[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011070797A - Method for manufacturing sealing body, and organic el device - Google Patents

Method for manufacturing sealing body, and organic el device Download PDF

Info

Publication number
JP2011070797A
JP2011070797A JP2009218699A JP2009218699A JP2011070797A JP 2011070797 A JP2011070797 A JP 2011070797A JP 2009218699 A JP2009218699 A JP 2009218699A JP 2009218699 A JP2009218699 A JP 2009218699A JP 2011070797 A JP2011070797 A JP 2011070797A
Authority
JP
Japan
Prior art keywords
substrate
sealing member
sealing
organic
frit glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009218699A
Other languages
Japanese (ja)
Inventor
Hirotoshi Murayama
博俊 村山
Masahito Sawada
雅人 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009218699A priority Critical patent/JP2011070797A/en
Publication of JP2011070797A publication Critical patent/JP2011070797A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a sealing body between substrates, which never causes a sealing failure between the substrates. <P>SOLUTION: A stress relaxing layer for relaxing internal stress by distortion of a joint surface is provided on a first substrate, and a sealing member composed of flit glass is formed on a second substrate in a predetermined shape. The stress relaxing layer faces at least the sealing member and properly softens when the sealing member is melted. The second substrate is superposed on the first substrate, and the sealing member is irradiated with laser to melt the frit glass, whereby the first substrate and the second substrate are mutually bonded by the sealing member. If distortion occurs in the flit glass or the like, the stress relaxing layer deforms, following the distortion. Thus, stress generation by the distortion is prevented. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機EL装置などにおける、封止体の製造方法に関する。   The present invention relates to a method for manufacturing a sealing body in an organic EL device or the like.

近年、平面表示装置として、OLED(Organic Light Emitting Diode)を用いた有機EL表示装置が注目されている。有機EL表示装置は、有機EL素子が自発光素子であることから、広い視野角が得られ、しかも表示にバックライトを必要としないため、消費電力が少なく、薄型化が可能で、更に有機EL素子は応答速度が速いため、残像の少ない見やすい画面を提供できるという利点を有している。   In recent years, organic EL display devices using OLEDs (Organic Light Emitting Diodes) have attracted attention as flat display devices. Since the organic EL element is a self-luminous element, the organic EL display device has a wide viewing angle and does not require a backlight for display. Since the element has a high response speed, it has an advantage that an easy-to-view screen with little afterimage can be provided.

一方有機EL素子は、湿気や熱の影響を受け易いという性質を有している。例えば有機EL素子に水分が付着すると、発光機能が損失されてしまう。また、例えば100℃以上に有機EL素子が加熱されると、発光輝度が大きく低下してしまうことがある。そこで有機EL表示装置は、有機EL素子などが形成されたアレイ基板にガラス基板を重ね、有機EL素子の周囲をレーザー溶着を用いて封止させている。   On the other hand, organic EL elements have the property of being easily affected by moisture and heat. For example, when moisture adheres to the organic EL element, the light emitting function is lost. For example, when the organic EL element is heated to 100 ° C. or higher, the light emission luminance may be greatly reduced. Therefore, in the organic EL display device, a glass substrate is stacked on an array substrate on which organic EL elements and the like are formed, and the periphery of the organic EL elements is sealed using laser welding.

例えば封止部材としてフリットガラスを用いた場合は、まず対向基板となるガラス基板に、ペースト状のフリットガラスをスクリーン印刷やディスペンサ等で所定の形状に塗布し、それを焼成して固化する。そして、有機EL素子などが形成されたアレイ基板に、フリットガラスが固化された対向基板を重ね合わせ、フリットガラスにレーザーを照射して溶融し、アレイ基板と対向基板との間をフリットガラスによる封止部材で密閉させる。   For example, when frit glass is used as the sealing member, first, paste-like frit glass is applied to a glass substrate serving as a counter substrate in a predetermined shape by screen printing or a dispenser, and then fired and solidified. Then, the counter substrate on which the frit glass is solidified is superposed on the array substrate on which the organic EL element or the like is formed, and the frit glass is melted by irradiating a laser, and the space between the array substrate and the counter substrate is sealed with frit glass. Seal with a stopper.

フリットガラスは高い耐水性を有しているため、水分を基板間に透過させず、しかもレーザーを用いることにより、フリットガラスのみを溶融して、有機EL素子が熱影響を受けることなく、基板間を封止させることができる。   Since the frit glass has high water resistance, moisture is not transmitted between the substrates, and by using a laser, only the frit glass is melted and the organic EL element is not affected by heat, so that the inter-substrate is not affected. Can be sealed.

特開2009−110865号公報JP 2009-110865 A

しかしながら、レーザーをフリットガラスに照射すると、アレイ基板やフリットガラスが急速に加熱され、局所的に温度が急上昇する。そしてレーザーが通過した後は、溶融した部分は周囲から急速に冷却され、温度が急激に低下することとなっていた。レーザー照射では、このような大きな熱変動が発生することから、フリットガラスが固化した後に歪が生じ、封止部分の近傍に内部応力が発生することがあった。   However, when the frit glass is irradiated with laser, the array substrate and the frit glass are rapidly heated, and the temperature rapidly rises locally. After the laser passes, the melted portion is rapidly cooled from the surroundings, and the temperature is suddenly lowered. In laser irradiation, since such a large thermal fluctuation occurs, distortion occurs after the frit glass is solidified, and internal stress may occur in the vicinity of the sealed portion.

