JP2011056530A - Method for multi-statge molding of deep-drawn steel square can; deep-drawn steel square can - Google Patents
Method for multi-statge molding of deep-drawn steel square can; deep-drawn steel square can Download PDFInfo
- Publication number
- JP2011056530A JP2011056530A JP2009207870A JP2009207870A JP2011056530A JP 2011056530 A JP2011056530 A JP 2011056530A JP 2009207870 A JP2009207870 A JP 2009207870A JP 2009207870 A JP2009207870 A JP 2009207870A JP 2011056530 A JP2011056530 A JP 2011056530A
- Authority
- JP
- Japan
- Prior art keywords
- deep
- drawn
- square
- δhmax
- molding method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 66
- 238000000465 moulding Methods 0.000 title claims abstract description 41
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 27
- 239000010959 steel Substances 0.000 title claims abstract description 27
- 238000010409 ironing Methods 0.000 claims abstract description 26
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 28
- 229910052742 iron Inorganic materials 0.000 claims description 14
- 238000004458 analytical method Methods 0.000 claims description 5
- 238000004088 simulation Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 abstract description 3
- 238000007747 plating Methods 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 5
- 230000037303 wrinkles Effects 0.000 description 4
- 239000010960 cold rolled steel Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910018100 Ni-Sn Inorganic materials 0.000 description 1
- 229910018532 Ni—Sn Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Description
本発明は、冷延鋼板、Niめっき等の表面処理鋼板を素材とした電池用深絞り角缶、その他深絞り角缶において、深絞り角缶壁面のしごき加工痕(カジリ痕)の無い表面性状に優れた深絞り角缶、および深絞り角缶の多段プレス成型方法で、しごき加工を行わず金型寿命の長いプレス成型方法に関するものである。 The present invention is a cold drawn steel sheet, a deep drawn square can for batteries made of surface-treated steel sheets such as Ni plating, and other deep drawn square cans, and the surface properties of the deep drawn square can wall surface without ironing marks (galling marks). The present invention relates to a deep-drawn square can excellent in a multi-stage press-molding method for deep-drawn square cans and a press-molding method having a long die life without performing ironing.
冷延鋼板、Niめっき等の表面処理鋼板を素材とした電池用角缶、その他缶深さの深い角缶は、多段プレス成型方法で成型されている。電池缶等の角缶の多段プレスでは、製品の缶コーナー部は小さな缶コーナーRに向かって高いしぼり率で板がコーナー部に流入することになり、絞り缶コーナー部の缶高さはプレスを一段絞る毎に顕著に高くなる。一方、長辺部或いは短辺部の直線部では絞り成型が殆どなく、単にダイス肩R部が流れ込むのみであるため、缶高さの増加は極微かとなる。このような成型を多段繰り返し行うと、コーナー部と直辺部とのメタルフローに大きな差が生じ、コーナー部の鋼板の流入が困難となり、プレス破断が生じることがある。 Battery square cans made of cold-rolled steel sheets, surface-treated steel sheets such as Ni plating, and other square cans with deep can depth are formed by a multistage press molding method. In multi-stage presses for square cans such as battery cans, the can corner of the product will flow into the corner with a high squeezing rate toward the small can corner R, and the can height at the corner of the can can be pressed. Each time it is squeezed, it becomes significantly higher. On the other hand, there is almost no drawing molding in the long side portion or the straight side portion of the short side portion, and only the die shoulder R portion flows in, so the increase in the can height is negligible. When such molding is repeated in multiple stages, a large difference occurs in the metal flow between the corner portion and the straight side portion, making it difficult for the steel plate to flow into the corner portion, and press fracture may occur.
従来は、電池用角缶の様な缶深さの深い角缶の多段プレス成型は、上述のコーナー部と直辺部の鋼板の流入量差を補うため、ポンチとダイスのクリアランスを板厚より薄く設定ししごき加工を行ってプレス割れを防止するしごきプレス方法が行われている。例えば、特許文献1の[発明の効果]に、「下流のそれぞれの角絞り工程で均一な肉厚が得られるよう角部近辺の肉厚が薄くなるようにしごき成型するようにしたので、(中略)角絞りに起きやすい偏肉現象を抑えて均一な肉厚を得ることができるようになり、金型製作費が安価になるとともにメンテを含む金型調整費が減少する。」と記載されている。 Conventionally, multi-stage press molding of square cans with a deep can like battery square cans compensates for the difference in the amount of inflow between the above-mentioned corner and right side steel plates. An ironing press method for preventing press cracking by performing thinning and ironing is performed. For example, in [Effects of the invention] of Patent Document 1, “because the thickness in the vicinity of the corner is reduced so that a uniform thickness can be obtained in each downstream corner drawing process, (Omitted) It becomes possible to obtain a uniform thickness by suppressing the uneven thickness phenomenon that tends to occur in the corner drawing, and the die manufacturing cost is reduced and the die adjustment cost including maintenance is reduced. ing.
しかし、このしごきプレス成型方法は、しごき加工を行うため、金型のしごき加工面に非常に高い圧縮面圧が負荷された状態で鋼板が摺動し、金型の摩耗が大きくなり金型寿命が極めて短くなること、又、生産性を向上させようとしてプレス速度を速くすると発熱が大きくなり、焼き付きが生じるなどのトラブルが生じやすくなる。更に、製品のしごき加工が施された壁面は、しごき加工痕(カジリ痕)即ちしごき加工時の摺動痕が発生し微小なささくれ状になる。例えば、電池缶の場合は耐食性等のためにNiメッキ鋼板が使用されるが、そのNiメッキ面に摺動痕が発生し微小なささくれ状になって有効なNiメッキ層が薄くなり、ときには鉄面が露出し耐食性を低下させる。そのため、所定の耐食性を確保するには、めっき厚を厚くする必要があるなどの課題がある。 However, since this ironing press molding method performs ironing, the steel sheet slides with a very high compression surface pressure applied to the ironing surface of the die, and the wear of the die increases and the die life is increased. If the press speed is increased in order to improve the productivity, heat generation increases and troubles such as seizure tend to occur. Further, the wall surface on which the ironing process of the product has been performed has a minute screed shape due to ironing marks (scratching marks), that is, sliding marks during the ironing process. For example, in the case of a battery can, a Ni-plated steel plate is used for corrosion resistance, etc., but a sliding trace is generated on the Ni-plated surface, and the effective Ni-plated layer is thinned by forming a fine screed shape. The surface is exposed and the corrosion resistance is lowered. Therefore, there is a problem that it is necessary to increase the plating thickness in order to ensure the predetermined corrosion resistance.
尚、冷延鋼板、Niめっき等の表面処理鋼板を素材とした電池用角缶の多段プレス成型方法に関する従来技術について調査したが、しごき加工を行わずに所定のプレス成型が出来る成型方法については見あたらなかった。 In addition, although we investigated the conventional technology related to the multi-stage press molding method for battery square cans made of surface-treated steel sheets such as cold-rolled steel sheets and Ni plating, about the molding methods that can perform predetermined press molding without performing ironing I didn't find it.
本発明が解決しようとする課題は、冷延鋼板、Niめっき等の表面処理鋼板を素材とした電池用深絞り角缶等の深絞り角缶において、深絞り角缶壁面のしごき加工痕(カジリ痕)の無い表面性状に優れた深絞り角缶および深絞り鉄角缶の多段プレス成型方法を提供することである。 The problem to be solved by the present invention is that, in a deep drawn square can such as a deep drawn square can for a battery made of a cold-treated steel sheet or a surface-treated steel sheet such as Ni plating, It is to provide a multi-stage press molding method for deep-drawn square cans and deep-drawn iron square cans having excellent surface properties without any traces.
本発明者らは、深絞り角缶壁面のしごき加工痕(カジリ痕)の無い表面性状に優れた深絞り角缶およびその成型方法を提供することについて検討を行い本発明を完成したものであり、その要旨とするところは下記の通りである。 The present inventors have studied the provision of a deep-drawn square can excellent in surface properties having no ironing traces (galling marks) on the wall of the deep-drawn square can and its molding method, and completed the present invention. The gist is as follows.
(1)深絞り鉄角缶の多段プレス成型方法であって、第1絞り工程以降の全絞り工程において、少なくとも最終絞り工程以外の絞り工程を実質的にしごき加工を施さない多段成型方法とし、第2絞り工程に於ける絞り缶の長辺から短辺に至る各位置の絞り缶の高さ増加率(ΔH(%)=(絞り後缶高さ−絞り前缶高さ)/絞り前缶高さ×100)の最大値ΔHmaxを40%以下、各位置のΔHの変動幅(ΔHmax−ΔHmin)を20%以下となるようにし、第3絞り工程以降の全絞り工程において、ΔHmaxを25%以下、ΔHmax−ΔHminを15%以下となるように、ブランク形状、各絞り工程毎の絞りポンチ輪郭、ダイス輪郭を設定することで、しごき加工を施さなくとも絞り成型を可能とすることを特徴とする深絞り鉄角缶の多段プレス成型方法。
(2)FEM数値解析によるシミュレーションを繰り返し行い、使用鋼板の加工性、異方性を考慮し、前記ブランク形状と各絞り工程毎の絞りポンチおよびダイスの輪郭を設定する(1)に記載の深絞り鉄角缶の多段プレス成型方法。
(3)(1)または(2)に記載の多段プレス成型方法によりプレス成型された深絞り鉄角缶。
(1) A multi-stage press molding method for deep-drawn iron square cans, wherein in all the drawing processes after the first drawing process, at least a drawing process other than the final drawing process is substantially not subjected to ironing, Height increase rate of the squeezed can at each position from the long side to the short side of the squeezed can in the second squeezing step (ΔH (%) = (can height after squeezing−can height before squeezing) / can before squeezing The maximum value ΔHmax of height × 100) is 40% or less, and the variation range of ΔH (ΔHmax−ΔHmin) at each position is 20% or less, and ΔHmax is 25% in all drawing processes after the third drawing process. Hereinafter, by setting the blank shape, the drawing punch contour for each drawing process, and the die profile so that ΔHmax−ΔHmin is 15% or less, it is possible to perform drawing without performing ironing. Deep drawn iron square can Stage press molding method.
(2) The simulation according to FEM numerical analysis is repeatedly performed, and the blank shape and the drawing punch and die outline for each drawing process are set in consideration of the workability and anisotropy of the steel sheet used. Multi-stage press molding method for drawn iron square cans.
(3) A deep-drawn iron square can press-molded by the multistage press-molding method according to (1) or (2).
本発明の深絞り角缶およびその成型方法は、冷延鋼板、Niめっき等の表面処理鋼板を素材とした電池用深絞り角缶等の深絞り角缶において、深絞り角缶壁面のしごき加工痕(カジリ痕)の無い表面性状に優れた深絞り角缶および従来のしごきプレス成型方法の前記課題が無い深絞り鉄角缶の多段プレス成型方法を提供するもので、従来のしごきプレス成型方法の課題である「金型の摩耗が大きくなり金型寿命が極めて短くなる」こと、又、「生産性を向上させようとしてプレス速度を速くすると発熱が大きくなり、焼き付きが生じるなどのトラブルが生じやすくなる」こと、更に、「製品のしごき加工が施された壁面は、摺動痕が発生し微小なささくれ状になり、例えば、電池缶の場合は耐食性等でNiメッキ鋼板が使用されるが、そのNiメッキ面に摺動痕が発生し微小なささくれ状になり有効なNiメッキ層が薄くなり時には鉄面が露出し耐食性を低下させ、所定の耐食性を確保するにはめっき厚を厚くする必要があるなどの課題がある」等の課題を解決できる。 The deep-drawn square can of the present invention and the molding method thereof are ironed on the wall of a deep-drawn square can in a deep-drawn square can such as a deep-drawn square can for a battery made of a cold-treated steel sheet or a surface-treated steel sheet such as Ni plating. The present invention provides a deep drawing square can excellent in surface properties having no traces (scratch marks) and a multistage press molding method for deep drawing iron square cans without the above-mentioned problems of conventional ironing press molding methods. The problem is that “wearing of the mold becomes large and the life of the mold becomes extremely short”, and “the higher the press speed in order to improve productivity, the more heat is generated and the seizure occurs. Furthermore, “the wall surface on which the ironing process of the product has been performed has a sliding trace and becomes a fine crease shape. For example, in the case of a battery can, a Ni-plated steel sheet is used for corrosion resistance and the like. , That N Sliding traces are generated on the plated surface, and the effective Ni plating layer becomes thin when the effective Ni plating layer is thinned. When the iron surface is exposed and the corrosion resistance is lowered, it is necessary to increase the plating thickness in order to ensure the predetermined corrosion resistance. Such as “There are issues such as”.
以下に本発明について詳細に述べる。 The present invention is described in detail below.
本発明者らは、先ず、缶内幅W=85mm、缶内厚みT=15mm、缶高さH=45mm、缶内コーナー半径Rc=1.0mm、板厚t=0.40mmの大型角電池缶(図1参照)について、全絞り工程のポンチとダイスのクリアランスを成型前側壁板厚より大きくし、しごき加工がなされない深絞り鉄角缶の多段プレス成型方法で試作を試みた。1回目は全7工程絞り計画で試作したところ3工程目の絞り時に割れが発生し、2回目の試作では工程数を増やし全9工程絞り計画で試作したところ4工程目の絞りで割れが発生した。その後もポンチ金型の形状を修正し試作を行ったが、何れも、途中段階で、コーナー部と直辺部の境界で割れが発生し、絞り加工が出来なかった。 The present inventors firstly made a large square battery having a can inner width W = 85 mm, a can inner thickness T = 15 mm, a can height H = 45 mm, a can inner corner radius Rc = 1.0 mm, and a plate thickness t = 0.40 mm. For the can (see FIG. 1), the punch and die clearance in the entire drawing process was made larger than the thickness of the side wall plate before molding, and trial production was attempted by a multi-stage press molding method of a deep drawn iron square can that is not ironed. The first trial was made with a seven-step drawing plan, and cracks occurred when the third step was drawn. The second trial was increased in the number of processes, and the trial was made with a nine-step drawing plan. did. After that, the shape of the punch mold was corrected and trial manufacture was carried out. In either case, cracks occurred at the boundary between the corner part and the right side part, and drawing was not possible.
本発明者らは、なぜ、途中工程で、コーナー部と直辺部の境界で割れが発生し、絞り加工が出来無くなったのかを詳細に検討した。角缶のコーナー部の近似的成型としては、コーナー部を4箇所集めた丸缶、即ち、本試作角缶の場合はRc=1.0mm、缶高さH=45mmであるので、(直径=2.0mm)×(H=45mm)に該当し、単三電池缶(約13.5φ×約50.0H)に比較して極めて過酷な深絞り成型となる。従って、コーナー部近傍の鋼板を、如何にスムースに直辺部にメタルフローさせるかが、成型のポイントであることを見出し、それについて、成型シミュレーション(FEM解析)を活用し、種々検討した。その結果、本発明の「第2絞り工程に於ける絞り缶の長辺から短辺に至る各位置の絞り缶の高さ増加率(ΔH(%)=(絞り後缶高さ−絞り前缶高さ)/絞り前缶高さ×100)の最大値(ΔHmax)を40%以下、各位置のΔHの変動幅(ΔHmax−ΔHmin)を20%以下となるように、そして、第3絞り工程以降の全絞り工程において、ΔHmaxを25%以下、ΔHmax−ΔHminを15%以下となるように、ブランク形状、各絞り工程毎の絞りポンチ輪郭、ダイス輪郭に設定すること」を、全工程の各金型設計の基本設計思想、即ち、ブランク形状、各工程の金型設計の良否の判断基準とすることで、しごき加工を施さなくとも絞り成型が可能となり、しごき加工を行わない深絞り角缶のプレス成型を達成する金型設計の最重要なポイントであることを知見した。このようにして成型した深絞り角缶は、角缶壁面にしごき加工が施されていないため、プレス成型した缶壁面にしごき加工痕(カジリ痕)が無く、表面性状に優れた深絞り鉄角缶となる。 The present inventors examined in detail why a crack occurred at the boundary between the corner portion and the right side portion during the intermediate process, and the drawing process could not be performed. As an approximate molding of the corner portion of the square can, a round can in which four corner portions are collected, that is, in the case of this prototype square can, Rc = 1.0 mm and the can height H = 45 mm. 2.0 mm) × (H = 45 mm), which is extremely severe deep drawing compared to an AA battery can (about 13.5φ × about 50.0 H). Therefore, it was found that the point of molding was how to smoothly flow the steel plate in the vicinity of the corner part to the straight side part, and various studies were made using the molding simulation (FEM analysis). As a result, the rate of increase in the height of the can in each position from the long side to the short side of the drawn can in the second drawing step (ΔH (%) = (can height after drawing−can before drawing) The maximum value (ΔHmax) of height) / can height before squeezing × 100) is 40% or less, the variation range of ΔH (ΔHmax−ΔHmin) at each position is 20% or less, and the third squeezing step In all subsequent drawing processes, set the blank shape, the drawing punch outline for each drawing process, and the die outline so that ΔHmax is 25% or less and ΔHmax−ΔHmin is 15% or less. By using the basic design philosophy of mold design, that is, the blank shape and the criteria for determining the quality of the mold design for each process, it is possible to perform drawing without ironing, and deep drawing square cans without ironing The most important mold design to achieve press molding Was knowledge that it is a point. The deep-drawn square can molded in this way has no ironing marks on the wall surface of the can, so there is no ironing marks on the wall surface of the press can. It becomes a can.
尚、本発明の設計思想を持たずに、単に、成型シミュレーションのみを活用しても、鋼板特性、潤滑特性、ブランク形状、各工程の金型形状は、どれか1つを変更すると、成型可否、絞り品の形状、各工程の成型状況(しわ、割れ、缶壁高さ寸法および耳形状、板厚分布)の全てが変化するので、良好な結果を得る成型条件を導き出すには非常に多くの成型条件の組合せがあり、極めて難しい。 Even if only the molding simulation is used without having the design concept of the present invention, if any one of the steel plate characteristics, the lubrication characteristics, the blank shape, and the mold shape of each process is changed, the moldability is determined. Since the shape of the drawn product and the molding status of each process (wrinkles, cracks, can wall height and ear shape, plate thickness distribution) all change, it is very much to derive molding conditions to obtain good results There are combinations of molding conditions, which are extremely difficult.
以下に、本発明の実施例を、図面にもとづいて説明する。 Embodiments of the present invention will be described below with reference to the drawings.
本発明により成型される角缶は、例えば図1に示すような缶コーナーR寸法Rcが小さくそして缶深さHが深い角電池缶等で、ハイブリッド自動車などに使われる大型のNi−H角電池、Li角電池用角缶等がその代表例である。本発明を適用しその効果が発揮できるのはH/Rc≧15の場合であり、特にH/Rc≧25の角缶への適用時には、その効果は顕著である。又、本発明を適用して作られた深絞り角缶は、所定の缶高さ寸法にするためのトリミング加工、壁面等の形状矯正、或いは穴開け加工等が施された後、完成した深絞り角電池缶或いは深絞り角容器缶となる。 The rectangular can molded according to the present invention is, for example, a rectangular battery can having a small can corner R dimension Rc and a deep can depth H as shown in FIG. A typical example is a square can for a Li square battery. The effect of the present invention can be exhibited when H / Rc ≧ 15, and the effect is particularly remarkable when applied to a square can with H / Rc ≧ 25. In addition, the deep-drawn square can made by applying the present invention has a finished depth after it has been subjected to trimming processing to correct the can height, shape correction of the wall surface, drilling processing, etc. It becomes an aperture-angle battery can or a deep-angle-angle container can.
図1〜6を用いて本発明の実施例を具体的に説明する。図1は、本発明により作成された深絞り角缶の缶高さをH=43.0mmにトリミングした角缶11を示し、(a)は上面からみた平面図、(b)は正面図である。 The embodiment of the present invention will be specifically described with reference to FIGS. FIG. 1 shows a square can 11 in which the height of a deep-drawn square can made according to the present invention is trimmed to H = 43.0 mm, (a) is a plan view seen from above, and (b) is a front view. is there.
図2〜4は、本発明の成型方法で図1の角缶のプレス成型を行う工程を示すもので、図2はブランク10の形状、図3は第1絞り工程〜第3(最終)絞り工程でのポンチP、ダイスD、しわ押さえ(ブランクホルダー)BHの形状、図4は第1工程〜第3工程の絞り缶の外観を示すものである。なお、図3において、1はダイスDの輪郭、2はポンチPの輪郭、3はポンチP底の輪郭、4は絞り前缶の外ホルダー輪郭、5は絞り前缶の内ホルダー輪郭を示す。絞り前缶の外ホルダー輪郭4はダイスDと一体であり、絞り前缶の内ホルダー輪郭5はしわ押さえBHと一体である。第1工程〜最終の第3工程の絞り缶(11a、11b、11c)は、コーナー近傍の割れ、ネッキング、しわの発生もなく、良好な絞り缶が得られている。 2 to 4 show the process of press-molding the square can of FIG. 1 by the molding method of the present invention, FIG. 2 shows the shape of the blank 10, and FIG. 3 shows the first drawing process to the third (final) drawing. The shape of punch P, die D, and wrinkle presser (blank holder) BH in the process, FIG. 4 shows the appearance of the drawn cans in the first to third steps. In FIG. 3, 1 is the outline of the die D, 2 is the outline of the punch P, 3 is the outline of the bottom of the punch P, 4 is the outer holder outline of the can before drawing, and 5 is the outline of the inner holder of the can before drawing. The outer holder contour 4 of the can before drawing is integrated with the die D, and the inner holder contour 5 of the can before drawing is integrated with the wrinkle retainer BH. The squeezed cans (11a, 11b, 11c) of the first step to the final third step are free from cracks, necking, and wrinkles near the corners, and a good squeezed can is obtained.
図5、図6は、試作した深絞り角缶について、本発明の、第2絞り工程に於ける絞り缶の長辺から短辺に至る各位置の絞り缶の高さ増加率ΔHの最大値ΔHmaxを40%以下、各位置のΔHの変動幅(ΔHmax−ΔHmin)を20%以下、そして、第3絞り工程においてΔHmaxを25%以下、ΔHmax−ΔHminを15%以下、となっているかどうかを調査したものである。図5に示すように、第2工程の絞り缶のΔHmax=34%、ΔHmax−ΔHmin=34%−18%=16%、図6に示すように、第3工程の絞り缶のΔHmax=17%、ΔHmax−ΔHmin=17%−8%=9%と、本発明の範囲で成型されており、しごき加工を行わない全3工程の多段プレス成型方法で、コーナー近傍の割れ、ネッキング、しわの発生もなく、良好な絞り缶が得られた。 5 and 6 show the maximum value of the height increase rate ΔH of the squeezed can at each position from the long side to the short side of the squeezed can in the second squeezing step of the prototype deep-drawn square can. Whether ΔHmax is 40% or less, ΔH fluctuation range (ΔHmax−ΔHmin) at each position is 20% or less, and ΔHmax is 25% or less and ΔHmax−ΔHmin is 15% or less in the third drawing step. It has been investigated. As shown in FIG. 5, ΔHmax = 34% of the second-stage drawn can, ΔHmax−ΔHmin = 34% −18% = 16%, and as shown in FIG. 6, ΔHmax = 17% of the third-stage drawn can , ΔHmax−ΔHmin = 17% −8% = 9%, which is molded within the scope of the present invention, and is a three-stage multi-stage press molding method that does not perform ironing. As a result, a good squeezed can was obtained.
尚、図5、図6に示すΔHは、FEM数値解析を用いない方法では、第2絞り加工前の缶壁上端部に例えば2mmピッチで位置番号をマーキングし、位置番号毎の缶底からの缶壁垂直高さを測定してH1とし、第2絞り加工後の位置番号毎の缶底からの缶壁垂直高さを測定してH2とし、
ΔH(%)=(H2−H1)/H1×100
を測定し、第3絞り工程以降のΔHも同様にして算出して求めることができる。又、FEM解析時の缶上端部のモード番号(メッシュ番号)毎の缶高さ増加率ΔH(%)を求めればよい。
Note that ΔH shown in FIG. 5 and FIG. 6 is a method in which the FEM numerical analysis is not used, the position number is marked on the upper end of the can wall before the second drawing process, for example, at a pitch of 2 mm, and from the bottom of the can for each position number. The vertical height of the can wall is measured as H1, and the vertical height of the can wall from the bottom of each position number after the second drawing is measured as H2,
ΔH (%) = (H2−H1) / H1 × 100
And ΔH after the third squeezing step can be similarly calculated and obtained. Moreover, what is necessary is just to obtain | require the can height increase rate (DELTA) H (%) for every mode number (mesh number) of the can upper end part at the time of FEM analysis.
以上のように、ΔHという定量的指標を用い、本発明の具体的な数値規制を持って、ブランク形状、各絞り工程毎の絞りポンチ輪郭、ダイス輪郭を設定することで、深絞り角缶を、しごき加工を施さなくとも絞り成型することが可能となる。 As described above, using a quantitative index of ΔH, and setting the blank shape, the drawing punch outline for each drawing process, and the die outline with the specific numerical regulation of the present invention, It is possible to perform drawing without performing ironing.
又、得られた深絞り角缶は、プレス成型した缶壁面のしごき加工痕(カジリ痕)も無く表面性状に優れた深絞り鉄角缶が製造でき、薄目付けのNiメッキ鋼板でしごき加工を行わずにプレス成型した深絞り角缶は、良好な耐食性が得られた。 The resulting deep-drawn square cans can be manufactured into deep-drawn iron square cans with excellent surface properties without any press-molded can wall markings (galling marks). The deep-drawn square can that was press-molded without performing good corrosion resistance.
本発明の深絞り角缶に供試される鋼板は、冷延鋼板、Niめっき或いはNi−Sn等合金めっき鋼板、更には樹脂フイルム被覆鋼板などの表面処理鋼板、更には、鉄系鋼板(ステンレス等も含む)でも有効な効果を発揮できる。 Steel plates used in the deep drawn square can of the present invention are cold-rolled steel plates, Ni-plated or Ni-Sn alloy-plated steel plates, surface-treated steel plates such as resin film-coated steel plates, and iron-based steel plates (stainless steel). Can also be effective.
本発明は、各種鋼板による角缶のプレス成型方法に適用できる。 The present invention can be applied to a method of press-molding a square can made of various steel plates.
1 ダイス輪郭
2 ポンチ輪郭
3 ポンチ底輪郭
4 絞り前缶の外ホルダー輪郭
5 絞り前缶の内ホルダー輪郭
P ポンチ
D ダイス
BH しわ押さえ
1 Die outline 2 Punch outline 3 Punch bottom outline 4 Outer holder outline of can before drawing 5 Inner holder outline of can before drawing P Punch D Die BH Wrinkle presser
Claims (3)
第1絞り工程以降の全絞り工程において、少なくとも最終絞り工程以外の絞り工程を実質的にしごき加工を施さない多段成型方法とし、
第2絞り工程に於ける絞り缶の長辺から短辺に至る各位置の絞り缶の高さ増加率(ΔH(%)=(絞り後缶高さ−絞り前缶高さ)/絞り前缶高さ×100)の最大値ΔHmaxを40%以下、各位置のΔHの変動幅(ΔHmax−ΔHmin)を20%以下となるようにし、第3絞り工程以降の全絞り工程において、ΔHmaxを25%以下、ΔHmax−ΔHminを15%以下となるように、ブランク形状、各絞り工程毎の絞りポンチ輪郭、ダイス輪郭を設定することで、しごき加工を施さなくとも絞り成型を可能とすることを特徴とする深絞り鉄角缶の多段プレス成型方法。 A multi-stage press molding method for deep-drawn iron square cans,
In all drawing processes after the first drawing process, at least a drawing process other than the final drawing process is a multistage molding method that does not substantially perform ironing,
Height increase rate of the squeezed can at each position from the long side to the short side of the squeezed can in the second squeezing step (ΔH (%) = (can height after squeezing−can height before squeezing) / can before squeezing The maximum value ΔHmax of height × 100) is 40% or less, and the variation range of ΔH (ΔHmax−ΔHmin) at each position is 20% or less, and ΔHmax is 25% in all drawing processes after the third drawing process. Hereinafter, by setting the blank shape, the drawing punch contour for each drawing process, and the die profile so that ΔHmax−ΔHmin is 15% or less, it is possible to perform drawing without performing ironing. Multi-stage press molding method for deep drawing iron square cans.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009207870A JP5400537B2 (en) | 2009-09-09 | 2009-09-09 | Deep drawing iron square can multistage press molding method and deep drawing iron square can |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009207870A JP5400537B2 (en) | 2009-09-09 | 2009-09-09 | Deep drawing iron square can multistage press molding method and deep drawing iron square can |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011056530A true JP2011056530A (en) | 2011-03-24 |
JP5400537B2 JP5400537B2 (en) | 2014-01-29 |
Family
ID=43944792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009207870A Active JP5400537B2 (en) | 2009-09-09 | 2009-09-09 | Deep drawing iron square can multistage press molding method and deep drawing iron square can |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5400537B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112371846A (en) * | 2020-10-22 | 2021-02-19 | 中国航发贵州黎阳航空动力有限公司 | Multifunctional skin stretch-forming die and stretch-forming method |
JP7355424B1 (en) | 2022-11-09 | 2023-10-03 | 冨士発條株式会社 | Press molding method |
JP7473265B1 (en) | 2023-08-29 | 2024-04-23 | 冨士発條株式会社 | Manufacturing method for bottomed container and press system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11309519A (en) * | 1998-04-24 | 1999-11-09 | Kawasaki Steel Corp | High-speed deep drawing method of stainless steel polygonal prismatic case |
JP3160755B2 (en) * | 1996-02-27 | 2001-04-25 | 旭精機工業株式会社 | Method of forming prismatic battery can |
JP2002170529A (en) * | 2000-12-01 | 2002-06-14 | Hara Press Engineering:Kk | Battery case, blank for battery case and manufacturing method for the battery case |
JP2005186137A (en) * | 2003-12-26 | 2005-07-14 | Toyo Tire & Rubber Co Ltd | Press forming method |
JP2009136880A (en) * | 2007-12-03 | 2009-06-25 | Tottori Univ | System for supporting forming of metal sheet |
-
2009
- 2009-09-09 JP JP2009207870A patent/JP5400537B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3160755B2 (en) * | 1996-02-27 | 2001-04-25 | 旭精機工業株式会社 | Method of forming prismatic battery can |
