素子。
  4. 前記第1薄膜及び第2薄膜が、それぞれ、酸化チタン、酸化ケイ素、窒化ケイ素、酸化タンタル、酸化ジルコニウム、酸化ニオブの内の何れかの薄膜材料からなることを特徴とする請求項1〜請求項3の何れか1項に記載の半導体発光素子。
  5. 前記第3薄膜及び第4薄膜が、それぞれ、酸化チタン、酸化ケイ素、窒化ケイ素、酸化タンタル、酸化ジルコニウム、酸化ニオブの内の何れかの薄膜材料からなることを特徴とする請求項2〜請求項4の何れか1項に記載の半導体発光素子。
  6. 前記凸部は、前記基部幅が0.05〜4μmとされており、前記結晶成長面からの高さが0.05〜4μmの範囲で且つ前記基部幅の1/4以上とされており、隣接する前記凸部間の間隔が前記基部幅の0.5〜5倍とされていることを特徴とする請求項1〜請求項5の何れか1項に記載の半導体発光素子。
  7. 前記凸部は上部に向かって徐々に外形が小さくなる形状であることを特徴とする請求項1〜請求項6の何れか1項に記載の半導体発光素子。
  8. 前記積層半導体層は、前記透明基板の前記主面の上に、少なくともn型半導体層、前記発光層及びp型半導体層の各層がこの順で積層されてなることを特徴とする請求項1〜請求項7の何れか1項に記載の半導体発光素子。
  9. 前記透明基板の前記主面の上に、前記結晶成長面及び前記凸部を覆うようにバッファ層及び下地層がこの順で積層され、該下地層上に前記積層半導体層が形成されていることを特徴とする請求項8に記載の半導体発光素子。
  10. 結晶成長面上に、第1薄膜と、該第1薄膜の屈折率とは異なる屈折率を有する第2薄膜とを交互に積層することにより、多層積層体からなる複数の凸部が設けられた主面を有する透明基板を形成する基板形成工程と、
    前記透明基板の前記主面上に、少なくとも発光層を含む積層半導体層を形成する半導体層形成工程と、
    を少なくとも具備することを特徴とする半導体発光素子の製造方法。
  11. 前記基板形成工程は、さらに、前記透明基板の前記主面と反対の他面側に、第3薄膜と、該第3薄膜の屈折率とは異なる屈折率を有する第4薄膜とを交互に積層することにより、多層積層膜を形成することを特徴とする請求項10に記載の半導体発光素子の製造方法。
  12. 前記基板形成工程は、前記第1薄膜及び第2薄膜を、それぞれ、酸化チタン、酸化ケイ素、窒化ケイ素、酸化タンタル、酸化ジルコニウム、酸化ニオブの内の何れかの薄膜材料を用いて形成することを特徴とする請求項10又は請求項11に記載の半導体発光素子の製造方法。
  13. 前記基板形成工程は、前記第3薄膜及び第4薄膜を、それぞれ、酸化チタン、酸化ケイ素、窒化ケイ素、酸化タンタル、酸化ジルコニウム、酸化ニオブの内の何れかの薄膜材料を用いて形成することを特徴とする請求項10〜請求項12の何れか1項に記載の半導体発光素子の製造方法。
  14. 前記基板形成工程は、前記結晶成長面上に第1薄膜及び第2薄膜をなす薄膜材料を交互に順次堆積させた後、該薄膜材料の上にレジスト層を形成し、次いで、該レジスト層をパターニングした後、前記薄膜材料を、フッ素系エッチングガスを用いてエッチングすることにより、多層積層体からなる前記凸部を形成することを特徴とする請求項10〜請求項13の何れか1項に記載の半導体発光素子の製造方法。
  15. 前記半導体層形成工程は、前記透明基板の前記主面の上に、少なくともn型半導体層、前記発光層及びp型半導体層をこの順で形成することにより、前記積層半導体層を形成することを特徴とする請求項10〜請求項14の何れか1項に記載の半導体発光素子の製造方法。
  16. 前記半導体層形成工程は、前記透明基板の前記主面上に、前記結晶成長面及び前記凸部を覆うようにバッファ層及び下地層をこの順で積層し、該下地層上に前記積層半導体層を形成することを特徴とする請求項15に記載の半導体発光素子の製造方法。
  17. 請求項10〜請求項16の何れか1項に記載の製造方法によって得られる半導体発光素子。
  18. 請求項1〜請求項9、及び請求項17の何れか1項に記載の半導体発光素子が用いられてなることを特徴とするランプ。
JP2009231389A 2009-10-05 2009-10-05 半導体発光素子及びその製造方法、並びにランプ Pending JP2011082248A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009231389A JP2011082248A (ja) 2009-10-05 2009-10-05 半導体発光素子及びその製造方法、並びにランプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009231389A JP2011082248A (ja) 2009-10-05 2009-10-05 半導体発光素子及びその製造方法、並びにランプ