またフリットガラスが溶融して後に固化した箇所は、溶融される前に比較して、若干高さ幅が低くなる。レーザー照射では、そのフリットガラスの高さ幅の変化が、レーザーの走査に伴って順次移動することによっても、フリットガラスによる封止部材の近傍には内部応力が蓄積され易いということがあった。   Further, the portion where the frit glass is melted and solidified later is slightly lower in height than before being melted. In laser irradiation, even if the change in the height width of the frit glass moves sequentially as the laser scans, internal stress tends to accumulate near the frit glass sealing member.

封止部材の近傍に発生した内部応力は、徐々に、あるいは何かをきっかけとして封止部材をアレイ基板から剥離させ、基板間の封止を破壊させるおそれがあった。   The internal stress generated in the vicinity of the sealing member may cause the sealing member to be peeled off from the array substrate gradually or as a result of causing something to break the sealing between the substrates.

本発明は、上記課題を解決し、フリットガラスを用いた封止部材の基板間の封止不良を防止した封止体の製造方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide a method for manufacturing a sealing body that prevents a sealing failure between substrates of a sealing member using frit glass.

第1基板に、フリットガラスにより封止部材が形成された第2基板を重ね合わせ、封止部材をレーザー照射により溶融して第1基板と第2基板とを接合させる封止体の製造方法において、第1基板は、封止部材に対向した箇所に予め応力緩和層を有し、レーザー照射により封止部材を溶融させる際、少なくとも応力緩和層がレーザー照射により軟化されることとして封止体の製造方法を構成する。   In a manufacturing method of a sealing body, a second substrate on which a sealing member is formed of frit glass is superimposed on a first substrate, and the sealing member is melted by laser irradiation to bond the first substrate and the second substrate. The first substrate has a stress relaxation layer in a position facing the sealing member in advance, and when the sealing member is melted by laser irradiation, at least the stress relaxation layer is softened by laser irradiation. Configure the manufacturing method.

また、有機EL素子が形成された第1基板に、フリットガラスからなる封止部材を具えた第2基板を重ね、封止部材をレーザー照射により溶融して第1基板と第2基板の間を封止した有機EL装置において、第1基板の、封止部材に対向した箇所に、レーザーの照射により少なくとも軟化される応力緩和層を設けて有機EL装置を構成する。   In addition, a second substrate having a sealing member made of frit glass is overlaid on the first substrate on which the organic EL element is formed, and the sealing member is melted by laser irradiation so that a gap between the first substrate and the second substrate is obtained. In the sealed organic EL device, the organic EL device is configured by providing a stress relaxation layer that is at least softened by laser irradiation at a position of the first substrate facing the sealing member.

本発明にかかる封止体の製造方法は、第1基板と第2基板の基板間の封止不良を防止できる。   The manufacturing method of the sealing body concerning this invention can prevent the sealing defect between the board | substrate of a 1st board | substrate and a 2nd board | substrate.

また本発明にかかる有機EL装置は、封止不良の発生や、経年変化により封止が破壊されることを防止し、製品故障を大幅に低減できる。したがって、寿命の長い有機EL装置を、効率よく製造できる。   In addition, the organic EL device according to the present invention can prevent the occurrence of sealing failure and breakage of the sealing due to secular change, and can greatly reduce product failure. Therefore, an organic EL device having a long lifetime can be efficiently manufactured.

本発明にかかる封止体の製造方法を用いた有機EL表示装置の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the organic electroluminescence display using the manufacturing method of the sealing body concerning this invention. 封止部材における歪みの一例を示す断面図である。It is sectional drawing which shows an example of the distortion in a sealing member. 封止部材を示す断面図である。It is sectional drawing which shows a sealing member. 封止部材における歪みの一例を示す断面図である。It is sectional drawing which shows an example of the distortion in a sealing member. 有機EL表示装置の組立例を示す側面図である。It is a side view which shows the assembly example of an organic electroluminescence display. レーザーによる接合動作例を示す斜視図である。It is a perspective view which shows the example of joining operation | movement by a laser.

本発明にかかる封止体の製造方法の一実施形態について、有機EL(エレクトロルミネッセンス)表示装置を例にして説明する。   One embodiment of a method for producing a sealed body according to the present invention will be described using an organic EL (electroluminescence) display device as an example.

有機EL表示装置10は、図1に示すように、第1基板としてのアレイ基板12と、第2基板としての封止基板14と、アレイ基板12と封止基板14間を封止する封止部材16と、アレイ基板12に設けられた画素回路20及び表示素子22などから構成されている。   As shown in FIG. 1, the organic EL display device 10 includes an array substrate 12 as a first substrate, a sealing substrate 14 as a second substrate, and a seal that seals between the array substrate 12 and the sealing substrate 14. The member 16 includes a pixel circuit 20 and a display element 22 provided on the array substrate 12.

