JP2010519422A - Durable thermoplastic fiber and cloth containing the same - Google Patents
Durable thermoplastic fiber and cloth containing the same Download PDFInfo
- Publication number
- JP2010519422A JP2010519422A JP2009550809A JP2009550809A JP2010519422A JP 2010519422 A JP2010519422 A JP 2010519422A JP 2009550809 A JP2009550809 A JP 2009550809A JP 2009550809 A JP2009550809 A JP 2009550809A JP 2010519422 A JP2010519422 A JP 2010519422A
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic
- fiber
- yarn
- thermoplastic fiber
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 73
- 239000004744 fabric Substances 0.000 title claims abstract description 49
- 229920001169 thermoplastic Polymers 0.000 title claims abstract description 41
- 239000004416 thermosoftening plastic Substances 0.000 title claims abstract description 41
- 239000002245 particle Substances 0.000 claims abstract description 39
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 18
- 229920002313 fluoropolymer Polymers 0.000 claims abstract description 17
- 239000004811 fluoropolymer Substances 0.000 claims abstract description 17
- -1 polytetrafluoroethylene Polymers 0.000 claims description 48
- 239000012510 hollow fiber Substances 0.000 claims description 21
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 20
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 20
- 239000002131 composite material Substances 0.000 claims description 15
- 229920000642 polymer Polymers 0.000 claims description 13
- 229920001577 copolymer Polymers 0.000 claims description 4
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims description 4
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical compound FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 claims description 2
- 229920001897 terpolymer Polymers 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 21
- 229920000139 polyethylene terephthalate Polymers 0.000 description 25
- 239000005020 polyethylene terephthalate Substances 0.000 description 25
- 239000004594 Masterbatch (MB) Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 238000006116 polymerization reaction Methods 0.000 description 12
- 230000005855 radiation Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 229920000728 polyester Polymers 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000009940 knitting Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- 239000003082 abrasive agent Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000002649 leather substitute Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- WUMVZXWBOFOYAW-UHFFFAOYSA-N 1,2,3,3,4,4,4-heptafluoro-1-(1,2,3,3,4,4,4-heptafluorobut-1-enoxy)but-1-ene Chemical compound FC(F)(F)C(F)(F)C(F)=C(F)OC(F)=C(F)C(F)(F)C(F)(F)F WUMVZXWBOFOYAW-UHFFFAOYSA-N 0.000 description 1
- BZPCMSSQHRAJCC-UHFFFAOYSA-N 1,2,3,3,4,4,5,5,5-nonafluoro-1-(1,2,3,3,4,4,5,5,5-nonafluoropent-1-enoxy)pent-1-ene Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)=C(F)OC(F)=C(F)C(F)(F)C(F)(F)C(F)(F)F BZPCMSSQHRAJCC-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/88—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
- D01F6/92—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2927—Rod, strand, filament or fiber including structurally defined particulate matter
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Woven Fabrics (AREA)
- Artificial Filaments (AREA)
- Multicomponent Fibers (AREA)
Abstract
【課題】耐久性に優れた熱可塑性繊維及びこれを含む布を提供する。
【解決手段】特に、熱可塑性繊維は繊維を構成する熱可塑性樹脂内に平均粒径が0.01〜5.0μmのフルオロ重合体粒子を含む。本発明の熱可塑性繊維は熱可塑性樹脂を放射して熱可塑性繊維を製造するとき、熱可塑性樹脂内にフルオロ重合体粒子を添加する方法で製造される。本発明の熱可塑性繊維は摩擦及び変形に対する耐久性に優れ、履物用糸、家具用糸、リュックサック用糸、研磨材用糸、スポーツウエア用糸などに有用である。
【選択図】図1A thermoplastic fiber having excellent durability and a cloth including the same are provided.
In particular, a thermoplastic fiber includes fluoropolymer particles having an average particle size of 0.01 to 5.0 μm in a thermoplastic resin constituting the fiber. The thermoplastic fiber of the present invention is produced by a method in which fluoropolymer particles are added to the thermoplastic resin when producing the thermoplastic fiber by emitting the thermoplastic resin. The thermoplastic fiber of the present invention has excellent durability against friction and deformation, and is useful for footwear yarn, furniture yarn, rucksack yarn, abrasive yarn, sportswear yarn and the like.
[Selection] Figure 1
Description
本発明は耐久性に優れた熱可塑性繊維及びこれを含む布に関するもので、より詳細には、繊維を構成する熱可塑性樹脂内に平均粒径が0.01〜5.0μmのフルオロ重合体粒子を含んでいて、摩擦及び変形に対する耐久性に優れた熱可塑性繊維、及びこれを含む布に関するものである。 The present invention relates to a thermoplastic fiber having excellent durability and a cloth containing the same, and more specifically, a fluoropolymer particle having an average particle diameter of 0.01 to 5.0 μm in a thermoplastic resin constituting the fiber. It is related with the thermoplastic fiber excellent in the durability with respect to friction and a deformation | transformation, and the cloth containing this.
ポリアミドやポリエチレンテレフタルレートのような熱可塑性繊維の耐久性を強化するためには、一般的には次のような方法が使用されている。 In order to reinforce the durability of thermoplastic fibers such as polyamide and polyethylene terephthalate, the following methods are generally used.
第一は、ポリマー重合段階で熱可塑性繊維における基本樹脂の分子量を上昇させて、糸自体の機械的物性を上昇させる方法である。 The first is a method of increasing the mechanical properties of the yarn itself by increasing the molecular weight of the basic resin in the thermoplastic fiber in the polymer polymerization stage.
第二は、糸の放射段階において熱可塑性繊維束の基本的な太さを上昇させる方法である。すなわち、糸の太さ、いわゆる全体繊度が太くなればなるほど、単位面積当りに与えられる荷重レベルが減少する。1デニールより10デニールが、10デニールより100デニールが、より一層強いということは一般的な事実である。 The second method is to increase the basic thickness of the thermoplastic fiber bundle in the radiation stage of the yarn. That is, the greater the yarn thickness, the so-called overall fineness, the lower the load level applied per unit area. It is a common fact that 10 denier is greater than 1 denier and 100 denier is greater than 10 denier.
第三は、糸の延伸条件の変更により前述した2種類の条件のうち一つまたは全部を満足させた状態で、放射延伸状態で高配向、高結晶化を与え、多段延伸及び熱処理を通じて強度を上昇させる方法である。 The third is a state in which one or all of the two conditions described above are satisfied by changing the yarn drawing conditions, giving high orientation and high crystallization in the radial drawing state, and increasing the strength through multistage drawing and heat treatment. It is a way to raise.
重合段階において、熱可塑性繊維を構成する基本樹脂の分子量を上昇させる方法は大きく2種類の方法に分類される。一つは重合時間を長く維持する方法で、重合時間が長くなればなるほど重合される分子量は大きくなる。しかし、これは基本的に時間的及び効率性の面で限界がある。ポリエチレンテレフタルレートの場合、初期分子量の増加速度は時間と線形的に相関するが、固有粘度が0.6以上の領域では、時間による分子量上昇が非常に緩やかになる傾向がある。すなわち、多くの重合時間に対して、それほど分子量が上昇しないという問題点が発生する。さらに、一定水準の固有粘度を頂点として、副反応が発生して分子量が減少する傾向を示す。 In the polymerization stage, methods for increasing the molecular weight of the basic resin constituting the thermoplastic fiber are roughly classified into two methods. One is a method of maintaining the polymerization time longer. The longer the polymerization time, the larger the molecular weight to be polymerized. However, this is fundamentally limited in terms of time and efficiency. In the case of polyethylene terephthalate, the rate of increase of the initial molecular weight linearly correlates with time, but in the region where the intrinsic viscosity is 0.6 or more, the molecular weight increase with time tends to be very gradual. That is, there is a problem that the molecular weight does not increase so much with respect to many polymerization times. Furthermore, a side reaction occurs at a certain level of intrinsic viscosity, and the molecular weight tends to decrease.
このような問題点を解決するために、ポリエチレンテレフタルレートの場合、固有粘度が0.5〜0.7になるように重合した後、さらに150℃以上の高温を均一に加えることができる固相重合乾燥機に通過させて、ポリマーの結晶化を向上させる。これを通常「固相重合」と呼び、通常、固有粘度を1.0〜1.3水準まで上昇させる。このような方式は、ポリマー重合工程で多くの時間的な損失があり、生産量及び生産コストの側面で損失が非常に大きい。特に、固相重合の途中に時間と熱風を適切に調節しないと、ポリエステルの場合には絡みつきあう現象が発生し、ポリアミド素材の場合は色相が黄色に変化する黄変現象などの付加的な問題点が多く発生する。したがって、固相重合には特殊な用途以外には適用することが困難という問題がある。 In order to solve such problems, in the case of polyethylene terephthalate, after polymerization so that the intrinsic viscosity becomes 0.5 to 0.7, a solid phase capable of uniformly applying a high temperature of 150 ° C. or higher Pass through a polymerization dryer to improve polymer crystallization. This is usually referred to as “solid phase polymerization” and usually increases the intrinsic viscosity to 1.0-1.3 levels. Such a method has a lot of time loss in the polymer polymerization process, and the loss is very large in terms of production volume and production cost. In particular, if the time and hot air are not adjusted properly during the solid-phase polymerization, an entanglement phenomenon occurs in the case of polyester, and an additional problem such as a yellowing phenomenon in which the hue changes to yellow in the case of a polyamide material. Many points occur. Therefore, there is a problem that solid-phase polymerization is difficult to apply except for special purposes.
放射段階において、糸の総繊度を増加させながら所要の水準の耐久性及び摩耗性を確保する方法には、用途によって無制限に繊維の繊度を上昇できないという問題がある。例えば、衣類用素材として適用する際、布の標準重量は50〜300g/m2水準が適当である。布の重量がそれ以下である場合は、糸の素材があまりにひらひらして製織/編織することが難しくなる。反対に、それ以上である場合には、人が着るには重すぎて、活動性に制限を与える。特に、繊度が高くなればなるほど、布自体のソフト感と柔軟性が減少してゴワゴワする。すなわち、繊維は用途によってその繊度の限界が存在するのである。 In the radiation stage, the method of ensuring the required level of durability and wear while increasing the total fineness of the yarn has a problem that the fineness of the fiber cannot be increased without limitation depending on the application. For example, when applied as a clothing material, the standard weight of the fabric is suitably 50 to 300 g / m 2 . If the weight of the fabric is less than that, the yarn material will open up too much, making it difficult to weave / knit. On the other hand, if it is more, it is too heavy for a person to wear and limits activity. In particular, as the fineness increases, the softness and flexibility of the cloth itself decreases and becomes more stiff. That is, there is a limit on the fineness of the fiber depending on the application.
さらに、延伸条件の変更により糸の強度を強化させる方法としては、延伸を一度に完了せず、目的に応じて2段から3段、4段のように多段に延伸する方法が広く使用されている。このとき、多段の延伸段階によって、糸の伸度減少率対比強度の増加が大きくなる。このとき、強度を向上させるために熱処理を併行すると、効果的である。 Furthermore, as a method for enhancing the strength of the yarn by changing the drawing conditions, a method of drawing in multiple stages such as two to three stages or four stages depending on the purpose is not widely used. Yes. At this time, the increase in the yarn elongation reduction rate relative strength is increased by the multi-stage drawing stage. At this time, it is effective to carry out heat treatment in order to improve the strength.
しかし、多段熱処理方法には、限界が予想される。すなわち、母糸は生産された後、一定時間が経過するように放置し、その後多段延伸機でさらに再延伸する。あるいは、母糸はマルチステップ放射の即時延伸機で生産される。しかし、熱処理には大規模の設備が必要であり、初期の放射スピードに比べて、最終の延伸巻取速度が低くなって生産性が低下し、工程が複雑になって収率が低下する。したがって、この方法は生産性の側面で好ましくない。 However, the multistage heat treatment method is expected to be limited. That is, after the mother yarn is produced, it is allowed to stand so that a fixed time elapses, and then it is further redrawn with a multistage drawing machine. Alternatively, the mother yarn is produced on a multi-step radiation instant drawing machine. However, the heat treatment requires large-scale equipment, and the final drawing and winding speed becomes lower than the initial radiation speed, resulting in lower productivity, complicated processes, and lower yield. Therefore, this method is not preferable in terms of productivity.
前述した耐久性の改善条件は、軽量化のための基本条件である。しかし、商業的な前提として軽量化を要する場合が多い。耐久性が確保されるならば、低い繊度の細糸素材を使用して軽量化効果を実現でき、さらに外観を同一形態で維持しながら布の重量を低くする。 The aforementioned durability improvement conditions are basic conditions for weight reduction. However, it is often necessary to reduce the weight as a commercial premise. If the durability is ensured, a low-fineness fine thread material can be used to achieve a light weight effect, and the weight of the cloth is reduced while maintaining the same appearance.
大部分の場合は、後者に属するもので、重量を低くしても見かけ外観は同一に維持しなければならない。すなわち、極細糸を使用することによる布の密度及び厚さの低下に耐えられない場合が多い。 In most cases, it belongs to the latter, and the appearance must remain the same even when the weight is reduced. That is, in many cases, it cannot withstand the decrease in the density and thickness of the fabric due to the use of extra fine yarn.
このような条件に最適な素材が中空繊維であり、内部の中空率によって糸の見かけ比重が水の比重、すなわち1.0以下に低下する。特に、ポリアミド素材の場合は約15重量%以上、ポリエステル素材の場合は25重量%以上の軽量化を達成すると、見かけ比重が1.0以下に低くなって、意味のある軽量化を達成できる。このとき、内部中空率は、繊維の全断面積に対する繊維の断面積内における中空部全体面積の割合で測定される。 The most suitable material for such a condition is hollow fiber, and the apparent specific gravity of the yarn is lowered to the specific gravity of water, that is, 1.0 or less due to the hollow ratio inside. In particular, when a weight reduction of about 15% by weight or more in the case of a polyamide material and 25% by weight or more in the case of a polyester material is achieved, the apparent specific gravity is lowered to 1.0 or less, and a meaningful weight reduction can be achieved. At this time, the internal hollow ratio is measured by the ratio of the entire area of the hollow portion in the cross-sectional area of the fiber to the total cross-sectional area of the fiber.
中空繊維の場合、内部中空率は軽量化の一つの条件である。中空率が高いほど外観上の軽量化を達成することができるが、実質的に糸自体の強度及び伸度が低下する。中空繊維の場合は、放射時の一般的な円状断面の糸を製造するときより、5〜10倍以上の高い放射ドラフトが発生するため、糸自体の強度及び伸度の両方が低下する。したがって、前述した重合、放射及び延伸の条件を適用しても実質的には耐久性が急激に低下する。同一繊度や軽量化した繊度と比較しても、中空繊維の耐久性は非常に低い。これは断面積の影響と実質的に過度な延伸により激しく変形するためである。 In the case of a hollow fiber, the internal hollow ratio is one condition for reducing the weight. The higher the hollow ratio, the lighter the appearance can be achieved, but the strength and elongation of the yarn itself are substantially reduced. In the case of hollow fibers, a radial draft that is 5 to 10 times higher than that produced when a yarn having a general circular cross section at the time of emission is produced, so that both the strength and elongation of the yarn itself are lowered. Therefore, even if the above-mentioned polymerization, radiation and stretching conditions are applied, the durability is substantially lowered. Even when compared with the same fineness and the reduced fineness, the durability of the hollow fiber is very low. This is because of severe deformation due to the influence of the cross-sectional area and substantially excessive stretching.
一方、海島型複合繊維(「海島繊維」とも称する)は熱可塑性樹脂である島成分と、アルカリ易溶出性樹脂の海成分とが海島型になった複合糸として、布製造後の加工段階で海成分を溶出させることで、布を構成している海島型複合繊維を極細化させて、布上で海島型複合繊維の島成分だけになった超極細糸を製造するために主に使用する。 On the other hand, the sea-island type composite fiber (also referred to as “sea-island fiber”) is a composite yarn in which the island component, which is a thermoplastic resin, and the sea component, which is an alkali-eluting resin, are in the form of a sea-island. It is mainly used to produce ultra-fine yarn that is made only from the island component of sea-island type composite fiber on the fabric by making the sea-island type composite fiber ultra-fine by eluting the sea component. .
人工皮革やスエード素材として使用する海島型複合繊維は、海成分の溶出後単糸繊度が0.0001〜0.3デニール級の超極細糸になる。このような超極細糸のポリエステル系糸の直径は、約0.1μm〜3μm水準である。このような超極細糸の繊度により、製造される布は、非常にソフトな触感とライティングエフェクト(すなわち、軽量化の効果)などの独特な固有の効果によって重要な合繊素材として、一つの領域を構築している。 Sea-island composite fibers used as artificial leather and suede materials become ultrafine yarns with a single yarn fineness of 0.0001 to 0.3 denier after elution of sea components. The diameter of the polyester yarn of such ultrafine yarn is about 0.1 μm to 3 μm. Due to the fineness of the ultra-fine yarn, the fabric produced has one area as an important synthetic material due to its unique inherent effects such as extremely soft tactile sensation and lighting effect (ie lightening effect). Is building.
しかし、超極細糸束の1デニールに換算した単位繊度別強度及び耐久力は非常に優れるが、実質的に極細繊度によって摩擦耐久力が非常に劣悪である。このような人工皮革やスエード布は、従来衣類用に限定して使用していたが、その用途が家具用、シート用などの非衣類用、研磨剤やワイピング布地(wiping cloth)などの産業用用途まで、その範囲が拡大している。 However, although the strength and durability by unit fineness converted to 1 denier of the ultrafine yarn bundle are very excellent, the friction durability is substantially inferior due to the extremely fineness. Such artificial leather and suede cloth have been conventionally used only for garments, but their use is for non-garments such as furniture and sheets, and industrial use such as abrasives and wiping cloths. The range has expanded to use.
このような趨勢により、スエード固有の特性に機械的物性値の改善が要求されている。すなわち、非衣類用や産業用にその用途を拡大するためには、耐久性、すなわち摩擦堅牢度/耐摩耗性の特性を改善しなければならない。現在までの摩擦堅牢度の水準は1級ないし1〜2級水準で、劣悪であるというのが事実である。 Due to such a trend, improvement in mechanical property values is required for the characteristics unique to the suede. That is, in order to expand its application to non-garments and industrial use, durability, that is, friction fastness / wear resistance characteristics must be improved. The fact that the level of friction fastness to date is from the first grade to the first to second grade, and it is the fact that it is inferior.
本発明の目的は、糸の耐久性を向上することが難しいという従来の問題を解決することによって、耐久性に優れた熱可塑性繊維及びこれを含む布を提供することにある。 An object of the present invention is to provide a thermoplastic fiber excellent in durability and a cloth including the same by solving the conventional problem that it is difficult to improve the durability of the yarn.
本発明のもう一つの目的は、耐久性および軽量性の両方に優れた熱可塑性中空繊維、及びこれを含む布を提供することにある。 Another object of the present invention is to provide a thermoplastic hollow fiber excellent in both durability and light weight, and a fabric including the same.
本発明の他の目的は、海島型複合繊維の海成分が溶出し、その島成分のみを有する超極細糸の耐久性、すなわち摩擦堅牢度及び耐摩耗性を改善することにある。 Another object of the present invention is to improve the durability, i.e., friction fastness and wear resistance, of a superfine yarn having only the island component eluted from the sea component of the sea-island composite fiber.
本発明のまた他の目的は、海島型複合繊維の耐久性を向上して、海島型複合繊維を衣類用糸はもちろん、家具用糸、シート用糸、研磨用糸などに使用できることにある。 Another object of the present invention is to improve the durability of the sea-island type composite fiber so that the sea-island type composite fiber can be used not only for clothing yarn but also for furniture yarn, sheet yarn, polishing yarn and the like.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明の熱可塑性繊維は、熱可塑性樹脂を含み、熱可塑性樹脂内に平均粒径が0.01〜5.0μmのフルオロ重合体粒子を含む。 The thermoplastic fiber of the present invention contains a thermoplastic resin, and contains fluoropolymer particles having an average particle size of 0.01 to 5.0 μm in the thermoplastic resin.
フルオロ重合体は、ポリテトラフルオロエチレン重合体、テトラフルオロエチレンとヘキサフルオロプロペンとの共重合体、テトラフルオロエチレンとペルフルオロアルキルビニルエーテルとの共重合体、及びこれらの三元共重合体からなる群より選択される一つ以上である。 The fluoropolymer includes a polytetrafluoroethylene polymer, a copolymer of tetrafluoroethylene and hexafluoropropene, a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether, and a group consisting of these terpolymers. One or more selected.
ペルフルオロアルキルビニルエーテルの例としては、ペルフルオロプロピルビニルエーテル、ペルフルオロエチルビニルエーテルなどがある。 Examples of perfluoroalkyl vinyl ethers include perfluoropropyl vinyl ether and perfluoroethyl vinyl ether.
フルオロ重合体の粒子は、繊維を構成する熱可塑性樹脂内に含まれて、繊維の摩擦係数を低下させる役目を果たす。 The fluoropolymer particles are contained in the thermoplastic resin constituting the fiber and serve to reduce the coefficient of friction of the fiber.
すなわち、熱可塑性樹脂内のフルオロ重合体の粒子が繊維の表面に位置する場合、糸の金属摩擦係数を低下させて熱可塑性繊維自体を保護する。 That is, when the fluoropolymer particles in the thermoplastic resin are located on the surface of the fiber, the metal friction coefficient of the yarn is reduced to protect the thermoplastic fiber itself.
熱可塑性樹脂内のフルオロ重合体粒子の含有量は0.1〜9.0重量%が好ましい。 The content of the fluoropolymer particles in the thermoplastic resin is preferably 0.1 to 9.0% by weight.
この含有量が0.1重量%未満である場合は、繊維の耐摩耗性及び耐久性を確保することが難しくなる。反対に、含有量が9重量%を超過する場合は、所要の水準以上の耐摩耗性及び耐久性を実現できる。しかし、繊維を生産するためには一定水準以上の張力及び摩擦力が必要であり、放射中に糸道の揺れが非常に深刻になり、巻取ドラム上に巻き取られる糸の角度を調節しても糸道が崩壊されてしまうなど、工程性が非常に脆弱になる。 When this content is less than 0.1% by weight, it is difficult to ensure the wear resistance and durability of the fiber. On the other hand, when the content exceeds 9% by weight, it is possible to realize wear resistance and durability exceeding a required level. However, in order to produce the fiber, tension and frictional force above a certain level are required, and the yarn path swings very seriously during radiation, and the angle of the yarn wound on the winding drum is adjusted. However, the processability becomes very fragile, for example, the yarn path is collapsed.
フルオロ重合体粒子の平均粒径は光学顕微鏡や電子顕微鏡で測定したとき、0.01〜5.0μm、さらに0.1〜1.0μmであることがより好ましい。0.01μm未満の場合にはフルオロ重合体を粉砕して得ることができる収率と、超微細直径により絡まりあう現象とを解決することが困難である。反対に、平均粒径が5.0μmを超過する場合には、無機物としての粒子が連続性を示さず、熱可塑性樹脂で繊維を生産する際の放射中に最弱点として機能し、切糸及び工程性能が低下する直接的な原因になる。 The average particle diameter of the fluoropolymer particles is preferably 0.01 to 5.0 μm, more preferably 0.1 to 1.0 μm, when measured with an optical microscope or an electron microscope. If it is less than 0.01 μm, it is difficult to solve the yield that can be obtained by pulverizing the fluoropolymer and the phenomenon of entanglement due to the ultrafine diameter. On the other hand, when the average particle diameter exceeds 5.0 μm, the inorganic particles do not exhibit continuity, function as the weakest point during radiation when producing fibers with thermoplastic resin, This is a direct cause of process performance degradation.
熱可塑性繊維としては、熱可塑性樹脂を含む通常の糸、単糸繊度0.01〜0.3デニールの島成分がアルカリ易溶出性ポリマーの海成分内に分散している海島型複合繊維、または糸断面上に中空部が形成されている熱可塑性中空繊維などが挙げられる。 As the thermoplastic fiber, a normal yarn containing a thermoplastic resin, a sea-island type composite fiber in which an island component having a single yarn fineness of 0.01 to 0.3 denier is dispersed in a sea component of an alkali-eluting polymer, or Examples thereof include a thermoplastic hollow fiber in which a hollow portion is formed on the yarn cross section.
熱可塑性繊維が海島型複合繊維である場合、平均粒径が0.01〜5.0μmのフルオロ重合体粒子は島成分内に含まれている。 When the thermoplastic fiber is a sea-island type composite fiber, the fluoropolymer particles having an average particle size of 0.01 to 5.0 μm are contained in the island component.
熱可塑性中空繊維の中空率は熱可塑性樹脂の種類によって差があるが、総じて10〜40%水準であれば、十分である。中空率が10%より低い場合は、実質的な軽量化の効果が得られにくい。また、40%より高い場合は、中空が良好に形成されても外力により容易に崩れる傾向がある。 The hollow ratio of the thermoplastic hollow fiber varies depending on the kind of the thermoplastic resin, but if it is generally 10 to 40% level, it is sufficient. When the hollowness is lower than 10%, it is difficult to obtain a substantial lightening effect. If it is higher than 40%, even if the hollow is formed well, it tends to be easily broken by an external force.
本発明は、熱可塑性樹脂内に平均粒径が0.01〜5.0μmのフルオロ重合体粒子が含まれている熱可塑性繊維を有する布を包含する。布内の熱可塑性繊維の含有量は40〜100重量%であることが好ましい。 The present invention includes a cloth having thermoplastic fibers in which fluoropolymer particles having an average particle diameter of 0.01 to 5.0 μm are contained in a thermoplastic resin. The thermoplastic fiber content in the cloth is preferably 40 to 100% by weight.
本発明に係る布は耐久性及び軽量感に優れる。 The fabric according to the present invention is excellent in durability and lightness.
例えば、ASTM−D3884条件下で2000回の耐摩耗度が要求されるポリエステルカーペットである場合には、150デニールの従来のポリエステル糸を使用すると、カーペットの組織や染色加工条件を変更しても1400回以上の耐摩耗度を得ることが難しい。 For example, in the case of a polyester carpet that requires a wear resistance of 2000 times under ASTM-D3884, if a conventional polyester yarn of 150 denier is used, 1400 even if the carpet structure or dyeing processing conditions are changed. It is difficult to obtain wear resistance more than once.
しかし、本発明に係る熱可塑性繊維(共通の繊維)を使用すると、150デニール素材でも2000回以上の耐摩耗度を実現できる。 However, when the thermoplastic fiber (common fiber) according to the present invention is used, a wear resistance of 2000 times or more can be realized even with a 150 denier material.
さらに、耐摩擦回数が350回水準の75デニール級素材に対しても、その水準を500回以上に改善でき、仮延伸工程を施すとその効果は倍になる。 Furthermore, even for a 75 denier grade material with a frequency of 350 times of friction resistance, the level can be improved to 500 times or more, and the effect is doubled when a temporary stretching process is performed.
1 中空繊維
A 熱可塑性樹脂
B 中空部
1 Hollow fiber A Thermoplastic resin B Hollow part
以下、添付図面を参照して次の実施例及び比較例を通じて本発明をより具体的に説明する。しかし、本発明は下記の実施例にその権利範囲が限定されるものではない。 Hereinafter, the present invention will be described more specifically through the following examples and comparative examples with reference to the accompanying drawings. However, the scope of the present invention is not limited to the following examples.
ポリエチレンテレフタルレートを基本ポリマーとして、電子顕微鏡で測定した平均粒径が0.5μmのポリテトラフルオロエチレン粒子を15重量%含有するマスターバッチ(master batch)を製造した。 A master batch containing 15% by weight of polytetrafluoroethylene particles having an average particle diameter of 0.5 μm as measured with an electron microscope was produced using polyethylene terephthalate as a basic polymer.
このマスターバッチとポリエチレンテレフタルレートの基本ポリマーとを使用して、75デニールの36フィラメントを含むポリエチレンテレフタルレート繊維を放射直接延伸方法で製造した。このとき、繊維内のポリテトラフルオロエチレン粒子の含有量が1重量%になるように、マスターバッチの含有量を調節した。 Using this masterbatch and a base polymer of polyethylene terephthalate, polyethylene terephthalate fibers containing 36 filaments of 75 denier were produced by a direct radiation drawing method. At this time, the content of the master batch was adjusted so that the content of the polytetrafluoroethylene particles in the fiber was 1% by weight.
これをさらに4kgのドラムで88本ずつ生産し、これを22ゲージのインターラック丸編機で製織した後、130℃で60分間染色した。続いて、熱風乾燥機で30m/分の速度で乾燥し、丸編地を製造した。 88 pieces of this were further produced on a 4 kg drum, weaved with a 22 gauge interlac circular knitting machine, and dyed at 130 ° C. for 60 minutes. Then, it dried with the hot air dryer at the speed | rate of 30 m / min, and manufactured the circular knitted fabric.
製造した丸編地の耐摩耗回数を測定し、その結果を表1に示した。 The number of wear resistance of the manufactured circular knitted fabric was measured, and the results are shown in Table 1.
ポリテトラフルオロエチレン粒子の平均粒径を1.0μmに変更し、ポリエチレンテレフタルレート繊維内のポリテトラフルオロエチレン粒子の含有量を2重量%に変更した点を除き、実施例1と同様にポリエチレンテレフタルレート繊維及びその丸編地を製造した。 The polyethylene terephthalate was the same as in Example 1 except that the average particle size of the polytetrafluoroethylene particles was changed to 1.0 μm and the content of the polytetrafluoroethylene particles in the polyethylene terephthalate fiber was changed to 2% by weight. Rate fibers and their circular knitted fabrics were produced.
製造した丸編地の耐摩耗回数を測定し、その結果を表1に示した。 The number of wear resistance of the manufactured circular knitted fabric was measured, and the results are shown in Table 1.
実施例1と同じ条件下で製造したポリエチレンテレフタルレート繊維(繊維内のポリテトラフルオロエチレン含有量は1重量%)を仮延伸処理してポリエチレンテレフタルレート仮延伸糸を製造した後、これを使用して実施例1と同じ条件下で丸編地を製造した。 A polyethylene terephthalate fiber (polytetrafluoroethylene content in the fiber is 1% by weight) produced under the same conditions as in Example 1 was pre-drawn to produce a polyethylene terephthalate pre-drawn yarn, which was then used. A circular knitted fabric was produced under the same conditions as in Example 1.
製造した丸編地の耐摩耗回数を測定し、その結果を表1に示した。 The number of wear resistance of the manufactured circular knitted fabric was measured, and the results are shown in Table 1.
実施例2と同じ条件下で製造したポリエチレンテレフタルレート繊維(繊維内のポリテトラフルオロエチレン含有量:2重量%)を仮延伸処理してポリエチレンテレフタルレート仮延伸糸を製造した後、これを使用して実施例1と同じ条件下で丸編地を製造した。 A polyethylene terephthalate fiber (polytetrafluoroethylene content in the fiber: 2% by weight) produced under the same conditions as in Example 2 was pre-drawn to produce a polyethylene terephthalate pre-drawn yarn, which was then used. A circular knitted fabric was produced under the same conditions as in Example 1.
製造した丸編地の耐摩耗回数を測定し、その結果を表1に示した。 The number of wear resistance of the manufactured circular knitted fabric was measured, and the results are shown in Table 1.
島成分としてのポリエチレンテレフタルレートを基本ポリマーとして用い、電子顕微鏡で測定した平均粒径が2.0μmのポリテトラフルオロエチレン粒子を15重量%含有するマスターバッチを製造した。 A master batch containing 15% by weight of polytetrafluoroethylene particles having an average particle diameter of 2.0 μm as measured with an electron microscope was produced using polyethylene terephthalate as an island component as a basic polymer.
このマスターバッチを使用して、75デニールの24フィラメントの糸を含む36分割型の海島型複合繊維を放射直接延伸方法で製造した。繊維内の島成分の比率は70重量%で、アルカリ易溶出性ポリマーを海成分として30重量%の割合で添加した。このとき、島成分であるポリマー内のポリテトラフルオロエチレン粒子の含有量が1重量%になるように、マスターバッチの含有量を調節した。 Using this masterbatch, a 36-divided sea-island type composite fiber containing 24 denier yarns of 75 denier was produced by a radial direct drawing method. The ratio of the island component in the fiber was 70% by weight, and an alkali-eluting polymer was added as a sea component at a rate of 30% by weight. At this time, the content of the master batch was adjusted so that the content of the polytetrafluoroethylene particles in the polymer as the island component was 1% by weight.
海島型複合繊維88本をさらに4kg容量ドラム内で生産し、仮延伸し、30デニールの12フィラメントを含む高収縮性糸(100℃の熱水で30分間浸漬したとき、糸の収縮率が25%を示す)と合糸して105デニール36フィラメントの糸を製造した。これを32ゲージインターラック丸編機で製織した後、起毛機で布幅が50%に縮小するように加工し、せん断して基本布を製造した。続いて、これに100℃の熱水で純度50%のNaOH強アルカリ溶液を添加し、全体的な減量液の濃度を1重量%に調節した。このとき、減量液の総量と投入する布との重量比が40:1になるように調節した。これを60分間かけて布総重量の24重量%程度まで減量した後、精練し水洗した。これをさらに130℃で60分間かけて染色した後、180℃の熱風乾燥機で30m/分の速度で乾燥した後、ブラッシング工程を経て、丸編地を製編した。 A further 88 sea-island type composite fibers were produced in a drum of 4 kg capacity, pre-drawn, and highly shrinkable yarn containing 12 filaments of 30 denier (when immersed in hot water at 100 ° C. for 30 minutes, the shrinkage of the yarn was 25 %) To produce 105 denier 36 filament yarns. After weaving this with a 32 gauge interlac circular knitting machine, it was processed with a raising machine so that the cloth width was reduced to 50%, and sheared to produce a basic cloth. Subsequently, a 50% pure NaOH strong alkali solution was added to this at 100 ° C. hot water to adjust the overall weight loss concentration to 1% by weight. At this time, the weight ratio of the total weight of the weight reducing liquid to the cloth to be added was adjusted to be 40: 1. This was reduced to about 24% by weight of the total cloth weight over 60 minutes, then scoured and washed with water. This was further dyed at 130 ° C. for 60 minutes, then dried with a hot air drier at 180 ° C. at a speed of 30 m / min, and then a circular knitted fabric was knitted through a brushing process.
製造した丸編地の耐摩耗回数を測定し、その結果を表1に示した。 The number of wear resistance of the manufactured circular knitted fabric was measured, and the results are shown in Table 1.
ポリエチレンテレフタルレートを基本ポリマーとして用い、電子顕微鏡で測定した平均粒径が0.5μmのポリテトラフルオロエチレンを15重量%含有するマスターバッチを製造した。 A master batch containing 15% by weight of polytetrafluoroethylene having an average particle diameter of 0.5 μm as measured with an electron microscope was produced using polyethylene terephthalate as a basic polymer.
前述のマスターバッチを使用して、150デニールの48フィラメントを含むポリエチレンテレフタルレート中空繊維を放射直接延伸方法で製造した。このとき、中空繊維内のポリテトラフルオロエチレン含有量が1重量%になるように、マスターバッチの含有量を調節した。中空繊維の中空率は30%であった。 Using the aforementioned masterbatch, polyethylene terephthalate hollow fibers containing 48 denier of 150 denier were produced by a direct radiation drawing method. At this time, the content of the master batch was adjusted so that the content of polytetrafluoroethylene in the hollow fiber was 1% by weight. The hollow ratio of the hollow fiber was 30%.
これをさらに4kg容量ドラムで88本生産して22ゲージインターラック丸編機で製織した後、130℃で60分間染色した。続いて、180℃の熱風乾燥機で30m/分の速度で乾燥して、丸編地を製編した。 88 pieces of this were further produced with a 4 kg capacity drum, woven with a 22 gauge interlac circular knitting machine, and then dyed at 130 ° C. for 60 minutes. Subsequently, the circular knitted fabric was knitted by drying with a hot air dryer at 180 ° C. at a speed of 30 m / min.
製造した丸編地の耐摩耗回数を測定し、その結果を表1に示した。 The number of wear resistance of the manufactured circular knitted fabric was measured, and the results are shown in Table 1.
ポリエチレンテレフタルレートを基本ポリマーとして用い、電子顕微鏡で測定した平均粒径が1.8μmのポリテトラフルオロエチレンを15重量%含有するマスターバッチを製造した。 A master batch containing 15% by weight of polytetrafluoroethylene having an average particle diameter of 1.8 μm as measured with an electron microscope was produced using polyethylene terephthalate as a basic polymer.
前述のマスターバッチを使用して150デニールの48フィラメントを含むポリエチレンテレフタルレート中空繊維を放射直接延伸方法で製造した。このとき、中空繊維内のポリテトラフルオロエチレン含有量が2重量%になるように、マスターバッチの含有量を調節した。中空繊維の中空率は30%であった。
これをさらに4kg容量ドラムで88本生産して22ゲージインターラック丸編機で製織した後、130℃で60分間染色した。続いて、180℃の熱風乾燥機で30m/分の速度で乾燥して丸編地を製編した
A polyethylene terephthalate hollow fiber containing 48 denier of 150 denier was produced by the direct radiation drawing method using the above masterbatch. At this time, the content of the master batch was adjusted so that the content of polytetrafluoroethylene in the hollow fiber was 2% by weight. The hollow ratio of the hollow fiber was 30%.
88 pieces of this were further produced with a 4 kg capacity drum, woven with a 22 gauge interlac circular knitting machine, and then dyed at 130 ° C. for 60 minutes. Subsequently, a circular knitted fabric was knitted by drying at a rate of 30 m / min with a hot air dryer at 180 ° C.
製造した丸編地の耐摩耗回数を測定し、その結果を表1に示した。 The number of wear resistance of the manufactured circular knitted fabric was measured, and the results are shown in Table 1.
<比較例1>
ポリテトラフルオロエチレンを含有しないポリエチレンテレフタルレートを使用したことを除き、実施例1と同様に75デニール/36フィラメントのポリエチレンテレフタルレート繊維及びその丸編地を製造した。
<Comparative Example 1>
A 75 denier / 36 filament polyethylene terephthalate fiber and its circular knitted fabric were produced in the same manner as in Example 1 except that polyethylene terephthalate containing no polytetrafluoroethylene was used.
製造した丸編地の耐摩耗回数を測定し、その結果を表1に示した。 The number of wear resistance of the manufactured circular knitted fabric was measured, and the results are shown in Table 1.
<比較例2>
ポリテトラフルオロエチレン粒子の平均粒径を0.001μmに変更したことを除き、実施例1と同様にポリエチレンテレフタルレート繊維及びその丸編地を製造した。
<Comparative example 2>
A polyethylene terephthalate fiber and a circular knitted fabric thereof were produced in the same manner as in Example 1 except that the average particle diameter of the polytetrafluoroethylene particles was changed to 0.001 μm.
製造した丸編地の耐摩耗回数を測定し、その結果を表1に示した。 The number of wear resistance of the manufactured circular knitted fabric was measured, and the results are shown in Table 1.
<比較例3>
ポリテトラフルオロエチレンを含有しないポリエチレンテレフタルレートを島成分として使用することを除き、実施例5と同様に海島型複合繊維及びこれを含む丸編地を製造した。
<Comparative Example 3>
A sea-island type composite fiber and a circular knitted fabric including the same were produced in the same manner as in Example 5 except that polyethylene terephthalate containing no polytetrafluoroethylene was used as the island component.
製造した丸編地の耐摩耗回数を測定し、その結果を表1に示した。 The number of wear resistance of the manufactured circular knitted fabric was measured, and the results are shown in Table 1.
<比較例4>
ポリテトラフルオロエチレン粒子の平均粒径を0.001μmに変更したことを除き、実施例5と同様に海島型複合繊維及びこれを含む丸編地を製造した。
<Comparative example 4>
A sea-island composite fiber and a circular knitted fabric including the same were produced in the same manner as in Example 5 except that the average particle size of the polytetrafluoroethylene particles was changed to 0.001 μm.
製造した丸編地の耐摩耗回数を測定し、その結果を表1に示した。 The number of wear resistance of the manufactured circular knitted fabric was measured, and the results are shown in Table 1.
<比較例5>
ポリテトラフルオロエチレンを含有しないポリエチレンテレフタルレートを使用したことを除き、実施例6と同様に150デニール/48フィラメントのポリエチレンテレフタルレート中空繊維及びその丸編地を製造した。
<Comparative Example 5>
A 150 denier / 48 filament polyethylene terephthalate hollow fiber and its circular knitted fabric were produced in the same manner as in Example 6, except that polyethylene terephthalate containing no polytetrafluoroethylene was used.
製造した丸編地の耐摩耗回数を測定し、その結果を表1に示した。 The number of wear resistance of the manufactured circular knitted fabric was measured, and the results are shown in Table 1.
<比較例6>
ポリテトラフルオロエチレン粒子の平均粒径を7.0μmに変更したことを除き、実施例6と同様にポリエチレンテレフタルレート中空繊維を製造しようとしたが、放射中糸の切糸が非常に多いため、商業的規模でポリエチレンテレフタルレート中空繊維を製造することができなかった。
<Comparative Example 6>
Except that the average particle size of the polytetrafluoroethylene particles was changed to 7.0 μm, an attempt was made to produce a polyethylene terephthalate hollow fiber in the same manner as in Example 6. Polyethylene terephthalate hollow fibers could not be produced on a commercial scale.
実施例1〜7及び比較例1〜6について、丸編地の耐摩耗回数はASTM−D3884の編成物試験方法で測定し、評価機器はマーチン(Martin)耐摩耗測定器を使用した。使用した摩擦布は320Cwサンドペーパーであり、荷重は500gであった。 For Examples 1 to 7 and Comparative Examples 1 to 6, the wear resistance of the circular knitted fabric was measured by the knitted fabric test method of ASTM-D3884, and the Martin abrasion resistance measuring instrument was used as the evaluation equipment. The friction cloth used was 320 Cw sandpaper, and the load was 500 g.
以上で詳細に説明したように、本発明の熱可塑性繊維は耐久性に優れ、多様な分野に適用できる。特に、本発明の熱可塑性繊維は、全体繊度が低い軽量素材の耐久性及び耐摩耗性を補完でき、衣類として利用できる。他方、本発明の熱可塑性繊維は、強度及び耐摩耗などが重要な履物や家具、オートバイや乗馬服などの衣服製品の素材に適用でき、登山用や山岳用バックパック布などの素材としても幅広く使用することができる。さらに、表面摩擦特性が重要な研磨材として適用できる。 As described in detail above, the thermoplastic fiber of the present invention is excellent in durability and can be applied to various fields. In particular, the thermoplastic fiber of the present invention can complement the durability and wear resistance of a lightweight material having a low overall fineness and can be used as clothing. On the other hand, the thermoplastic fiber of the present invention can be applied to materials for footwear and furniture whose strength and wear resistance are important, clothing products such as motorcycles and riding clothes, and is also widely used as materials for mountain climbing and mountain backpacks. Can be used. Furthermore, it can be applied as an abrasive material in which surface friction characteristics are important.
Claims (10)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070018863A KR100975360B1 (en) | 2007-02-26 | 2007-02-26 | Thermoplastic fiber with excellent durability and fabric comprising the same |
KR1020070019308A KR100975362B1 (en) | 2007-02-27 | 2007-02-27 | High durable sea and island type conjugate fiber and fabric comprising ultra fine fiber composed island of the conjugate fiber |
KR1020070019309A KR100975363B1 (en) | 2007-02-27 | 2007-02-27 | Thermoplastic hollow fiber with excellent durability and fabric comprising the same |
PCT/KR2008/001098 WO2008105615A1 (en) | 2007-02-26 | 2008-02-26 | Thermoplastic fiber with excellent durability and fabric comprising the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010519422A true JP2010519422A (en) | 2010-06-03 |
Family
ID=39721421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009550809A Pending JP2010519422A (en) | 2007-02-26 | 2008-02-26 | Durable thermoplastic fiber and cloth containing the same |
Country Status (3)
Country | Link |
---|---|
US (1) | US20100068516A1 (en) |
JP (1) | JP2010519422A (en) |
WO (1) | WO2008105615A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20081055A1 (en) * | 2008-06-10 | 2009-12-11 | Alcantara Spa | MICROFIBROSO FABRIC WITH SUEDE APPEARANCE IN THE COLORS OF THE GRAY AND BLACKS RANGE WITH HIGH SOLIDITY IN THE LIGHT AND ITS METHOD OF PREPARATION |
WO2011133130A1 (en) | 2010-04-21 | 2011-10-27 | Puritan Medical Products Company, Llc | Collection device and material |
US20120214374A1 (en) | 2011-02-21 | 2012-08-23 | Chaitra Mahesha | Paper machine clothing having monofilaments with lower coefficient of friction |
GB201107755D0 (en) | 2011-05-10 | 2011-06-22 | Helperby Therapeutics Ltd | Novel compounds |
AU2013302374B2 (en) * | 2012-08-16 | 2017-01-05 | Schlage Lock Company Llc | Wireless reader system |
CA2986038C (en) | 2015-05-18 | 2022-08-23 | Albany International Corp. | Use of silicone content and fluoropolymer additives to improve properties of polymeric compositions |
BR112018001714B1 (en) | 2015-10-05 | 2022-08-02 | Albany International Corp | COMPOSITIONS AND METHODS FOR IMPROVED ABRASION RESISTANCE OF POLYMERIC COMPONENTS |
CN113430658B (en) * | 2021-06-25 | 2022-07-15 | 江苏恒力化纤股份有限公司 | Low-pressure spinning method of polyester industrial yarn |
CN113430657B (en) * | 2021-06-25 | 2022-05-24 | 江苏恒力化纤股份有限公司 | Method for reducing spinning temperature of polyester industrial yarn |
CN113430656B (en) * | 2021-06-25 | 2022-05-06 | 江苏恒力化纤股份有限公司 | Method for preparing ultra-high strength polyester industrial yarn |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01162825A (en) * | 1987-12-21 | 1989-06-27 | Kanebo Ltd | Conjugate fiber |
JPH0226919A (en) * | 1988-07-15 | 1990-01-29 | Toray Ind Inc | Fiber excellent in low frictional characteristics and stainproofness |
JPH08218226A (en) * | 1995-02-15 | 1996-08-27 | Toray Ind Inc | Polyester fiber excellent in flame resistance |
JPH11506672A (en) * | 1995-06-06 | 1999-06-15 | ジレット、カナダ、インコーポレーテッド | Dental floss |
JP2001159024A (en) * | 1999-11-30 | 2001-06-12 | Lion Corp | Method for producing particle-containing fiber |
US20050100733A1 (en) * | 2003-08-15 | 2005-05-12 | Foss Manufacturing Co., Inc. | Synthetic fibers modified with PTFE to improve performance |
US20050244627A1 (en) * | 2004-03-31 | 2005-11-03 | Travelute Frederick L Iii | Low density light weight filament and fiber |
JP2006336162A (en) * | 2005-06-03 | 2006-12-14 | Toray Ind Inc | Woven fabric and method for producing the same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3552755A (en) * | 1968-02-26 | 1971-01-05 | Chicago Rawhide Mfg Co | Directionally reinforced rubber and seal unit made therefrom |
CA1338292C (en) * | 1985-12-09 | 1996-04-30 | William Everett Peters | Elastomer ptfe composition, articles, and manufacturing methods |
US5429869A (en) * | 1993-02-26 | 1995-07-04 | W. L. Gore & Associates, Inc. | Composition of expanded polytetrafluoroethylene and similar polymers and method for producing same |
US5875797A (en) * | 1995-06-06 | 1999-03-02 | Gillette Canada Inc. | Dental floss |
US6190768B1 (en) * | 1998-03-11 | 2001-02-20 | The Dow Chemical Company | Fibers made from α-olefin/vinyl or vinylidene aromatic and/or hindered cycloaliphatic or aliphatic vinyl or vinylidene interpolymers |
US6709742B2 (en) * | 1998-05-18 | 2004-03-23 | Dow Global Technologies Inc. | Crosslinked elastic fibers |
DE60125027T2 (en) * | 2000-03-30 | 2007-07-05 | Asahi Kasei Kabushiki Kaisha | MONOFILGARN AND MANUFACTURING PROCESS |
US20060154058A1 (en) * | 2002-10-01 | 2006-07-13 | William Neuberg | Method of making synthetic melt spun fibres with polytetrafluoroethylene |
JP2006501380A (en) * | 2002-10-01 | 2006-01-12 | シャムロック テクノロジーズ インコーポレーテッド | Method for producing cellulosic fiber containing PTFE |
WO2006060825A1 (en) * | 2004-12-03 | 2006-06-08 | Dow Global Technologies Inc. | Elastic fibers having reduced coefficient of friction |
BE1018246A3 (en) * | 2008-08-14 | 2010-07-06 | Luxilon Ind Nv | SYNTHETIC STRAP. |
-
2008
- 2008-02-26 JP JP2009550809A patent/JP2010519422A/en active Pending
- 2008-02-26 WO PCT/KR2008/001098 patent/WO2008105615A1/en active Application Filing
- 2008-02-26 US US12/528,488 patent/US20100068516A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01162825A (en) * | 1987-12-21 | 1989-06-27 | Kanebo Ltd | Conjugate fiber |
JPH0226919A (en) * | 1988-07-15 | 1990-01-29 | Toray Ind Inc | Fiber excellent in low frictional characteristics and stainproofness |
JPH08218226A (en) * | 1995-02-15 | 1996-08-27 | Toray Ind Inc | Polyester fiber excellent in flame resistance |
JPH11506672A (en) * | 1995-06-06 | 1999-06-15 | ジレット、カナダ、インコーポレーテッド | Dental floss |
JP2001159024A (en) * | 1999-11-30 | 2001-06-12 | Lion Corp | Method for producing particle-containing fiber |
US20050100733A1 (en) * | 2003-08-15 | 2005-05-12 | Foss Manufacturing Co., Inc. | Synthetic fibers modified with PTFE to improve performance |
US20050244627A1 (en) * | 2004-03-31 | 2005-11-03 | Travelute Frederick L Iii | Low density light weight filament and fiber |
JP2006336162A (en) * | 2005-06-03 | 2006-12-14 | Toray Ind Inc | Woven fabric and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
WO2008105615A1 (en) | 2008-09-04 |
US20100068516A1 (en) | 2010-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010519422A (en) | Durable thermoplastic fiber and cloth containing the same | |
KR20140145184A (en) | Stretch wovens with a control yarn system | |
JP2015010282A (en) | Woven or knitted fabric excellent in heat shielding properties and heat radiation properties and textile products | |
WO2020158530A1 (en) | Water-repellent woven article, production method for same, and garment | |
JP6155623B2 (en) | Denim | |
CN107893278B (en) | Polyester-cotton antistatic A-level functional fabric | |
KR100975360B1 (en) | Thermoplastic fiber with excellent durability and fabric comprising the same | |
JP2009167565A (en) | Stretchable knitted fabric, method for producing the same, and textile product | |
KR20220065079A (en) | Lyocell filament lining fabric | |
JP5034412B2 (en) | Fabric comprising nanofiber and method for producing the same | |
JP4362765B2 (en) | Fully-dull, high-density fabric that eliminates gloss | |
KR101359587B1 (en) | Core-sheath type polyester composite yarn with softness and excellent drapery | |
JP5216970B2 (en) | Polyester knitted fabric, production method thereof and textile product | |
JP4451613B2 (en) | Waterproof fabric with antistatic and water repellency | |
KR101807000B1 (en) | High Gravity Polyester Composite Yarn and Fabric | |
JP3912065B2 (en) | Polyester blended yarn and false twisted yarn | |
JP7101027B2 (en) | Textiles and clothing | |
KR100975363B1 (en) | Thermoplastic hollow fiber with excellent durability and fabric comprising the same | |
JP2005171427A (en) | Union cloth | |
WO2024070727A1 (en) | Woven/knitted article | |
KR102234800B1 (en) | Polyester blended filament yarn with natural thin and thick effect to improve the flexibility of the fabric and method for manufacturing thereof | |
JP2019137926A (en) | Anti-snagging knitted fabric using false-twisted yarn | |
KR100975362B1 (en) | High durable sea and island type conjugate fiber and fabric comprising ultra fine fiber composed island of the conjugate fiber | |
JP7267820B2 (en) | Insole for shoes using non-slip fabric | |
Bilisik et al. | Dimensional and mechanical characterization of newly developed denim fabrics based on experimentally determined property-structural pattern relations for upholstery applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120731 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20121031 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20121107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121113 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130604 |