Publications (1)

Publication Number Publication Date
JP2011082248A true JP2011082248A (ja) 2011-04-21

Family

ID=44076020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231389A Pending JP2011082248A (ja) 2009-10-05 2009-10-05 半導体発光素子及びその製造方法、並びにランプ

Country Status (1)

Country Link
JP (1) JP2011082248A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9543475B2 (en) 2014-11-14 2017-01-10 Samsung Electronics Co., Ltd Light emitting device and method of manufacturing the same
JP2018019023A (ja) * 2016-07-29 2018-02-01 日亜化学工業株式会社 発光装置及びその製造方法
CN115966641A (zh) * 2022-12-07 2023-04-14 淮安澳洋顺昌光电技术有限公司 图形化衬底及制备方法以及包含该衬底的外延结构和芯片

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270754A (ja) * 1997-03-24 1998-10-09 Sanyo Electric Co Ltd 半導体発光素子および発光ランプ
JPH11214744A (ja) * 1998-01-27 1999-08-06 Nichia Chem Ind Ltd 窒化物半導体発光素子
JPH11251631A (ja) * 1998-03-03 1999-09-17 Nichia Chem Ind Ltd 窒化物半導体素子及びその製造方法
JP2001313440A (ja) * 2000-04-27 2001-11-09 Sony Corp 窒化物半導体発光素子
JP2003318441A (ja) * 2001-07-24 2003-11-07 Nichia Chem Ind Ltd 半導体発光素子
JP2005183911A (ja) * 2003-12-23 2005-07-07 Samsung Electro Mech Co Ltd 窒化物半導体発光素子及び製造方法
JP2006128450A (ja) * 2004-10-29 2006-05-18 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子
JP2007116097A (ja) * 2005-09-22 2007-05-10 Sony Corp 発光ダイオードおよびその製造方法ならびに集積型発光ダイオードおよびその製造方法ならびに窒化物系iii−v族化合物半導体の成長方法ならびに窒化物系iii−v族化合物半導体成長用基板ならびに光源セルユニットならびに発光ダイオードバックライトならびに発光ダイオード照明装置ならびに発光ダイオードディスプレイならびに電子機器ならびに電子装置およびその製造方法
JP2008166673A (ja) * 2006-12-27 2008-07-17 Shogen Koden Kofun Yugenkoshi 発光ダイオード及びその製造方法
JP2009141085A (ja) * 2007-12-05 2009-06-25 Rohm Co Ltd 窒化物半導体素子

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270754A (ja) * 1997-03-24 1998-10-09 Sanyo Electric Co Ltd 半導体発光素子および発光ランプ
JPH11214744A (ja) * 1998-01-27 1999-08-06 Nichia Chem Ind Ltd 窒化物半導体発光素子
JPH11251631A (ja) * 1998-03-03 1999-09-17 Nichia Chem Ind Ltd 窒化物半導体素子及びその製造方法
JP2001313440A (ja) * 2000-04-27 2001-11-09 Sony Corp 窒化物半導体発光素子
JP2003318441A (ja) * 2001-07-24 2003-11-07 Nichia Chem Ind Ltd 半導体発光素子
JP2005183911A (ja) * 2003-12-23 2005-07-07 Samsung Electro Mech Co Ltd 窒化物半導体発光素子及び製造方法
JP2006128450A (ja) * 2004-10-29 2006-05-18 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子
JP2007116097A (ja) * 2005-09-22 2007-05-10 Sony Corp 発光ダイオードおよびその製造方法ならびに集積型発光ダイオードおよびその製造方法ならびに窒化物系iii−v族化合物半導体の成長方法ならびに窒化物系iii−v族化合物半導体成長用基板ならびに光源セルユニットならびに発光ダイオードバックライトならびに発光ダイオード照明装置ならびに発光ダイオードディスプレイならびに電子機器ならびに電子装置およびその製造方法
JP2008166673A (ja) * 2006-12-27 2008-07-17 Shogen Koden Kofun Yugenkoshi 発光ダイオード及びその製造方法
JP2009141085A (ja) * 2007-12-05 2009-06-25 Rohm Co Ltd 窒化物半導体素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9543475B2 (en) 2014-11-14 2017-01-10 Samsung Electronics Co., Ltd Light emitting device and method of manufacturing the same
JP2018019023A (ja) * 2016-07-29 2018-02-01 日亜化学工業株式会社 発光装置及びその製造方法
CN115966641A (zh) * 2022-12-07 2023-04-14 淮安澳洋顺昌光电技术有限公司 图形化衬底及制备方法以及包含该衬底的外延结构和芯片

Similar Documents

Publication Publication Date Title
JP4908381B2 (ja) Iii族窒化物半導体層の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
TWI425664B (zh) 半導體發光元件及半導體發光元件之製造方法
US8502254B2 (en) Group III nitride semiconductor light-emitting device and method of manufacturing the same, and lamp
TWI377698B (en) Gan type semiconductor light emitting element and lamp
US8614454B2 (en) Semiconductor light-emitting device, manufacturing method thereof, and lamp
US8796055B2 (en) Method for manufacturing group III nitride semiconductor light-emitting element, group III nitride semiconductor light-emitting element, lamp, and reticle
KR101060830B1 (ko) 질화갈륨계 화합물 반도체 발광 소자의 제조 방법, 질화갈륨계 화합물 반도체 발광 소자 및 이를 이용한 램프
JP5250856B2 (ja) 窒化ガリウム系化合物半導体発光素子の製造方法
WO2010100844A1 (ja) 窒化物半導体素子及びその製造方法
JP2005277374A (ja) Iii族窒化物系化合物半導体発光素子及びその製造方法
US10043943B2 (en) UV light emitting diode having a stress adjustment layer
WO2009142265A1 (ja) Iii族窒化物半導体発光素子及びその製造方法、並びにランプ
JP2004006662A (ja) 窒化ガリウム系化合物半導体素子
WO2010100900A1 (ja) Iii族窒化物半導体発光素子及びその製造方法、並びにランプ
JP2011082248A (ja) 半導体発光素子及びその製造方法、並びにランプ
KR20140013249A (ko) 자외선 발광 소자 및 발광 소자 패키지
JP2012084667A (ja) 化合物半導体発光素子及びその製造方法、ランプ、電子機器並びに機械装置
JP2011159801A (ja) 半導体発光素子及びその製造方法、並びにランプ
KR20110091246A (ko) 반도체 발광소자의 제조방법 및 이에 의해 제조된 반도체 발광소자
JP4282743B2 (ja) 窒化ガリウム系化合物半導体発光素子
KR101919109B1 (ko) 자외선 발광 소자 및 자외선 발광 소자 패키지
KR101652792B1 (ko) 발광 소자 및 그 제조 방법
KR102014172B1 (ko) 자외선 발광 소자 및 발광 소자 패키지
JP2009253056A (ja) Iii族窒化物半導体発光素子及びランプ
JP2008306225A (ja) 窒化ガリウム系化合物半導体発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120703

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401