画素回路20は、駆動トランジスタや各種スイッチ類などからなり、制御装置(図示せず。)からの駆動信号に従い表示素子22を駆動させる。表示素子22は、有機EL素子より構成され、画素回路20により制御されて発光する。有機EL表示装置10がカラー表示装置の場合、表示素子22は、例えば3原色に対応して構成されている。尚、画素回路20及び表示素子22は、有機EL表示装置の構成要素として従来から知られているものである。   The pixel circuit 20 includes a driving transistor, various switches, and the like, and drives the display element 22 in accordance with a driving signal from a control device (not shown). The display element 22 is composed of an organic EL element, and emits light under the control of the pixel circuit 20. When the organic EL display device 10 is a color display device, the display element 22 is configured to correspond to, for example, three primary colors. The pixel circuit 20 and the display element 22 are conventionally known as constituent elements of an organic EL display device.

封止基板14は、ガラス製の基板であり、アレイ基板12の、表示素子22などが設けられている側の上面に、封止部材16を介して接合されている。次に、封止部材16について説明する。   The sealing substrate 14 is a glass substrate, and is bonded to the upper surface of the array substrate 12 on the side where the display elements 22 and the like are provided via a sealing member 16. Next, the sealing member 16 will be described.

封止部材16は、フリットガラスなどと呼ばれる粉体状のガラス成分を固化して形成されている。封止部材16は、まずペースト状に形成されたフリットガラスをディスペンサ(図示せず。)などを用いて、封止基板14上に塗布する。ペースト状のフリットガラスは、封止部材16を形成するように封止基板14上に所定の形状に塗布される。   The sealing member 16 is formed by solidifying a powdery glass component called frit glass. The sealing member 16 first applies a frit glass formed in a paste form onto the sealing substrate 14 using a dispenser (not shown) or the like. The pasty frit glass is applied in a predetermined shape on the sealing substrate 14 so as to form the sealing member 16.

フリットガラスは、例えば酸化カリウム(K2O)、三酸化アンチモン(Sb2O3)、酸化亜鉛(ZnO)、二酸化チタニウム(TiO2)、三酸化アルミニウム(Al2O3)、三酸化タングステン(WO3)、酸化錫(SnO)、酸化鉛(PbO)、五酸化バナジウム(V2O5)、三酸化鉄(Fe2O3)、五酸化リン(P2O5)、三酸化二ホウ素(B2O3)、及び二酸化ケイ素(SiO2)よりなる群から選ばれた1種の物質、またはこれらの組合せからなるものを使用することができる。   The frit glass includes, for example, potassium oxide (K2O), antimony trioxide (Sb2O3), zinc oxide (ZnO), titanium dioxide (TiO2), aluminum trioxide (Al2O3), tungsten trioxide (WO3), tin oxide (SnO), One selected from the group consisting of lead oxide (PbO), vanadium pentoxide (V2O5), iron trioxide (Fe2O3), phosphorus pentoxide (P2O5), diboron trioxide (B2O3), and silicon dioxide (SiO2) Or a combination of these can be used.

ペースト状のフリットガラスが封止基板14に塗布されたなら、封止基板14とともに焼成炉に入れ、フリットガラスを焼成する。フリットガラスを焼成し、封止部材16が封止基板14に形成されたら、図5に示すようにアレイ基板12に封止基板14とを重ね合わせる。封止基板14は、焼成固化されたフリットガラス、つまり封止部材16が、画素回路20や表示素子22などが設けられたアレイ基板12の面上に接触するように載置する。そして図6に示すように、封止部材16に沿ってレーザー30を照射し、フリットガラスを溶融させる。   When the paste-like frit glass is applied to the sealing substrate 14, the frit glass is fired together with the sealing substrate 14 in a firing furnace. When the frit glass is baked and the sealing member 16 is formed on the sealing substrate 14, the sealing substrate 14 is overlaid on the array substrate 12 as shown in FIG. The sealing substrate 14 is placed so that the fired and solidified frit glass, that is, the sealing member 16 is in contact with the surface of the array substrate 12 provided with the pixel circuit 20, the display element 22, and the like. And as shown in FIG. 6, the laser 30 is irradiated along the sealing member 16, and a frit glass is fuse | melted.

レーザー30は、次の条件を満足するようにその出力と走査速度が決定される。レーザー30を所定速度で走査しながら封止部材16に照射すると、封止部材16は部分的に溶融される。一方レーザーが移動した後は、封止部材16は速やかに冷却され、固化して第1基板に溶着する。更にレーザー30は、たとえ表示素子22を加熱しても、表示素子22に劣化を生じさせることのない温度範囲内とするように照射される。   The output and scanning speed of the laser 30 are determined so as to satisfy the following conditions. When the sealing member 16 is irradiated while scanning the laser 30 at a predetermined speed, the sealing member 16 is partially melted. On the other hand, after the laser moves, the sealing member 16 is quickly cooled, solidified, and welded to the first substrate. Further, even if the display element 22 is heated, the laser 30 is irradiated so as to be within a temperature range in which the display element 22 is not deteriorated.

またアレイ基板12には、封止部材16に対応して応力緩和層24が設けられている。応力緩和層24は、アルミニウムからなり、アレイ基板12と封止基板14とを重ねた場合に少なくとも封止部材16に対向する位置に形成されている。更に応力緩和層24は、封止部材16に沿ってレーザーを照射するとその熱を受け、適度に軟化されるように形成されている。また応力緩和層24は、レーザーの照射によってアレイ基板12などに生じた歪みに対して、適度に変形して歪みに追従することが可能な厚みに形成されている。   The array substrate 12 is provided with a stress relaxation layer 24 corresponding to the sealing member 16. The stress relaxation layer 24 is made of aluminum, and is formed at a position facing at least the sealing member 16 when the array substrate 12 and the sealing substrate 14 are stacked. Further, the stress relaxation layer 24 is formed so as to receive heat from the laser irradiation along the sealing member 16 and be softened appropriately. The stress relaxation layer 24 is formed to a thickness that can be appropriately deformed to follow the strain with respect to the strain generated in the array substrate 12 and the like by the laser irradiation.

応力緩和層24は、少なくとも封止部材16に照射されたレーザーの熱的影響を受ける範囲には設けられる。封止部材16に対向した位置とは、この範囲をいい、応力緩和層24は、必ずしも封止部材16と同一の幅に形成されているものではない。尚、応力緩和層24をアレイ基板12の全面に形成してもよい。   The stress relaxation layer 24 is provided at least in a range that is affected by the thermal effect of the laser applied to the sealing member 16. The position facing the sealing member 16 refers to this range, and the stress relaxation layer 24 is not necessarily formed in the same width as the sealing member 16. Note that the stress relaxation layer 24 may be formed on the entire surface of the array substrate 12.

更に応力緩和層24の上面には、保護層26が形成されている。保護層26は、例えば窒化シリコンや酸化シリコンなどの無機系材料によって形成され、応力緩和層24との良好な付着性に加え、封止部材16との付着性も良好なものを使用する。   Further, a protective layer 26 is formed on the upper surface of the stress relaxation layer 24. The protective layer 26 is made of, for example, an inorganic material such as silicon nitride or silicon oxide, and uses a material having good adhesion to the sealing member 16 in addition to good adhesion to the stress relaxation layer 24.

次に、封止体の製造方法について説明する。図5に示すようにアレイ基板12に封止基板14を重ね合わせる。封止部材16は、ディスペンサなどにより平坦に塗布しても、焼成工程を経るなどして、塗布方向に垂直な方向から断面した形状は図2に示すように中央が盛り上がった(図では、下向きに凸の状態で記載してある。)ものとなっている。したがって、アレイ基板12に封止基板14を重ね合わせた段階では、封止部材16の下端が保護層26とほぼ線状に接触した状態となっている。   Next, the manufacturing method of a sealing body is demonstrated. As shown in FIG. 5, the sealing substrate 14 is overlaid on the array substrate 12. Even if the sealing member 16 is applied flatly by a dispenser or the like, the shape of the cross-section taken from the direction perpendicular to the application direction has risen as shown in FIG. In the convex state.). Therefore, when the sealing substrate 14 is superimposed on the array substrate 12, the lower end of the sealing member 16 is in a state of being in substantially linear contact with the protective layer 26.

そして図6に示すようにレーザー30を封止部材16に沿って照射し、封止部材16を溶融してアレイ基板12と封止基板14とを接合させると、封止部材16は若干高さが低くなるとともに、アレイ基板12に接合した封止部材16の左右両側が、封止基板14側に持ち上げられるような力が作用する。このようにかかる部分に持ち上げ力が作用しても、応力緩和層24がレーザー30により軟化されていることから、応力緩和層24は保護層26とともに図3の丸で囲ったA部に示すように上方に変形する。   Then, as shown in FIG. 6, when the laser 30 is irradiated along the sealing member 16, the sealing member 16 is melted and the array substrate 12 and the sealing substrate 14 are joined, the sealing member 16 is slightly high. And a force is applied to lift both the left and right sides of the sealing member 16 bonded to the array substrate 12 to the sealing substrate 14 side. Even when a lifting force acts on such a portion, the stress relaxation layer 24 is softened by the laser 30 so that the stress relaxation layer 24 is shown in the circled portion A in FIG. Deforms upward.

したがって図3に示すように封止部材16に歪みが生じた場合でも、応力緩和層24が歪みに従って変形するので、封止部材16とアレイ基板12などとの間に大きな内部応力が発生しない。   Therefore, even when the sealing member 16 is distorted as shown in FIG. 3, the stress relaxation layer 24 is deformed according to the distortion, so that no large internal stress is generated between the sealing member 16 and the array substrate 12 or the like.

また、図4に、封止部材16を封止部材16の長手方向に沿って断面した図を示す。仮に歪みが図4の丸で囲ったB部に示すように封止部材16の長手方向に沿って生じた場合でも、応力緩和層24が歪みに従って変形するので、封止部材16とアレイ基板12などとの間に大きな内部応力が発生しない。   FIG. 4 is a cross-sectional view of the sealing member 16 along the longitudinal direction of the sealing member 16. Even if the strain is generated along the longitudinal direction of the sealing member 16 as shown in a circled portion B in FIG. 4, the stress relaxation layer 24 is deformed according to the strain. Therefore, the sealing member 16 and the array substrate 12 are deformed. No large internal stress is generated between them.

したがって、上記封止体の製造方法および有機EL表示装置10によれば、レーザー照射により封止部材16の近傍に歪みが生じても応力緩和層24が歪みに対して追従するので、歪みにより発生する内部応力を大幅に低減できる。それ故、封止部材16による封止不良や、経年変化に伴う故障の発生を大幅に低減させることができる。   Therefore, according to the manufacturing method of the sealing body and the organic EL display device 10, the stress relaxation layer 24 follows the strain even if the laser irradiation distorts the vicinity of the sealing member 16. It is possible to greatly reduce internal stress. Therefore, it is possible to greatly reduce the occurrence of sealing failure due to the sealing member 16 and the occurrence of failure due to aging.

次に、応力緩和層の有無に関する実験例について説明する。
実験には、第1基板としてのアレイ基板に、厚さ0.7mmのガラス製基板を用いた。応力緩和層は、アレイ基板に、アルミニウムにより厚さ100nmに形成した。更に、応力緩和層の上面には保護層として、210nmのSiONを製膜した。一方比較例として、応力緩和層を設けない以外は、実験例と同等の条件を有するアレイ基板を形成した。
Next, an experimental example regarding the presence or absence of a stress relaxation layer will be described.
In the experiment, a glass substrate having a thickness of 0.7 mm was used as the array substrate as the first substrate. The stress relaxation layer was formed to a thickness of 100 nm with aluminum on the array substrate. Furthermore, 210 nm of SiON was formed as a protective layer on the upper surface of the stress relaxation layer. On the other hand, as a comparative example, an array substrate having the same conditions as in the experimental example was formed except that no stress relaxation layer was provided.

第2基板としての封止基板には、厚さ0.7mmのガラス製基板を用いた。封止部材を形成するフリットガラスは、バナジウム系で、ペースト状に形成したフリットガラスを、ディスペンサ装置を用いて、封止基板上に所定の形状に塗布した。フリットガラスは、厚みが20μmで、幅が600μmの線状となるように塗布した。   A glass substrate having a thickness of 0.7 mm was used as the sealing substrate as the second substrate. The frit glass for forming the sealing member is vanadium-based, and the frit glass formed into a paste is applied in a predetermined shape on the sealing substrate using a dispenser device. The frit glass was applied so as to be a linear shape having a thickness of 20 μm and a width of 600 μm.

封止基板にフリットガラスを塗布したら、封止基板を焼成炉に入れ、下記の条件でフリットガラスを焼成した。150℃で数分間加熱して固め、その後320℃(10℃/minで昇温)で40分間仮焼成(大気焼成)を行い、更に420℃(10℃/minで昇温)で30分間本焼成(窒素焼成)を行った。これによりフリット内の余分なバインダーを飛ばし、固化した封止部材を封止基板に形成した。   After the frit glass was applied to the sealing substrate, the sealing substrate was placed in a firing furnace, and the frit glass was fired under the following conditions. Heat and harden at 150 ° C. for several minutes, then perform temporary firing (atmospheric firing) at 320 ° C. (temperature increase at 10 ° C./min) for 40 minutes, and further at 420 ° C. (temperature increase at 10 ° C./min) for 30 minutes. Firing (nitrogen firing) was performed. As a result, excess binder in the frit was removed, and a solidified sealing member was formed on the sealing substrate.

実験例としてのアレイ基板と比較例としてのアレイ基板のそれぞれに、封止部材を形成した封止基板を重ね合わせる。封止基板は、アレイ基板の保護層に封止部材が接触するように正確に位置合わせして重ねる。所定の間隔を保持するため、アレイ基板と封止基板の隙間に箔材等を挟み、両者を固定させた。   A sealing substrate on which a sealing member is formed is superimposed on each of an array substrate as an experimental example and an array substrate as a comparative example. The sealing substrate is accurately aligned and overlapped so that the sealing member contacts the protective layer of the array substrate. In order to maintain a predetermined interval, a foil material or the like was sandwiched between the array substrate and the sealing substrate, and both were fixed.

封止基板が重ねられた実験例および比較例のアレイ基板に、封止基板の側からレーザーを照射する。レーザーは波長810nm、スポット径1.37mmの半導体レーザーを用い、照射エネルギーを23A(10W相当)とし、3mm/sの速度で封止部材に沿って走査した。   Laser is irradiated from the side of the sealing substrate to the array substrate of the experimental example and the comparative example in which the sealing substrate is stacked. The laser was a semiconductor laser having a wavelength of 810 nm and a spot diameter of 1.37 mm, the irradiation energy was 23 A (equivalent to 10 W), and scanning was performed along the sealing member at a speed of 3 mm / s.

実験結果は、実験例と比較例のいずれもアレイ基板と封止基板間は、封止部材がアレイ基板に溶着し、良好に封止されていた。また、レーザー照射による表示素子の温度上昇は規定値以内であり、表示素子等に変質や劣化は見られなかった。   As a result of the experiment, the sealing member was welded to the array substrate and sealed well between the array substrate and the sealing substrate in both the experimental example and the comparative example. Further, the temperature rise of the display element due to laser irradiation was within a specified value, and no deterioration or deterioration was observed in the display element or the like.

更に、応力分布測定器にて実験例と比較例の封止部材の周辺の応力歪みを測定した。応力歪みの測定は、いわゆる鋭敏色法を用い、封止部材の周辺を5mm間隔で短冊状に割断し、割断したサンプルの裏側から光を当て、2枚の偏光版を用いて応力の分布状況を観察した。   Furthermore, the stress strain around the sealing members of the experimental example and the comparative example was measured with a stress distribution measuring device. The stress strain is measured using a so-called sensitive color method, where the periphery of the sealing member is cut into strips at intervals of 5 mm, light is applied from the back side of the cut sample, and the stress is distributed using two polarizing plates. Was observed.

鋭敏色法ではX軸方向、つまり基板に沿った方向の圧縮応力と、Z軸方向、つまり基板に対して垂直な方向の引張応力が同時に働くと赤い光が観測され、X軸方向の引張応力とZ軸方向の圧縮応力が同時に働くと青い光が観測される。実験例と比較例では、Z軸方向の引張応力に関して、応力緩和層の有無による違いはほとんど見られなかった。しかし、Z軸方向の圧縮応力に関しては、応力緩和層を有する実験例の結果が、比較例の結果に対して半分程度に減少していることが確認できた。   In the sensitive color method, red light is observed when compressive stress in the X-axis direction, that is, the direction along the substrate, and tensile stress in the Z-axis direction, that is, the direction perpendicular to the substrate, are simultaneously observed. Blue light is observed when compressive stress in the Z-axis direction works simultaneously. In the experimental example and the comparative example, regarding the tensile stress in the Z-axis direction, there was almost no difference due to the presence or absence of the stress relaxation layer. However, regarding the compressive stress in the Z-axis direction, it was confirmed that the result of the experimental example having the stress relaxation layer was reduced to about half of the result of the comparative example.

尚、上記例では、有機EL表示装置10を例に説明したが、本発明は、これに限るものではない。上記例の有機EL表示装置10は、本発明にかかる有機EL装置の一例である。本発明の趣旨を逸脱しない限りにおいて、上記例の有機EL表示装置10、及び有機EL素子を用いた他の装置の形態も本発明に含まれるものとする。   In the above example, the organic EL display device 10 has been described as an example, but the present invention is not limited to this. The organic EL display device 10 of the above example is an example of the organic EL device according to the present invention. Unless it deviates from the meaning of this invention, the form of the organic EL display apparatus 10 of the said example and the other apparatus using an organic EL element shall also be included in this invention.

また、応力緩和層24は、アルミニウムによるものに限るものではない。また、封止部材16は有機EL表示装置10の周囲に沿って形成するのみではない。   Further, the stress relaxation layer 24 is not limited to the one made of aluminum. Further, the sealing member 16 is not only formed along the periphery of the organic EL display device 10.

本発明は、有機EL表示装置の製造に利用可能である。   The present invention can be used for manufacturing an organic EL display device.

10…有機EL表示装置
12…アレイ基板
14…封止基板
16…封止部材
20…画素回路
22…表示素子
24…応力緩和層
26…保護層
30…レーザー
DESCRIPTION OF SYMBOLS 10 ... Organic EL display device 12 ... Array substrate 14 ... Sealing substrate 16 ... Sealing member 20 ... Pixel circuit 22 ... Display element 24 ... Stress relaxation layer 26 ... Protective layer 30 ... Laser

Claims (5)

第1基板に、フリットガラスにより封止部材が形成された第2基板を重ね合わせ、前記封止部材をレーザー照射により溶融して前記第1基板と前記第2基板とを接合させる封止体の製造方法において、
前記第1基板は、前記封止部材に対向した箇所に予め応力緩和層を有し、前記レーザー照射により前記封止部材を溶融させる際、少なくとも該応力緩和層が該レーザー照射により軟化されることを特徴とした封止体の製造方法。
A sealing body in which a second substrate on which a sealing member is formed of frit glass is superimposed on a first substrate, and the sealing member is melted by laser irradiation to join the first substrate and the second substrate. In the manufacturing method,
The first substrate has a stress relaxation layer in a location facing the sealing member in advance, and when the sealing member is melted by the laser irradiation, at least the stress relaxation layer is softened by the laser irradiation. The manufacturing method of the sealing body characterized by this.
応力緩和層は、前記フリットガラスが固化する温度より固化する温度が低い材質で形成されていることを特徴とする請求項1に記載の封止体の製造方法。   The method for manufacturing a sealed body according to claim 1, wherein the stress relaxation layer is formed of a material having a temperature at which the frit glass is solidified lower than a temperature at which the frit glass is solidified. 前記応力緩和層の表面に、シリコン酸化物とシリコン窒化物のいずれかからなる保護層を形成したことを特徴とする請求項1または2に記載の封止体の製造方法。   The method for manufacturing a sealing body according to claim 1, wherein a protective layer made of either silicon oxide or silicon nitride is formed on a surface of the stress relaxation layer. 前記レーザー照射は、前記第2基板に形成された封止部材の幅よりも広く行われ、該封止部材の幅方向全体を溶融させることを特徴とする請求項1〜3のいずれか1項に記載の封止体の製造方法。   The laser irradiation is performed wider than the width of the sealing member formed on the second substrate, and the entire width direction of the sealing member is melted. The manufacturing method of the sealing body as described in any one of. 有機EL素子が形成された第1基板に、フリットガラスからなる封止部材を具えた第2基板を重ね、前記封止部材をレーザー照射により溶融して前記第1基板と前記第2基板の間を封止した有機EL装置において、
前記第1基板の、前記封止部材に対向した箇所に、前記レーザーの照射により軟化される応力緩和層を設けたことを特徴とする有機EL装置。
A second substrate having a sealing member made of frit glass is overlaid on the first substrate on which the organic EL element is formed, and the sealing member is melted by laser irradiation to be between the first substrate and the second substrate. In the organic EL device in which is sealed,
An organic EL device, wherein a stress relaxation layer that is softened by the laser irradiation is provided at a position of the first substrate facing the sealing member.
JP2009218699A 2009-09-24 2009-09-24 Method for manufacturing sealing body, and organic el device Pending JP2011070797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009218699A JP2011070797A (en) 2009-09-24 2009-09-24 Method for manufacturing sealing body, and organic el device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009218699A JP2011070797A (en) 2009-09-24 2009-09-24 Method for manufacturing sealing body, and organic el device

Publications (1)

Publication Number Publication Date
JP2011070797A true JP2011070797A (en) 2011-04-07

Family

ID=44015904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009218699A Pending JP2011070797A (en) 2009-09-24 2009-09-24 Method for manufacturing sealing body, and organic el device

Country Status (1)

Country Link
JP (1) JP2011070797A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120139557A (en) * 2011-06-16 2012-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Sealed body, method for manufacturing sealed body, light-emitting device, and method for manufacturing light-emitting device
JP2013097195A (en) * 2011-11-01 2013-05-20 Tokyo Institute Of Technology Display device and manufacturing method for the same
US8623469B2 (en) 2011-10-21 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Method of heating dispersion composition and method of forming glass pattern
JP2014059553A (en) * 2012-08-23 2014-04-03 Semiconductor Energy Lab Co Ltd Display device
US9048350B2 (en) 2011-11-28 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Sealed body, light-emitting module and method of manufacturing sealed body
US9214643B2 (en) 2011-11-29 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Sealed structure, light-emitting device, electronic device, and lighting device
US9216557B2 (en) 2011-11-29 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Sealed structure, light-emitting device, electronic device, and lighting device
US9258853B2 (en) 2011-08-26 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, electronic device, lighting device, and method for manufacturing the light-emitting device
US9362522B2 (en) 2012-10-26 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Method for bonding substrates, method for manufacturing sealing structure, and method for manufacturing light-emitting device
US9440880B2 (en) 2011-06-17 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing light-emitting device
US9472776B2 (en) 2011-10-14 2016-10-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sealed structure including welded glass frits
US9633871B2 (en) 2011-08-24 2017-04-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9666755B2 (en) 2011-11-29 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing sealed body and method of manufacturing light-emitting device
US9853242B2 (en) 2012-07-30 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Sealing structure and organic electroluminescence device
US10068926B2 (en) 2011-05-05 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN108550555A (en) * 2018-05-17 2018-09-18 京东方科技集团股份有限公司 The production method and display processing method of a kind of display, display

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307633A (en) * 2000-04-20 2001-11-02 Mitsubishi Electric Corp Flat display panel, device for flat display panel and manufacturing method for flat display panel
WO2008103338A1 (en) * 2007-02-23 2008-08-28 Corning Incorporated Methods and apparatus to improve frit-sealed glass package
JP2008288376A (en) * 2007-05-17 2008-11-27 Toshiba Matsushita Display Technology Co Ltd Display unit and manufacturing method thereof
JP2009076437A (en) * 2007-08-31 2009-04-09 Toshiba Matsushita Display Technology Co Ltd Display device
JP2010080339A (en) * 2008-09-26 2010-04-08 Toshiba Mobile Display Co Ltd Display
JP2010080341A (en) * 2008-09-26 2010-04-08 Toshiba Mobile Display Co Ltd Display
JP2010170949A (en) * 2009-01-26 2010-08-05 Toshiba Mobile Display Co Ltd Organic el display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307633A (en) * 2000-04-20 2001-11-02 Mitsubishi Electric Corp Flat display panel, device for flat display panel and manufacturing method for flat display panel
WO2008103338A1 (en) * 2007-02-23 2008-08-28 Corning Incorporated Methods and apparatus to improve frit-sealed glass package
JP2008288376A (en) * 2007-05-17 2008-11-27 Toshiba Matsushita Display Technology Co Ltd Display unit and manufacturing method thereof
JP2009076437A (en) * 2007-08-31 2009-04-09 Toshiba Matsushita Display Technology Co Ltd Display device
JP2010080339A (en) * 2008-09-26 2010-04-08 Toshiba Mobile Display Co Ltd Display
JP2010080341A (en) * 2008-09-26 2010-04-08 Toshiba Mobile Display Co Ltd Display
JP2010170949A (en) * 2009-01-26 2010-08-05 Toshiba Mobile Display Co Ltd Organic el display device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11942483B2 (en) 2011-05-05 2024-03-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10283530B2 (en) 2011-05-05 2019-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10068926B2 (en) 2011-05-05 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2013020964A (en) * 2011-06-16 2013-01-31 Semiconductor Energy Lab Co Ltd Method for manufacturing sealing body, sealing body, method for manufacturing light-emitting device, and light-emitting device
KR102038844B1 (en) * 2011-06-16 2019-10-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Sealed body, method for manufacturing sealed body, light-emitting device, and method for manufacturing light-emitting device
US8816336B2 (en) 2011-06-16 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Sealed body, method for manufacturing sealed body, light-emitting device, and method for manufacturing light-emitting device
US9202843B2 (en) 2011-06-16 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Sealed body, method for manufacturing sealed body, light-emitting device, and method for manufacturing light-emitting device
KR20120139557A (en) * 2011-06-16 2012-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Sealed body, method for manufacturing sealed body, light-emitting device, and method for manufacturing light-emitting device
US9440880B2 (en) 2011-06-17 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing light-emitting device
US9633871B2 (en) 2011-08-24 2017-04-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9595697B2 (en) 2011-08-26 2017-03-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, electronic device, lighting device, and method for manufacturing the light-emitting device
US9258853B2 (en) 2011-08-26 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, electronic device, lighting device, and method for manufacturing the light-emitting device
US9472776B2 (en) 2011-10-14 2016-10-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sealed structure including welded glass frits
US8623469B2 (en) 2011-10-21 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Method of heating dispersion composition and method of forming glass pattern
JP2013097195A (en) * 2011-11-01 2013-05-20 Tokyo Institute Of Technology Display device and manufacturing method for the same
US10096741B2 (en) 2011-11-28 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Sealed body, light-emitting module, and method of manufacturing sealed body
US9048350B2 (en) 2011-11-28 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Sealed body, light-emitting module and method of manufacturing sealed body
US9216557B2 (en) 2011-11-29 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Sealed structure, light-emitting device, electronic device, and lighting device
US9761827B2 (en) 2011-11-29 2017-09-12 Semiconductor Energy Laboratory Co., Ltd. Sealed structure, light-emitting device, electronic device, and lighting device
US9666755B2 (en) 2011-11-29 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing sealed body and method of manufacturing light-emitting device
US11101444B2 (en) 2011-11-29 2021-08-24 Semiconductor Energy Laboratory Co., Ltd. Sealed structure, light-emitting device, electronic device, and lighting device
US9214643B2 (en) 2011-11-29 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Sealed structure, light-emitting device, electronic device, and lighting device
US10361392B2 (en) 2011-11-29 2019-07-23 Semiconductor Energy Laboratory Co., Ltd. Sealed structure, light-emitting device, electronic device, and lighting device
US9853242B2 (en) 2012-07-30 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Sealing structure and organic electroluminescence device
US10008630B2 (en) 2012-08-23 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2014059553A (en) * 2012-08-23 2014-04-03 Semiconductor Energy Lab Co Ltd Display device
US9362522B2 (en) 2012-10-26 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Method for bonding substrates, method for manufacturing sealing structure, and method for manufacturing light-emitting device
CN108550555A (en) * 2018-05-17 2018-09-18 京东方科技集团股份有限公司 The production method and display processing method of a kind of display, display

Similar Documents

Publication Publication Date Title
JP2011070797A (en) Method for manufacturing sealing body, and organic el device
KR20130094308A (en) Optoelectronic semiconductor element and associated method of production by direct welding of glass housing components by means of ultra short pulsed laser without glass solder
US10011525B2 (en) Glass sealing with transparent materials having transient absorption properties
US8063561B2 (en) Organic light emitting display device
US20210280817A1 (en) Display modules with laser weld seals and modular display
TWI696591B (en) Laser welded glass packages and methods of making
US8729796B2 (en) Organic light emitting display device including a gap to improve image quality and method of fabricating the same
TWI374684B (en) Organic light-emitting display device and method for fabricating the same
EP1814174B1 (en) Organic light-emitting display device and method for fabricating the same
EP1814159B1 (en) Flat panel display device and method of making the same
US20070176185A1 (en) Organic light emitting display of mother substrate unit and method of fabricating the same
US8569946B2 (en) Organic light emitting display having a single-layered anti-reflection layer of aluminum fluoride and method of fabricating the same
JP4486071B2 (en) Flat panel display device and manufacturing method thereof
TW201419617A (en) Organic light emitting display apparatus and method of manufacturing the same
US20120248950A1 (en) Hermetically sealed container, image display apparatus, and their manufacturing methods
CN101009310A (en) Organic light emitting display and method of fabricating the same
US7560858B2 (en) Sealing substrate and a pixel substrate of a display device joined by a metal joint solder
KR20140063226A (en) Organic light emitting diode display and manufacturing method thereof
JP2008288376A (en) Display unit and manufacturing method thereof
KR20120085267A (en) Glass package for sealing a device, and system comprising glass package
JP2012226978A (en) Manufacturing method of air tight container and image display apparatus
KR20090089010A (en) Organic light emitting display device and method for manufacturing the same
TW201513332A (en) Organic light emitting package structure and manufacturing method thereof
JP2012190607A (en) Manufacturing method of hermetic container
KR100745347B1 (en) fabricating method of Organic light emitting display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130709