[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011080679A - Heat transfer device and electronic equipment - Google Patents

Heat transfer device and electronic equipment Download PDF

Info

Publication number
JP2011080679A
JP2011080679A JP2009232991A JP2009232991A JP2011080679A JP 2011080679 A JP2011080679 A JP 2011080679A JP 2009232991 A JP2009232991 A JP 2009232991A JP 2009232991 A JP2009232991 A JP 2009232991A JP 2011080679 A JP2011080679 A JP 2011080679A
Authority
JP
Japan
Prior art keywords
heat
evaporation
liquid
transport device
liquid refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009232991A
Other languages
Japanese (ja)
Inventor
Kazuaki Yazawa
和明 矢澤
Mitsuo Hashimoto
光生 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009232991A priority Critical patent/JP2011080679A/en
Publication of JP2011080679A publication Critical patent/JP2011080679A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/20Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes with nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transfer device enabling stable heat transfer and electronic equipment including the heat transfer device. <P>SOLUTION: An evaporation part 7 constituted of a plurality of evaporation structures 71 is provided in the heat receiving part 4 of a heat spreader 1 filled with a refrigerant. The evaporation structure 71 includes a lateral face 72 facing a flowing part 6 and a plurality of recesses 74 having openings 73 at a plurality of positions different from each other in the Z-axis direction of the lateral face 72, respectively. The recess 74 includes an inclination part 78 inclined to the direction containing components of the Z-axis direction. The inclination part 78 is provided at a portion closer to the heat receiving part 4 on the inner face of the recess 74 so as to form a V groove 61 between the two evaporation structures 71 adjacent to each other sandwiching the flowing part 6. Thus, at various height of a liquid level of a liquid refrigerant, a meniscus face having an efficient shape to evaporate and flow the liquid refrigerant can be formed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電子機器の熱源に熱的に接続される熱輸送装置及びこの熱輸送装置を備えた電子機器に関する。   The present invention relates to a heat transport device that is thermally connected to a heat source of an electronic device, and an electronic device including the heat transport device.

電子機器の熱源、例えばPC(Personal Computer)のCPU(Central Processing Unit)に熱的に接続され、熱源の熱を吸収して輸送する装置として、ヒートスプレッダ、ヒートパイプ及びCPL(Capillary Pumped Loop)等の熱輸送装置が使われている。熱輸送装置としては、銅板等からなるソリッド型の金属からなる熱輸送装置や、最近では蒸発部及び作動流体を有する相変化型の熱輸送装置が提案されている(例えば、特許文献1。)。   A heat spreader, a heat pipe, a CPL (Capillary Pumped Loop), or the like is connected to a heat source of an electronic device, for example, a CPU (Central Processing Unit) of a PC (Personal Computer), and absorbs and transports heat from the heat source. A heat transport device is used. As a heat transport device, a heat transport device made of a solid metal made of a copper plate or the like, and recently, a phase change heat transport device having an evaporation section and a working fluid has been proposed (for example, Patent Document 1). .

特許文献1に記載された相変化型の熱輸送装置は、熱源が熱的に接続される部位の内壁面に、液相の作動流体に対して毛細管力を生み出すことのできる断面略V字状の蒸発溝が設けられている。この熱輸送装置において、熱源からの熱が蒸発溝内の液相の作動流体に伝わって作動流体が加熱されると、この作動流体は蒸発して気相となる。このような作動流体の相変化により、熱輸送装置全体に熱が拡散される。   The phase change type heat transport device described in Patent Document 1 has a substantially V-shaped cross section capable of generating a capillary force with respect to a liquid phase working fluid on an inner wall surface of a portion to which a heat source is thermally connected. The evaporation groove is provided. In this heat transport device, when the heat from the heat source is transmitted to the liquid-phase working fluid in the evaporation groove and the working fluid is heated, the working fluid evaporates into a gas phase. Due to such a phase change of the working fluid, heat is diffused throughout the heat transport device.

特開2006−140256号(段落[0027]−[0031]、図4)JP 2006-140256 (paragraphs [0027]-[0031], FIG. 4)

このような相変化型の熱輸送装置では、蒸発部に接続される熱源の熱密度等に応じて、蒸発溝内での液相の作動流体の液面位置が上下に変動する。断面略V字状の溝内において液面位置が下降すると、熱源の接続位置等によって作動流体の液面位置に偏りが生じやすくなる。液面位置に偏りが生じると、蒸発溝内への作動流体の供給が局所的に不足し、ドライアウトが生じるおそれがある。一方、断面略V字状の溝内において液面位置が上昇すると、毛細管力を決めるメニスカスの毛細管半径が大きくなる。毛細管半径が大きくなると毛細管力が小さくなり液相の作動流体の循環が良好に行われなくなるおそれがある。また、毛細管半径が大きくなると、液面と溝の壁面との間の液膜の薄い領域が小さくなり、作動流体の蒸発量が低下するおそれがある。   In such a phase change type heat transport device, the liquid level position of the liquid-phase working fluid in the evaporation groove fluctuates up and down in accordance with the heat density of the heat source connected to the evaporation section. When the liquid surface position is lowered in the groove having a substantially V-shaped cross section, the liquid surface position of the working fluid is likely to be biased depending on the connection position of the heat source and the like. If the liquid level position is biased, the supply of the working fluid into the evaporation groove is locally insufficient, which may cause dryout. On the other hand, when the liquid level rises in the groove having a substantially V-shaped cross section, the capillary radius of the meniscus that determines the capillary force increases. When the capillary radius is increased, the capillary force is decreased and there is a possibility that the liquid-phase working fluid is not circulated well. Further, when the capillary radius is increased, the thin region of the liquid film between the liquid surface and the wall surface of the groove is reduced, and the evaporation amount of the working fluid may be reduced.

以上のような事情に鑑み、本発明の目的は、作動流体の液面位置の上下変動に拘らず安定的に熱輸送を行うことのできる熱輸送装置及びこの熱輸送装置を備えた電子機器を提供することにある。   In view of the circumstances as described above, an object of the present invention is to provide a heat transport device capable of stably transporting heat regardless of vertical fluctuations in the liquid surface position of the working fluid, and an electronic apparatus equipped with the heat transport device. It is to provide.

上記目的を達成するため、本発明の一形態に係る熱輸送装置は、受熱部と、凝縮部と、蒸発部とを具備する。
上記受熱部は、熱源の熱を受けるためのものである。
上記凝縮部は、上記受熱部と第1の方向で対向して配置され、作動流体を気相から液相に凝縮させる。
上記蒸発部は、上記第1の方向に対して直交する少なくとも一方向に、上記作動流体が流通可能な第1の流通部を挟んで配設された複数の蒸発構造体を有する。上記蒸発構造体は、上記第1の方向において異なる複数の位置に上記第1の流通部に面してそれぞれ開口し、かつ内部に上記第1の方向の成分を含む方向に傾斜した傾斜面を有する複数の凹部を有する。
In order to achieve the above object, a heat transport device according to an embodiment of the present invention includes a heat receiving unit, a condensing unit, and an evaporating unit.
The heat receiving part is for receiving heat from a heat source.
The condensing unit is disposed to face the heat receiving unit in the first direction, and condenses the working fluid from a gas phase to a liquid phase.
The evaporation section includes a plurality of evaporation structures disposed in at least one direction orthogonal to the first direction with a first flow section through which the working fluid can flow. The evaporating structure has inclined surfaces that open at a plurality of different positions in the first direction so as to face the first flow part and are inclined in a direction including the component in the first direction inside. Having a plurality of recesses.

上記熱輸送装置によれば、第1の流通部を挟んで隣り合う2つの蒸発構造体の第1の方向において異なる複数の位置に傾斜面が設けられる。これにより、作動流体の液面の異なる複数の高さ範囲で、作動流体を蒸発させて第1の流通部に移動させる上で効率的な形状の液面を確保することができる。これにより、蒸発部が作動流体を効率的に蒸発させることができる。   According to the heat transport device, the inclined surfaces are provided at a plurality of different positions in the first direction of the two evaporation structures adjacent to each other with the first flow part interposed therebetween. Thereby, in the several height range from which the liquid level of a working fluid differs, a liquid surface of an efficient shape can be ensured when evaporating a working fluid and moving it to a 1st distribution part. Thereby, an evaporation part can evaporate a working fluid efficiently.

複数の上記蒸発構造体は、上記第1の方向及び複数の上記蒸発構造体の配設方向に対してそれぞれ直交する第2の方向に沿った長尺状に設けられてもよい。   The plurality of evaporation structures may be provided in a long shape along a second direction that is orthogonal to the first direction and the arrangement direction of the plurality of evaporation structures.

上記熱輸送装置によれば、作動流体が隣り合う蒸発構造体の間の空間内を第2の方向に移動する。移動した作動流体は、液面位置の低下した領域に供給される。これにより、蒸発部における作動流体の液面位置を均等に保つことができ、ドライアウトの発生を抑止できる。   According to the heat transport device, the working fluid moves in the second direction in the space between the adjacent evaporation structures. The moved working fluid is supplied to the area where the liquid level is lowered. Thereby, the liquid level position of the working fluid in an evaporation part can be kept equal, and generation | occurrence | production of dry out can be suppressed.

上記傾斜面は、上記第1の流通部を挟んで隣り合う2つの蒸発構造体との間にV溝部が形成されるように、上記凹部の内面において上記受熱部寄りの部位に設けられてもよい。   The inclined surface may be provided in a portion near the heat receiving portion on the inner surface of the concave portion so that a V-groove portion is formed between two adjacent evaporation structures sandwiching the first circulation portion. Good.

上記熱輸送装置によれば、第1の流通部を挟んで隣り合う2つの蒸発構造体の第1の方向において異なる複数の位置に設けられた傾斜面により、第1の方向において異なる複数の位置にV溝部が一体的に設けられる。このため、V溝部内に貯留された作動流体の液面が傾斜面と接触するので、作動流体の液面の異なる複数の高さ範囲で、作動流体を蒸発させて第1の流通部に移動させる上で効率的な形状の液面を確保することができる。これにより、蒸発部が作動流体を効率的に蒸発させることができる。   According to the heat transport device, a plurality of positions that differ in the first direction due to the inclined surfaces provided at a plurality of positions that differ in the first direction of the two evaporation structures adjacent to each other across the first flow part. Are integrally provided with a V-groove. For this reason, since the liquid level of the working fluid stored in the V-groove is in contact with the inclined surface, the working fluid is evaporated and moved to the first circulation part in a plurality of height ranges having different liquid levels of the working fluid. In this case, it is possible to secure an efficient liquid level. Thereby, an evaporation part can evaporate a working fluid efficiently.

上記凹部は、上記傾斜面を挟んで上記開口から離間した位置に液相の上記作動流体を毛細管力により上記第2の方向に移動させる第2の流通部を有してもよい。   The concave portion may include a second circulation portion that moves the liquid-phase working fluid in the second direction by a capillary force at a position spaced apart from the opening with the inclined surface interposed therebetween.

上記熱輸送装置によれば、作動流体の液面の異なる複数の高さ範囲で、作動流体が第2の流通部内を毛細管力により第2の方向に移動する。移動した作動流体は、V溝部内における作動流体の液面位置の低下した領域に供給される。これにより、V溝部内での作動流体の液面位置を均等に保つことができる。   According to the heat transport device, the working fluid moves in the second direction by the capillary force in the second circulation section in a plurality of height ranges having different liquid levels of the working fluid. The moved working fluid is supplied to a region where the liquid level of the working fluid is lowered in the V groove. Thereby, the liquid level position of the working fluid in the V groove can be kept uniform.

上記蒸発構造体は、ポーラス材料からなってもよい。
上記熱輸送装置によれば、ポーラス(多孔質)材料の多数の細孔により、作動流体の液面の異なる複数の高さ範囲において、作動流体を蒸発させて第1の流通部に流通させる上で効率的な液膜の薄い領域を確保することができる。これにより、蒸発部が作動流体を効率的に蒸発させることができる。
The evaporating structure may be made of a porous material.
According to the above heat transport device, the working fluid is evaporated and circulated to the first circulation section in a plurality of height ranges having different liquid levels of the working fluid by the large number of pores of the porous material. Thus, an efficient thin region of the liquid film can be secured. Thereby, an evaporation part can evaporate a working fluid efficiently.

上記蒸発構造体の表面にカーボンナノチューブが生成されていてもよい。
上記熱輸送装置によれば、カーボンナノチューブは表面にナノスケール構造を有するので、液冷媒の接触面積を増加させることができ、液冷媒の蒸発を促進することができる。
Carbon nanotubes may be generated on the surface of the evaporation structure.
According to the heat transport device, since the carbon nanotube has a nanoscale structure on the surface, the contact area of the liquid refrigerant can be increased, and evaporation of the liquid refrigerant can be promoted.

本発明の一形態に係る電子機器は、熱源と、熱輸送装置と具備する。
上記熱源は、外装部を有する。
上記熱輸送装置は、受熱部と、凝縮部と、蒸発部とを有する。上記受熱部は、熱源の熱を受けるためのものである。上記凝縮部は、上記受熱部と第1の方向で対向して配置され、作動流体を気相から液相に凝縮させる。上記蒸発部は、上記第1の方向に対して直交する少なくとも一方向に、上記作動流体が流通可能な第1の流通部を挟んで配設された複数の蒸発構造体を有する。上記蒸発構造体は、上記第1の方向において異なる複数の位置に上記第1の流通部に面してそれぞれ開口した複数の凹部を有する。上記凹部は、上記第1の方向の成分を含む方向に傾斜した傾斜面を有する。
An electronic device according to one embodiment of the present invention includes a heat source and a heat transport device.
The heat source has an exterior part.
The heat transport device includes a heat receiving unit, a condensing unit, and an evaporating unit. The heat receiving part is for receiving heat from a heat source. The condensing unit is disposed to face the heat receiving unit in the first direction, and condenses the working fluid from a gas phase to a liquid phase. The evaporation section includes a plurality of evaporation structures disposed in at least one direction orthogonal to the first direction with a first flow section through which the working fluid can flow. The evaporating structure has a plurality of recesses that respectively open to face the first flow part at a plurality of different positions in the first direction. The concave portion has an inclined surface inclined in a direction including the component in the first direction.

上記熱輸送装置によれば、第1の流通部を挟んで隣り合う2つの蒸発構造体の第1の方向において異なる複数の位置に傾斜面が設けられる。これにより、作動流体の液面の異なる複数の高さ範囲で、作動流体を蒸発させて第1の流通部に移動させる上で効率的な形状の液面を確保することができる。これにより、蒸発部が作動流体を効率的に蒸発させることができる。上記電子機器によれば、熱源の外装部がこの熱輸送装置に熱的に接続されるため、熱輸送装置が熱源の熱を効率よく拡散することができる。   According to the heat transport device, the inclined surfaces are provided at a plurality of different positions in the first direction of the two evaporation structures adjacent to each other with the first flow part interposed therebetween. Thereby, in the several height range from which the liquid level of a working fluid differs, a liquid surface of an efficient shape can be ensured when evaporating a working fluid and moving it to a 1st distribution part. Thereby, an evaporation part can evaporate a working fluid efficiently. According to the above electronic device, the exterior part of the heat source is thermally connected to the heat transport device, so that the heat transport device can efficiently diffuse the heat of the heat source.

以上のように、本発明の熱輸送装置によれば、作動流体の液面位置の上下変動に拘らず安定的に熱輸送を行うことができる。   As described above, according to the heat transport device of the present invention, heat transport can be stably performed regardless of the vertical fluctuation of the liquid level position of the working fluid.

本発明の第1の実施形態に係るヒートスプレッダに熱源が接続された状態を示す側面図である。It is a side view showing the state where the heat source was connected to the heat spreader concerning a 1st embodiment of the present invention. ヒートスプレッダを示す平面図である。It is a top view which shows a heat spreader. 図2に示したA−A線断面から見たヒートスプレッダを示す概略断面図である。It is a schematic sectional drawing which shows the heat spreader seen from the AA line cross section shown in FIG. 蒸発部を示す部分拡大断面図である。It is a partial expanded sectional view which shows an evaporation part. 蒸発部での冷媒の流通を示す模式図である。It is a schematic diagram which shows distribution | circulation of the refrigerant | coolant in an evaporation part. 蒸発部での冷媒の流通を示す別の模式図である。It is another schematic diagram which shows distribution | circulation of the refrigerant | coolant in an evaporation part. 蒸発部での冷媒の流通を示すさらに別の模式図である。It is another schematic diagram which shows distribution | circulation of the refrigerant | coolant in an evaporation part. ヒートスプレッダの動作を説明するための模式図である。It is a schematic diagram for demonstrating operation | movement of a heat spreader. ヒートスプレッダを示す分解斜視図である。It is a disassembled perspective view which shows a heat spreader. 本発明の第2の実施形態に係るヒートスプレッダを示す概略断面図である。It is a schematic sectional drawing which shows the heat spreader which concerns on the 2nd Embodiment of this invention. 蒸発部を示す部分拡大断面図である。It is a partial expanded sectional view which shows an evaporation part. ヒートスプレッダを備えた電子機器を示す斜視図である。It is a perspective view which shows the electronic device provided with the heat spreader.

以下、図面を参照しながら、本発明の実施形態を説明する。
本発明の各実施形態では、熱輸送装置としてヒートスプレッダを一例に挙げて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In each embodiment of the present invention, a heat spreader will be described as an example of the heat transport device.

<第1の実施形態>
[ヒートスプレッダ1の構造]
図1は、本発明の第1の実施形態に係るヒートスプレッダ1に熱源が接続された状態を示す側面図である。図2は、ヒートスプレッダ1を示す平面図である。
<First Embodiment>
[Structure of heat spreader 1]
FIG. 1 is a side view showing a state in which a heat source is connected to the heat spreader 1 according to the first embodiment of the present invention. FIG. 2 is a plan view showing the heat spreader 1.

これらの図に示すように、ヒートスプレッダ1は、コンテナ2を有する。コンテナ2は、互いに対向する2つの主面を構成する受熱板4と、放熱板3とを含む。受熱板4と放熱板3とは、側壁5を介して気密に接合される。コンテナ2には、冷媒(作動流体)が封止されている。   As shown in these drawings, the heat spreader 1 has a container 2. The container 2 includes a heat receiving plate 4 and a heat radiating plate 3 that constitute two main surfaces facing each other. The heat receiving plate 4 and the heat radiating plate 3 are joined airtightly via the side wall 5. The container 2 is sealed with a refrigerant (working fluid).

放熱板3、受熱板4及び側壁5は、例えば金属材料からなる。その金属材料としては、例えば高い熱伝導率を有する銅を用いればよい。そのほかにも金属材料としては、ステンレスやアルミニウムが挙げられるが、これらに限定されない。金属材料の他に、カーボン等の高熱伝導性の材料でもよい。放熱板3、受熱板4及び側壁5の全てが異なる材料で構成されていてもよいし、これらのうち一部が同じ材料で構成されていてもよいし、全てが同じ材料で構成されていてもよい。   The heat sink 3, the heat receiving plate 4, and the side wall 5 are made of, for example, a metal material. For example, copper having a high thermal conductivity may be used as the metal material. Other examples of the metal material include, but are not limited to, stainless steel and aluminum. In addition to the metal material, a material having high thermal conductivity such as carbon may be used. All of the heat radiating plate 3, the heat receiving plate 4 and the side wall 5 may be made of different materials, or some of them may be made of the same material, or all of them may be made of the same material. Also good.

受熱板4には熱源50が熱的に接続されており、受熱板4は熱源50の熱を受ける。熱的に接続とは、直接接続される場合の他に、例えば熱伝導体を介して接続される場合なども含まれる。熱源50としては、例えばCPU(Central Processing Unit)、抵抗、その他の発熱電子部品、ディスプレイ等の電子機器が挙げられる。熱源50からの熱は、この受熱板4を介してヒートスプレッダ1に伝達される。   A heat source 50 is thermally connected to the heat receiving plate 4, and the heat receiving plate 4 receives heat from the heat source 50. The term “thermally connected” includes not only direct connection but also connection through a heat conductor, for example. Examples of the heat source 50 include electronic devices such as a CPU (Central Processing Unit), resistors, other heat generating electronic components, and a display. Heat from the heat source 50 is transmitted to the heat spreader 1 through the heat receiving plate 4.

放熱板3には、ヒートシンク55等の放熱のための部材が熱的に接続されている。ヒートシンク55には、ヒートスプレッダ1から熱が伝達され、この熱がヒートシンク55から放熱される。   A heat radiating member such as a heat sink 55 is thermally connected to the heat radiating plate 3. Heat is transmitted from the heat spreader 1 to the heat sink 55, and this heat is radiated from the heat sink 55.

コンテナ2に封止される冷媒としては、例えば、純水にヒドロキシ基(OH基)を有する有機化合物を少量添加した溶液を用いればよい。ヒドロキシル基を有する有機化合物としては、例えば、アルコール類、ジオール類、ポリオール類、フェノール類等が挙げられる。より詳細には、ヒドロキシル基を有する有機化合物は、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール等のアルコール類、エチレングリコール、プロピレングリコール等のジオール類、グリセリン等のポリオール類及びフェノール、アルキルフェノール等のフェノール類等が挙げられる。   As the refrigerant sealed in the container 2, for example, a solution obtained by adding a small amount of an organic compound having a hydroxy group (OH group) to pure water may be used. Examples of the organic compound having a hydroxyl group include alcohols, diols, polyols, phenols and the like. More specifically, the organic compound having a hydroxyl group includes alcohols such as methanol, ethanol, propanol, butanol and hexanol, diols such as ethylene glycol and propylene glycol, polyols such as glycerin, and phenols such as phenol and alkylphenol. Etc.

あるいは、冷媒としては、純水を上記アルコール類を添加せずにそのまま用いてもよいし、フロン系、代替フロン系、フッ素系、アンモニア、アセトン等を用いてもよい。しかし、これらに限定されない。   Alternatively, as the refrigerant, pure water may be used as it is without adding the above alcohols, or fluorocarbon, alternative fluorocarbon, fluorine, ammonia, acetone, or the like may be used. However, it is not limited to these.

図3は、図2に示したA−A線断面から見たヒートスプレッダ1を示す概略断面図である。   FIG. 3 is a schematic cross-sectional view showing the heat spreader 1 as seen from the cross section taken along line AA shown in FIG.

同図に示すように、受熱板4は、ヒートスプレッダ1の受熱部を構成し、コンテナ2の外壁面に相当する受熱面41と、放熱板3に対向し、受熱面41に表裏対向する蒸発面42とを有する。   As shown in the figure, the heat receiving plate 4 constitutes the heat receiving portion of the heat spreader 1, the heat receiving surface 41 corresponding to the outer wall surface of the container 2, and the evaporation surface facing the heat radiating plate 3 and facing the heat receiving surface 41. 42.

受熱面41は、熱源50が熱的に接続される面である。受熱面41には、熱源50からの熱を面方向に拡散し、ヒートスプレッダ1に対してより良好に伝えることが可能な高熱伝導固体層(図示せず。)を設けてもよい。高熱伝導固体層としては、およそ400〜2000WmKの熱伝導率を有する、カーボングラファイト層やダイヤモンド層等を用いることができる。また、高熱伝導固体層は、上記した単一の材料のほかにも、複合材料で形成してもよく、異なる材料からなる複数の層を積層することにより構成してもよい。   The heat receiving surface 41 is a surface to which the heat source 50 is thermally connected. The heat receiving surface 41 may be provided with a highly thermally conductive solid layer (not shown) that can diffuse heat from the heat source 50 in the surface direction and better transfer the heat to the heat spreader 1. As the high thermal conductive solid layer, a carbon graphite layer, a diamond layer, or the like having a thermal conductivity of approximately 400 to 2000 WmK can be used. In addition to the single material described above, the high thermal conductive solid layer may be formed of a composite material, or may be configured by laminating a plurality of layers made of different materials.

蒸発面42は、側壁5に接合される接合領域43を周縁部に有する。蒸発面42には、蒸発部7が設けられている。蒸発部7は液相の冷媒(以下、液冷媒という。)を蒸発させる。なお、本図では、説明を分かりやすくするため、ヒートスプレッダ1に対する蒸発部7のスケール比を大きくするなど、実際の形状から変更して描いている。以下、同様の趣旨により、実際の形状から変更して描く場合がある。   The evaporation surface 42 has a bonding region 43 bonded to the side wall 5 at the periphery. The evaporation surface 7 is provided on the evaporation surface 42. The evaporation unit 7 evaporates a liquid-phase refrigerant (hereinafter referred to as a liquid refrigerant). In this figure, in order to make the explanation easy to understand, the scale shape of the evaporating unit 7 with respect to the heat spreader 1 is increased and the actual shape is changed. Hereinafter, for the same purpose, the actual shape may be changed and drawn.

コンテナ2の内部空間は、主に流通部6(第1の流通部)を構成する。この流通部6は、液冷媒及び気相の冷媒(以下、蒸気冷媒という。)の流路である。すなわち、流通部6は、液冷媒を放熱板3側から受熱板4側へと重力により流通させるとともに、蒸気冷媒を受熱板4側から放熱板3側へと流通させる。   The internal space of the container 2 mainly constitutes the distribution unit 6 (first distribution unit). The circulation part 6 is a flow path for liquid refrigerant and gas-phase refrigerant (hereinafter referred to as vapor refrigerant). That is, the circulation unit 6 circulates the liquid refrigerant from the heat radiating plate 3 side to the heat receiving plate 4 side by gravity and circulates the vapor refrigerant from the heat receiving plate 4 side to the heat radiating plate 3 side.

放熱板3は、ヒートスプレッダ1の凝縮部を構成し、コンテナ2の外壁面に相当する放熱面31と、受熱板4に対向し、放熱面31に表裏対向する凝縮面32とを有する。
凝縮面32は、蒸発部7にて蒸発した蒸気冷媒を凝縮させる。
放熱面31は、ヒートシンク55等の放熱のための部材が熱的に接続される面である。
The heat radiating plate 3 constitutes a condensing part of the heat spreader 1, and has a heat radiating surface 31 corresponding to the outer wall surface of the container 2, and a condensing surface 32 facing the heat receiving plate 4 and facing the heat radiating surface 31.
The condensation surface 32 condenses the vapor refrigerant evaporated in the evaporation unit 7.
The heat radiating surface 31 is a surface to which a heat radiating member such as the heat sink 55 is thermally connected.

なお、本明細書において、「受熱部」は受熱板4の受熱面41のみを指すものではなく、コンテナ2の内部空間の受熱板4付近の領域を含めてよい。同様に、「凝縮部」も放熱板3の凝縮面32のみを指すものではなく、コンテナ2の内部空間の放熱板3付近の領域を含めてよい。また、「受熱部」及び「凝縮部」を示す領域は、熱源50の熱量等により多少シフトする場合がある。   In the present specification, the “heat receiving portion” does not refer only to the heat receiving surface 41 of the heat receiving plate 4 but may include a region near the heat receiving plate 4 in the internal space of the container 2. Similarly, the “condensing part” does not indicate only the condensing surface 32 of the heat radiating plate 3, but may include a region near the heat radiating plate 3 in the internal space of the container 2. In addition, the regions indicating the “heat receiving portion” and the “condensing portion” may be slightly shifted depending on the amount of heat of the heat source 50 or the like.

側壁5の内面は、液相流路51を構成する。液相流路51は、放熱板3の凝縮面32にて凝縮された液冷媒を放熱板3側から受熱板4側へと毛細管力と重力とにより流通させる。   The inner surface of the side wall 5 constitutes a liquid phase channel 51. The liquid phase flow channel 51 circulates the liquid refrigerant condensed on the condensation surface 32 of the heat radiating plate 3 from the heat radiating plate 3 side to the heat receiving plate 4 side by capillary force and gravity.

本実施形態のヒートスプレッダ1は平面略正方形状を有する。ヒートスプレッダ1の一辺の長さe(図2参照。)は、例えば30〜50mm程度である。ヒートスプレッダ1は、例えば側面略長方形状を有する。ヒートスプレッダ1の高さh(図1参照。)は、例えば2〜5mm程度である。上述したヒートスプレッダ1のサイズは、ヒートスプレッダ1に熱的に接続される熱源50がPC(Personal Computer)に用いられるCPUであることを想定したものである。ヒートスプレッダ1のサイズは熱源50に応じて適宜決めればよい。例えばヒートスプレッダ1に熱的に接続される熱源50が大型ディスプレイ等の大容量熱源である場合、eはさらに大きくする必要があり、例えば2600mm程度とすればよい。ヒートスプレッダ1のサイズは、冷媒が流通して適切に凝縮できるようなコンテナ2内を流通する冷媒の蒸発と凝縮のサイクルが滞りなく繰り返されるような値に設定される。ヒートスプレッダ1の動作温度範囲は、およそ−40℃〜+200℃が想定されている。ヒートスプレッダ1の吸熱密度は、例えば8W/mm以下である。 The heat spreader 1 of the present embodiment has a substantially square planar shape. The length e (see FIG. 2) of one side of the heat spreader 1 is, for example, about 30 to 50 mm. The heat spreader 1 has, for example, a substantially rectangular side surface. The height h (see FIG. 1) of the heat spreader 1 is, for example, about 2 to 5 mm. The size of the heat spreader 1 described above assumes that the heat source 50 thermally connected to the heat spreader 1 is a CPU used in a PC (Personal Computer). The size of the heat spreader 1 may be appropriately determined according to the heat source 50. For example, when the heat source 50 that is thermally connected to the heat spreader 1 is a large-capacity heat source such as a large display, e needs to be further increased, for example, about 2600 mm. The size of the heat spreader 1 is set to such a value that the cycle of evaporation and condensation of the refrigerant flowing in the container 2 is repeated without delay so that the refrigerant can flow and condense appropriately. The operating temperature range of the heat spreader 1 is assumed to be approximately −40 ° C. to + 200 ° C. The endothermic density of the heat spreader 1 is, for example, 8 W / mm 2 or less.

なお、コンテナ2は次のように設計すればよい。受熱板4の受熱面41から見た透過熱伝達率αは大変大きな値を示すため、この熱伝達を有効に使うためには受熱面41内に十分な熱が供給されることが望ましい。無次元数のBiot数Bi(Bi=αl/λ)の変化の少ない面内熱伝導率λを有することがコンテナ2の構造において重要な要素である。ここで、代表長さlはヒートスプレッダ1における熱源50中心から気相冷媒が到達する最大距離とする。このとき、Bi数として代表的な値は0.1〜10程度であり、Bi<1が成立するようにすればよい。   The container 2 may be designed as follows. The permeation heat transfer coefficient α viewed from the heat receiving surface 41 of the heat receiving plate 4 shows a very large value, and therefore it is desirable that sufficient heat is supplied into the heat receiving surface 41 in order to use this heat transfer effectively. It is an important factor in the structure of the container 2 to have an in-plane thermal conductivity λ with little change in the dimensionless Biot number Bi (Bi = αl / λ). Here, the representative length l is the maximum distance that the gas-phase refrigerant reaches from the center of the heat source 50 in the heat spreader 1. At this time, a typical value for the Bi number is about 0.1 to 10, and Bi <1 may be satisfied.

[蒸発部7の構造]
図4は、蒸発部7を示す部分拡大断面図である。
蒸発部7は、受熱板4の蒸発面42の接合領域43を除いた領域に設けられる。蒸発部7は、Z軸方向(第1の方向)に直交する一方向(X軸方向)に、冷媒が流通可能な流通部6(第1の流通部)を挟んで配設された複数の蒸発構造体71を有する。複数の蒸発構造体71は、それぞれY軸方向(第2の方向)に沿って互いに平行に長尺状に配設される。
[Structure of the evaporation part 7]
FIG. 4 is a partial enlarged cross-sectional view showing the evaporation unit 7.
The evaporator 7 is provided in a region excluding the joint region 43 of the evaporation surface 42 of the heat receiving plate 4. The evaporation unit 7 is disposed in a direction (X-axis direction) orthogonal to the Z-axis direction (first direction) with a circulation unit 6 (first distribution unit) capable of circulating the refrigerant interposed therebetween. Evaporation structure 71 is provided. The plurality of evaporation structures 71 are arranged in a long shape parallel to each other along the Y-axis direction (second direction).

蒸発構造体71は、Z軸方向において異なる複数の位置(高さ)に流通部6に面してそれぞれ開口し、Y軸方向に沿った長尺状の複数の凹部74を複数段に有する。   The evaporating structure 71 has a plurality of elongate concave portions 74 extending in the Y-axis direction at a plurality of positions (heights) different from each other in the Z-axis direction.

各複数の凹部74は、放熱板3寄りの第1の面75と、受熱板4寄りの第2の面76と、第3の面77と、受熱板4寄りの傾斜面78とにより形成される。
第1の面75及び第2の面76は、所定の距離を挟んで対向されており、それぞれX軸とY軸とがなす平面又はこの平面にほぼ沿った平面により構成される。
第3の面77は、第1の面75と第2の面76とを連結し、Y軸とZ軸とがなす平面又はこの平面にほぼ沿った平面により構成される。
傾斜面78は、第2の面76から連続して設けられ、第1の面75に対向する。傾斜面78は、流通部6から遠ざかるにつれて放熱板3側に近づく傾斜を有している。より具体的には、その角度は、液冷媒を蒸発させる上で効率的な形状のメニスカス面を形成することができるような値に選定されている。傾斜面78の流通部6寄りの一端と、第1の面75の流通部6寄りの一端とにより、凹部74の開口のZ軸方向での幅が決められる。
Each of the plurality of recesses 74 is formed by a first surface 75 near the heat radiating plate 3, a second surface 76 near the heat receiving plate 4, a third surface 77, and an inclined surface 78 near the heat receiving plate 4. The
The first surface 75 and the second surface 76 are opposed to each other with a predetermined distance therebetween, and are each configured by a plane formed by the X axis and the Y axis, or a plane substantially along the plane.
The third surface 77 connects the first surface 75 and the second surface 76, and is configured by a plane formed by the Y axis and the Z axis or a plane substantially along this plane.
The inclined surface 78 is provided continuously from the second surface 76 and faces the first surface 75. The inclined surface 78 has an inclination that approaches the heat radiating plate 3 as the distance from the circulation portion 6 increases. More specifically, the angle is selected to a value that can form a meniscus surface having an efficient shape for evaporating the liquid refrigerant. The width of the opening of the recess 74 in the Z-axis direction is determined by one end of the inclined surface 78 near the flow portion 6 and one end of the first surface 75 near the flow portion 6.

ここで、第1の面75と第2の面76との距離は、毛細管力を生み出すことのできる値に選定されている。すなわち、第2の面76、第3の面77及びこの第3の面77に対向する第1の面75の一部によって、毛細管力により液冷媒をY軸方向に流通させるための矩形溝部62(第2の流通部)が形成される。なお、矩形溝部62のZ軸方向の幅は、例えば、およそ10〜500μmである。   Here, the distance between the first surface 75 and the second surface 76 is selected to a value that can generate a capillary force. That is, the rectangular groove 62 for allowing the liquid refrigerant to flow in the Y-axis direction by capillary force by the second surface 76, the third surface 77, and a part of the first surface 75 facing the third surface 77. (Second distribution part) is formed. In addition, the width | variety of the Z-axis direction of the rectangular groove part 62 is about 10-500 micrometers, for example.

上記凹部74の形状は、蒸発構造体71にZ軸方向の異なる複数の位置にそれぞれ設けられた複数の凹部74において、最上段の凹部74を除いて共通の形状である。最上段の凹部74は、傾斜面78、第2の面76及び第3の面77により形成され、これら傾斜面78、第2の面76及び第3の面77は、流通部6に露出している。また、最下段の凹部74の傾斜面78は、上段の凹部74の傾斜面78の流通部6寄りの一端より同じ傾斜角度のまま延長され、X軸方向で隣り合う2つの蒸発構造体71の間の流通部6のX軸方向の中心まで達している。これにより、X軸方向で隣り合う2つの蒸発構造体71それぞれの最下段の傾斜面78によって最下段のV溝部61aが形成される。また、X軸方向で隣り合う2つの蒸発構造体71それぞれの中段の傾斜面78の流通部6寄りの各一端は流通部6を挟んで離間している。したがって、X軸方向で隣り合う2つの蒸発構造体71それぞれの中段の傾斜面78は最下段のV溝部61aの上に一体に設けられた中段のV溝部61bとして機能する。同様に、X軸方向で隣り合う2つの蒸発構造体71それぞれの最上段の傾斜面78の流通部6寄りの各一端も流通部6を挟んで離間され、中段のV溝部61bの上に一体に設けられた最上段のV溝部61cとして機能する。これにより、X軸方向で隣り合う2つの蒸発構造体71の間には3段のV溝部61a,61b,61cが間に矩形溝部62を介して互いに一体に設けられることとなる。   The shape of the recess 74 is a common shape except for the uppermost recess 74 in the plurality of recesses 74 provided in the evaporation structure 71 at a plurality of different positions in the Z-axis direction. The uppermost recess 74 is formed by an inclined surface 78, a second surface 76, and a third surface 77, and the inclined surface 78, the second surface 76, and the third surface 77 are exposed to the circulation portion 6. ing. In addition, the inclined surface 78 of the lowermost recess 74 extends from one end of the inclined surface 78 of the upper recess 74 near the flow portion 6 with the same inclination angle, and the two evaporation structures 71 adjacent in the X-axis direction are extended. It reaches the center in the X-axis direction of the flow part 6 between. As a result, the lowermost V-groove 61a is formed by the lowermost inclined surface 78 of each of the two evaporation structures 71 adjacent in the X-axis direction. In addition, each end of the middle inclined surface 78 of each of the two evaporation structures 71 adjacent to each other in the X-axis direction is spaced apart with the circulation part 6 interposed therebetween. Therefore, the middle inclined surface 78 of each of the two evaporation structures 71 adjacent in the X-axis direction functions as a middle V-groove 61b integrally provided on the lowermost V-groove 61a. Similarly, one end of the uppermost inclined surface 78 of each of the two evaporation structures 71 adjacent to each other in the X-axis direction is also spaced apart with the circulation part 6 interposed therebetween, and is integrally formed on the middle V-groove part 61b. It functions as the uppermost V-groove 61c provided in the. As a result, three stages of V-grooves 61 a, 61 b, 61 c are provided integrally with each other via the rectangular groove 62 between two evaporation structures 71 adjacent in the X-axis direction.

なお、各V溝部61a,61b,61cのX軸方向の幅は、例えば、およそ10〜1000μmである。   In addition, the width | variety of the X-axis direction of each V groove part 61a, 61b, 61c is about 10-1000 micrometers, for example.

本図では、凹部74はZ軸方向に3段設けられている。ここで、最下段の凹部74の符号を74aとし、最上段の凹部74の符号を74cとし、中段の凹部74の符号を74bとする。同様に、これら凹部74a,74b,74cに係る各部位について、それぞれa,b,cを付した符号とすることがある。また、凹部74a,74b,74cのうち、その構成が同じ部分については、任意の1つの凹部74について説明し、その場合、「凹部74」と呼ぶ。なお、凹部74の数は3段に限定されず何段設けられてもよい。同様に、最下段のV溝部61a、中段のV溝部61b、最上段のV溝部61cのうち、その構成が同じ部分については、任意の1つのV溝部61について説明し、その場合、「V溝部61」と呼ぶ。   In this figure, the recess 74 is provided in three stages in the Z-axis direction. Here, the lowermost recess 74 is denoted by 74a, the uppermost recess 74 is denoted by 74c, and the middle recess 74 is denoted by 74b. Similarly, the portions related to the recesses 74a, 74b, and 74c may be denoted by reference numerals a, b, and c, respectively. Further, of the recesses 74a, 74b, and 74c, the same configuration is described with respect to any one recess 74, and in that case, referred to as “a recess 74”. Note that the number of the recesses 74 is not limited to three and may be provided in any number. Similarly, of the lowermost V-groove 61a, the middle V-groove 61b, and the uppermost V-groove 61c, the same V-groove 61 will be described for the same parts. 61 ".

[蒸発部7での冷媒の流通]
次に、上記構成を有する蒸発部7での冷媒の流通について説明する。
ここでは、蒸発部7内の液冷媒の液面が最下段のV溝部61aに位置する場合(図5)、中段のV溝部61bに位置する場合(図6)及び最上段のV溝部61cに位置する場合(図7)における蒸発部7での冷媒の流通について、各図を参照して説明する。
[Distribution of refrigerant in evaporation section 7]
Next, circulation of the refrigerant in the evaporation unit 7 having the above configuration will be described.
Here, when the liquid refrigerant level in the evaporator 7 is located in the lowermost V groove 61a (FIG. 5), in the middle V groove 61b (FIG. 6), and in the uppermost V groove 61c. The circulation of the refrigerant in the evaporating unit 7 when located (FIG. 7) will be described with reference to each drawing.

図5は、蒸発部7での冷媒の流通を示す模式図である。
同図を参照して、蒸発部7内の液冷媒の液面が最下段のV溝部61aに位置する場合の冷媒の流通を説明する。蒸発部7内の液冷媒の液面が最下段のV溝部61aに位置する場合とは、例えば、受熱板4に熱的に接続される熱源50の熱密度が高いときに、液冷媒の蒸発量が大きくなり蒸発部7内の液冷媒の液面が低くなる場合である。
FIG. 5 is a schematic view showing the circulation of the refrigerant in the evaporation unit 7.
With reference to the figure, the circulation of the refrigerant when the liquid refrigerant level in the evaporator 7 is located in the lowest V-groove 61a will be described. When the liquid level of the liquid refrigerant in the evaporation unit 7 is located in the lowest V-groove 61a, for example, when the heat density of the heat source 50 thermally connected to the heat receiving plate 4 is high, the liquid refrigerant evaporates. This is a case where the amount increases and the liquid level of the liquid refrigerant in the evaporation section 7 becomes low.

液冷媒の液面の高さが最下段のV溝部61aにあるとき、液冷媒の液面は表面張力によってメニスカス面Mとなる。液面がメニスカス面Mとなることで、液冷媒には、傾斜面78a,78aの放熱板3寄りの部位に液膜の薄い部分Fが生じる。受熱板4に熱的に接続された熱源50が発した熱は、蒸発構造体71に伝わり、傾斜面78a,78aを介して液膜の薄い部分Fの液冷媒に伝わる。この部分Fでは液膜が薄いので、蒸発構造体71からの熱により液冷媒が速やかに沸騰し、蒸発する。主に液膜の薄い部分Fから蒸発した気相冷媒は、図中矢印で示すように、隣り合う蒸発構造体71,71の間の流通部6をZ軸方向に移動し、放熱板3側へと向かう。   When the liquid level of the liquid refrigerant is in the lowest V-groove 61a, the liquid level of the liquid refrigerant becomes a meniscus surface M due to surface tension. When the liquid surface becomes the meniscus surface M, a thin portion F of the liquid film is generated in the liquid refrigerant at a portion of the inclined surfaces 78a, 78a near the heat radiating plate 3. The heat generated by the heat source 50 thermally connected to the heat receiving plate 4 is transmitted to the evaporation structure 71, and is transmitted to the liquid refrigerant in the thin portion F of the liquid film via the inclined surfaces 78a and 78a. Since the liquid film is thin in this portion F, the liquid refrigerant quickly boils and evaporates due to the heat from the evaporation structure 71. The gas-phase refrigerant mainly evaporated from the thin portion F of the liquid film moves in the Z-axis direction through the flow part 6 between the adjacent evaporation structures 71 and 71 as indicated by arrows in the figure, and the heat radiating plate 3 side. Head to.

液面が最下段のV溝部61aに位置するときは、蒸発部7内の液冷媒の量が少ないため、熱源50の直上に位置する部位での液冷媒の蒸発が他の部位での液冷媒の蒸発より促進される等、蒸発部7における液冷媒の蒸発が局所的に促進されることがある。このとき、液冷媒の蒸発が促進された領域では液冷媒が減少する。液冷媒はV溝部61a内を毛細管力によりY軸方向に移動されることから、液冷媒が減少した領域内に周囲から液冷媒が補われ、液冷媒の局所的な減少に起因するドライアウトが生じるおそれが低減する。   When the liquid level is located in the lowermost V-groove 61a, the amount of liquid refrigerant in the evaporation unit 7 is small, so that the evaporation of the liquid refrigerant in the part located directly above the heat source 50 is the liquid refrigerant in the other part. The evaporation of the liquid refrigerant in the evaporating unit 7 may be locally promoted, such as being promoted by evaporation of the liquid. At this time, the liquid refrigerant decreases in the region where the evaporation of the liquid refrigerant is promoted. Since the liquid refrigerant is moved in the Y-axis direction by the capillary force in the V-groove 61a, the liquid refrigerant is supplemented from the surroundings in the area where the liquid refrigerant is reduced, and dryout due to a local decrease in the liquid refrigerant occurs. The risk of occurrence is reduced.

図6は、蒸発部7での冷媒の流通を示す別の模式図である。
同図を参照して、蒸発部7内の液冷媒の液面が中段のV溝部61bに位置する場合の冷媒の流通を説明する。蒸発部7内の液冷媒の液面が中段のV溝部61bに位置する場合とは、例えば、受熱板4に熱的に接続される熱源50の熱密度が前図に示した例よりも低いときに、液冷媒の蒸発量が小さくなり蒸発部7内の液冷媒の液面が上昇する場合である。
FIG. 6 is another schematic diagram showing the circulation of the refrigerant in the evaporation unit 7.
With reference to the same figure, the distribution | circulation of the refrigerant | coolant when the liquid level of the liquid refrigerant in the evaporation part 7 is located in the V-groove part 61b of a middle stage is demonstrated. The case where the level of the liquid refrigerant in the evaporation unit 7 is located in the middle V-groove 61b is, for example, that the heat density of the heat source 50 thermally connected to the heat receiving plate 4 is lower than the example shown in the previous figure. In some cases, the evaporation amount of the liquid refrigerant becomes small and the liquid level of the liquid refrigerant in the evaporation unit 7 rises.

液冷媒の液面の高さが中段のV溝部61bにあるとき、液冷媒の液面は表面張力によってメニスカス面Mとなる。液面がメニスカス面Mとなることで、液冷媒には、傾斜面78b,78bの放熱板3寄りの部位に液膜の薄い部分Fが生じる。受熱板4に接続された熱源50が発した熱は、蒸発構造体71に伝わり、傾斜面78b,78bを介して液膜の薄い部分Fの液冷媒に伝わる。この部分Fでは液膜が薄いので、蒸発構造体71からの熱により液冷媒が速やかに沸騰し、蒸発する。主に液膜の薄い部分Fから蒸発した気相冷媒は、図中矢印aで示すように、隣り合う蒸発構造体71,71の間の流通部6をZ軸方向に移動し、放熱板3側へと向かう。   When the level of the liquid refrigerant is in the middle V-groove 61b, the liquid refrigerant has a meniscus surface M due to surface tension. When the liquid surface becomes the meniscus surface M, a thin portion F of the liquid film is generated in the liquid refrigerant at a portion of the inclined surfaces 78b, 78b near the heat radiating plate 3. The heat generated by the heat source 50 connected to the heat receiving plate 4 is transmitted to the evaporation structure 71 and is transmitted to the liquid refrigerant in the thin portion F of the liquid film through the inclined surfaces 78b and 78b. Since the liquid film is thin in this portion F, the liquid refrigerant quickly boils and evaporates due to the heat from the evaporation structure 71. The gas-phase refrigerant evaporated mainly from the thin part F of the liquid film moves in the Z-axis direction through the flow part 6 between the adjacent evaporation structures 71 and 71 as indicated by an arrow a in the figure, and the heat sink 3 Head to the side.

液面の高さがV溝部61bの頂上付近まで達したときには、V溝部61bの上部から矩形溝部62b内に液冷媒が毛細管力により吸い上げられて、図6に示す状態となる。この状態では矩形溝部62b内に吸い上げられて拘束された液冷媒は、流通部6に面した液面を形成する。この液面は、表面張力によってメニスカス面M1となる。このメニスカス面M1の毛細管半径は、V溝部61bに形成されるメニスカス面Mの毛細管半径に比べて小さい。従って、矩形溝部62bでは、より大きな毛細管力が生み出され、Y軸方向の液冷媒の移動を効果的に助けることができる。これにより、蒸発部7内の液面位置が上昇した場合であっても、毛細管力による冷媒のY軸方向への移動を良好に行うことができ、液冷媒の循環を良好に行うことができる。   When the liquid level reaches the vicinity of the top of the V-groove 61b, the liquid refrigerant is sucked into the rectangular groove 62b from the upper part of the V-groove 61b by the capillary force, and the state shown in FIG. 6 is obtained. In this state, the liquid refrigerant sucked up and restrained in the rectangular groove 62 b forms a liquid level facing the flow part 6. This liquid level becomes a meniscus surface M1 due to surface tension. The capillary radius of the meniscus surface M1 is smaller than the capillary radius of the meniscus surface M formed in the V groove 61b. Therefore, in the rectangular groove 62b, a larger capillary force is generated, and the movement of the liquid refrigerant in the Y-axis direction can be effectively assisted. Thereby, even if the liquid level position in the evaporation part 7 rises, the movement of the refrigerant in the Y-axis direction by the capillary force can be performed well, and the circulation of the liquid refrigerant can be performed well. .

ここで、蒸発部7における液冷媒の蒸発が局所的に促進されると、液冷媒の蒸発が促進された領域ではV溝部61b内の液冷媒が減少する。このとき、液冷媒は矩形溝部62b内を毛細管力によりY軸方向に移動されることから、V溝部61b内の液冷媒が減少した領域内に矩形溝部62b内から液冷媒が補われる。これにより、V溝部61b内での液冷媒の局所的な減少に起因するドライアウトが生じるおそれが低減する。   Here, when the evaporation of the liquid refrigerant in the evaporation unit 7 is locally promoted, the liquid refrigerant in the V-groove 61b decreases in the region where the evaporation of the liquid refrigerant is promoted. At this time, since the liquid refrigerant is moved in the Y-axis direction by the capillary force in the rectangular groove 62b, the liquid refrigerant is supplemented from the rectangular groove 62b in the region where the liquid refrigerant in the V-groove 61b is reduced. This reduces the risk of dryout due to a local decrease in the liquid refrigerant in the V-groove 61b.

また、液面がメニスカス面M1となることで、液冷媒には、第2の面76bの傾斜面78b寄りの一部及びこれに対向する第1の面75bの一部と液面との間で液膜の薄い部分F1が生じる。熱源50が発した熱は、蒸発構造体71に伝わり、第2の面76bの傾斜面78b寄りの一部及びこれに対向する第1の面75bの一部を介して液膜の薄い部分F1の液冷媒に伝わる。この部分F1では液膜が薄いので、蒸発構造体71からの熱により液冷媒が速やかに沸騰し、蒸発する。主に液膜の薄い部分F1から蒸発した気相冷媒は、図中矢印bで示すように、隣り合う蒸発構造体71,71の間の流通部6をZ軸方向に移動し、放熱板3側へと向かう。   Further, since the liquid surface becomes the meniscus surface M1, the liquid refrigerant includes a portion of the second surface 76b near the inclined surface 78b and a portion of the first surface 75b opposite to the liquid surface and the liquid surface. Thus, a thin part F1 of the liquid film is generated. The heat generated by the heat source 50 is transmitted to the evaporation structure 71, and the thin portion F1 of the liquid film is passed through a part of the second surface 76b near the inclined surface 78b and a part of the first surface 75b opposite to the inclined surface 78b. It is transmitted to the liquid refrigerant. Since the liquid film is thin in the portion F1, the liquid refrigerant quickly boils and evaporates due to the heat from the evaporation structure 71. The gas-phase refrigerant mainly evaporated from the thin part F1 of the liquid film moves in the Z-axis direction through the flow part 6 between the adjacent evaporation structures 71 and 71 as indicated by an arrow b in the figure, and the heat sink 3 Head to the side.

なお、図示は省略するが、液冷媒の量の変化に伴い、最下段の矩形溝部62aにメニスカス面が生じ、液冷媒が矩形溝部62a内を毛細管力によりY軸方向に移動される場合もある。また、第2の面76c及び第3の面77cにより構成される最上段の矩形溝部62cにメニスカス面が生じ、液冷媒が矩形溝部62c内を毛細管力によりY軸方向に移動される場合もある。これらの場合も、液冷媒が矩形溝部62内を毛細管力によりY軸方向に移動されることから、V溝部61内の液冷媒が減少した領域内に矩形溝部62内から液冷媒が補われる。この構成によれば、大きな毛細管力を生み出す上で効率的な形状のメニスカス面を形成可能な矩形溝部が複数段に設けられているため、液面の位置に拘らず、液相の作動流体の毛細管力によるY軸方向への流通を促進させることができる。   In addition, although illustration is abbreviate | omitted, with the change of the quantity of a liquid refrigerant, a meniscus surface may arise in the rectangular groove part 62a of the lowest step, and a liquid refrigerant may be moved to the Y-axis direction by the capillary force in the rectangular groove part 62a. . In addition, a meniscus surface may be formed in the uppermost rectangular groove 62c constituted by the second surface 76c and the third surface 77c, and the liquid refrigerant may be moved in the Y-axis direction by capillary force in the rectangular groove 62c. . Also in these cases, since the liquid refrigerant is moved in the Y-axis direction by the capillary force in the rectangular groove portion 62, the liquid refrigerant is supplemented from the rectangular groove portion 62 in the region where the liquid refrigerant in the V groove portion 61 is reduced. According to this configuration, since the rectangular groove portions capable of forming a meniscus surface having an efficient shape for generating a large capillary force are provided in a plurality of stages, the liquid-phase working fluid can be formed regardless of the position of the liquid surface. Distribution in the Y-axis direction by capillary force can be promoted.

図7は、蒸発部7での冷媒の流通を示すさらに別の模式図である。
同図を参照して、蒸発部7内の液冷媒の液面が最上段のV溝部61cに位置する場合の冷媒の流通を説明する。蒸発部7内の液冷媒の液面が最上段のV溝部61cに位置する場合とは、例えば、受熱板4に熱的に接続される熱源50の熱密度が前図に示した例よりさらに低いときに、液冷媒の蒸発量がさらに小さくなり蒸発部7内の液冷媒の液面が上昇する場合である。
FIG. 7 is still another schematic diagram illustrating the circulation of the refrigerant in the evaporation unit 7.
With reference to the same figure, the distribution | circulation of the refrigerant | coolant in case the liquid level of the liquid refrigerant in the evaporation part 7 is located in the uppermost V groove part 61c is demonstrated. The case where the liquid refrigerant level in the evaporator 7 is located in the uppermost V-groove 61c means, for example, that the heat density of the heat source 50 thermally connected to the heat receiving plate 4 is further higher than in the example shown in the previous figure. When the temperature is low, the evaporation amount of the liquid refrigerant is further reduced and the liquid level of the liquid refrigerant in the evaporation unit 7 is increased.

液冷媒の液面の高さが最上段のV溝部61cにあるとき、液冷媒の液面は表面張力によってメニスカス面Mとなる。液面がメニスカス面Mとなることで、液冷媒には、傾斜面78c,78cの放熱板3寄りの部位に液膜の薄い部分Fが生じる。受熱板4に接続された熱源50が発した熱は、蒸発構造体71に伝わり、傾斜面78c,78cを介して液冷媒の部分Fに伝わる。この部分Fでは液膜が薄いので、蒸発構造体71からの熱により液冷媒が速やかに沸騰し、蒸発する。   When the liquid level of the liquid refrigerant is in the uppermost V-groove 61c, the liquid level of the liquid refrigerant becomes a meniscus surface M due to surface tension. When the liquid surface becomes the meniscus surface M, a thin portion F of the liquid film is generated in the liquid refrigerant at a portion of the inclined surfaces 78c, 78c near the heat radiating plate 3. The heat generated by the heat source 50 connected to the heat receiving plate 4 is transmitted to the evaporation structure 71 and is transmitted to the portion F of the liquid refrigerant through the inclined surfaces 78c and 78c. Since the liquid film is thin in this portion F, the liquid refrigerant quickly boils and evaporates due to the heat from the evaporation structure 71.

以上説明したように、本実施形態によれば、蒸発部7は、複数段のV溝部61及び矩形溝部62が交互に一体的に設けられた構成を有する。   As described above, according to the present embodiment, the evaporation section 7 has a configuration in which a plurality of stages of V-groove parts 61 and rectangular groove parts 62 are alternately and integrally provided.

複数段のV溝部61が一体的に設けられるので、液冷媒の液面の異なる複数の高さ範囲において、液冷媒を蒸発させて放熱板3へと流通させる上で効率的な形状のメニスカス面Mを確保することができる。   Since a plurality of stages of V-grooves 61 are provided integrally, a meniscus surface having an efficient shape for evaporating the liquid refrigerant and distributing it to the heat radiating plate 3 in a plurality of height ranges with different liquid refrigerant levels. M can be secured.

一般に、溝内の液冷媒を効率的に蒸発させるためには、V溝の傾斜面と液冷媒の液面との間に形成される液冷媒の液膜の薄い部分を大きくすればよいので、V溝の傾斜面の傾斜角度は緩やかであるとよい。しかしながら、一般的なV溝の傾斜面の傾斜角度を緩やかにしようとすると、V溝のX軸方向の幅が大きくなり、十分な毛細管力を得ることができず、液冷媒のV溝のY軸方向への移動が滞ってしまう。   In general, in order to efficiently evaporate the liquid refrigerant in the groove, it is only necessary to enlarge the thin part of the liquid refrigerant liquid film formed between the inclined surface of the V groove and the liquid refrigerant liquid surface. The inclination angle of the inclined surface of the V-groove is preferably gentle. However, if the inclination angle of the inclined surface of a general V-groove is made gentle, the width of the V-groove in the X-axis direction becomes large and a sufficient capillary force cannot be obtained, and the Y of the V-groove of the liquid refrigerant is not obtained. The movement in the axial direction is delayed.

これに対して、本実施形態によれば複数段のV溝部61が一体的に設けられるので、複数の各V溝部61の傾斜面78の勾配を高い自由度で選定することができ、緩やかな勾配の傾斜面を実現することができる。これにより、複数の各V溝部61それぞれにおいて、液冷媒の蒸発量を向上させることが可能である。従って、この蒸発部7によれば、液冷媒の液面の高さに拘らず、高い蒸発作用を安定的に生み出すことができる。   On the other hand, according to the present embodiment, a plurality of V-groove portions 61 are integrally provided, so that the gradient of the inclined surface 78 of each of the plurality of V-groove portions 61 can be selected with a high degree of freedom, and is gentle. An inclined slope can be realized. Thereby, it is possible to improve the evaporation amount of the liquid refrigerant in each of the plurality of V groove portions 61. Therefore, according to this evaporation part 7, regardless of the height of the liquid refrigerant, a high evaporation action can be stably produced.

また、複数段の矩形溝部62が一体的に設けられるので、液冷媒の液面の異なる複数の高さ範囲において、液冷媒を毛細管力によりY軸方向へ移動させる上で効率的な形状のメニスカス面M1を確保することができる。これにより、複数段に設けられた各矩形溝部62それぞれにおいて大きな毛細管力が生み出され、Y軸方向の液冷媒の移動を効果的に助けることができる。従って、この蒸発部7によれば、液冷媒の液面の高さに拘らず、大きな毛細管力を安定的に生み出すことができる。   In addition, since the plurality of rectangular grooves 62 are integrally provided, the meniscus having an efficient shape for moving the liquid refrigerant in the Y-axis direction by capillary force in a plurality of height ranges having different liquid levels of the liquid refrigerant. The surface M1 can be secured. Thereby, a large capillary force is generated in each of the rectangular groove portions 62 provided in a plurality of stages, and the movement of the liquid refrigerant in the Y-axis direction can be effectively assisted. Therefore, according to the evaporation unit 7, a large capillary force can be stably generated regardless of the liquid level of the liquid refrigerant.

さらに、複数段のV溝部61及び矩形溝部62が交互に一体的に設けられているので、矩形溝部62内を毛細管力によりY軸方向に移動した液冷媒は、V溝部61内の液面位置が低下した部分に補われる。より具体的には、V溝部61内に貯留される液冷媒の液面位置に偏りが生じた場合、このV溝部61の上部に位置する矩形溝部62内を液冷媒が毛細管力によりY軸方向に移動して、この液冷媒がV溝部61内の液面位置が低下した部分に補われる。従って、この蒸発部7によれば、液冷媒の液面の高さに拘らず、蒸発部7内での液冷媒の液面位置を均等に保つことができ、ヒートスプレッダ1による熱輸送を安定的に行うことができる。   Further, since the plurality of V-groove parts 61 and the rectangular groove parts 62 are alternately and integrally provided, the liquid refrigerant that has moved in the Y-axis direction by the capillary force in the rectangular groove part 62 is located at the liquid surface position in the V-groove part 61. Is compensated for the lowered part. More specifically, when the liquid level position of the liquid refrigerant stored in the V-groove 61 is biased, the liquid refrigerant passes through the rectangular groove 62 positioned above the V-groove 61 by the capillary force in the Y-axis direction. This liquid refrigerant is supplemented by the portion where the liquid level position in the V-groove 61 is lowered. Therefore, according to this evaporation unit 7, the liquid level position of the liquid refrigerant in the evaporation unit 7 can be kept uniform regardless of the liquid level of the liquid refrigerant, and the heat transport by the heat spreader 1 can be stably performed. Can be done.

なお、蒸発をさらに促進させるため、必要に応じて蒸発構造体71の表面、例えば傾斜面78,78の表面に、熱伝導率の高い材料を設けてもよい。熱伝導率の高い材料としては、例えば、カーボンナノチューブを用いることができる。カーボンナノチューブは表面にナノスケール構造を有するので、液冷媒の接触面積を増加させることができ、液冷媒の蒸発を促進することができる。カーボンナノチューブは超撥水性を有するため、冷媒に純水等を用いる場合、液冷媒がカーボンナノチューブに対して十分な濡れ性を生み出せない場合がある。従って、使用する冷媒の組成によっては、カーボンナノチューブの表面に、濡れ性を高めるための改善処理を行うことが望ましい。表面改善処理の一例としては、紫外線処理によるカルボキシル基等の親水基の導入等が挙げられる。これにより、カーボンナノチューブ表面の濡れ性が向上し、液冷媒の蒸発をさらに向上させることができる。   In order to further promote evaporation, a material having high thermal conductivity may be provided on the surface of the evaporation structure 71, for example, the surfaces of the inclined surfaces 78 and 78, if necessary. For example, carbon nanotubes can be used as the material having high thermal conductivity. Since the carbon nanotube has a nanoscale structure on the surface, the contact area of the liquid refrigerant can be increased, and evaporation of the liquid refrigerant can be promoted. Since carbon nanotubes have super water repellency, when pure water or the like is used as the refrigerant, the liquid refrigerant may not produce sufficient wettability with respect to the carbon nanotubes. Therefore, depending on the composition of the refrigerant to be used, it is desirable to perform an improvement treatment for enhancing the wettability on the surface of the carbon nanotube. An example of the surface improvement treatment includes introduction of a hydrophilic group such as a carboxyl group by ultraviolet treatment. Thereby, the wettability of the carbon nanotube surface is improved, and the evaporation of the liquid refrigerant can be further improved.

[ヒートスプレッダの動作]
図8は、ヒートスプレッダ1の動作を説明するための模式図である。
同図に示すように、熱源50が熱を発生すると、この熱を受熱板4の受熱面41が受ける。そうすると、受熱板4の蒸発面42に設けられた蒸発部7の主に傾斜面78,78において上述のように毛細管力により液冷媒が流通する(矢印A)。液冷媒は、蒸発部7にて加熱されて蒸発し、蒸気冷媒となる。蒸気冷媒は、放熱板3側に向かうように流通部6を流通する(矢印B)。蒸気冷媒が流通部6を流通することで熱が拡散し、放熱板3の凝縮面32において蒸気冷媒が凝縮し、液相に戻る(矢印C)。これによりヒートスプレッダ1により拡散させられた熱が、放熱板3の放熱面31からヒートシンク55に伝達され、ヒートシンク55から放熱される(矢印D)。液冷媒は液相流路51を毛細管力により流通して、あるいは流通部6を重力により流通して、蒸発部7へと戻る(矢印E)。このような動作が繰り返されることにより、熱源50の熱がヒートスプレッダ1により移動する。
[Operation of heat spreader]
FIG. 8 is a schematic diagram for explaining the operation of the heat spreader 1.
As shown in the figure, when the heat source 50 generates heat, the heat receiving surface 41 of the heat receiving plate 4 receives this heat. If it does so, a liquid refrigerant will distribute | circulate by capillary force as mentioned above mainly in the inclined surfaces 78 and 78 of the evaporation part 7 provided in the evaporation surface 42 of the heat receiving plate 4 (arrow A). The liquid refrigerant is heated and evaporated in the evaporating unit 7 and becomes a vapor refrigerant. The vapor refrigerant circulates through the circulation part 6 so as to go toward the heat radiating plate 3 (arrow B). As the vapor refrigerant circulates through the circulation part 6, heat is diffused, and the vapor refrigerant is condensed on the condensation surface 32 of the heat radiating plate 3 and returns to the liquid phase (arrow C). Thereby, the heat diffused by the heat spreader 1 is transmitted from the heat radiating surface 31 of the heat radiating plate 3 to the heat sink 55 and radiated from the heat sink 55 (arrow D). The liquid refrigerant flows through the liquid phase flow path 51 by capillary force or flows through the flow part 6 by gravity and returns to the evaporation part 7 (arrow E). By repeating such an operation, the heat of the heat source 50 is moved by the heat spreader 1.

矢印A〜Eで示した各動作の領域は、ある程度の目安あるいは基準を示すものである。熱源50の熱量等によりそれらの各動作領域が多少シフトする場合があるので、各動作が領域ごとに明確に分けられるわけではない。   The area of each operation indicated by arrows A to E indicates a certain standard or reference. Since each of these operation regions may be slightly shifted depending on the amount of heat of the heat source 50 or the like, each operation is not clearly divided for each region.

[ヒートスプレッダ1の製造方法]
次に、ヒートスプレッダ1の製造方法について説明する。
図9は、ヒートスプレッダ1を示す分解斜視図である。
ヒートスプレッダ1は、複数の板材4,8a,9a,8b,9b,8c,10,3が積層され互いに接合されることにより形成されている。
[Method of manufacturing heat spreader 1]
Next, a method for manufacturing the heat spreader 1 will be described.
FIG. 9 is an exploded perspective view showing the heat spreader 1.
The heat spreader 1 is formed by laminating a plurality of plate members 4, 8a, 9a, 8b, 9b, 8c, 10, 3 and bonding them together.

まず、受熱板4の蒸発面42の接合領域43を除いた領域に、互いに平行な複数の長尺状のV溝部61aを切削加工又はエッチング等により形成する。隣り合うV溝部61aの間にはリブ45が設けられる。複数のリブ45がV溝部61aを挟んで対向する面は、蒸発構造体71の傾斜面78aを構成する面である。   First, a plurality of long V-shaped groove portions 61a parallel to each other are formed by cutting or etching or the like in a region excluding the joining region 43 of the evaporation surface 42 of the heat receiving plate 4. A rib 45 is provided between the adjacent V groove portions 61a. The surface where the plurality of ribs 45 are opposed to each other with the V-groove 61a interposed therebetween is a surface constituting the inclined surface 78a of the evaporation structure 71.

板材に断面台形状の貫通溝を形成し、蒸発構造体71の第1の面75、第2の面76及び傾斜面78を構成する複数の第1の板材9(9a,9b)を作製する。第1の板材9の表裏対向する主面は、蒸発構造体71の第1の面75及び第2の面76を構成する面である。第1の板材9には、周縁部である接合領域91を除いた領域に、長尺を有する断面台形状の貫通溝92が切削加工又はエッチング等により互いに平行に複数形成される。隣り合う貫通溝92の間にはリブ93が設けられる。複数のリブ93の貫通溝92を挟んで対向する側面は蒸発構造体71の傾斜面78を構成する面であり、第1の板材9の主面に対して傾斜している。   A through-groove having a trapezoidal cross section is formed in the plate material, and a plurality of first plate materials 9 (9a, 9b) constituting the first surface 75, the second surface 76, and the inclined surface 78 of the evaporation structure 71 are produced. . The main surfaces of the first plate 9 that face each other are the surfaces constituting the first surface 75 and the second surface 76 of the evaporation structure 71. In the first plate member 9, a plurality of through-holes 92 having a long trapezoidal cross section are formed in parallel to each other in a region excluding the bonding region 91 that is a peripheral portion by cutting or etching. Ribs 93 are provided between the adjacent through grooves 92. The side surfaces of the plurality of ribs 93 facing each other across the through grooves 92 are surfaces that constitute the inclined surface 78 of the evaporation structure 71 and are inclined with respect to the main surface of the first plate member 9.

ここで、第1の板材9の厚さによりV溝部61のZ軸方向の高さが決まり、リブ93の側面の勾配によりV溝部61の勾配が決まり、貫通溝92の幅によりV溝部61のX軸方向の幅が決まる。従って、第1の板材9の厚さ及びリブ93の側面の勾配は、液冷媒を蒸発させるのに適した値に選定される。また、貫通溝92の幅は、液冷媒がV溝部61を効率的に流通することができるような値に選定される。   Here, the height of the V-groove 61 in the Z-axis direction is determined by the thickness of the first plate member 9, the gradient of the V-groove 61 is determined by the gradient of the side surface of the rib 93, and the width of the through-groove 92 determines the V-groove 61. The width in the X-axis direction is determined. Therefore, the thickness of the first plate member 9 and the gradient of the side surface of the rib 93 are selected to values suitable for evaporating the liquid refrigerant. The width of the through groove 92 is selected to a value that allows the liquid refrigerant to flow through the V groove portion 61 efficiently.

板材に断面矩形状の貫通溝を形成し、蒸発構造体71の第3の面77を構成する複数の第2の板材8(8a,8b,8c)を作製する。第2の板材8には、周縁部である接合領域81を除いた領域に、長尺を有する断面矩形状の貫通溝82が切削加工又はエッチング等により互いに平行に複数形成される。隣り合う貫通溝82の間にはリブ83が設けられる。隣り合うリブ83同士が貫通溝82を挟んで対向する面は互いに平行であり、この面は蒸発構造体71の第3の面77を構成する面である。   A plurality of second plate members 8 (8a, 8b, 8c) constituting the third surface 77 of the evaporation structure 71 are formed by forming a through groove having a rectangular cross section in the plate member. In the second plate member 8, a plurality of long through-grooves 82 having a rectangular cross section are formed in parallel to each other in a region excluding the bonding region 81 that is a peripheral portion by cutting or etching. Ribs 83 are provided between adjacent through grooves 82. The surfaces of the adjacent ribs 83 facing each other across the through groove 82 are parallel to each other, and this surface is a surface constituting the third surface 77 of the evaporation structure 71.

ここで、第2の板材8の厚さにより矩形溝部62のZ軸方向の幅が決まるので、第2の板材8の厚さは、液冷媒を毛細管力により移動させるのに適した値に選定される。   Here, since the width of the rectangular groove 62 in the Z-axis direction is determined by the thickness of the second plate member 8, the thickness of the second plate member 8 is selected to a value suitable for moving the liquid refrigerant by capillary force. Is done.

続いて、これら板材4,8(8a,8b,8c),9(9a,9b)を、受熱板4、第2の板材8a、第1の板材9a、第2の板材8b、第1の板材9b、第2の板材8cの順に積層する。ここで、板材4,8a,9a,8b,9b,8cは、複数のリブ45,83,93がY軸方向に配設され、接合領域43,81,91及び複数のリブ45,83,93がそれぞれZ軸方向にて互いに接し合うように積層される。   Subsequently, these plate members 4, 8 (8a, 8b, 8c), 9 (9a, 9b) are replaced with the heat receiving plate 4, the second plate member 8a, the first plate member 9a, the second plate member 8b, and the first plate member. 9b and the second plate 8c are stacked in this order. Here, the plate members 4, 8 a, 9 a, 8 b, 9 b, 8 c have a plurality of ribs 45, 83, 93 arranged in the Y-axis direction, and are joined regions 43, 81, 91 and a plurality of ribs 45, 83, 93. Are stacked so as to contact each other in the Z-axis direction.

積層された接合領域43,81,91はコンテナ2の側壁5の一部を構成し、積層された複数のリブ45,83,93は、それぞれ蒸発部7の蒸発構造体71を構成する。それぞれの隣り合う2つのリブ45,83,93の間のV溝部61a及び貫通溝82,92は、X軸方向で隣り合う2つの蒸発構造体71の間に一体に設けられる3段のV溝部61a,61b,61cを構成する。   The laminated joining regions 43, 81, 91 constitute a part of the side wall 5 of the container 2, and the plural laminated ribs 45, 83, 93 constitute an evaporation structure 71 of the evaporation unit 7. The V-groove 61a and the through-grooves 82 and 92 between the two adjacent ribs 45, 83, and 93 are three-stage V-grooves that are integrally provided between the two evaporation structures 71 that are adjacent in the X-axis direction. 61a, 61b and 61c are configured.

上記積層された板材4,8a,9a,8b,9b,8cの最上面に位置する第2の板材8cの接合領域81に、側壁5の一部を構成する枠状の板材10を介して放熱板3を積層する。なお、この枠状の板材10は、一体的に形成されたものに限定されず、4枚の平板状の板材からなるものとしてもよい。   Heat is radiated to the joining region 81 of the second plate member 8c located on the uppermost surface of the stacked plate members 4, 8a, 9a, 8b, 9b, 8c through the frame-like plate member 10 constituting a part of the side wall 5. The plate 3 is laminated. In addition, this frame-shaped board | plate material 10 is not limited to what was formed integrally, It is good also as what consists of four flat plate-shaped board | plate materials.

これら積層された各板材4,8a,9a,8b,9b,8c,10,3を接合する。接合時には、各部材の精密な位置合わせが行われる。これにより、内部に蒸発部7を有するコンテナ2が形成される。   These laminated plate members 4, 8a, 9a, 8b, 9b, 8c, 10, 3 are joined. At the time of joining, precise positioning of each member is performed. Thereby, the container 2 which has the evaporation part 7 inside is formed.

続いて、形成されたコンテナ2内に冷媒を注入し、封止する。冷媒を注入するための注入口及び注入路(図示せず。)が例えば受熱板4に設けられており、これら注入口及び注入路を介してコンテナ2内が減圧され、冷媒がコンテナ2に注入される。冷媒が注入されたコンテナ2が封止されて、ヒートスプレッダ1が完成する。   Subsequently, a refrigerant is injected into the formed container 2 and sealed. An inlet and an injection path (not shown) for injecting the refrigerant are provided in the heat receiving plate 4, for example, and the inside of the container 2 is depressurized through these inlet and the injection path, and the refrigerant is injected into the container 2. Is done. The container 2 into which the refrigerant has been injected is sealed, and the heat spreader 1 is completed.

以上説明したように、蒸発部7のV溝部61の勾配や寸法を液冷媒を蒸発させるのに適した値とするためには、第1の板材9の厚さ及び形成するリブ93及び貫通溝92の寸法を調整すればよい。従って、V溝部61の傾斜面の勾配を高い自由度で選定することができる。また、矩形溝部62の溝幅を液冷媒を毛細管力により移動させるのに適した値とするためには、第2の板材8の厚さを調整すればよい。従って、矩形溝部62の溝幅を高い自由度で選定することができる。以上により、本実施形態のヒートスプレッダ1の製造方法によれば、効率的な熱輸送を行うことのできるヒートスプレッダ1を容易に製造することができる。   As described above, in order to set the gradient and dimensions of the V groove 61 of the evaporation unit 7 to values suitable for evaporating the liquid refrigerant, the thickness of the first plate 9 and the ribs 93 and the through grooves to be formed are formed. The size of 92 may be adjusted. Therefore, the slope of the inclined surface of the V groove 61 can be selected with a high degree of freedom. Moreover, what is necessary is just to adjust the thickness of the 2nd board | plate material 8, in order to make the groove width of the rectangular groove part 62 into a value suitable for moving a liquid refrigerant by capillary force. Therefore, the groove width of the rectangular groove 62 can be selected with a high degree of freedom. As mentioned above, according to the manufacturing method of the heat spreader 1 of this embodiment, the heat spreader 1 which can perform efficient heat transport can be manufactured easily.

なお、ヒートスプレッダ1の製造方法は上記に限定されない。例えば、次のようにヒートスプレッダ1を製造してもよい。受熱板4の接合領域43に、側壁5を接合する。側壁5が接合された受熱板4の蒸発面42に、複数の貫通溝が切削加工又はエッチング等により互いに平行に形成された複数の板材を積層して接合し、複数の蒸発構造体71を作製する。この複数の板材は、それぞれ平面視したときの寸法が受熱板4の接合領域43を除いた領域の寸法と等しいかこれよりわずかに小さい。側壁5の受熱板4に対向する側の部位に放熱板3を接合し、これにより、内部に蒸発部7を有するコンテナ2が作製される。   In addition, the manufacturing method of the heat spreader 1 is not limited to the above. For example, the heat spreader 1 may be manufactured as follows. The side wall 5 is joined to the joining region 43 of the heat receiving plate 4. A plurality of evaporating structures 71 are manufactured by laminating and joining a plurality of plate materials in which a plurality of through grooves are formed in parallel to each other by cutting or etching on the evaporation surface 42 of the heat receiving plate 4 to which the side walls 5 are bonded. To do. Each of the plurality of plate members has a size in plan view that is equal to or slightly smaller than the size of the region excluding the joining region 43 of the heat receiving plate 4. The heat radiating plate 3 is joined to a portion of the side wall 5 on the side facing the heat receiving plate 4, whereby the container 2 having the evaporation portion 7 inside is produced.

<第2の実施形態>
[ヒートスプレッダ11の構造]
図10は、本発明の第2の実施形態に係るヒートスプレッダ11を示す概略断面図である。
これ以降の説明では、第1の実施形態に係るヒートスプレッダ1の部材や機能等について同様のものは同様の参照符号を付した上で説明を簡略化または省略し、異なる点を中心に説明する。
<Second Embodiment>
[Structure of heat spreader 11]
FIG. 10 is a schematic sectional view showing a heat spreader 11 according to the second embodiment of the present invention.
In the following description, the same components and functions of the heat spreader 1 according to the first embodiment will be given the same reference numerals, and the description will be simplified or omitted, and different points will be mainly described.

ヒートスプレッダ11は、コンテナ12を有する。コンテナ12は、受熱板14と、受熱板14と対向して設けられた放熱板13と、受熱板14と放熱板13とを気密に接合する側壁15とからなる。コンテナ12には、冷媒が封止されている。コンテナ12の内部空間は、主にこの冷媒の流通部16を構成する。   The heat spreader 11 has a container 12. The container 12 includes a heat receiving plate 14, a heat radiating plate 13 provided to face the heat receiving plate 14, and a side wall 15 that joins the heat receiving plate 14 and the heat radiating plate 13 in an airtight manner. The container 12 is sealed with a refrigerant. The internal space of the container 12 mainly constitutes the refrigerant circulation portion 16.

受熱板14は、受熱面141と、蒸発面142と、接合領域143とを有する。受熱面141には熱源が熱的に接続される。蒸発面142には蒸発部17が設けられている。   The heat receiving plate 14 has a heat receiving surface 141, an evaporation surface 142, and a bonding region 143. A heat source is thermally connected to the heat receiving surface 141. An evaporation unit 17 is provided on the evaporation surface 142.

放熱板13は、放熱面131と、凝縮面132とを有する。放熱面131には、ヒートシンク等の放熱のための部材が熱的に接続されている。側壁15の内面は、液相流路151を構成する。   The heat radiating plate 13 has a heat radiating surface 131 and a condensing surface 132. A heat radiating member such as a heat sink is thermally connected to the heat radiating surface 131. The inner surface of the side wall 15 constitutes a liquid phase channel 151.

[蒸発部17の構造]
図11は、蒸発部17を示す部分拡大断面図である。
同図に示すように、蒸発部17は、受熱板14の蒸発面142の接合領域143を除いた領域に設けられる。蒸発部17は、冷媒が流通可能な流通部16(第1の流通部)を挟んでX軸方向に配設された複数の蒸発構造体171を有する。複数の蒸発構造体171は、それぞれY軸方向に沿って、およそ数10〜500μmの間隔を空けて互いに平行に長尺状に配設される。
[Structure of the evaporation part 17]
FIG. 11 is a partial enlarged cross-sectional view showing the evaporation unit 17.
As shown in the figure, the evaporation unit 17 is provided in a region excluding the bonding region 143 of the evaporation surface 142 of the heat receiving plate 14. The evaporating unit 17 includes a plurality of evaporating structures 171 disposed in the X-axis direction with a circulation unit 16 (first circulation unit) through which the refrigerant can circulate. The plurality of evaporation structures 171 are arranged in a long shape parallel to each other with an interval of about several tens to 500 μm along the Y-axis direction.

蒸発構造体171は、ポーラス(多孔質)材料、例えばナノ材料を結合したポーラス材料からなる。ポーラス材料として、例えば、銅、ステンレス鋼、アルミニウムなどの金属やアルミナやシリカなどの無機セラミックスやゼオライト、あるいはアクリル樹脂などの高分子やカーボンナノチューブやカーボンファイバーを金属や高分子に練り込んだ複合樹脂を用いることができる。このポーラス材料は多数の細穴を有しており、その平均気孔径は例えばおよそ1〜500μmである。   The evaporation structure 171 is made of a porous material, for example, a porous material in which a nanomaterial is bonded. As a porous material, for example, metals such as copper, stainless steel and aluminum, inorganic ceramics such as alumina and silica, zeolites, polymers such as acrylic resins, and composite resins obtained by kneading carbon nanotubes and carbon fibers into metals and polymers Can be used. This porous material has a large number of fine holes, and the average pore diameter is, for example, about 1 to 500 μm.

蒸発構造体171は、Z軸方向において異なる複数の位置にそれぞれ開口した多数の細穴174を有する。なお、本図では、説明を分かりやすくするため、蒸発構造体171に対する細穴174のスケール比を大きくし、細穴174の個数を減らすなど、実際の形状から変更して描いている。   The evaporation structure 171 has a large number of fine holes 174 that are opened at a plurality of different positions in the Z-axis direction. In this figure, in order to make the explanation easy to understand, the scale ratio of the fine holes 174 with respect to the evaporation structure 171 is increased and the number of the fine holes 174 is reduced, and the actual shape is changed.

これら多数の細穴174は、それぞれ種々の方向に種々の勾配で傾斜している。多数の細穴174の中には、X軸方向の成分及びZ軸方向の成分を含む方向に傾斜する傾斜面178を内面に有する細穴174aがある。この細穴174aの少なくとも受熱板14寄りの内面は、開口から離間した位置から流通部16に向かう方向が放熱板13側から受熱板14側へと向かうように傾斜した傾斜面178となっている。また、多数の細穴174同士は、それぞれ種々の方向で蒸発構造体171内において互いに連通している。   These many fine holes 174 are inclined at various gradients in various directions. Among the many small holes 174, there is a small hole 174a having an inclined surface 178 on the inner surface that is inclined in a direction including a component in the X-axis direction and a component in the Z-axis direction. At least the inner surface of the narrow hole 174a near the heat receiving plate 14 is an inclined surface 178 that is inclined so that the direction from the position away from the opening toward the circulation portion 16 is from the heat radiating plate 13 side to the heat receiving plate 14 side. . In addition, the multiple small holes 174 communicate with each other in the evaporation structure 171 in various directions.

液冷媒は、流通部16の、隣り合う蒸発構造体171,171により構成される溝部161に満たされる。この液冷媒の液面が蒸発構造体171,171の間でメニスカス面Mを形成する。なお、溝部161はV字形、矩形、台形等の形状とすればよい。   The liquid refrigerant is filled in the groove 161 formed by the adjacent evaporation structures 171 and 171 in the circulation part 16. The liquid surface of the liquid refrigerant forms a meniscus surface M between the evaporation structures 171 and 171. Note that the groove 161 may be V-shaped, rectangular, trapezoidal, or the like.

細穴174aの近傍に液面が位置するとき、細穴174aの内面の傾斜面178に液冷媒が濡れ広がる。これにより、傾斜面178上の液冷媒には、液膜の薄い部分Fが生じる。受熱板14に接続された熱源50が発した熱は、蒸発構造体171に伝わり傾斜面178を介して液冷媒に伝わる。液膜の薄い部分Fでは、傾斜面178と、蒸発面としての液面との距離が近いため、液冷媒の沸騰及び蒸発が促進される。   When the liquid level is located in the vicinity of the narrow hole 174a, the liquid refrigerant wets and spreads on the inclined surface 178 on the inner surface of the narrow hole 174a. Thereby, a thin portion F of the liquid film is generated in the liquid refrigerant on the inclined surface 178. The heat generated by the heat source 50 connected to the heat receiving plate 14 is transmitted to the evaporation structure 171 and is transmitted to the liquid refrigerant through the inclined surface 178. In the thin part F of the liquid film, since the distance between the inclined surface 178 and the liquid surface as the evaporation surface is short, boiling and evaporation of the liquid refrigerant are promoted.

主に液膜の薄い部分Fから蒸発した気相冷媒は、隣り合う蒸発構造体171,171の間の流通部16をZ軸方向に移動し、放熱板13側へと向かう。   The gas-phase refrigerant evaporated mainly from the thin part F of the liquid film moves in the Z-axis direction through the circulation part 16 between the adjacent evaporation structures 171 and 171 and moves toward the heat radiating plate 13.

一方、傾斜面178aの上部では、液冷媒が毛細管力により吸い上げられて、細穴174aの開口から離間した壁面に拘束され、ここに液冷媒が毛細管力により移動することのできる蒸発構造体内流通部162(第2の流通部)が生じる。蒸発構造体内流通部162での液冷媒の液面は例えば流通部16に面しており、表面張力によってメニスカス面M1となる。このメニスカス面M1の毛細管半径は、溝部161に形成されるメニスカス面Mの毛細管半径に比べて小さい。従って、蒸発構造体内流通部162では、より大きな毛細管力が生み出され、種々の方向、例えばY軸方向の液冷媒の移動を効果的に助けることができる。これにより、蒸発部7内の液面位置が上昇した場合であっても、毛細管力による冷媒の種々の方向、例えばY軸方向への移動を良好に行うことができ、液冷媒の循環を良好に行うことができる。   On the other hand, in the upper part of the inclined surface 178a, the liquid refrigerant is sucked up by the capillary force and restrained by the wall surface separated from the opening of the narrow hole 174a, and the liquid refrigerant can be moved by the capillary force here. 162 (second distribution section) is generated. The liquid refrigerant liquid level in the evaporating structure internal circulation part 162 faces the circulation part 16, for example, and becomes a meniscus surface M1 due to surface tension. The capillary radius of the meniscus surface M1 is smaller than the capillary radius of the meniscus surface M formed in the groove 161. Therefore, in the evaporating structure internal circulation part 162, a larger capillary force is generated, and the movement of the liquid refrigerant in various directions, for example, the Y-axis direction, can be effectively assisted. Thereby, even when the liquid surface position in the evaporation unit 7 is raised, the refrigerant can be moved in various directions, for example, in the Y-axis direction by the capillary force, and the liquid refrigerant can be circulated well. Can be done.

本実施形態によれば、液冷媒の液面の異なる複数の高さ範囲において、細穴174aの傾斜面178にて、液冷媒を蒸発させて流通部16に流通させる上で効率的な液膜の薄い部分Fを確保することができ、液冷媒の液面の位置によらずに効率的な蒸発作用を生み出すことができる。また、蒸発構造体内流通部162にて、液冷媒を毛細管力により種々の方向へ移動させる上で効率的な形状のメニスカス面M1を確保することができ、液冷媒の液面の高さに拘らず、大きな毛細管力を安定的に生み出すことができる。   According to this embodiment, in a plurality of height ranges where the liquid level of the liquid refrigerant is different, the liquid film is efficient in evaporating the liquid refrigerant on the inclined surface 178 of the narrow hole 174a and allowing it to flow to the flow part 16. The thin portion F can be ensured, and an efficient evaporating action can be produced regardless of the position of the liquid refrigerant. In addition, the meniscus surface M1 having an efficient shape for moving the liquid refrigerant in various directions by the capillary force can be secured in the evaporating structure in-body flow section 162, and the liquid level of the liquid refrigerant is related to the height of the liquid refrigerant. Therefore, a large capillary force can be stably generated.

本実施形態に係るヒートスプレッダ11も、上記ヒートスプレッダ1と同様に、液冷媒が受熱板14に設けられた蒸発部17と放熱板13との間で相変化を繰り返す。これにより、熱源50の熱がヒートスプレッダ11により移動可能となる。   Similarly to the heat spreader 1, the heat spreader 11 according to the present embodiment repeats the phase change between the evaporator 17 and the heat radiating plate 13 where the liquid refrigerant is provided on the heat receiving plate 14. Thereby, the heat of the heat source 50 can be moved by the heat spreader 11.

なお、蒸発部17の作製方法としては、蒸発部17を構成するブロック状のポーラス材を準備し、このポーラス材に切削加工又はエッチング等により互いに平行な溝部161を形成すればよい。   In addition, as a manufacturing method of the evaporation part 17, the block-shaped porous material which comprises the evaporation part 17 should be prepared, and the groove part 161 mutually parallel may be formed in this porous material by cutting or an etching.

あるいは、蒸発部17を構成する複数の板状のポーラス材に切削加工又はエッチング等により、溝部161を構成する複数の貫通溝をそれぞれ形成する。この複数の板状のポーラス材を互いに積層して接合することにより、複数の蒸発構造体171が得られる。   Alternatively, the plurality of through-grooves constituting the groove 161 are formed in the plurality of plate-like porous materials constituting the evaporation part 17 by cutting or etching. A plurality of evaporation structures 171 are obtained by laminating and bonding the plurality of plate-like porous materials to each other.

あるいは、蒸発部17の材料として、ポーラス構造を有さないソリッド材料を用いてもよい。蒸発部17を構成するブロック状のソリッド材料に切削加工又はエッチング等により、溝部161及び蒸発構造体171を構成する凹凸を形成する。この凹凸に形成されたソリッド材にエッチング等により所定の深さを有する細穴174をランダムに形成する。これにより多数の細穴174を有する複数の蒸発構造体171が得られる。   Alternatively, a solid material having no porous structure may be used as the material of the evaporation unit 17. Concavities and convexities constituting the groove 161 and the evaporation structure 171 are formed on the block-shaped solid material constituting the evaporation portion 17 by cutting or etching. A narrow hole 174 having a predetermined depth is randomly formed in the solid material formed in the unevenness by etching or the like. Thereby, a plurality of evaporation structures 171 having a large number of fine holes 174 are obtained.

以上説明したように、この蒸発部17によれば、ポーラス材料が元々有する細穴又はランダムに形成された細穴により、液面の異なる複数の高さ範囲において、液冷媒を蒸発させ流通部16に流通させる上で効率的な液膜の薄い部分Fを確保することができる。従って、本実施形態によれば、液冷媒の液面の位置によらずに効率的な蒸発作用を生み出すことのできる蒸発部17を容易に作製することができる。   As described above, according to the evaporation unit 17, the liquid refrigerant is evaporated in a plurality of height ranges having different liquid levels by the narrow holes originally formed in the porous material or randomly formed thin holes, and the circulation unit 16. It is possible to secure a thin portion F of the liquid film that is efficient when it is circulated. Therefore, according to this embodiment, the evaporation part 17 which can produce an efficient evaporation effect | action irrespective of the position of the liquid level of a liquid refrigerant can be produced easily.

[電子機器]
図12は、ヒートスプレッダ1(11)を備えた電子機器として、デスクトップ型のPC120を示す斜視図である。
[Electronics]
FIG. 12 is a perspective view showing a desktop PC 120 as an electronic apparatus including the heat spreader 1 (11).

PC120の筐体121内には、回路基板122が配置され、例えば回路基板122には熱源としてのCPU123が搭載されている。このCPU23の外装部にヒートスプレッダ1(11)が熱的に接続され、ヒートスプレッダ1(11)にはヒートシンクが熱的に接続される。   A circuit board 122 is disposed in the housing 121 of the PC 120. For example, a CPU 123 as a heat source is mounted on the circuit board 122. The heat spreader 1 (11) is thermally connected to the exterior portion of the CPU 23, and a heat sink is thermally connected to the heat spreader 1 (11).

本発明に係る実施形態は、以上説明した実施形態に限定されず、他の種々の実施形態が考えられる。   The embodiment according to the present invention is not limited to the above-described embodiment, and various other embodiments are conceivable.

例えば、第1の実施形態のヒートスプレッダ1を、第2の実施形態に示したような板状のポーラス材や細穴をランダムに形成した板材により作製してもよい。   For example, the heat spreader 1 of the first embodiment may be made of a plate-like porous material or a plate material in which fine holes are randomly formed as shown in the second embodiment.

熱輸送装置としてヒートスプレッダを例に説明したが、これに限定されず、ヒートパイプやCPL(Capillary Pumped Loop)等の熱輸送装置でもよい。   Although the heat spreader has been described as an example of the heat transport device, the present invention is not limited to this, and a heat transport device such as a heat pipe or CPL (Capillary Pumped Loop) may be used.

ヒートスプレッダ1(11)の平面形状は四角形とした。しかし、その平面形状は、円形、楕円形、多角形、あるいは他の任意の形状であってもよい。   The planar shape of the heat spreader 1 (11) was a quadrangle. However, the planar shape may be circular, elliptical, polygonal, or any other shape.

電子機器としてデスクトップ型のPCを例に挙げた。しかし、これに限定されず電子機器としてはノート型のPC、PDA(Personal Digital Assistance)、電子辞書、カメラ、ディスプレイ装置、オーディオ/ビジュアル機器、プロジェクタ、携帯電話、ゲーム機器、ロボット機器、その他の電化製品等が挙げられる。   A desktop PC is taken as an example of electronic equipment. However, the present invention is not limited to this, and electronic devices include notebook PCs, PDAs (Personal Digital Assistance), electronic dictionaries, cameras, display devices, audio / visual devices, projectors, mobile phones, game devices, robot devices, and other electrifications. Products and the like.

1、11…ヒートスプレッダ
2、12…コンテナ
3、13…放熱板
4、14…受熱板
5、15…側壁
6、16…流通部(第1の流通部)
61、61a、61b、61c…V溝部
62、62a、62b、62c…矩形溝部(第2の流通部)
7、17…蒸発部
71、171…蒸発構造体
74、74a、74b、74c…凹部
75…第1の面
76…第2の面
77…第3の面
78、78a、78b、78c、178…傾斜面
161…溝部
162…蒸発構造体内流通部
174、174a…細穴
DESCRIPTION OF SYMBOLS 1, 11 ... Heat spreader 2, 12 ... Container 3, 13 ... Radiating plate 4, 14 ... Heat receiving plate 5, 15 ... Side wall 6, 16 ... Distribution part (1st distribution part)
61, 61a, 61b, 61c ... V-groove 62, 62a, 62b, 62c ... Rectangular groove (second flow section)
7, 17 ... Evaporating part 71, 171 ... Evaporating structure 74, 74a, 74b, 74c ... Recess 75 ... First surface 76 ... Second surface 77 ... Third surface 78, 78a, 78b, 78c, 178 ... Inclined surface 161... Groove portion 162... Evaporative structure internal circulation portion 174 and 174a.

Claims (7)

熱源の熱を受けるための受熱部と、
前記受熱部と第1の方向で対向して配置され、作動流体を気相から液相に凝縮させる凝縮部と、
前記受熱部に設けられ、前記作動流体を液相から気相に蒸発させる蒸発部とを具備し、
前記蒸発部は、前記第1の方向に対して直交する少なくとも一方向に、前記作動流体が流通可能な第1の流通部を挟んで配設された複数の蒸発構造体を有し、
前記蒸発構造体は、前記第1の方向において異なる複数の位置に前記第1の流通部に面してそれぞれ開口し、かつ内部に前記第1の方向の成分を含む方向に傾斜した傾斜面を有する複数の凹部を有する
熱輸送装置。
A heat receiving part for receiving heat from the heat source;
A condensing part that is arranged to face the heat receiving part in the first direction and condenses the working fluid from the gas phase to the liquid phase;
An evaporation section provided in the heat receiving section and evaporating the working fluid from a liquid phase to a gas phase;
The evaporating part has a plurality of evaporating structures disposed in at least one direction orthogonal to the first direction with the first flow part through which the working fluid can flow.
The evaporating structure has inclined surfaces that open at a plurality of different positions in the first direction so as to face the first circulation part and are inclined in a direction including the component of the first direction inside. A heat transport device having a plurality of recesses.
請求項1に記載の熱輸送装置であって、
複数の前記蒸発構造体は、前記第1の方向及び複数の前記蒸発構造体の配設方向に対してそれぞれ直交する第2の方向に沿った長尺状に設けられる
熱輸送装置。
The heat transport device according to claim 1,
The plurality of evaporating structures are provided in a long shape along a second direction orthogonal to the first direction and the arrangement direction of the plurality of evaporating structures.
請求項2に記載の熱輸送装置であって、
前記傾斜面は、前記第1の流通部を挟んで隣り合う2つの蒸発構造体との間にV溝部が形成されるように、前記凹部の内面において前記受熱部寄りの部位に設けられる
熱輸送装置。
The heat transport device according to claim 2,
The inclined surface is provided in a portion near the heat receiving portion on the inner surface of the concave portion so that a V-groove portion is formed between two adjacent evaporation structures across the first flow portion. apparatus.
請求項3に記載の熱輸送装置であって、
前記凹部は、前記傾斜面を挟んで前記開口から離間した位置に液相の前記作動流体を毛細管力により前記第2の方向に移動させる第2の流通部を有する
熱輸送装置。
The heat transport device according to claim 3,
The concave portion includes a second circulation portion that moves the liquid-phase working fluid in a second direction by a capillary force at a position spaced from the opening with the inclined surface interposed therebetween.
請求項1乃至4のいずれか一項に記載の熱輸送装置であって、
前記蒸発構造体は、ポーラス材料からなる
熱輸送装置。
The heat transport device according to any one of claims 1 to 4,
The evaporation structure is a heat transport device made of a porous material.
請求項1乃至5のいずれか一項に記載の熱輸送装置であって、
前記蒸発構造体の表面にカーボンナノチューブが生成されている
熱輸送装置。
The heat transport device according to any one of claims 1 to 5,
A heat transport device in which carbon nanotubes are generated on the surface of the evaporation structure.
外装部を有する熱源と、
前記熱源の前記外装部に設けられた熱輸送装置とを具備し、
前記熱輸送装置は、熱源の熱を受けるための受熱部と、前記受熱部と第1の方向で対向して配置され、作動流体を気相から液相に凝縮させる凝縮部と、前記受熱部に設けられ、前記作動流体を液相から気相に蒸発させる蒸発部とを具備し、前記蒸発部は、前記第1の方向に対して直交する少なくとも一方向に、前記作動流体が流通可能な第1の流通部を挟んで配設された複数の蒸発構造体を有し、前記蒸発構造体は、前記第1の方向において異なる複数の位置に前記第1の流通部に面してそれぞれ開口し、かつ内部に前記第1の方向の成分を含む方向に傾斜した傾斜面を有する複数の凹部を有する
電子機器。
A heat source having an exterior part;
A heat transport device provided in the exterior portion of the heat source,
The heat transport device includes a heat receiving unit for receiving heat from a heat source, a condensing unit that is disposed to face the heat receiving unit in a first direction, and that condenses the working fluid from a gas phase to a liquid phase, and the heat receiving unit. And an evaporation section that evaporates the working fluid from a liquid phase to a gas phase, and the evaporation section is capable of circulating the working fluid in at least one direction orthogonal to the first direction. A plurality of evaporating structures disposed across the first flow part, the evaporating structures opening at a plurality of different positions in the first direction facing the first flow part; And an electronic apparatus having a plurality of recesses having an inclined surface inclined in a direction including the component in the first direction.
JP2009232991A 2009-10-07 2009-10-07 Heat transfer device and electronic equipment Pending JP2011080679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009232991A JP2011080679A (en) 2009-10-07 2009-10-07 Heat transfer device and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009232991A JP2011080679A (en) 2009-10-07 2009-10-07 Heat transfer device and electronic equipment

Publications (1)

Publication Number Publication Date
JP2011080679A true JP2011080679A (en) 2011-04-21

Family

ID=44074905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009232991A Pending JP2011080679A (en) 2009-10-07 2009-10-07 Heat transfer device and electronic equipment

Country Status (1)

Country Link
JP (1) JP2011080679A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115052A (en) * 2012-12-12 2014-06-26 Fujikura Ltd Flat type heat pipe
WO2014128556A1 (en) * 2013-02-25 2014-08-28 Alcatel Lucent Sloped hierarchically-structured surface designs for enhanced condensation heat transfer
JPWO2016153040A1 (en) * 2015-03-26 2017-12-14 株式会社村田製作所 heat pump
US20180128553A1 (en) * 2016-11-08 2018-05-10 Kelvin Thermal Technologies, Inc. Method and device for spreading high heat fluxes in thermal ground planes
JP2018096669A (en) * 2016-12-14 2018-06-21 新光電気工業株式会社 Heat pipe and process of manufacture thereof
KR20180068457A (en) * 2016-12-14 2018-06-22 경희대학교 산학협력단 Heat spreader
US11353269B2 (en) 2009-03-06 2022-06-07 Kelvin Thermal Technologies, Inc. Thermal ground plane
US11598594B2 (en) 2014-09-17 2023-03-07 The Regents Of The University Of Colorado Micropillar-enabled thermal ground plane
US11930621B2 (en) 2020-06-19 2024-03-12 Kelvin Thermal Technologies, Inc. Folding thermal ground plane
US11988453B2 (en) 2014-09-17 2024-05-21 Kelvin Thermal Technologies, Inc. Thermal management planes
US12104856B2 (en) 2016-10-19 2024-10-01 Kelvin Thermal Technologies, Inc. Method and device for optimization of vapor transport in a thermal ground plane using void space in mobile systems

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11353269B2 (en) 2009-03-06 2022-06-07 Kelvin Thermal Technologies, Inc. Thermal ground plane
JP2014115052A (en) * 2012-12-12 2014-06-26 Fujikura Ltd Flat type heat pipe
WO2014128556A1 (en) * 2013-02-25 2014-08-28 Alcatel Lucent Sloped hierarchically-structured surface designs for enhanced condensation heat transfer
US11988453B2 (en) 2014-09-17 2024-05-21 Kelvin Thermal Technologies, Inc. Thermal management planes
US11598594B2 (en) 2014-09-17 2023-03-07 The Regents Of The University Of Colorado Micropillar-enabled thermal ground plane
JPWO2016153040A1 (en) * 2015-03-26 2017-12-14 株式会社村田製作所 heat pump
US10544994B2 (en) 2015-03-26 2020-01-28 Murata Manufacturing Co., Ltd. Sheet-shaped heat pipe
US12104856B2 (en) 2016-10-19 2024-10-01 Kelvin Thermal Technologies, Inc. Method and device for optimization of vapor transport in a thermal ground plane using void space in mobile systems
US20180128553A1 (en) * 2016-11-08 2018-05-10 Kelvin Thermal Technologies, Inc. Method and device for spreading high heat fluxes in thermal ground planes
US10724804B2 (en) * 2016-11-08 2020-07-28 Kelvin Thermal Technologies, Inc. Method and device for spreading high heat fluxes in thermal ground planes
KR101940188B1 (en) * 2016-12-14 2019-01-18 경희대학교 산학협력단 Heat spreader
KR20180068457A (en) * 2016-12-14 2018-06-22 경희대학교 산학협력단 Heat spreader
JP2018096669A (en) * 2016-12-14 2018-06-21 新光電気工業株式会社 Heat pipe and process of manufacture thereof
US11930621B2 (en) 2020-06-19 2024-03-12 Kelvin Thermal Technologies, Inc. Folding thermal ground plane

Similar Documents

Publication Publication Date Title
JP2011080679A (en) Heat transfer device and electronic equipment
JP2010243035A (en) Heat transport device, electronic apparatus and method of manufacturing the heat transport device
JP4881352B2 (en) HEAT SPREADER, ELECTRONIC DEVICE, AND HEAT SPREADER MANUFACTURING METHOD
KR100495699B1 (en) Flat plate heat transferring apparatus and manufacturing method thereof
US6533029B1 (en) Non-inverted meniscus loop heat pipe/capillary pumped loop evaporator
US9250025B2 (en) Method for heat transfer and device therefor
US9453689B2 (en) Flat heat pipe
US7545644B2 (en) Nano-patch thermal management devices, methods, &amp; systems
US20100186931A1 (en) Loop heat pipe type heat transfer device
US8678075B2 (en) Heat exchangers and related methods
US9074823B2 (en) Thermal siphon structure
JP5668325B2 (en) Loop heat pipe and electronic equipment
US20100122798A1 (en) Heat transport device, electronic apparatus, and heat transport device manufacturing method
EP2248406A1 (en) Heat sink device
JP2005180871A (en) Vapor chamber
US10302367B2 (en) Non-metallic vapor chambers
US20160131440A1 (en) Method for heat transfer and device therefor
JP5765045B2 (en) Loop heat pipe and manufacturing method thereof
JP2010243036A (en) Heat transport device, electronic apparatus and method of manufacturing the heat transport device
KR100414860B1 (en) Cooling device of thin plate type
WO2021256126A1 (en) Vapor chamber
WO2008038898A1 (en) Heat uniforming device for electronic apparatus
Filippou et al. A review of microfabrication approaches for the development of thin, flattened heat pipes and vapor chambers for passive electronic cooling applications
JP5938865B2 (en) Loop heat pipe and electronic device
JP2000193385A (en) Planar heat pipe