JP2010238617A - Solid electrolyte fuel battery - Google Patents
Solid electrolyte fuel battery Download PDFInfo
- Publication number
- JP2010238617A JP2010238617A JP2009087349A JP2009087349A JP2010238617A JP 2010238617 A JP2010238617 A JP 2010238617A JP 2009087349 A JP2009087349 A JP 2009087349A JP 2009087349 A JP2009087349 A JP 2009087349A JP 2010238617 A JP2010238617 A JP 2010238617A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- deterioration determination
- fuel
- cell module
- deterioration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2457—Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04664—Failure or abnormal function
- H01M8/04679—Failure or abnormal function of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
- H01M8/04365—Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04701—Temperature
- H01M8/04731—Temperature of other components of a fuel cell or fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04753—Pressure; Flow of fuel cell reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
- H01M8/243—Grouping of unit cells of tubular or cylindrical configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2484—Details of groupings of fuel cells characterised by external manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、固体電解質型燃料電池に関し、特に、要求発電量に応じて出力電力を可変する固体電解質型燃料電池に関する。 The present invention relates to a solid oxide fuel cell, and more particularly to a solid oxide fuel cell in which output power is variable according to a required power generation amount.
固体電解質型燃料電池(Solid Oxide Fuel Cell:以下「SOFC」とも言う)は、電解質として酸化物イオン導電性固体電解質を用い、その両側に電極を取り付け、一方の側に燃料ガスを供給し、他方の側に酸化剤(空気、酸素等)を供給して、比較的高温で動作する燃料電池である。 A solid oxide fuel cell (hereinafter also referred to as “SOFC”) uses an oxide ion conductive solid electrolyte as an electrolyte, has electrodes attached to both sides thereof, supplies fuel gas on one side, and supplies the other This is a fuel cell that operates at a relatively high temperature by supplying an oxidizing agent (air, oxygen, etc.) to the side.
このSOFCにおいては、酸化物イオン導電性固体電解質を通過した酸素イオンと燃料との反応によって水蒸気又は二酸化炭素を生成し、電気エネルギー及び熱エネルギーが発生する。電気エネルギーは、SOFC外部に取り出されて、各種電気的用途に使用される。一方、熱エネルギーは、燃料、SOFC及び酸化剤等の温度を上昇させるために使用される。 In this SOFC, water vapor or carbon dioxide is generated by the reaction between oxygen ions that have passed through the oxide ion conductive solid electrolyte and fuel, and electric energy and thermal energy are generated. Electric energy is taken out of the SOFC and used for various electrical applications. On the other hand, thermal energy is used to raise the temperature of fuel, SOFC, oxidant and the like.
また、燃料電池セルは、長期間に亘る使用により劣化していくことが知られている。特開2007−87756号公報(特許文献1)には、固体酸化物型燃料電池が記載されている。この燃料電池においては、燃料の流量を調整することにより、燃料電池セルの劣化を減少させることが記載されている。 In addition, it is known that fuel cells are deteriorated by long-term use. Japanese Unexamined Patent Publication No. 2007-87756 (Patent Document 1) describes a solid oxide fuel cell. In this fuel cell, it is described that the deterioration of the fuel cell is reduced by adjusting the flow rate of the fuel.
さらに、特開2003−217627号公報(特許文献2)には、燃料供給量制御装置、燃料供給量制御方法および電力供給システムが記載されている。この燃料供給量制御装置は、燃料電池セルが劣化することにより所定の燃料供給量に対して取り出すことができる電力が低下した場合には、燃料供給量を補償するように構成されている。 Furthermore, Japanese Unexamined Patent Application Publication No. 2003-217627 (Patent Document 2) describes a fuel supply amount control device, a fuel supply amount control method, and a power supply system. The fuel supply amount control device is configured to compensate the fuel supply amount when the power that can be taken out with respect to the predetermined fuel supply amount is reduced due to deterioration of the fuel cell.
しかしながら、一般に固体電解質型の燃料電池セルは熱容量が大きいこともあって、運転条件の変更に対する応答が極めて遅いので、燃料供給量を変更した後、燃料電池セルの温度が上昇し、要求される出力電力を供給できるようになるまでには数時間程度の長い時間を要する。加えて、燃料電池に対して要求される出力電力は、常に変動するものであり、要求発電量に応じて出力電力を可変する固体電解質型燃料電池においては、燃料電池の運転条件は常に変更されている。このため、燃料供給量に対する出力電力から、燃料電池セルの状態を正確に把握することは極めて困難であるということができる。 However, in general, solid electrolyte fuel cells have a large heat capacity, and the response to changes in operating conditions is extremely slow. Therefore, after changing the fuel supply amount, the temperature of the fuel cells rises and is required. It takes a long time of several hours before output power can be supplied. In addition, the output power required for the fuel cell constantly fluctuates, and in a solid oxide fuel cell that varies the output power according to the required power generation, the operating conditions of the fuel cell are constantly changed. ing. For this reason, it can be said that it is extremely difficult to accurately grasp the state of the fuel cell from the output power with respect to the fuel supply amount.
さらに、燃料電池セルの出力電力は、燃料電池セルの高温状態を維持するための変動要因となる外気温、外気の湿度、運転履歴等の非常に多くの要因により影響されるので、これが燃料電池セルの状態の把握をさらに難しくしている。例えば、燃料電池セルの劣化を誤判定し、実際に必要な燃料供給量よりも多くの燃料が供給されるように、燃料供給量が補正された場合には、余分に供給された燃料は発電に使用されずに燃焼されるので、発電効率の低下を招くという問題がある。さらに、燃料電池セルの劣化の誤判定の結果、不適切な運転条件による運転が継続して行われた場合には、燃料電池セルの過度の温度上昇を招き、燃料電池セルの劣化を促進してしまうという問題もある。 Furthermore, since the output power of the fuel cell is influenced by a large number of factors such as the outside air temperature, the outside air humidity, and the operation history, which are fluctuation factors for maintaining the high temperature state of the fuel cell, this is the fuel cell. It makes it harder to understand the cell status. For example, if the fuel supply amount is corrected so that fuel cell deterioration is misjudged and more fuel is supplied than is actually required, the excess fuel will be generated. Since it is burned without being used, there is a problem that power generation efficiency is lowered. Furthermore, if the fuel cell deterioration is erroneously determined as a result of continued operation under improper operating conditions, the fuel cell will rise excessively and promote the deterioration of the fuel cell. There is also a problem that it ends up.
従って、本発明は、燃料電池モジュールの劣化を正確に判定することができる固体電解質型燃料電池を提供することを目的としている。 Accordingly, an object of the present invention is to provide a solid oxide fuel cell capable of accurately determining deterioration of a fuel cell module.
本発明は、要求発電量に応じて出力電力を可変する固体電解質型燃料電池であって、複数の固体電解質型燃料電池セルを備えた燃料電池モジュールと、この燃料電池モジュールに燃料を供給する燃料供給手段と、燃料電池モジュールに酸化剤ガスを供給する酸化剤ガス供給手段と、燃料電池モジュールに水を供給する水供給手段と、要求発電量に対応して、燃料供給手段から供給する燃料の量を変化させる制御手段と、を有し、制御手段は、燃料電池モジュールの劣化を判定する劣化判定手段を備え、この劣化判定手段は、燃料電池モジュールが安定した運転状態で運転されているとき劣化判定を実行することを特徴としている。 The present invention relates to a solid oxide fuel cell that varies output power according to a required power generation amount, a fuel cell module including a plurality of solid electrolyte fuel cells, and a fuel that supplies fuel to the fuel cell module Supply means; oxidant gas supply means for supplying oxidant gas to the fuel cell module; water supply means for supplying water to the fuel cell module; and fuel supply from the fuel supply means corresponding to the required power generation amount. Control means for changing the amount, and the control means includes a deterioration determination means for determining deterioration of the fuel cell module, and the deterioration determination means is operated when the fuel cell module is operated in a stable operation state. It is characterized by executing deterioration determination.
このように構成された本発明においては、制御手段は、燃料供給手段、酸化剤ガス供給手段、及び水供給手段を制御して、燃料電池モジュールに燃料、酸化剤ガス、及び水を供給する。また、制御手段に備えられた劣化判定手段は、燃料電池モジュールが安定した運転状態で運転されているとき劣化判定を実行する。 In the present invention configured as described above, the control means controls the fuel supply means, the oxidant gas supply means, and the water supply means to supply fuel, oxidant gas, and water to the fuel cell module. Further, the deterioration determination means provided in the control means executes the deterioration determination when the fuel cell module is operated in a stable operation state.
このように構成された本発明によれば、劣化判定手段が、燃料電池モジュールが安定した運転状態で運転されているときに劣化判定を実行するので、運転状態の変化による劣化判定への影響を抑制し、正確に燃料電池モジュールの劣化判定を行うことができる。 According to the present invention configured as described above, the deterioration determination unit executes the deterioration determination when the fuel cell module is operated in a stable operation state. It is possible to suppress and accurately determine the deterioration of the fuel cell module.
本発明において、好ましくは、劣化判定手段は、所定の劣化判定燃料供給量が燃料供給手段から供給されているとき劣化判定を実行する。 In the present invention, it is preferable that the deterioration determination unit executes the deterioration determination when a predetermined deterioration determination fuel supply amount is supplied from the fuel supply unit.
このように構成された本発明によれば、劣化判定手段が、一定量の燃料が燃料供給手段から供給されているとき劣化判定を実行するので、燃料供給量の変化による劣化判定への悪影響を排除することができ、正確に燃料電池モジュールの劣化判定を行うことができる。 According to the present invention configured as described above, since the deterioration determination unit performs the deterioration determination when a certain amount of fuel is supplied from the fuel supply unit, the deterioration determination due to the change in the fuel supply amount is adversely affected. Therefore, it is possible to accurately determine the deterioration of the fuel cell module.
本発明において、好ましくは、劣化判定手段は、要求発電量に関わらず、一定の燃料供給量を燃料供給手段から供給させることにより、燃料電池モジュールの安定した運転状態を形成する。 In the present invention, preferably, the deterioration determination means forms a stable operation state of the fuel cell module by supplying a constant fuel supply amount from the fuel supply means regardless of the required power generation amount.
このように構成された本発明によれば、劣化判定手段が、要求発電量に関わらず、一定の燃料供給量を燃料供給手段から供給させるので、必要に応じて安定した運転状態を形成することができ、劣化判定を行うことができる。 According to the present invention configured as described above, since the deterioration determination means supplies a constant fuel supply amount from the fuel supply means regardless of the required power generation amount, a stable operation state can be formed as necessary. It is possible to determine deterioration.
本発明において、好ましくは、劣化判定手段は、所定の劣化判定燃料供給量が、燃料供給手段から所定の劣化判定時間供給された後、劣化判定を実行する。
このように構成された本発明によれば、所定の劣化判定燃料供給量が、燃料供給手段から所定の劣化判定時間供給された後、劣化判定が実行されるので、燃料供給量を変更したことの運転状態への影響が十分に排除された劣化判定を行うことができる。
In the present invention, it is preferable that the deterioration determination unit performs the deterioration determination after a predetermined deterioration determination fuel supply amount is supplied from the fuel supply unit for a predetermined deterioration determination time.
According to the present invention configured as described above, the fuel supply amount is changed because the deterioration determination is executed after the predetermined deterioration determination fuel supply amount is supplied from the fuel supply means for the predetermined deterioration determination time. It is possible to perform the deterioration determination in which the influence on the operation state is sufficiently eliminated.
本発明において、好ましくは、劣化判定手段は、所定の劣化判定酸化剤ガス供給量が酸化剤ガス供給手段から供給され、且つ所定の劣化判定水供給量が水供給手段から供給されているとき劣化判定を実行する。 In the present invention, preferably, the deterioration determining means is deteriorated when a predetermined deterioration determining oxidant gas supply amount is supplied from the oxidant gas supplying means and a predetermined deterioration determining water supply amount is supplied from the water supplying means. Make a decision.
このように構成された本発明によれば、燃料供給量の他、酸化剤ガス供給量、及び水供給量も一定の状態で劣化判定が実行されるので、より正確に劣化判定を行うことができる。 According to the present invention configured as described above, since the deterioration determination is executed in a state where the fuel supply amount, the oxidant gas supply amount, and the water supply amount are also constant, the deterioration determination can be performed more accurately. it can.
本発明において、好ましくは、劣化判定手段は、外気の状態が所定の劣化判定外気状態である場合に劣化判定を実行する。
このように構成された本発明によれば、外気が所定の状態である場合に劣化判定が実行されるので、劣化判定に対する環境因子の影響も抑制することができる。
In the present invention, it is preferable that the deterioration determination unit executes the deterioration determination when the outside air state is a predetermined deterioration determination outside air state.
According to the present invention configured as described above, since the deterioration determination is executed when the outside air is in a predetermined state, the influence of environmental factors on the deterioration determination can also be suppressed.
本発明において、好ましくは、劣化判定手段は、所定の劣化判定間隔毎に燃料電池モジュールの安定した運転状態を形成し、劣化判定を実行する。
このように構成された本発明によれば、所定期間毎に安定した運転状態が形成され、劣化判定が実行されるので、安定した運転状態が必要以上に頻繁に強制的に形成されるのを防止することができ、燃料電池の利便性を向上させることができる。
In the present invention, preferably, the deterioration determination means forms a stable operation state of the fuel cell module at every predetermined deterioration determination interval, and executes the deterioration determination.
According to the present invention configured as described above, a stable operation state is formed every predetermined period, and deterioration determination is performed, so that a stable operation state is forcibly formed more frequently than necessary. Therefore, the convenience of the fuel cell can be improved.
本発明において、好ましくは、劣化判定手段は、燃料電池モジュールの安定した運転状態における運転結果と、所定の劣化判定基準値を比較することにより、燃料電池モジュールの劣化の有無を判定する。 In the present invention, preferably, the deterioration determination means determines whether or not the fuel cell module has deteriorated by comparing an operation result in a stable operation state of the fuel cell module with a predetermined deterioration determination reference value.
このように構成された本発明によれば、安定した運転状態における運転結果と、所定の劣化判定基準値の比較により劣化が判定されるので、劣化を数値的に把握することができる。 According to the present invention configured as described above, since the deterioration is determined by comparing the operation result in the stable operation state with the predetermined deterioration determination reference value, the deterioration can be grasped numerically.
本発明において、好ましくは、運転結果は、燃料電池モジュールの安定した運転状態における燃料電池モジュールの温度又は出力電圧であり、所定の劣化判定基準値と比較される。 In the present invention, preferably, the operation result is a temperature or output voltage of the fuel cell module in a stable operation state of the fuel cell module, and is compared with a predetermined deterioration determination reference value.
このように構成された本発明によれば、燃料電池モジュールの温度又は出力電圧に基づいて劣化が判断されるので、劣化判定時の電力使用量の影響を受けることなく劣化を判定することができる。 According to the present invention configured as described above, since the deterioration is determined based on the temperature or the output voltage of the fuel cell module, the deterioration can be determined without being affected by the amount of power used at the time of determining the deterioration. .
本発明の固体電解質型燃料電池によれば、燃料電池モジュールの劣化を正確に判定することができる。 According to the solid oxide fuel cell of the present invention, it is possible to accurately determine the deterioration of the fuel cell module.
次に、添付図面を参照して、本発明の実施形態による固体電解質型燃料電池(SOFC)を説明する。
図1は、本発明の一実施形態による固体電解質型燃料電池(SOFC)を示す全体構成図である。この図1に示すように、本発明の一実施形態による固体電解質型燃料電池(SOFC)1は、燃料電池モジュール2と、補機ユニット4を備えている。
Next, a solid oxide fuel cell (SOFC) according to an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is an overall configuration diagram showing a solid oxide fuel cell (SOFC) according to an embodiment of the present invention. As shown in FIG. 1, a solid oxide fuel cell (SOFC) 1 according to an embodiment of the present invention includes a
燃料電池モジュール2は、ハウジング6を備え、このハウジング6内部には、断熱材(図示せず但し断熱材は必須の構成ではなく、なくても良いものである。)を介して密封空間8が形成されている。なお、断熱材は設けないようにしても良い。この密閉空間8の下方部分である発電室10には、燃料ガスと酸化剤(空気)とにより発電反応を行う燃料電池セル集合体12が配置されている。この燃料電池セル集合体12は、10個の燃料電池セルスタック14(図5参照)を備え、この燃料電池セルスタック14は、16本の燃料電池セルユニット16(図4参照)から構成されている。このように、燃料電池セル集合体12は、160本の燃料電池セルユニット16を有し、これらの燃料電池セルユニット16の全てが直列接続されている。
The
燃料電池モジュール2の密封空間8の上述した発電室10の上方には、燃焼室18が形成され、この燃焼室18で、発電反応に使用されなかった残余の燃料ガスと残余の酸化剤(空気)とが燃焼し、排気ガスを生成するようになっている。
また、この燃焼室18の上方には、燃料ガスを改質する改質器20が配置され、前記残余ガスの燃焼熱によって改質器20を改質反応が可能な温度となるように加熱している。さらに、この改質器20の上方には、燃焼熱を受けて空気を加熱するための空気用熱交換器22が配置されている。
A
Further, a
次に、補機ユニット4は、水道等の水供給源24からの水を貯水してフィルターにより純水とする純水タンク26と、この貯水タンクから供給される水の流量を調整する水流量調整ユニット28(モータで駆動される「水ポンプ」等)を備えている。また、補機ユニット4は、都市ガス等の燃料供給源30から供給された燃料ガスを遮断するガス遮断弁32と、燃料ガスから硫黄を除去するための脱硫器36と、燃料ガスの流量を調整する燃料流量調整ユニット38(モータで駆動される「燃料ポンプ」等)を備えている。さらに、補機ユニット4は、空気供給源40から供給される酸化剤である空気を遮断する電磁弁42と、空気の流量を調整する改質用空気流量調整ユニット44及び発電用空気流量調整ユニット45(モータで駆動される「空気ブロア」等)と、改質器20に供給される改質用空気を加熱する第1ヒータ46と、発電室に供給される発電用空気を加熱する第2ヒータ48とを備えている。これらの第1ヒータ46と第2ヒータ48は、起動時の昇温を効率よく行うために設けられているが、省略しても良い。
Next, the
次に、燃料電池モジュール2には、排気ガスが供給される温水製造装置50が接続されている。この温水製造装置50には、水供給源24から水道水が供給され、この水道水が排気ガスの熱により温水となり、図示しない外部の給湯器の貯湯タンクへ供給されるようになっている。
また、燃料電池モジュール2には、燃料ガスの供給量等を制御するための制御ボックス52が取り付けられている。
さらに、燃料電池モジュール2には、燃料電池モジュールにより発電された電力を外部に供給するための電力取出部(電力変換部)であるインバータ54が接続されている。
Next, a hot
The
Furthermore, the
次に、図2及び図3により、本発明の実施形態による固体電解質型燃料電池(SOFC)の燃料電池モジュールの内部構造を説明する。図2は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池モジュールを示す側面断面図であり、図3は、図2のIII-III線に沿って断面図である。
図2及び図3に示すように、燃料電池モジュール2のハウジング6内の密閉空間8には、上述したように、下方から順に、燃料電池セル集合体12、改質器20、空気用熱交換器22が配置されている。
Next, the internal structure of a solid oxide fuel cell (SOFC) fuel cell module according to an embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a side sectional view showing a solid oxide fuel cell (SOFC) fuel cell module according to an embodiment of the present invention, and FIG. 3 is a sectional view taken along line III-III in FIG.
As shown in FIGS. 2 and 3, in the sealed
改質器20は、その上流端側に純水を導入するための純水導入管60と改質される燃料ガスと改質用空気を導入するための被改質ガス導入管62が取り付けられ、また、改質器20の内部には、上流側から順に、蒸発部20aと改質部20bを形成され、改質部20bには改質触媒が充填されている。この改質器20に導入された水蒸気(純水)が混合された燃料ガス及び空気は、改質器20内に充填された改質触媒により改質される。改質触媒としては、アルミナの球体表面にニッケルを付与したものや、アルミナの球体表面にルテニウムを付与したものが適宜用いられる。
The
この改質器20の下流端側には、燃料ガス供給管64が接続され、この燃料ガス供給管64は、下方に延び、さらに、燃料電池セル集合体12の下方に形成されたマニホールド66内で水平に延びている。燃料ガス供給管64の水平部64aの下方面には、複数の燃料供給孔64bが形成されており、この燃料供給孔64bから、改質された燃料ガスがマニホールド66内に供給される。
A fuel
このマニホールド66の上方には、上述した燃料電池セルスタック14を支持するための貫通孔を備えた下支持板68が取り付けられており、マニホールド66内の燃料ガスが、燃料電池セルユニット16内に供給される。
A
次に、改質器20の上方には、空気用熱交換器22が設けられている。この空気用熱交換器22は、上流側に空気集約室70、下流側に2つの空気分配室72を備え、これらの空気集約室70と空気分配室72は、6個の空気流路管74により接続されている。ここで、図3に示すように、3個の空気流路管74が一組(74a,74b,74c,74d,74e,74f)となっており、空気集約室70内の空気が各組の空気流路管74からそれぞれの空気分配室72へ流入する。
Next, an
空気用熱交換器22の6個の空気流路管74内を流れる空気は、燃焼室18で燃焼して上昇する排気ガスにより予熱される。
空気分配室72のそれぞれには、空気導入管76が接続され、この空気導入管76は、下方に延び、その下端側が、発電室10の下方空間に連通し、発電室10に余熱された空気を導入する。
The air flowing through the six air flow path pipes 74 of the
An
次に、マニホールド66の下方には、排気ガス室78が形成されている。また、図3に示すように、ハウジング6の長手方向に沿った面である前面6aと後面6bの内側には、上下方向に延びる排気ガス通路80が形成され、この排気ガス通路80の上端側は、空気用熱交換器22が配置された空間と連通し、下端側は、排気ガス室78と連通している。また、排気ガス室78の下面のほぼ中央には、排気ガス排出管82が接続され、この排気ガス排出管82の下流端は、図1に示す上述した温水製造装置50に接続されている。
図2に示すように、燃料ガスと空気との燃焼を開始するための点火装置83が、燃焼室18に設けられている。
Next, an
As shown in FIG. 2, an
次に図4により燃料電池セルユニット16について説明する。図4は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池セルユニットを示す部分断面図である。
図4に示すように、燃料電池セルユニット16は、燃料電池セル84と、この燃料電池セル84の上下方向端部にそれぞれ接続された内側電極端子86とを備えている。
燃料電池セル84は、上下方向に延びる管状構造体であり、内部に燃料ガス流路88を形成する円筒形の内側電極層90と、円筒形の外側電極層92と、内側電極層90と外側電極層92との間にある電解質層94とを備えている。この内側電極層90は、燃料ガスが通過する燃料極であり、(−)極となり、一方、外側電極層92は、空気と接触する空気極であり、(+)極となっている。
Next, the
As shown in FIG. 4, the
The
燃料電池セル16の上端側と下端側に取り付けられた内側電極端子86は、同一構造であるため、ここでは、上端側に取り付けられた内側電極端子86について具体的に説明する。内側電極層90の上部90aは、電解質層94と外側電極層92に対して露出された外周面90bと上端面90cとを備えている。内側電極端子86は、導電性のシール材96を介して内側電極層90の外周面90bと接続され、さらに、内側電極層90の上端面90cとは直接接触することにより、内側電極層90と電気的に接続されている。内側電極端子86の中心部には、内側電極層90の燃料ガス流路88と連通する燃料ガス流路98が形成されている。
Since the
内側電極層90は、例えば、Niと、CaやY、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニアとの混合体、Niと、希土類元素から選ばれる少なくとも一種をドープしたセリアとの混合体、Niと、Sr、Mg、Co、Fe、Cuから選ばれる少なくとも一種をドープしたランタンガレードとの混合体、の少なくとも一種から形成される。
The
電解質層94は、例えば、Y、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニア、希土類元素から選ばれる少なくとも一種をドープしたセリア、Sr、Mgから選ばれる少なくとも一種をドープしたランタンガレート、の少なくとも一種から形成される。
The
外側電極層92は、例えば、Sr、Caから選ばれた少なくとも一種をドープしたランタンマンガナイト、Sr、Co、Ni、Cuから選ばれた少なくとも一種をドープしたランタンフェライト、Sr、Fe、Ni、Cuから選ばれた少なくとも一種をドープしたランタンコバルタイト、銀、などの少なくとも一種から形成される。
The
次に図5により燃料電池セルスタック14について説明する。図5は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池セルスタックを示す斜視図である。
図5に示すように、燃料電池セルスタック14は、16本の燃料電池セルユニット16を備え、これらの燃料電池セルユニット16の下端側及び上端側が、それぞれ、セラミック製の下支持板68及び上支持板100により支持されている。これらの下支持板68及び上支持板100には、内側電極端子86が貫通可能な貫通穴68a及び100aがそれぞれ形成されている。
Next, the
As shown in FIG. 5, the
さらに、燃料電池セルユニット16には、集電体102及び外部端子104が取り付けられている。この集電体102は、燃料極である内側電極層90に取り付けられた内側電極端子86と電気的に接続される燃料極用接続部102aと、空気極である外側電極層92の外周面全体と電気的に接続される空気極用接続部102bとにより一体的に形成されている。空気極用接続部102bは、外側電極層92の表面を上下方向に延びる鉛直部102cと、この鉛直部102cから外側電極層92の表面に沿って水平方向に延びる多数の水平部102dとから形成されている。また、燃料極用接続部102aは、空気極用接続部102bの鉛直部102cから燃料電池セルユニット16の上下方向に位置する内側電極端子86に向って斜め上方又は斜め下方に向って直線的に延びている。
Furthermore, a current collector 102 and an
さらに、燃料電池セルスタック14の端(図5では左端の奥側及び手前側)に位置する2個の燃料電池セルユニット16の上側端及び下側端の内側電極端子86には、それぞれ外部端子104が接続されている。これらの外部端子104は、隣接する燃料電池セルスタック14の端にある燃料電池セルユニット16の外部端子104(図示せず)に接続され、上述したように、160本の燃料電池セルユニット16の全てが直列接続されるようになっている。
Further, the
次に図6により本実施形態による固体電解質型燃料電池(SOFC)に取り付けられたセンサ類等について説明する。図6は、本発明の一実施形態による固体電解質型燃料電池(SOFC)を示すブロック図である。
図6に示すように、固体電解質型燃料電池1は、制御部110を備え、この制御部110には、使用者が操作するための「ON」や「OFF」等の操作ボタンを備えた操作装置112、発電出力値(ワット数)等の種々のデータを表示するための表示装置114、及び、異常状態のとき等に警報(ワーニング)を発する報知装置116が接続されている。なお、この報知装置116は、遠隔地にある管理センタに接続され、この管理センタに異常状態を通知するようなものであっても良い。
Next, sensors and the like attached to the solid oxide fuel cell (SOFC) according to the present embodiment will be described with reference to FIG. FIG. 6 is a block diagram illustrating a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
As shown in FIG. 6, the solid
次に、制御部110には、以下に説明する種々のセンサからの信号が入力されるようになっている。
先ず、可燃ガス検出センサ120は、ガス漏れを検知するためのもので、燃料電池モジュール2及び補機ユニット4に取り付けられている。
CO検出センサ122は、本来排気ガス通路80等を経て外部に排出される排気ガス中のCOが、燃料電池モジュール2及び補機ユニット4を覆う外部ハウジング(図示せず)へ漏れたかどうかを検知するためのものである。
貯湯状態検出センサ124は、図示しない給湯器におけるお湯の温度や水量を検知するためのものである。
Next, signals from various sensors described below are input to the
First, the combustible
The
The hot water storage
電力状態検出センサ126は、インバータ54及び分電盤(図示せず)の電流及び電圧等を検知するためのものである。
発電用空気流量検出センサ128は、発電室10に供給される発電用空気の流量を検出するためのものである。
改質用空気流量センサ130は、改質器20に供給される改質用空気の流量を検出するためのものである。
燃料流量センサ132は、改質器20に供給される燃料ガスの流量を検出するためのものである。
The power state detection sensor 126 is for detecting the current and voltage of the
The power generation air flow
The reforming
The
水流量センサ134は、改質器20に供給される純水(水蒸気)の流量を検出するためのものである。
水位センサ136は、純水タンク26の水位を検出するためのものである。
圧力センサ138は、改質器20の外部の上流側の圧力を検出するためのものである。
排気温度センサ140は、温水製造装置50に流入する排気ガスの温度を検出するためのものである。
The water
The
The
The
発電室温度センサ142は、図3に示すように、燃料電池セル集合体12の近傍の前面側と背面側に設けられ、燃料電池セルスタック14の近傍の温度を検出して、燃料電池セルスタック14(即ち燃料電池セル84自体)の温度を推定するためのものである。
燃焼室温度センサ144は、燃焼室18の温度を検出するためのものである。
排気ガス室温度センサ146は、排気ガス室78の排気ガスの温度を検出するためのものである。
改質器温度センサ148は、改質器20の温度を検出するためのものであり、改質器20の入口温度と出口温度から改質器20の温度を算出する。
外気温度センサ150は、固体電解質型燃料電池(SOFC)が屋外に配置された場合、外気の温度を検出するためのものである。また、外気の湿度等を測定するセンサを設けるようにしても良い。
As shown in FIG. 3, the power generation
The combustion
The exhaust gas
The
The outside
これらのセンサ類からの信号は、制御部110に送られ、制御部110は、これらの信号によるデータに基づき、水流量調整ユニット28、燃料流量調整ユニット38、改質用空気流量調整ユニット44、発電用空気流量調整ユニット45に、制御信号を送り、これらのユニットにおける各流量を制御するようになっている。
また、制御ユニット110は、インバータ54に、制御信号を送り、電力供給量を制御するようになっている。
Signals from these sensors are sent to the
Further, the
次に図7により本実施形態による固体電解質型燃料電池(SOFC)による起動時の動作を説明する。図7は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の起動時の動作を示すタイムチャートである。
最初は、燃料電池モジュール2を温めるために、無負荷状態で、即ち、燃料電池モジュール2を含む回路を開いた状態で、運転を開始する。このとき、回路に電流が流れないので、燃料電池モジュール2は発電を行わない。
Next, the operation at the time of start-up by the solid oxide fuel cell (SOFC) according to the present embodiment will be described with reference to FIG. FIG. 7 is a time chart showing the operation at the time of startup of the solid oxide fuel cell (SOFC) according to one embodiment of the present invention.
Initially, in order to warm the
先ず、改質用空気流量調整ユニット44から改質用空気を第1ヒータ46を経由して燃料電池モジュール2の改質器20へ供給する。また、同時に、発電用空気流量調整ユニット45から発電用空気を第2ヒータ48を経由して燃料電池モジュール2の空気用熱交換器22へ供給し、この発電用空気が、発電室10及び燃焼室18に到達する。
この直ぐ後、燃料流量調整ユニット38からも燃料ガスが供給され、改質用空気が混合された燃料ガスが、改質器20及び燃料電池セルスタック14、燃料電池セルユニット16を通過して、燃焼室18に到達する。
First, reforming air is supplied from the reforming air flow
Immediately after this, the fuel gas is also supplied from the fuel flow
次に、点火装置83により着火して、燃焼室18にある燃料ガスと空気(改質用空気及び発電用空気)とを燃焼させる。この燃料ガスと空気との燃焼により排気ガスが生じ、この排気ガスにより、発電室10が暖められ、また、排気ガスが燃料電池モジュール2の密封空間8内を上昇する際、改質器20内の改質用空気を含む燃料ガスを暖めると共に、空気熱交換器22内の発電用空気も暖める。
Next, the
このとき、燃料流量調整ユニット38及び改質用空気流量調整ユニット44により、改質用空気が混合された燃料ガスが改質器20に供給されているので、改質器20において、式(1)に示す部分酸化改質反応POXが進行する。この部分酸化改質反応POXは、発熱反応であるので、起動性が良好となる。また、この昇温した燃料ガスが燃料ガス供給管64により燃料電池セルスタック14の下方に供給され、これにより、燃料電池セルスタック14が下方から加熱され、また、燃焼室18も燃料ガスと空気が燃焼して昇温されているので、燃料電池セルスタック14は、上方からも加熱され、この結果、燃料電池セルスタック14は、上下方向において、ほぼ均等に昇温可能となっている。この部分酸化改質反応POXが進行しても、燃焼室18では継続して燃料ガスと空気との燃焼反応が持続される。
At this time, the fuel gas mixed with the reforming air is supplied to the
CmHn+xO2 → aCO2+bCO+cH2 (1)
C m H n + xO 2 →
部分酸化改質反応POXの開始後、改質器温度センサ148により改質器20が所定温度(例えば、600℃)になったことを検知したとき、水流量調整ユニット28、燃料流量調整ユニット38及び改質用空気流量調整ユニット44により、燃料ガスと改質用空気と水蒸気とを予め混合したガスを改質器20に供給する。このとき、改質器20においては、上述した部分酸化改質反応POXと後述する水蒸気改質反応SRとが併用されたオートサーマル改質反応ATRが進行する。このオートサーマル改質反応ATRは、熱的に内部バランスが取れるので、改質器20内では熱的に自立した状態で反応が進行する。即ち、酸素(空気)が多い場合には部分酸化改質反応POXによる発熱が支配的となり、水蒸気が多い場合には水蒸気改質反応SRによる吸熱反応が支配的となる。この段階では、既に起動の初期段階は過ぎており、発電室10内がある程度の温度まで昇温されているので、吸熱反応が支配的であっても大幅な温度低下を引き起こすことはない。また、オートサーマル改質反応ATRが進行中も、燃焼室18では燃焼反応が継続して行われている。
When the
式(2)に示すオートサーマル改質反応ATRの開始後、改質器温度センサ146により改質器20が所定温度(例えば、700℃)になったことを検知したとき、改質用空気流量調整ユニット44による改質用空気の供給を停止すると共に、水流量調整ユニット28による水蒸気の供給を増加させる。これにより、改質器20には、空気を含まず燃料ガスと水蒸気のみを含むガスが供給され、改質器20において、式(3)の水蒸気改質反応SRが進行する。
When the
CmHn+xO2+yH2O → aCO2+bCO+cH2 (2)
CmHn+xH2O → aCO2+bCO+cH2 (3)
C m H n + xO 2 + yH 2
C m H n + xH 2 O → aCO 2 + bCO + cH 2 (3)
この水蒸気改質反応SRは吸熱反応であるので、燃焼室18からの燃焼熱と熱バランスをとりながら反応が進行する。この段階では、燃料電池モジュール2の起動の最終段階であるため、発電室10内が十分高温に昇温されているので、吸熱反応が進行しても、発電室10が大幅な温度低下を招くこともない。また、水蒸気改質反応SRが進行しても、燃焼室18では継続して燃焼反応が進行する。
Since the steam reforming reaction SR is an endothermic reaction, the reaction proceeds while maintaining a heat balance with the combustion heat from the
このようにして、燃料電池モジュール2は、点火装置83により点火した後、部分酸化改質反応POX、オートサーマル改質反応ATR、水蒸気改質反応SRが、順次進行することにより、発電室10内の温度が徐々に上昇する。次に、発電室10内及び燃料電池セル84の温度が燃料電池モジュール2を安定的に作動させる定格温度よりも低い所定の発電温度に達したら、燃料電池モジュール2を含む回路を閉じ、燃料電池モジュール2による発電を開始し、それにより、回路に電流が流れる。燃料電池モジュール2の発電により、燃料電池セル84自体も発熱し、燃料電池セル84の温度も上昇する。この結果、燃料電池モジュール2を作動させる定格定格温度、例えば、600℃〜800℃になる。
In this way, after the
この後、定格温度を維持するために、燃料電池セル84で消費される燃料ガス及び空気の量よりも多い燃料ガス及び空気を供給し、燃焼室18での燃焼を継続させる。なお、発電中は、改質効率の高い水蒸気改質反応SRで発電が進行する。
Thereafter, in order to maintain the rated temperature, more fuel gas and air than the amount of fuel gas and air consumed in the
次に、図8により本実施形態による固体電解質型燃料電池(SOFC)の運転停止時の動作を説明する。図8は、本実施形態により固体電解質型燃料電池(SOFC)の運転停止時の動作を示すタイムチャートである。
図8に示すように、燃料電池モジュール2の運転停止を行う場合には、先ず、燃料流量調整ユニット38及び水流量調整ユニット28を操作して、燃料ガス及び水蒸気の改質器20への供給量を減少させる。
Next, the operation when the solid oxide fuel cell (SOFC) according to the present embodiment is stopped will be described with reference to FIG. FIG. 8 is a time chart showing the operation when the solid oxide fuel cell (SOFC) is stopped according to this embodiment.
As shown in FIG. 8, when the operation of the
また、燃料電池モジュール2の運転停止を行う場合には、燃料ガス及び水蒸気の改質器20への供給量を減少させると同時に、改質用空気流量調整ユニット44による発電用空気の燃料電池モジュール2内への供給量を増大させて、燃料電池セル集合体12及び改質器20を空気により冷却し、これらの温度を低下させる。その後、発電室の温度が所定温度、例えば、400℃まで低下したとき、燃料ガス及び水蒸気の改質器20への供給を停止し、改質器20の水蒸気改質反応SRを終了する。この発電用空気の供給は、改質器20の温度が所定温度、例えば、200℃まで低下するまで、継続し、この所定温度となったとき、発電用空気流量調整ユニット45からの発電用空気の供給を停止する。
Further, when the operation of the
このように、本実施形態においては、燃料電池モジュール2の運転停止を行うとき、改質器20による水蒸気改質反応SRと発電用空気による冷却とを併用しているので、比較的短時間に、燃料電池モジュールの運転を停止させることができる。
As described above, in the present embodiment, when the operation of the
次に、図9乃至12を参照して、燃料電池モジュール2の劣化判定を説明する。図9は、本実施形態の固体電解質型燃料電池における劣化判定を説明するタイムチャートである。図10は、制御部110に入力される要求発電量と、要求発電量を生成するために必要な燃料供給量の関係の一例を示すグラフである。図11は、要求発電量の変更に対する燃料供給量の時間的変化の一例を示すグラフである。図12は、劣化判定手段による劣化判定の手順を示すフローチャートである。
Next, deterioration determination of the
図9の時刻t0〜t1においては、固体電解質型燃料電池1は、インバータ54(図6)からの要求発電量に応じた出力電力が得られるように負荷追従運転を行っている。即ち、図6に示すように、制御手段である制御部110は、インバータ54からの要求発電量に応じて、燃料供給手段である燃料流量調整ユニット38、酸化剤ガス供給手段である発電用空気流量調整ユニット45、及び水供給手段である水流量調整ユニット28に信号を送り、必要な流量の燃料、空気、水を燃料電池モジュール2に供給している。これにより、図9に示すように、インバータ54からの要求発電量に追従するように固体電解質型燃料電池1の出力電力が変化する。ここで、燃料供給量等に対する出力電力の応答には遅れをもたせており、燃料供給量等の変化に対して出力電力は遅れて変化し、要求発電量の急激な変化に対しては、出力電力は殆ど変化しない。
At time t0 to t1 in FIG. 9, the solid
制御部110は、インバータ54からの要求発電量に応じて、図10に一例を示すグラフによって燃料供給量を決定し、決定した流量の燃料が燃料電池モジュール2に供給されるように燃料流量調整ユニット38を制御する。固体電解質型燃料電池1の初期の使用開始後、燃料電池モジュール2が劣化したことが判定されるまでの間は、制御部110は、図10の曲線F0に従って、要求発電量に対する燃料供給量を決定する。図10に示すように、燃料供給量は、要求発電量の増大に伴って単調に増加するように決定されるが、要求発電量約200W未満では燃料供給量はほぼ一定値にされる。
The
また、要求発電量が変更された場合に、燃料供給量を急激に変化させると燃料電池モジュール2の劣化を早めることがあるので、図11に示すように、燃料供給量は漸増又は漸減される。図11は、要求発電量が500Wから700Wにステップ状に変化された場合における、燃料供給量の時間に対する変化の一例を示すグラフである。図11に示すように、時刻t10において、要求発電量が500Wから700Wに変更されると、必要な燃料供給量は、500Wの電力出力に対応する供給量から700Wに対応する供給量に急激に変化される。これに対して、制御部110は、燃料供給量が急激に増加することがないよう、図11に想像線で示すように、燃料供給量が緩やかに増加されるように燃料流量調整ユニット38を制御する。なお、固体電解質型燃料電池1の初期の使用開始後、燃料電池モジュール2が劣化したことが判定されるまでの間は、制御部110は、図11の線F10に従って燃料供給量を増加させる。
Further, when the required power generation amount is changed, if the fuel supply amount is rapidly changed, the deterioration of the
同様に、時刻t11において、要求発電量が700Wから500Wに変更された場合にも、制御部110は燃料供給量が急激に減少することがないよう、図11の線F10に従って緩やかに燃料供給量を減少させる。なお、燃料供給量の変化率は、供給量を増加させる場合の方が、供給量を減少させる場合よりも緩やかに設定されている。
なお、図10及び11は、燃料供給量に関するものであるが、空気供給量、水供給量も、要求発電量に応じて、同様に変更される。
Similarly, when the required power generation amount is changed from 700 W to 500 W at time t11, the
10 and 11 relate to the fuel supply amount, the air supply amount and the water supply amount are similarly changed according to the required power generation amount.
次に、図9の時刻t1において、制御部110に内蔵された劣化判定手段110a(図6)は劣化判定モードの運転を開始する。なお、劣化判定手段110aは、マイクロプロセッサ、メモリ及びこれらを作動させるプログラム(以上図示せず)等により構成されている。図12は、劣化判定手段110aによる処理を示すフローチャートである。
Next, at time t1 in FIG. 9, the deterioration determination unit 110a (FIG. 6) built in the
図12に示すフローチャートは、劣化判定手段110aにより所定時間毎に実行される。まず、ステップS1においては、前回の劣化判定モードの運転からの経過時間が判断される。前回の劣化判定モード運転から所定の劣化判定間隔である2週間経過していない場合には、ステップS9に進み、このフローチャートの一回の処理を終了する。この処理により、劣化判定モード運転が不必要に頻繁に実行され、燃料等が浪費されるのを防止することができる。 The flowchart shown in FIG. 12 is executed at predetermined time intervals by the deterioration determination unit 110a. First, in step S1, an elapsed time from the previous operation in the deterioration determination mode is determined. When two weeks, which is a predetermined deterioration determination interval, has not elapsed since the previous deterioration determination mode operation, the process proceeds to step S9, and one process of this flowchart is ended. By this processing, it is possible to prevent the deterioration determination mode operation from being performed unnecessarily frequently and wasting fuel and the like.
前回の劣化判定モード運転から2週間以上経過している場合には、ステップS2に進み、固体電解質型燃料電池1の外部環境が、劣化判定モード運転に適する所定の劣化判定外気状態であるか否かが判断される。具体的には、外気温度センサ150(図6)及び外気湿度センサ(図示せず)によって検出された外気温及び外気の湿度が、所定の条件に適合しているか否かが判断される。本実施形態においては、外気温度5〜30゜C、外気湿度30〜70%である場合に、外部環境が劣化判定モード運転に適する劣化判定外気状態であると判断される。外部環境が劣化判定外気状態でないと判断された場合には、ステップS9に進み、このフローチャートの一回の処理を終了する。
When two weeks or more have passed since the previous deterioration determination mode operation, the process proceeds to step S2 and whether or not the external environment of the solid
なお、この実施形態では劣化判定を2週間に1度のサイクルで行うように構成しているが、この頻度が高いということは負荷追従制御を行わずに強制的に後述する劣化判定モードに変更するため省エネという観点ではデメリットとなる。よって、性能劣化の度合いに応じて設定されることが望ましく、劣化が小さいような場合であれば半年に1回という頻度とすることが望ましい。また、運転期間が短い初期であれば劣化は少ないので1年に1回という頻度にし、運転期間が5年、10年というように長くなるにつれて判定サイクルを短くするようなことは一層望ましい形態となる。本実施形態では非常にわかりやすい対応を例に取ったものである。 In this embodiment, the deterioration determination is performed in a cycle of once every two weeks. However, the high frequency means that the deterioration determination mode is forcibly changed without performing load following control. This is a disadvantage in terms of energy saving. Therefore, it is desirable to set according to the degree of performance degradation, and if the degradation is small, the frequency is desirably once every six months. Further, since the deterioration is small if the operation period is short, the frequency is once a year, and it is more desirable to shorten the determination cycle as the operation period becomes longer, such as 5 years or 10 years. Become. In the present embodiment, a very easy-to-understand correspondence is taken as an example.
外部環境が劣化判定モード運転に適している場合には、ステップS3に進み、劣化判定モードの運転が開始される。さらに、ステップS4においては、燃料供給量、空気供給量、水供給量が予め定められた所定の供給量である一定の供給量に固定される。即ち、劣化判定モード運転において、劣化判定手段110aは、制御部110に対する要求発電量に関わらず、燃料流量調整ユニット38、発電用空気流量調整ユニット45、水流量調整ユニット28が一定の供給量を維持するように、これらの調整ユニットを制御する。本実施形態においては、図9の時刻t1において、劣化判定燃料供給量3L/min、劣化判定酸化剤ガス供給量100L/min、劣化判定水供給量8mL/minに固定される。
When the external environment is suitable for the deterioration determination mode operation, the process proceeds to step S3, and the operation in the deterioration determination mode is started. Further, in step S4, the fuel supply amount, the air supply amount, and the water supply amount are fixed to a fixed supply amount that is a predetermined supply amount. In other words, in the deterioration determination mode operation, the deterioration determination means 110a allows the fuel flow
これら燃料供給量、空気供給量、水供給量の固定値は、本実施形態による固体電解質型燃料電池1の定格発電量である700Wを発電可能な量として予め実験によって求めた供給量である。従って、固定値により燃料、空気、水が供給されている間は、燃料電池セルの個体差もあるが固体電解質型燃料電池1は、700Wの電力を出力する能力を有しているものである。しかしながら、燃料供給量等が固定されていても、燃料電池モジュール2から取り出される電力が要求発電量に応じて変化すると、燃料電池モジュール2の運転状態は十分に安定しない。このため、本実施形態においては、劣化判定モード運転中は要求発電量に関わらず、燃料電池モジュール2から電力を取り出すことはない(即ち、定格発電量に対応する燃料を供給するが、実際に発電する電力は0である)。従って、劣化判定モード運転中は、供給された燃料は発電には使用されず燃焼室18において燃焼される。
These fixed values of the fuel supply amount, the air supply amount, and the water supply amount are the supply amounts obtained in advance by experiments, assuming that 700 W, which is the rated power generation amount of the solid
なお、本実施形態においては、燃料供給量等の固定値は定格発電量に対応する値に設定されているが、これらの固定値は任意に設定することができる。好ましくは、燃料電池モジュール2が熱的に自律することができ、且つ燃料電池モジュール2の劣化の度合いにより温度が十分に大きく変化する、定格発電量に近い電力を発生可能な値に設定する。また、本実施形態においては、劣化判定モード運転中は、燃料電池モジュール2から電力を取り出していないが、劣化判定モード運転中に一定の電力が取り出されるように固体電解質型燃料電池1を構成し、燃料電池モジュール2の運転状態を安定させ、劣化判定を行うこともできる。固体電解質型燃料電池1により発電した電力を売電可能な環境においては、一定の電力が取り出されるような運転状態を容易に得ることができる。また、劣化判定モード運転中に生成された電力を消費するためのヒーター等のダミー負荷(図示せず)を固体電解質型燃料電池1に備えておき、生成された電力をこれに消費させることにより一定の電力を取り出しても良い。
In the present embodiment, the fixed value such as the fuel supply amount is set to a value corresponding to the rated power generation amount, but these fixed values can be arbitrarily set. Preferably, the
次に、図12のステップS5においては、固定値による運転が開始された後、十分な時間が経過し、安定した運転状態になったか否かが判断される。本実施形態においては、固定値による運転が開始された後、劣化判定時間である5時間が経過したか否かにより、安定した運転状態が判断される。固定値による運転開始後5時間経過していない場合には、ステップS5の処理が繰り返される。これにより、ステップS4において開始された固定値による運転が5時間に亘って維持される(図9、時刻t1〜t2)。 Next, in step S5 of FIG. 12, it is determined whether or not a sufficient time has elapsed after the operation with the fixed value is started and a stable operation state has been achieved. In the present embodiment, after the operation with a fixed value is started, a stable operation state is determined based on whether or not 5 hours as the deterioration determination time has elapsed. If 5 hours have not elapsed since the start of operation with a fixed value, the process of step S5 is repeated. Thereby, the driving | operation by the fixed value started in step S4 is maintained over 5 hours (FIG. 9, time t1-t2).
固定値による運転が5時間継続された後、図9の時刻t2において、ステップS6に進み、発電室温度センサ142により測定された燃料電池モジュール2の温度が所定温度以上か否かが判断される。即ち、燃料電池モジュール2を安定した運転状態で運転した運転結果である燃料電池モジュール2の温度と、所定の劣化判定基準値である基準温度(燃料電池モジュール2が劣化していない状態においては定格700Wの安定運転状態で発生すべき理想のスタック温度値)を比較することにより、燃料電池モジュール2の劣化を判定する。本実施形態の固体電解質型燃料電池1は、初期状態で700Wの定格出力運転を行った場合の燃料電池モジュール2の基準温度T0は約700゜Cであり、燃料電池モジュール2の劣化が進行すると、この温度が上昇する。これは、固体電解質型燃料電池セルである燃料電池セルユニット16自体の劣化、及び各燃料電池セルユニット16を電気的に接続する接点部分の劣化により燃料電池セルスタック14の内部抵抗が増大することによるジュール熱等に起因している。
After the operation with the fixed value is continued for 5 hours, at time t2 in FIG. 9, the process proceeds to step S6, and it is determined whether or not the temperature of the
本実施形態においては、劣化判定手段110aは、発電室温度センサ142により測定された温度T1が、基準温度T0よりも30゜C以上高い場合に、燃料電池モジュール2が劣化したと判定する。燃料電池モジュール2が劣化していない場合には、ステップS10に進み、このフローチャートの一回の処理を終了し、燃料供給量等の運転条件の変更は行われない。
In the present embodiment, the deterioration determination unit 110a determines that the
燃料電池モジュール2が劣化したと判定された場合には、ステップS7に進み、劣化処理が開始される。ステップS7においては、燃料供給補正が実行され、要求発電量に対する燃料供給量及び燃料供給量のゲインが変更される。即ち、固体電解質型燃料電池1の使用開始後、燃料電池モジュール2が劣化したことが初めて判定された場合には、要求発電量に対する燃料供給量は、燃料供給補正により図10の曲線F0から曲線F1に変更され、以後、曲線F1を使用して燃料供給量が決定される。また、燃料供給量を変更する際の変化率は、図11の線F10から、より緩やかな線F11に変更され、以後、この変化率により燃料供給量が変更される。燃料供給補正により変更された燃料供給量は、燃料電池モジュール2がさらに劣化したことが判定されるまで維持される。
When it is determined that the
燃料電池モジュール2が劣化すると、同一燃料供給量に対して出力される電力が低下するので、燃料供給量を曲線F0に対して10%燃料供給量が増量された曲線F1に従って決定されるようにし、燃料電池セルユニット16の温度を高めることで出力電力の低下を補うように出力電力の低下を補正する。また、劣化した燃料電池モジュール2の燃料供給量を急激に変化させると、劣化をさらに進行させることに繋がるため、燃料供給量の変化率は、より小さくされる。
When the
なお、劣化がもう一度判定された場合には、燃料供給量は曲線F1から曲線F2に、さらにもう一度判定された場合には曲線F2から曲線F3に変更される。曲線F2は曲線F0に対して18%、曲線F3は曲線F0に対して23%燃料供給量が増量されている。このように、1回目に劣化が判定された場合には初期の燃料供給量の10%分が増量され、2回目には更に初期の燃料供給量の8%分が増量され(合計18%分)、3回目には更に初期の燃料供給量の5%分が増量される(合計23%分)。このように、実行される燃料供給補正は、後に実行されるものほど燃料の増分が小さくなるように設定されている。これにより、劣化が進行している燃料電池モジュール2に過度の負担がかかるのを防止している。また、燃料供給量のゲインも、2回目に劣化が判定された場合には線F11から線F12に、3回目に劣化が判定された場合には線F12から線F13に変更される。
When the deterioration is determined again, the fuel supply amount is changed from the curve F1 to the curve F2, and when it is determined again, the fuel supply amount is changed from the curve F2 to the curve F3. The curve F2 is increased by 18% with respect to the curve F0, and the curve F3 is increased by 23% with respect to the curve F0. As described above, when the deterioration is determined for the first time, 10% of the initial fuel supply amount is increased, and for the second time, 8% of the initial fuel supply amount is further increased (18% in total). ) In the third time, 5% of the initial fuel supply amount is increased (a total of 23%). As described above, the fuel supply correction to be executed is set so that the fuel increase becomes smaller as it is executed later. As a result, an excessive burden is prevented from being applied to the
このように、本実施形態においては、劣化したことが判定された際の燃料供給量の増分は、予め設定された固定値とされている。このため、例えば、燃料電池モジュール2の温度上昇に基づいて燃料供給量の補正量を計算したり、出力電力の低下量に基づいて補正量を計算する場合とは異なり、大きく誤った補正がなされるのを防止することができる。即ち、燃料電池モジュール2の温度や、出力電力は、種々のファクターにより影響されて値が変化するので、何らかの要因により異常な温度や出力電力が測定された場合には、この値に基づいて補正量を計算すると、異常な補正が実行されることになる。
Thus, in this embodiment, the increment of the fuel supply amount when it is determined that the fuel has deteriorated is set to a preset fixed value. For this reason, for example, unlike the case where the correction amount of the fuel supply amount is calculated based on the temperature rise of the
燃料供給量の補正が行われた後ステップS8に進み、ステップS8においては、補正後の燃料供給量で固体電解質型燃料電池1を運転したときの燃料電池モジュール2の温度T2が、発電室温度センサ142により測定される。測定された温度T2は、新たな基準温度T0として劣化判定手段110aのメモリ(図示せず)に記憶される。この新たな基準温度T0は、次回の劣化判定の際に基準温度として使用される。好ましくは、燃料供給量の補正を実行した後、所定時間、燃料供給量を一定にして運転を行い、その後、燃料電池モジュール2の温度T2を測定する。これにより、補正による燃料供給量の変更の影響が排除された正確な温度を測定することができる。
After the fuel supply amount is corrected, the process proceeds to step S8. In step S8, the temperature T2 of the
以上の劣化処理が終了すると、劣化判定手段110aは劣化判定モード運転を終了させ、制御部110は要求発電量に対応した通常の運転を再開する(図9、時刻t2)。
When the above deterioration processing is completed, the deterioration determination unit 110a ends the deterioration determination mode operation, and the
さらに、固体電解質型燃料電池1の使用者が、固体電解質型燃料電池1の定格電力以上の電力を使用している場合には、インバータ54から制御部110に送られる要求発電量は、固体電解質型燃料電池1の定格電力となる。このような状態が長時間に亘って継続されている場合には、結果として、燃料電池モジュール2への燃料、空気、水の供給量は、長時間に亘って定格電力に対応した一定値となる(図9、時刻t3〜t4)。
Furthermore, when the user of the solid
劣化判定手段110aは、このような安定した運転状態が劣化判定時間である5時間以上継続した場合にも、劣化の判定を実行する。即ち、劣化判定手段110aは、図9の時刻t4において、発電室温度センサ142により測定された温度T1と、基準温度T0を比較し、温度T1が基準温度T0よりも30゜C以上高いか否かを判定する。温度T1が基準温度T0よりも30゜C以上高い場合には、劣化判定手段110aは、燃料電池モジュール2の劣化がさらに進行したと判定し、この劣化を補正するように、運転条件を変更する。この劣化の判定が2回目である場合には、燃料供給量は線F1から線F2に、燃料供給量ゲインは線F11から線F12に夫々変更される。
The degradation determination unit 110a also performs degradation determination even when such a stable operation state continues for 5 hours or more which is the degradation determination time. That is, the degradation determination unit 110a compares the temperature T1 measured by the power generation
ただし、劣化したことが判定された場合であっても、前回の燃料供給補正から所定の補正最小間隔である0.5年が経過していない場合には、燃料供給量の補正は実行されない。これにより、短期間に過度の燃料供給補正が実行され、燃料電池モジュール2の劣化が想定以上に速く進行するのを防止している。
However, even if it is determined that the fuel has deteriorated, the correction of the fuel supply amount is not executed if the predetermined minimum correction interval of 0.5 years has not elapsed since the previous fuel supply correction. As a result, excessive fuel supply correction is executed in a short time, and deterioration of the
さらに、図9の時刻t5において、劣化判定手段110aは、劣化判定モード運転を開始する。この劣化判定モード運転において、燃料、空気、水の各供給量は、劣化判定により補正された供給量に固定される。即ち、過去2回、燃料電池モジュール2が劣化したことが判定されている場合には、図10の線F2に基づいて決定された、定格出力に対応する燃料供給量に固定される。
Furthermore, at time t5 in FIG. 9, the deterioration determination unit 110a starts the deterioration determination mode operation. In this deterioration determination mode operation, the supply amounts of fuel, air, and water are fixed to the supply amounts corrected by the deterioration determination. That is, when it is determined that the
劣化判定手段110aは、劣化判定モード運転開始から5時間経過後の時刻t6において、燃料電池モジュール2の温度T1を測定し、劣化判定を実行する。ここで、燃料電池モジュール2が劣化したことが判定され、この劣化の判定が3回目である場合には、燃料供給量は曲線F2から曲線F3に、燃料供給量ゲインは線F12から線F13に夫々変更される。なお、劣化判定手段110aは、測定された燃料電池モジュール2の温度T1が、所定の補正禁止温度である900゜Cを超えている場合には、燃料電池モジュール2の劣化が判定されていても、燃料供給量の補正を実行しない。
The deterioration determination unit 110a measures the temperature T1 of the
なお、さらに劣化が進行し、4回目の劣化が判定された場合には、劣化判定手段110aは、更なる燃料供給量等の補正は実行せずに固体電解質型燃料電池1の運転を停止させる。即ち、燃料供給量等を補正する燃料供給補正は所定の補正回数である3回まで実行され、次に燃料電池モジュール2が劣化したことが判定された際には、固体電解質型燃料電池1の運転は停止される。また、劣化判定手段110aは報知装置116に信号を送り、固体電解質型燃料電池1の製品寿命が到来したことを使用者に報知する。これにより、劣化が進行し発電効率が低下した固体電解質型燃料電池1を使用することによる燃料の浪費を防止する。
When the deterioration further progresses and the fourth deterioration is determined, the deterioration determination unit 110a stops the operation of the solid
さらに、劣化判定手段110aは、予め設定された所定の燃料供給量に対する出力電力が所定の電力以下になった場合には、4回目の劣化が判定される前であっても、固体電解質型燃料電池1の運転を停止させ、製品寿命が到来したことを使用者に報知する。
Further, when the output power with respect to a predetermined fuel supply amount set in advance is equal to or lower than the predetermined power, the deterioration determination unit 110a is configured to operate the solid electrolyte fuel even before the fourth deterioration is determined. The operation of the
本発明の実施形態の固体電解質型燃料電池によれば、劣化判定手段が、燃料電池モジュールが安定した運転状態で運転されているときに劣化判定を実行するので、運転状態の変化による劣化判定への影響を抑制し、正確に燃料電池モジュールの劣化判定を行うことができる。 According to the solid oxide fuel cell of the embodiment of the present invention, the deterioration determination means executes the deterioration determination when the fuel cell module is operated in a stable operation state. The deterioration of the fuel cell module can be accurately determined.
また、本実施形態の固体電解質型燃料電池によれば、劣化判定手段が、一定量の燃料、空気、水が供給されているとき劣化判定を実行するので、運転状態の変化による劣化判定への悪影響を排除することができ、正確に燃料電池モジュールの劣化判定を行うことができる。 In addition, according to the solid oxide fuel cell of the present embodiment, the deterioration determination unit performs the deterioration determination when a certain amount of fuel, air, and water is supplied. Adverse effects can be eliminated, and deterioration determination of the fuel cell module can be accurately performed.
さらに、本実施形態の固体電解質型燃料電池によれば、劣化判定手段が、要求発電量に関わらず、一定の燃料、空気、水を供給させるので、必要に応じて安定した運転状態を形成することができ、劣化判定を行うことができる。 Furthermore, according to the solid oxide fuel cell of the present embodiment, the deterioration determination means supplies a constant amount of fuel, air, and water regardless of the required power generation amount, so that a stable operating state is formed as necessary. Deterioration determination can be performed.
また、本実施形態の固体電解質型燃料電池によれば、一定の燃料、空気、水が所定の劣化判定時間供給された後、劣化判定が実行されるので、運転条件を変更したことによる運転状態への影響が十分に排除された劣化判定を行うことができる。 Further, according to the solid oxide fuel cell of the present embodiment, the deterioration determination is performed after a certain amount of fuel, air, and water are supplied for a predetermined deterioration determination time. It is possible to perform the deterioration determination in which the influence on is sufficiently eliminated.
さらに、本実施形態の固体電解質型燃料電池によれば、外気が所定の状態である場合に劣化判定が実行されるので、劣化判定に対する環境因子の影響も抑制することができる。 Furthermore, according to the solid oxide fuel cell of this embodiment, the deterioration determination is executed when the outside air is in a predetermined state, so that the influence of environmental factors on the deterioration determination can also be suppressed.
また、本実施形態の固体電解質型燃料電池によれば、所定期間毎に安定した運転状態が形成され、劣化判定が実行されるので、安定した運転状態が必要以上に頻繁に強制的に形成されるのを防止することができ、燃料電池の利便性を向上させることができる。 Further, according to the solid oxide fuel cell of the present embodiment, a stable operating state is formed every predetermined period, and deterioration determination is performed, so that a stable operating state is forcibly formed more frequently than necessary. And the convenience of the fuel cell can be improved.
さらに、本実施形態の固体電解質型燃料電池によれば、安定した運転状態における燃料電池モジュールの温度と、所定の劣化判定基準の温度の比較により劣化が判定されるので、劣化を数値的に把握することができる。 Furthermore, according to the solid oxide fuel cell of this embodiment, the deterioration is determined by comparing the temperature of the fuel cell module in a stable operation state with the temperature of a predetermined deterioration criterion, so that the deterioration is numerically grasped. can do.
また、本実施形態の固体電解質型燃料電池によれば、燃料電池モジュールの温度に基づいて劣化が判断されるので、劣化判定時の電力使用量の影響を受けることなく劣化を判定することができる。 Further, according to the solid oxide fuel cell of the present embodiment, the deterioration is determined based on the temperature of the fuel cell module, so that the deterioration can be determined without being affected by the amount of power used when determining the deterioration. .
以上、本発明の実施形態を説明したが、上述した実施形態に種々の変更を加えることができる。特に、上述した実施形態においては、劣化判定手段は、所定の劣化判定時間、判定モードの運転が行われた後、燃料電池モジュールの温度を運転結果として用い、この温度に基づいて、劣化の有無を判定していたが、変形例として、燃料電池モジュールの出力電圧を運転結果とし、この電圧に基づいて劣化を判定することもできる。例えば、劣化していない燃料電池モジュールの出力電圧が160Vであり、この電圧が150V以下に低下した場合に、燃料電池モジュールが劣化したと判定することができる。なお、燃料電池モジュールの出力電圧は、燃料電池モジュールからインバータに出力される電流を0とした状態で測定し、その電圧に基づいて劣化を判定するのがよい。これにより、劣化判定時の電力使用量の影響を受けることなく劣化を判定することができる。 As mentioned above, although embodiment of this invention was described, a various change can be added to embodiment mentioned above. In particular, in the above-described embodiment, the deterioration determination means uses the temperature of the fuel cell module as the operation result after the operation in the predetermined deterioration determination time and determination mode, and based on this temperature, the presence or absence of deterioration. However, as a modification, the output voltage of the fuel cell module can be used as an operation result, and deterioration can be determined based on this voltage. For example, when the output voltage of an undegraded fuel cell module is 160 V and this voltage drops to 150 V or less, it can be determined that the fuel cell module has deteriorated. The output voltage of the fuel cell module is preferably measured in a state where the current output from the fuel cell module to the inverter is 0, and deterioration is determined based on the voltage. Thereby, it is possible to determine the deterioration without being affected by the amount of power used at the time of determining the deterioration.
また、上述した実施形態においては、所定の劣化判定間隔として2週間毎に劣化を判定していたが、この間隔は任意に変更することができる。さらに、固体電解質型燃料電池の使用を開始した初期には劣化判定間隔を長くし、使用期間が長くなるにつれて劣化判定間隔が短くなるように本発明を構成することができる。 In the above-described embodiment, the deterioration is determined every two weeks as the predetermined deterioration determination interval, but this interval can be arbitrarily changed. Furthermore, the present invention can be configured such that the deterioration determination interval is lengthened at the initial stage when the use of the solid oxide fuel cell is started, and the deterioration determination interval is shortened as the use period becomes longer.
1 固体電解質型燃料電池
2 燃料電池モジュール
4 補機ユニット
8 密封空間
10 発電室
12 燃料電池セル集合体
14 燃料電池セルスタック
16 燃料電池セルユニット(固体電解質型燃料電池セル)
18 燃焼室
20 改質器
22 空気用熱交換器
24 水供給源
26 純水タンク
28 水流量調整ユニット(水供給手段)
30 燃料供給源
38 燃料流量調整ユニット(燃料供給手段)
40 空気供給源
44 改質用空気流量調整ユニット
45 発電用空気流量調整ユニット(酸化剤ガス供給手段)
46 第1ヒータ
48 第2ヒータ
50 温水製造装置
52 制御ボックス
54 インバータ
83 点火装置
84 燃料電池セル
110 制御部
110a 劣化判定手段
112 操作装置
114 表示装置
116 警報装置
126 電力状態検出センサ
142 発電室温度センサ
150 外気温度センサ
DESCRIPTION OF
18
30
40
46
Claims (9)
複数の固体電解質型燃料電池セルを備えた燃料電池モジュールと、
この燃料電池モジュールに燃料を供給する燃料供給手段と、
上記燃料電池モジュールに酸化剤ガスを供給する酸化剤ガス供給手段と、
上記燃料電池モジュールに水を供給する水供給手段と、
要求発電量に対応して、上記燃料供給手段から供給する燃料の量を変化させる制御手段と、を有し、
上記制御手段は、上記燃料電池モジュールの劣化を判定する劣化判定手段を備え、
この劣化判定手段は、上記燃料電池モジュールが安定した運転状態で運転されているとき劣化判定を実行することを特徴とする固体電解質型燃料電池。 A solid oxide fuel cell that varies the output power according to the required power generation amount,
A fuel cell module comprising a plurality of solid oxide fuel cells,
Fuel supply means for supplying fuel to the fuel cell module;
An oxidant gas supply means for supplying an oxidant gas to the fuel cell module;
Water supply means for supplying water to the fuel cell module;
Control means for changing the amount of fuel supplied from the fuel supply means in response to the required power generation amount,
The control means includes a deterioration determination means for determining deterioration of the fuel cell module,
The deterioration determination means performs a deterioration determination when the fuel cell module is operated in a stable operation state.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009087349A JP5517096B2 (en) | 2009-03-31 | 2009-03-31 | Solid oxide fuel cell |
PCT/JP2010/055911 WO2010114044A1 (en) | 2009-03-31 | 2010-03-31 | Solid electrolyte fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009087349A JP5517096B2 (en) | 2009-03-31 | 2009-03-31 | Solid oxide fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010238617A true JP2010238617A (en) | 2010-10-21 |
JP5517096B2 JP5517096B2 (en) | 2014-06-11 |
Family
ID=42828333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009087349A Expired - Fee Related JP5517096B2 (en) | 2009-03-31 | 2009-03-31 | Solid oxide fuel cell |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5517096B2 (en) |
WO (1) | WO2010114044A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011103210A (en) * | 2009-11-10 | 2011-05-26 | Toto Ltd | Solid electrolyte fuel cell |
JP2012142120A (en) * | 2010-12-28 | 2012-07-26 | Jx Nippon Oil & Energy Corp | Fuel cell system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001236969A (en) * | 2000-02-23 | 2001-08-31 | Kyocera Corp | Cell for solid electrolyte fuel cell and method of producing the same as well as fuel battery |
JP2003115315A (en) * | 2001-10-05 | 2003-04-18 | Nippon Steel Corp | Operational method of solid electrolyte type fuel cell |
JP2004179003A (en) * | 2002-11-27 | 2004-06-24 | Toyota Motor Corp | Diagnostic device and diagnostic method of fuel cell |
JP2006269337A (en) * | 2005-03-25 | 2006-10-05 | Nissan Motor Co Ltd | Fuel cell system |
JP2007087686A (en) * | 2005-09-21 | 2007-04-05 | Mitsubishi Materials Corp | Fuel cell power generating system, control program, and control method |
JP2008243771A (en) * | 2007-03-29 | 2008-10-09 | Mitsubishi Materials Corp | Fuel cell power generating device, and control program, as well as control method |
JP2008262875A (en) * | 2007-04-13 | 2008-10-30 | Toyota Motor Corp | Fuel cell system and output diagnosis method of fuel cell |
JP2010027580A (en) * | 2008-07-24 | 2010-02-04 | Osaka Gas Co Ltd | Fuel cell system |
-
2009
- 2009-03-31 JP JP2009087349A patent/JP5517096B2/en not_active Expired - Fee Related
-
2010
- 2010-03-31 WO PCT/JP2010/055911 patent/WO2010114044A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001236969A (en) * | 2000-02-23 | 2001-08-31 | Kyocera Corp | Cell for solid electrolyte fuel cell and method of producing the same as well as fuel battery |
JP2003115315A (en) * | 2001-10-05 | 2003-04-18 | Nippon Steel Corp | Operational method of solid electrolyte type fuel cell |
JP2004179003A (en) * | 2002-11-27 | 2004-06-24 | Toyota Motor Corp | Diagnostic device and diagnostic method of fuel cell |
JP2006269337A (en) * | 2005-03-25 | 2006-10-05 | Nissan Motor Co Ltd | Fuel cell system |
JP2007087686A (en) * | 2005-09-21 | 2007-04-05 | Mitsubishi Materials Corp | Fuel cell power generating system, control program, and control method |
JP2008243771A (en) * | 2007-03-29 | 2008-10-09 | Mitsubishi Materials Corp | Fuel cell power generating device, and control program, as well as control method |
JP2008262875A (en) * | 2007-04-13 | 2008-10-30 | Toyota Motor Corp | Fuel cell system and output diagnosis method of fuel cell |
JP2010027580A (en) * | 2008-07-24 | 2010-02-04 | Osaka Gas Co Ltd | Fuel cell system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011103210A (en) * | 2009-11-10 | 2011-05-26 | Toto Ltd | Solid electrolyte fuel cell |
JP2012142120A (en) * | 2010-12-28 | 2012-07-26 | Jx Nippon Oil & Energy Corp | Fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
JP5517096B2 (en) | 2014-06-11 |
WO2010114044A1 (en) | 2010-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5565749B2 (en) | Solid oxide fuel cell | |
JP6044771B2 (en) | Solid oxide fuel cell | |
JP5517106B2 (en) | Solid oxide fuel cell | |
JP4761259B2 (en) | Solid oxide fuel cell | |
JP4707023B2 (en) | Solid oxide fuel cell | |
JP6108073B2 (en) | Solid oxide fuel cell | |
JP4656610B2 (en) | Solid oxide fuel cell | |
WO2012043645A1 (en) | Fuel cell device | |
JP4656611B2 (en) | Solid oxide fuel cell | |
JP2011170983A (en) | Fuel cell system | |
JP4622005B2 (en) | Solid oxide fuel cell | |
JP4697564B2 (en) | Solid oxide fuel cell | |
JP2013218861A (en) | Solid oxide fuel cell | |
JP5483253B2 (en) | Solid oxide fuel cell | |
JP5348614B2 (en) | Solid oxide fuel cell | |
JP5517096B2 (en) | Solid oxide fuel cell | |
JP5412923B2 (en) | Solid oxide fuel cell | |
JP6041091B2 (en) | Solid oxide fuel cell | |
JP2011103211A (en) | Solid electrolyte fuel cell | |
JP6080090B2 (en) | Solid oxide fuel cell | |
JP6064297B2 (en) | Solid oxide fuel cell | |
JP2011253831A (en) | Solid electrolyte fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111017 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140310 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5517096 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140323 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |