JP2011047655A - Defect recognition method and defect recognition device using ultrasonic wave - Google Patents
Defect recognition method and defect recognition device using ultrasonic wave Download PDFInfo
- Publication number
- JP2011047655A JP2011047655A JP2009193829A JP2009193829A JP2011047655A JP 2011047655 A JP2011047655 A JP 2011047655A JP 2009193829 A JP2009193829 A JP 2009193829A JP 2009193829 A JP2009193829 A JP 2009193829A JP 2011047655 A JP2011047655 A JP 2011047655A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic waves
- feature amount
- defect identification
- defect
- probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
本発明は、欠陥の有無を超音波を用いて検査する超音波検査方法とその検査装置に係り、特に比較的低圧で用いられる蒸気タービンの羽根車翼植込部の欠陥検査に好適な、タービン翼植込部の欠陥識別方法及び欠陥識別装置に関する。 The present invention relates to an ultrasonic inspection method and an inspection apparatus for inspecting the presence or absence of defects using ultrasonic waves, and in particular, a turbine suitable for defect inspection of an impeller blade implantation portion of a steam turbine used at a relatively low pressure. The present invention relates to a defect identification method and a defect identification apparatus for a wing implantation part.
構造体の内部に存在する欠陥を非破壊で検査する検査装置の代表例に超音波検査装置があり、完成品の欠陥検査に重用されている。 An ultrasonic inspection apparatus is a typical example of an inspection apparatus that inspects defects existing inside a structure in a nondestructive manner, and is used for defect inspection of finished products.
例えば、タービン発電プラントでは、稼働時、タービンホイールの周辺にある翼植込部に大きな応力が働き、この応力は低圧タービン側の翼植込部におけるフック部で特に著しくなるので、定期検査時に、この部分の健全性を評価する必要がある。 For example, in a turbine power plant, during operation, a large stress acts on the blade implantation portion around the turbine wheel, and this stress becomes particularly significant at the hook portion in the blade implantation portion on the low-pressure turbine side. It is necessary to evaluate the soundness of this part.
一方、プラントの稼働率向上の観点からは、定期検査期間の短縮が強く要求されるので、この翼植込部の健全性評価には、検査に際してタービンホイールから動翼を抜き取る必要のない超音波検査が採用されることが多い。 On the other hand, since shortening the periodic inspection period is strongly required from the viewpoint of improving the plant operating rate, the soundness evaluation of this blade implantation part is an ultrasonic that does not require removal of the moving blade from the turbine wheel during inspection Inspection is often adopted.
ここで、図12Aは、一般的な蒸気タービンホイールの翼植込部を対象とした超音波検査装置の一例における走査機構部の概要を示す動翼も含めた断面図であり、図12Bは動翼を除いて示した正面図である。これらの図において、1はタービンホイール、2はタービンシャフト、3bは探触子保持具、9は探触子、それに30は動翼であり、破線10はこのときの超音波の経路を示す。
Here, FIG. 12A is a cross-sectional view including a moving blade showing an outline of a scanning mechanism portion in an example of an ultrasonic inspection apparatus for a blade implantation portion of a general steam turbine wheel, and FIG. It is the front view shown except the wing | blade. In these drawings, 1 is a turbine wheel, 2 is a turbine shaft, 3b is a probe holder, 9 is a probe, and 30 is a moving blade, and a
この超音波検査装置では、1個、又は2個の探触子9を探触子保持具3bに取付けた上でタービンホイール1に押付け、タービンシャフト2の中心軸Oから探触子9までの距離Zと、探触子9の首振り角度θを一定に保ったまま探触子保持具3b全体をタービンシャフト2の周囲に沿って移動させ、これにより探触子9でタービンホイール1の翼植込部の全領域を走査する。
In this ultrasonic inspection apparatus, one or two probes 9 are attached to the
探触子9は超音波の発振子と超音波の検出子を兼ねていて、探触子9から所定の時間間隔で超音波10のパルスを発射させ、パルス発射の都度、予め定めておいた時間ゲート内に反射波が検出されなければ翼植込部は健全であると判断し、反射波が現われたときは翼植込部に割れ等の欠陥が存在する可能性があると判断する。
The probe 9 serves as both an ultrasonic oscillator and an ultrasonic detector, and pulses of the
このような超音波検査方法の従来技術としては、例えば特許文献1、特許文献2を挙げることができるが、これらの方法では、タービンホイールの翼植込部に反射波が現われた場合、タービンホイールから一旦動翼を抜取り、目視するなどして、超音波の反射が割れ等の欠陥によるものなのか、錆や腐食痕など欠陥以外のものによるものかを判断している。このときの超音波の反射が本当の欠陥によるものであったときは、磁粉探傷などにより更に詳細な検査を実施するが、錆や腐食痕などの本当の欠陥以外のものであった場合は、次回定期検査時まではそのまま稼働させ、次回定期検査時に、更に詳細な検査を実施するようにする場合が多い。
As conventional techniques of such an ultrasonic inspection method, for example,
従って、これら特許文献1、特許文献2等に記載のタービンホイールの翼植込部の超音波検査では、被検査部に発生した錆から反射波が得られた場合に、反射体が欠陥か錆かを識別するために動翼を抜取る作業が必要となり検査に時間を要する。
Therefore, in the ultrasonic inspection of the turbine wheel blade-implanted portion described in
そこで、例えば特許文献3、特許文献4、特許文献5では、タービンホイールの翼植込部に反射波が現われた場合でも、動翼を抜き取ることなく、反射体(超音波を反射している部分)が割れなどの欠陥であるか、或いは錆や腐食痕など特に欠陥と見る必要のないものであるのか判断する方法について開示している。
Therefore, for example, in
特許文献3、特許文献4の方法は、超音波探触子が或る位置にあるとき所定の時間ゲート内で受信し収録した反射波の波形と、他の位置で同じく時間ゲート内で受信し収録した反射波の波形を相互相関処理して相関係数を算出し、相関係数が予め定めておいた所定の閾値より大きい場合には、その翼植込部に欠陥があると判断し、閾値より小さい場合には欠陥以外のものであると判断する。
The methods of
一方、特許文献5の方法では、ビーム路程後方に尾引きを持つ指示反射波が確認されない場合には錆や孔食による反射波であると判断する。また、ロータホイールを挟む位置にある超音波探触子から得られたBスコープを参照して、割れ欠陥を示す指示反射波のピーク位置が第1フック部を示す帯状の反射波上にあるか否かを判定することにより、その割れ欠陥の大きさが第1フックを貫通するか否かを判定する。
On the other hand, in the method of
上記従来技術のうち、特許文献3、特許文献4の方法は、小さな割れ(フックを貫通しない割れ)と錆を識別するのに適した方法であるのに対して、大きな割れと錆ではむしろ識別精度が劣るという問題があった。一方、特許文献5の方法は、大きな割れと錆を識別するのに適した方法であるが、小さな割れ(フックを貫通しない割れ)と錆を識別することが難しく、また評価の自動化には触れられていない。
Among the above prior arts, the methods of
本発明の目的は、欠陥の大きさにかかわらず、錆と欠陥を自動的に識別できる超音波を用いた欠陥識別方法及び識別装置を提供することにある。 An object of the present invention is to provide a defect identification method and an identification apparatus using ultrasonic waves that can automatically identify rust and a defect regardless of the size of the defect.
上記目的を達成するための本発明の特徴は、タービン翼植込部に探触子を用いて超音波を入射し、所定時間ゲート内に受信した反射波に基づいてタービン翼植込部における錆と欠陥の識別を行う超音波を用いた欠陥識別方法において、前記反射波のBスコープ上における孤立波形の移動する傾きに沿って第一の特徴量を算出し、波群の移動する傾きに沿って第二の特徴量を算出し、前記第一の特徴量と第二の特徴量の組合わせによりタービン翼植込部における錆と欠陥の識別を行うことを特徴とする。 In order to achieve the above object, the present invention is characterized in that an ultrasonic wave is incident on a turbine blade implantation portion using a probe, and the rust in the turbine blade implantation portion is based on the reflected wave received in the gate for a predetermined time. In the defect identification method using the ultrasonic wave for identifying the defect and the defect, the first feature amount is calculated along the inclination of the isolated waveform on the B-scope of the reflected wave and the wave group moves along the inclination. The second feature value is calculated, and the rust and the defect in the turbine blade implantation part are identified by a combination of the first feature value and the second feature value.
また、前記第一の特徴量が所定のしきい値を越えた場合と、前記第二の特徴量が所定のしきい値を越えた場合のいずれかの場合に、錆と欠陥の識別を行うことを特徴とする。 Also, rust and defects are identified when either the first feature value exceeds a predetermined threshold value or the second feature value exceeds a predetermined threshold value. It is characterized by that.
また、前記第一の特徴量と、前記第二の特徴量に所定の重み演算処理を行って、錆と欠陥の識別を行うことを特徴とする。 The first feature value and the second feature value are subjected to a predetermined weight calculation process to identify rust and a defect.
また、前記第一の特徴量として相関係数を用いることを特徴とする。相関係数としては、探触子移動距離を変数とする反射波相互の相関係数グラフの、所定の相関係数しきい値を越えた部分の長さを用いることができる。 Further, a correlation coefficient is used as the first feature amount. As the correlation coefficient, the length of the portion of the correlation coefficient graph of the reflected waves with the probe moving distance as a variable exceeding a predetermined correlation coefficient threshold value can be used.
また、前記第二の特徴量として、振幅を用いることを特徴とする。振幅として、探触子移動距離を変数とする反射波の相対振幅グラフの、所定の相対振幅しきい値を越えた部分の長さを用いることが出来る。 In addition, an amplitude is used as the second feature amount. As the amplitude, the length of the portion of the reflected wave relative amplitude graph with the probe moving distance as a variable exceeding a predetermined relative amplitude threshold can be used.
さらに、タービン翼植込部に探触子を用いて超音波を入射し、所定時間ゲート内に受信した反射波に基づいてタービン翼植込部における錆と欠陥の識別を行う欠陥識別装置において、超音波探触子を移動させるときにBスコープ上で前記反射波の孤立波形が移動する傾きに沿って第一の特徴量を算出し、前記反射波の波群が移動する傾きに沿って第二の特徴量を算出し、前記第一の特徴量と前記第二の特徴量の両方から錆と欠陥を識別する相互相関処理部と、前記相互相関処理部で識別した結果を表示する表示部を有することを特徴とする。 Further, in the defect identification device for identifying the rust and the defect in the turbine blade implantation part based on the reflected wave received in the gate for a predetermined time by using the probe to enter the turbine blade implantation part, When the ultrasonic probe is moved, a first feature amount is calculated along a slope at which the isolated waveform of the reflected wave moves on the B scope, and a first feature amount is calculated along the slope at which the wave group of the reflected wave moves. A cross-correlation processing unit that calculates a second feature value and identifies rust and a defect from both the first feature value and the second feature value, and a display unit that displays a result identified by the cross-correlation process unit It is characterized by having.
本発明によれば、超音波探触子を移動させるときに孤立波形の移動する傾きに沿って第一の特徴量を算出し、波群の移動する傾きに沿って第二の特徴量を算出し、前記第一の特徴量と前記第二の特徴量の両方から錆と欠陥を識別することにより、比較的簡便な探触子走査法によるタービン翼植込部の超音波検査において、動翼を抜き取ることなく超音波検査を行いながら、超音波の反射体が欠陥であるか欠陥以外のものであるかを、欠陥の大小によらず自動識別することができるので、検査の工程数削減と期間短縮が可能となる。 According to the present invention, when the ultrasonic probe is moved, the first feature amount is calculated along the inclination of the isolated waveform moving, and the second feature amount is calculated along the inclination of the wave group movement. In the ultrasonic inspection of the turbine blade implantation portion by a relatively simple probe scanning method by identifying rust and defects from both the first feature amount and the second feature amount, the moving blade It is possible to automatically identify whether the ultrasonic reflector is a defect or something other than a defect while performing an ultrasonic inspection without extracting the defect, thereby reducing the number of inspection processes. The period can be shortened.
以下、本発明による超音波検査方法と超音波検査装置について、図示の実施の形態により詳細に説明する。
〔基本構成〕
図1は、本発明の一実施形態で、上記した従来技術の場合と同様、探触子9を探触子保持具3bに取付けた上でタービンホイール1に押付け、探触子保持具3bに設けられている車輪4a、4bによりタービンシャフト2の外周上を走行移動させて検査を行うように構成されている。このとき、探傷器12から探触子9にパルス電圧11aを印加してタービンホイール1の翼植込部に超音波10を入射し、これによる反射波を探触子9で受信して超音波信号11bを得、これを探傷器12で増幅する。
Hereinafter, an ultrasonic inspection method and an ultrasonic inspection apparatus according to the present invention will be described in detail with reference to illustrated embodiments.
[Basic configuration]
FIG. 1 shows an embodiment of the present invention, and in the same manner as in the prior art described above, after the probe 9 is attached to the
従って、探触子保持具3a全体をタービンシャフト2の回りに移動させるだけで、タービンホイール1の中心軸からの距離と、首振り角度を一定に保った状態で探触子9を走査させることができ、この結果、探触子保持具3aを一旦取付けてしまえば、比較的簡便な操作でタービンホイール1の翼植込部の全周を検査することができる。
Therefore, the probe 9 can be scanned while keeping the distance from the central axis of the
探触子保持具3aにはエンコーダ5が設置してあり、探触子9がタービンシャフト2の外周面に沿って一定距離移動する毎にパルス信号6を発信する。そこで、A/D変換部15は、このパルス信号6を受信した直後、探傷器12のトリガ信号13に同期した超音波信号14をA/D変換する。このとき、トリガ信号13を受信した時点から変換を開始するまでの時間Tsと、変換の時間幅Twは予め設定してあり、このときの時間Tsから(Ts+Tw)までが時間ゲートである。
An
位置読取部7では、超音波検査の開始時、位置信号8をリセットして0にしておき、以後、パルス信号6を受信する毎に位置信号8を1ずつ加算していき、位置信号8の数値とパルス信号6の積算値が等しくなるようにする。そして、位置読取部7で読み取った位置信号8と、A/D変換部15で変換したデジタル信号16を記憶部17に転送して自動的に記憶させる。このような構成とすることにより、探触子保持具3aの移動操作に追随して、超音波波形と探触子位置を自動的に収録することができる。
The position reading unit 7 resets the
反射波の有無判定部18では、時間幅Twのデジタル信号16の最大振幅を抽出して閾値と比較し、最大振幅が閾値より大きければ反射波があると判定し、小さければ反射波がないと判定する。判定結果19は記憶部17に転送されて、位置信号8、デジタル信号16と関連づけて記憶する。
The reflected wave presence / absence determining unit 18 extracts the maximum amplitude of the
連続して二回反射波と判定した場合は、反射波形のデジタル信号21、22を相互相関処理部22で演算して相関係数23を算出する。反射体識別部26は、算出した相関係数を基に反射体が欠陥か欠陥以外のものかを自動識別し、識別結果25を表示部24で表示する。
〔探触子位置と超音波波形〕
ここで、探触子位置と超音波波形との関係について、図2、図3A、図3Bを用いて説明する。図2は、探触子を移動させたときの超音波検査装置により表示される、反射波の時間変化を深さ方向の断面図として平面に展開するBスコープの説明図である。図2の横軸は、探触子走査によって超音波が入射する位置のホイール最外周上の移動距離であって、縦軸は路程すなわち超音波の反射体までの距離である。
When it is determined that the wave is reflected twice in succession, the
[Probe position and ultrasonic waveform]
Here, the relationship between the probe position and the ultrasonic waveform will be described with reference to FIGS. 2, 3A, and 3B. FIG. 2 is an explanatory diagram of a B scope that is displayed by the ultrasonic inspection apparatus when the probe is moved and that develops the time change of the reflected wave in a plane as a sectional view in the depth direction. The horizontal axis in FIG. 2 is the moving distance on the outermost circumference of the wheel at the position where the ultrasonic wave is incident by the probe scanning, and the vertical axis is the path distance, that is, the distance to the ultrasonic reflector.
ホイール全面に錆があって、小さな割れ(フックを貫通しない割れ)と大きな割れ(フックを貫通した割れ)が各1個ずつある場合の典型的なBスコープを模式的に示している。 A typical B scope in the case where there is rust on the entire surface of the wheel and there is one small crack (a crack that does not penetrate the hook) and one large crack (a crack that penetrates the hook) is schematically shown.
小さな割れの反射波の特徴は、超音波が入射する位置のホイール最外周上の移動距離に対して、孤立した反射波の路程がほぼ直線的に変化することである。これは、図3Aの割れの大きさによる反射波の説明図に示すとおり、探触子位置が(1)→(2)→(3)と変化するにつれて、割れまでの直線距離が変化し、波形がa1、a2、a3と相似形を保ちながら振幅が変化する現象による。 A characteristic of the reflected wave of a small crack is that the path of the isolated reflected wave changes almost linearly with respect to the moving distance on the outermost circumference of the wheel at the position where the ultrasonic wave is incident. As shown in the explanatory diagram of the reflected wave depending on the size of the crack in FIG. 3A, as the probe position changes from (1) → (2) → (3), the linear distance to the crack changes, This is due to a phenomenon in which the amplitude changes while the waveforms are similar to a1, a2, and a3.
一方で、大きな割れの反射波の特徴は、超音波が入射する位置のホイール最外周上の移動距離に対して、孤立した反射波の路程がほぼ直線的に変化するものが、例えば、a2、b1、c1というように同時に複数存在する多重反射波が発生し、波群として変化することである。波群としては、孤立した反射波よりも急峻な変化を示し、a、b、cの孤立反射波の振幅が入れ替わることから、相似性が低いという特徴があり、上述した特許文献3、特許文献4ではこのような大きな割れを識別することが困難である。
〔反射体の識別原理〕
本発明の実施形態において、初めに、タービンホイール翼植込部の全周からの超音波を一旦収録してから、反射体が欠陥か錆かを識別する原理について図4から図7Bを用いて説明する。
On the other hand, the characteristic of the reflected wave with a large crack is that the path of the isolated reflected wave changes almost linearly with respect to the moving distance on the outermost circumference of the wheel at the position where the ultrasonic wave is incident. A plurality of multiple reflected waves such as b1 and c1 are generated at the same time and change as a wave group. The wave group has a feature that it shows a steeper change than the isolated reflected wave and the amplitude of the isolated reflected waves of a, b, and c is switched, so that the similarity is low. 4, it is difficult to identify such a large crack.
[Principle identification principle]
In the embodiment of the present invention, firstly, after recording the ultrasonic waves from the entire circumference of the turbine wheel blade implantation part, the principle of identifying whether the reflector is defective or rust is described with reference to FIGS. 4 to 7B. explain.
図4は、割れと錆を識別する方法を示すフローチャートである。始めに、孤立波形の移動する傾きと波群の移動する傾きを、タービンホイール翼植込部の幾何学的形状と探触子の配置から算出する(波形傾斜:ステップS101)。 FIG. 4 is a flowchart showing a method for identifying cracks and rust. First, the inclination of movement of the isolated waveform and the movement of the wave group are calculated from the geometric shape of the turbine wheel blade implantation part and the arrangement of the probes (waveform inclination: step S101).
図5Aは、探触子を移動させたときの探触子の位置座標と探触子の向く方向の直線の交点座標を説明する平面図を示し、図5Bは斜視図を示す。図5Bで、探触子位置A2から屈折した超音波がホイール最外周の点C2の方向に進むとする。超音波は指向性の影響によって広がるが、音軸上の振幅が最も大きいので、仮に点C2の位置に欠陥があると、探触子位置が点A2のときに最大の反射波振幅を示すことになる。このときの、路程は点A2と点C2の直線距離になる。探触子位置が点A1にあった場合、その路程は点A1と点C2の直線距離になる。従って孤立波形の路程変化はこの幾何学的な関係によって求めることができる。 FIG. 5A shows a plan view for explaining the intersection coordinates of the position coordinates of the probe when the probe is moved and the straight line in the direction of the probe, and FIG. 5B shows a perspective view. In FIG. 5B, it is assumed that the ultrasonic wave refracted from the probe position A2 proceeds in the direction of the point C2 on the outermost periphery of the wheel. Ultrasound spreads due to the influence of directivity, but since the amplitude on the sound axis is the largest, if there is a defect in the position of point C2, the maximum reflected wave amplitude is shown when the probe position is point A2. become. At this time, the path is a linear distance between the points A2 and C2. When the probe position is at point A1, the path is a linear distance between point A1 and point C2. Therefore, the path change of the isolated waveform can be obtained by this geometrical relationship.
一方で、波群の路程変化は超音波がフック位置で多重反射することで生じ、その路程は、点A1と点F12の直線距離とほぼ一致することが、実験データとの照合で明らかとなった。点F12は、点E12からフック深さ分だけ下に移動した点であり、点E12は、探触子が点A1にあるときの音軸をxy平面に投影した直線と、点Oと点G2と結ぶ直線の交点で与えられる。以上の関係を数値的に求めることによって、ステップS101で孤立波形の移動する傾きと波群の移動する傾きを算出することができる。 On the other hand, the change in the path length of the wave group is caused by the multiple reflection of the ultrasonic wave at the hook position, and it is clear from the comparison with the experimental data that the path length substantially matches the linear distance between the points A1 and F12. It was. The point F12 is a point moved downward by the hook depth from the point E12. The point E12 is a straight line obtained by projecting the sound axis when the probe is at the point A1 onto the xy plane, the point O, and the point G2. It is given by the intersection of straight lines connecting with. By obtaining the above relationship numerically, it is possible to calculate the inclination of the isolated waveform and the inclination of the wave group in step S101.
次に、図2のBスコープにおける、孤立波形の移動する傾きに沿った波形の類似度を表す第一の特徴量を算出する(第一識別:ステップS102)。探触子保持具3bをタービンホイール1に対して一回転走査すると、記憶部17に全周分の位置信号8、デジタル信号16、反射波の有無の判定結果19が収録される。ここで、連続して反射波があると判定した探触子位置をグループ化し、グループ内で振幅が最大となる探触子位置で収録した波形を基準波形とし、基準波形とグループ内の他の探触子位置で収録した波形とを相互相関処理する。
Next, in the B scope of FIG. 2, a first feature amount representing the similarity of the waveform along the inclination of the isolated waveform is calculated (first identification: step S102). When the
図6は、探触子9により割れ等の欠陥からの反射波が得られた場合と、錆や腐食痕等の欠陥以外のものからの反射波が得られる場合の状況を模式的に示したものである。割れ27による場合では超音波の反射体が一箇所で位置が明確なため、図3A、図3Bに示すように比較的単純な波形となる。また、この場合は、探触子9の位置を点A1から点A2に変えても、路程(超音波の経路)が変化するだけで、受信波形に大きな変化はなく、波形が良く保存されることが判る。 FIG. 6 schematically shows a situation in which a reflected wave from a defect such as a crack is obtained by the probe 9 and a reflected wave from something other than a defect such as rust and corrosion marks is obtained. Is. In the case of the crack 27, since the position of the ultrasonic reflector is clear at one place, a relatively simple waveform is obtained as shown in FIGS. 3A and 3B. In this case, even if the position of the probe 9 is changed from the point A1 to the point A2, only the path length (ultrasonic path) is changed, the received waveform is not greatly changed, and the waveform is well preserved. I understand that.
ゲートの時間幅をTw、点A1で収録した波形をX(t)、点A2で収録した波形をY(t)としたとき、X(t)とY(t)を時間τずらしたときの相関値R(τ)は、次の式(1)で表わされ、ここで時間τを動かし、−TwからTwまで変化させたときの相関値R(τ)の最大値を相関係数と呼ぶ。 When the time width of the gate is Tw, the waveform recorded at point A1 is X (t), and the waveform recorded at point A2 is Y (t), X (t) and Y (t) are shifted by time τ. The correlation value R (τ) is expressed by the following equation (1), where the maximum value of the correlation value R (τ) when the time τ is moved and changed from −Tw to Tw is defined as a correlation coefficient. Call.
この相関係数は2波形の関連の深さを示す指標であり、反射体が欠陥の場合には図7Aに示すように大きな値をとる。これに対し、錆28では一塊になった明確な反射体は見られず、複数の小さな反射体がタービンホイール頭頂部表面で複雑に分布しているため、図7Bに示すように、複数の反射波が重畳した波形となる。また、この場合、探触子9の位置を点B1から点B2に変えると、複数の反射体からの反射波の強度比が変化するので、受信波形も変化してしまい波形が保存されない。従って、点B1で収録した波形と点B2で収録した波形から算出した相関係数は、図7Bに示すように小さな値をとる。 This correlation coefficient is an index indicating the related depth of the two waveforms, and takes a large value as shown in FIG. 7A when the reflector is defective. On the other hand, since the rust 28 does not show clear reflectors in a lump and a plurality of small reflectors are distributed in a complicated manner on the surface of the top of the turbine wheel, as shown in FIG. The waveform is superimposed. In this case, if the position of the probe 9 is changed from the point B1 to the point B2, the intensity ratio of the reflected waves from the plurality of reflectors changes, so that the received waveform also changes and the waveform is not saved. Therefore, the correlation coefficient calculated from the waveform recorded at point B1 and the waveform recorded at point B2 takes a small value as shown in FIG. 7B.
最終的には、あるしきい値を越える振幅の反射波のグループの最大振幅の反射波を基準として、その基準波形と前後何点かの波形との相関係数を求め、超音波が入射する位置のホイール最外周上の移動距離と相関係数の関係をグラフ化し、相関係数が実験的に得られた所定のしきい値を越える距離の長さを、波形が得られた反射源が欠陥であるか否かを判定する指標とする。 Ultimately, using the reflected wave with the maximum amplitude of the reflected wave group with an amplitude exceeding a certain threshold as a reference, the correlation coefficient between the reference waveform and several waveforms before and after is obtained, and the ultrasonic wave enters. The relationship between the moving distance of the position of the wheel on the outermost circumference of the wheel and the correlation coefficient is graphed, and the length of the distance where the correlation coefficient exceeds the predetermined threshold obtained experimentally is indicated by the reflection source from which the waveform is obtained. It is used as an index for determining whether or not it is a defect.
次に、図2のBスコープにおいて、波群の移動する傾きに沿った反射源の大きさを表す第二の特徴量を算出する(第二識別:ステップS103)。ステップS101で算出した波群の路程変化に沿って、ゲートbを移動させ、その中での最大振幅をサーチする。なお、ゲートbの幅は予めユーザが指定するか、記憶部17に定数として格納しておく。次に、探触子走査によって超音波が入射する位置のホイール最外周上の移動距離と、最大振幅の関係をグラフ化し、あるしきい値を越える距離の長さを指標とする。
Next, in the B scope of FIG. 2, a second feature amount representing the size of the reflection source along the inclination of the wave group to move is calculated (second identification: step S103). The gate b is moved along the change in the path length of the wave group calculated in step S101, and the maximum amplitude is searched. Note that the width of the gate b is specified in advance by the user or stored in the
最後に、第一識別と第二識別の両方から錆と割れを識別する(総合識別:ステップS104)。これは、第一識別で得られた第一の特徴量の値と、第二識別で得られた第二の特徴量の値に重みをかけて演算することによって得られる。もしくは、第一識別で欠陥と識別するか、第二識別で欠陥と識別するかのいずれかの場合に、総合識別で欠陥と識別するような演算式とする。最終的には検査員は、図8の例に示すような超音波検査装置の表示画面で識別結果を判断することができる。
〔識別結果の事例〕
最後に、本発明の実施形態による効果を、錆、欠陥(小)、欠陥(大)の処理結果を例にとって、図9Aから図11Cを用いて説明する。
Finally, rust and cracks are identified from both the first identification and the second identification (overall identification: step S104). This is obtained by applying a weight to the value of the first feature value obtained by the first identification and the value of the second feature value obtained by the second identification. Alternatively, in the case of identifying a defect by the first identification or identifying the defect by the second identification, an arithmetic expression is set such that the defect is identified by the comprehensive identification. Finally, the inspector can determine the identification result on the display screen of the ultrasonic inspection apparatus as shown in the example of FIG.
[Examples of identification results]
Finally, the effects of the embodiment of the present invention will be described with reference to FIGS. 9A to 11C, taking rust, defect (small), and defect (large) processing results as examples.
図9Aは、翼植込部の頭頂部に錆が発生した状態の試験体の状態の説明図、図9Bは翼植込部の第一段フックに割れ(小)が発生した状態の試験体の状態の説明図、図9Cは翼植込部の第一段フックに割れ(大)が発生した状態の試験体の状態の説明図である。 FIG. 9A is an explanatory diagram of the state of the test body in a state where rust is generated at the top of the wing implantation part, and FIG. 9B is a test body in which a crack (small) is generated in the first stage hook of the wing implantation part. FIG. 9C is an explanatory diagram of a state of the test body in a state where a crack (large) is generated in the first stage hook of the wing implantation portion.
図10Aは、試験体の錆に対して、前述の第一識別処理を実施した結果を示す。図10Aは、図10Bの割れ(小)に比べて、相関係数が実験的に得られたしきい値0.6を超える距離が短く、両者を識別できることがわかる。一方で、図10Cの割れ(大)は、図10Aの錆よりもさらに相関距離が短く、錆との識別が困難である。 FIG. 10A shows the result of performing the first identification process described above on the rust of the test specimen. FIG. 10A shows that the distance over which the correlation coefficient exceeds the experimentally obtained threshold of 0.6 is shorter than the crack (small) in FIG. On the other hand, the crack (large) in FIG. 10C has a shorter correlation distance than the rust in FIG. 10A and is difficult to distinguish from rust.
図11Aは、試験体の錆に対して、前述の第二識別処理を実施した結果である。図11Aの錆は、実験的に得られたしきい値0.25を超える距離がゼロであるが、図11Bの割れ(小)も10mm以下と短く、錆と識別が困難なケースがある。一方で、図11Cの割れ(大)は比較的長い距離を示す。よって、第一識別と第二識別の各々の長所を合わせた総合識別によれば、欠陥の大きさによらず、錆と欠陥を自動識別することが可能になる。 FIG. 11A shows the result of performing the above-described second identification process on the rust of the test specimen. In the rust of FIG. 11A, the distance exceeding the experimentally obtained threshold value of 0.25 is zero, but the crack (small) in FIG. 11B is also as short as 10 mm or less, and it is difficult to distinguish from rust. On the other hand, the crack (large) in FIG. 11C indicates a relatively long distance. Therefore, according to the comprehensive identification combining the advantages of the first identification and the second identification, it becomes possible to automatically identify rust and defects regardless of the size of the defects.
1…タービンホイール、2…タービンシャフト、5…エンコーダ、6…パルス信号、7…位置読取り部、8…位置信号、9…探触子、10…超音波(経路)、11a…パルス信号、11b…超音波信号、12…探傷器、13…トリガ信号、14…超音波信号、15…A/D変換部、16…デジタル信号、17…記憶部、18…相互相関処理条件設定部、19…相互相関処理間隔、20、21…デジタル信号、22…相互相関処理部、23…相関係数、24…反射体識別部、25…反射体識別条件、26…識別結果、27…表示部、28…割れ、29…錆、30…動翼
DESCRIPTION OF
Claims (12)
前記反射波のBスコープ上における孤立波形の移動する傾きに沿って第一の特徴量を算出し、波群の移動する傾きに沿って第二の特徴量を算出し、前記第一の特徴量と第二の特徴量の組合わせによりタービン翼植込部における錆と欠陥の識別を行うことを特徴とする超音波を用いた欠陥識別方法。 Defect identification using ultrasonic waves, in which ultrasonic waves are incident on the turbine blade implant using a probe and the rust and defects are identified in the turbine blade implant based on the reflected wave received in the gate for a predetermined time In the method
A first feature amount is calculated along a slope of movement of the isolated waveform on the B scope of the reflected wave, a second feature amount is calculated along a slope of movement of the wave group, and the first feature amount is calculated. A defect identification method using ultrasonic waves, wherein rust and defects are identified in the turbine blade implantation portion by a combination of the second feature amount and the second feature amount.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009193829A JP2011047655A (en) | 2009-08-25 | 2009-08-25 | Defect recognition method and defect recognition device using ultrasonic wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009193829A JP2011047655A (en) | 2009-08-25 | 2009-08-25 | Defect recognition method and defect recognition device using ultrasonic wave |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011047655A true JP2011047655A (en) | 2011-03-10 |
Family
ID=43834155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009193829A Pending JP2011047655A (en) | 2009-08-25 | 2009-08-25 | Defect recognition method and defect recognition device using ultrasonic wave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011047655A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103235038A (en) * | 2013-05-13 | 2013-08-07 | 刘志刚 | Detection method of recordable manual ultrasonic detector |
CN106525966A (en) * | 2016-09-22 | 2017-03-22 | 中北大学 | Axial symmetry workpiece ellipse-like defect reconstruction method |
WO2020162618A1 (en) * | 2019-02-08 | 2020-08-13 | ヤマハファインテック株式会社 | Inspection device and inspection method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002310999A (en) * | 2001-04-17 | 2002-10-23 | Hitachi Ltd | Ultrasonic inspection method and ultrasonic inspection device |
JP2003294716A (en) * | 2002-03-29 | 2003-10-15 | Hitachi Ltd | Inspection method of turbine |
-
2009
- 2009-08-25 JP JP2009193829A patent/JP2011047655A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002310999A (en) * | 2001-04-17 | 2002-10-23 | Hitachi Ltd | Ultrasonic inspection method and ultrasonic inspection device |
JP2003294716A (en) * | 2002-03-29 | 2003-10-15 | Hitachi Ltd | Inspection method of turbine |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103235038A (en) * | 2013-05-13 | 2013-08-07 | 刘志刚 | Detection method of recordable manual ultrasonic detector |
CN106525966A (en) * | 2016-09-22 | 2017-03-22 | 中北大学 | Axial symmetry workpiece ellipse-like defect reconstruction method |
CN106525966B (en) * | 2016-09-22 | 2019-01-25 | 中北大学 | A kind of axisymmetric workpiece class ellipse Root cause analysis method |
WO2020162618A1 (en) * | 2019-02-08 | 2020-08-13 | ヤマハファインテック株式会社 | Inspection device and inspection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5113340B2 (en) | Method and system for inspecting an object using ultrasonic scanning data | |
US20100131210A1 (en) | Method and system for non-destructive inspection of a colony of stress corrosion cracks | |
US5161413A (en) | Apparatus and method for guided inspection of an object | |
CN111751448B (en) | Surface leakage wave ultrasonic synthetic aperture focusing imaging method | |
CN109085245B (en) | Method for determining defects in object to be detected and ultrasonic flaw detector | |
JP6397252B2 (en) | Inspection method for remaining life of welded parts of heat-resistant materials | |
JP2011208978A (en) | Ultrasonic inspection method and device for turbine blade fitting section | |
JP2011027571A (en) | Piping thickness reduction inspection apparatus and piping thickness reduction inspection method | |
JP2011047655A (en) | Defect recognition method and defect recognition device using ultrasonic wave | |
JP3581333B2 (en) | A method for estimating the shape and size of internal corrosion of pipes using the echo height of ultrasonic pulses | |
JP4364031B2 (en) | Ultrasonic flaw detection image processing apparatus and processing method thereof | |
JP6387161B2 (en) | Damage analysis method for piping | |
JP6387160B2 (en) | Maintenance planning method for piping | |
JP5150302B2 (en) | Ultrasonic inspection data evaluation apparatus and ultrasonic inspection data evaluation method | |
JP3442057B2 (en) | Ultrasonic inspection method and ultrasonic inspection device | |
JP4738243B2 (en) | Ultrasonic flaw detection system | |
CN103207240B (en) | The measuring method of the longitudinal acoustic pressure distribution of a kind of angle probe ultrasonic field | |
Stepanova et al. | Acoustic-emission testing of multiple-pass welding defects of large-size constructions | |
KR100485450B1 (en) | Ultrasonic testing apparatus and control method therefor | |
JP3445914B2 (en) | Ultrasonic inspection method and apparatus | |
JP5750066B2 (en) | Non-destructive inspection method using guided waves | |
JP2007071755A (en) | Ultrasonic flaw detector and ultrasonic flaw detection method | |
Peter et al. | Laser generated Lamb wave and Canny edge technique for automatically locating defects occurred in plates | |
Zhang et al. | Ultrasonic flaw recognition by multi-angle phased array data integration | |
CN117388372A (en) | Nondestructive testing method and system for pressure steel pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110610 |
|
A977 | Report on retrieval |
Effective date: 20121114 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130121 |
|
A02 | Decision of refusal |
Effective date: 20130903 Free format text: JAPANESE INTERMEDIATE CODE: A02 |