JPH11309519A (en) * | 1998-04-24 | 1999-11-09 | Kawasaki Steel Corp | High-speed deep drawing method of stainless steel polygonal prismatic case |
JP2002170529A (en) * | 2000-12-01 | 2002-06-14 | Hara Press Engineering:Kk | Battery case, blank for battery case and manufacturing method for the battery case |
JP2005186137A (en) * | 2003-12-26 | 2005-07-14 | Toyo Tire & Rubber Co Ltd | Press forming method |
JP2009136880A (en) * | 2007-12-03 | 2009-06-25 | Tottori Univ | System for supporting forming of metal sheet |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112371846A (en) * | 2020-10-22 | 2021-02-19 | 中国航发贵州黎阳航空动力有限公司 | Multifunctional skin stretch-forming die and stretch-forming method |
CN112371846B (en) * | 2020-10-22 | 2022-05-10 | 中国航发贵州黎阳航空动力有限公司 | Multifunctional skin stretch-forming die and stretch-forming method |
JP7355424B1 (en) | 2022-11-09 | 2023-10-03 | 冨士発條株式会社 | Press molding method |
WO2024101387A1 (en) * | 2022-11-09 | 2024-05-16 | 冨士発條株式会社 | Press-forming method |
JP2024069042A (en) * | 2022-11-09 | 2024-05-21 | 冨士発條株式会社 | Press forming method |
JP7473265B1 (en) | 2023-08-29 | 2024-04-23 | 冨士発條株式会社 | Manufacturing method for bottomed container and press system |
Also Published As
Publication number | Publication date |
---|---|
JP5400537B2 (en) | 2014-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017013090A (en) | Manufacturing method for press formed product having hat-shaped cross-sectional shape and preliminary formed product formed by the same manufacturing method | |
JP5400537B2 (en) | Deep drawing iron square can multistage press molding method and deep drawing iron square can | |
CN102728645B (en) | Extrusion forming die and method for large length-width ratio aluminum alloy rectangular box-shaped part | |
CN106660099A (en) | Molded material production method and molded material | |
CN109604409A (en) | Aluminium alloy abnormity sheet metal component preparation method and processing mold for rail traffic | |
CN103934630B (en) | A kind of manufacture method of the valve body that ventilates | |
CN201768811U (en) | Low-voltage electric appliance connection terminal stamping part bending die | |
CN103920806A (en) | High-precision burr-free stamping die | |
CN109277427B (en) | Production method of cold-rolled stainless steel embossed plate | |
CN209753765U (en) | Precision progressive die for realizing full-bright zone of section | |
CN103934341A (en) | Metal plate stamping method | |
CN201768823U (en) | Mould for forming stamping part of bimetallic bracket | |
CN204867068U (en) | Synchronous plastic stamping die | |
CN105750405A (en) | Sheet blanking and punching mold and manufacturing method thereof | |
CN201768812U (en) | Planishing die for wiring terminal stamping parts of low-voltage electrical apparatus | |
CN210115375U (en) | Be applied to fashioned structure of attenuation turn-ups | |
CN201735679U (en) | Die for bending contact stamping part of circuit protector | |
CN202752449U (en) | Automobile engine cover outer plate stamping die | |
CN201735677U (en) | Bended mold of contact punching element of line protector | |
CN201768826U (en) | Sizing die of wiring terminal stamped part of low-voltage electrical apparatus | |
JP5332925B2 (en) | Press molding method with excellent dimensional accuracy of molded products | |
KR101098554B1 (en) | Method for manufacturing a medal using a steel plate frosted on its raised character part | |
CN201735685U (en) | Bending die for contact stamping part of circuit protector | |
CN201735687U (en) | Bending die for contact stamp piece of circuit protector | |
CN201735683U (en) | Stamping part bending die for wiring terminal of low-voltage electrical appliance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130514 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130708 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131001 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131025 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5400537 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |