JP2010238692A - Multilayer wiring board and semiconductor device using the same - Google Patents
Multilayer wiring board and semiconductor device using the same Download PDFInfo
- Publication number
- JP2010238692A JP2010238692A JP2009081781A JP2009081781A JP2010238692A JP 2010238692 A JP2010238692 A JP 2010238692A JP 2009081781 A JP2009081781 A JP 2009081781A JP 2009081781 A JP2009081781 A JP 2009081781A JP 2010238692 A JP2010238692 A JP 2010238692A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- wiring board
- multilayer wiring
- opening
- conductor layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 36
- 239000004020 conductor Substances 0.000 claims abstract description 69
- 230000000149 penetrating effect Effects 0.000 claims abstract description 15
- 230000002093 peripheral effect Effects 0.000 claims abstract description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000004806 packaging method and process Methods 0.000 abstract 1
- 230000008961 swelling Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 151
- 239000000758 substrate Substances 0.000 description 29
- 238000000034 method Methods 0.000 description 28
- 239000000463 material Substances 0.000 description 20
- 238000007747 plating Methods 0.000 description 13
- 229910000679 solder Inorganic materials 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 239000004642 Polyimide Substances 0.000 description 9
- 229920001721 polyimide Polymers 0.000 description 9
- 239000011368 organic material Substances 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000000206 photolithography Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000007872 degassing Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910001252 Pd alloy Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229910017944 Ag—Cu Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
本発明は、半導体素子のパッケージ基板等に適用される多層配線基板とそれを用いた半導体装置に関し、特にその多層配線基板の反りや、実装性、信頼性、等の対策に有効であり、多層配線基板内の電源またはグランド層に形成した開口の配置や形状に関する発明である。 The present invention relates to a multilayer wiring board applied to a package substrate or the like of a semiconductor element and a semiconductor device using the multilayer wiring board, and is particularly effective for measures such as warpage, mountability and reliability of the multilayer wiring board. The invention relates to the arrangement and shape of openings formed in a power supply or ground layer in a wiring board.
近年、高度情報化時代を迎え、情報通信技術や情報処理技術などが急激に発達し、それらの技術を具現化するためのエレクトロニクス機器や、エレクトロニクス機器に部品として実装される各種半導体モジュールの高密度化、高速化が、急速に進んでいる。そのため、半導体を実装するためのインターポーザ基板や、半導体を含む電子部品を実装する半導体パッケージ用多層基板には、高密度化と高速対応が要求されてきている。一方、エレクトロニクス機器には、小型・薄型化・軽量化が要求されることが多いため、高密度化、高速対応、小型化、薄型化をバランスよく併存させることが必要となる。 In recent years, with the advent of the advanced information era, information communication technology and information processing technology have been rapidly developed, and the high density of various electronic modules for implementing those technologies and various semiconductor modules mounted as components on the electronic devices. Increasingly, speeding up. Therefore, an interposer substrate for mounting a semiconductor and a multilayer substrate for a semiconductor package on which an electronic component including a semiconductor is mounted are required to have a high density and a high-speed response. On the other hand, since electronic devices are often required to be small, thin, and light, it is necessary to balance high density, high speed, miniaturization, and thinning in a balanced manner.
このような要求を背景に、とりわけ半導体パッケージ用のインターポーザ基板や、モジュール用の基板用として、絶縁層が有機材料からなる半導体パッケージ用多層基板が主流を占めるようになってきた。これは、無機系材料に比べ、柔軟性をもち落下などの衝撃に耐える耐衝撃性がある事や、軽量で安価であることなどが評価されていることによる。 Against this backdrop, semiconductor package multi-layer substrates, in which the insulating layer is made of an organic material, have come to dominate, particularly for interposer substrates for semiconductor packages and substrates for modules. This is because, compared to inorganic materials, it has been evaluated that it is flexible and has an impact resistance that can withstand an impact such as dropping, and it is lightweight and inexpensive.
しかしながら、有機材料の絶縁層の種類によっては吸湿する量に違いがあり、半導体パッケージ用多層基板として形成された後に、吸湿した水分が、加熱工程の後などに、絶縁層上に形成されている配線層の下へ回り込み、繰り返される熱処理によって水分が気化してガスとなり、絶縁層と配線層の密着部のふくれや剥離が発生するなどの問題が生じることがある。
これは、絶縁層から大気中にガスが放散されるのを、配線層の導体が妨げるために、結果としてこのような現象が生じると考えられる。
However, there is a difference in the amount of moisture to be absorbed depending on the type of the insulating layer of the organic material, and moisture absorbed after being formed as a multilayer substrate for a semiconductor package is formed on the insulating layer after a heating step or the like. There are cases where problems such as bulging or peeling of the contact portion between the insulating layer and the wiring layer occur due to the water vaporized by the heat treatment that goes under the wiring layer and becomes a gas by repeated heat treatment.
It is considered that this phenomenon occurs as a result because the conductor of the wiring layer prevents gas from being diffused into the atmosphere from the insulating layer.
代表例として、特に絶縁層用の有機材料の一つであるポリイミド系の材料などでは、半導体パッケージ用多層基板用の材料として一般的なエポキシ系の材料などに比べ、低い誘電率や、低い誘電正接の値などの非常に良好な電気特性を有しており高速対応に有利といえる。また、ガラス転移点の温度が、前記リフロー温度の値より高いため変形しにくく熱耐性が高い。さらに強い引っ張り強度耐性などの優れた機械的特性をもつことから薄くできる、などの優れた特徴をもつ。
しかし、ポリイミド系の材料などでは吸湿性が大きいという問題がある。
As a typical example, a polyimide material, which is one of organic materials for an insulating layer, has a low dielectric constant and a low dielectric constant compared to a general epoxy material as a material for a multilayer substrate for a semiconductor package. It has very good electrical characteristics such as tangent value, which is advantageous for high-speed response. Moreover, since the temperature of the glass transition point is higher than the value of the reflow temperature, it is difficult to deform and has high heat resistance. In addition, it has excellent characteristics such as being able to be thinned because it has excellent mechanical properties such as strong tensile strength resistance.
However, polyimide materials and the like have a problem of high hygroscopicity.
上記の問題を解決するための対策として、導体層の一部にガス抜き用の貫通開口を形成することが提案されており、例えば、配線のシグナル部および、その上下の層の一定エリア以外の部分に開口を設けたものがある(特許文献1)。
このような方策により、発生したガスを効果的に放散することができ、加熱工程においてもふくれや剥離の発生し難い半導体パッケージ用多層基板が提案されている。
As a measure for solving the above problem, it has been proposed to form a through-opening for degassing in a part of the conductor layer, for example, other than a signal area of the wiring and a certain area of the upper and lower layers thereof There is one in which an opening is provided in the part (Patent Document 1).
By such measures, there has been proposed a multilayer substrate for a semiconductor package, which can effectively dissipate the generated gas and hardly cause blistering or peeling even in the heating process.
一方で、前述したように半導体パッケージ用多層基板の薄化、軽量化が進むことにより半導体パッケージ用多層基板の反りが、実装性や信頼性の観点から重要な問題となってきている。
すなわち、半導体パッケージ用基板の反りによって、半導体のベアチップ実装またはマザーボードへの実装である、FC(フリップチップ)実装や、BGA実装、LGA実装などにおいて、各端子と対応する接続用パッドの接続が充分ではない状態となることがあり、これが接続信頼性を低下させる。
On the other hand, as described above, warping of the multilayer substrate for semiconductor packages has become an important problem from the viewpoint of mountability and reliability as the multilayer substrate for semiconductor packages becomes thinner and lighter.
That is, due to the warpage of the semiconductor package substrate, the connection pads corresponding to each terminal are sufficiently connected in FC (flip chip) mounting, BGA mounting, LGA mounting, etc., which are mounting of a semiconductor to a bare chip or a motherboard. This may reduce the connection reliability.
そこで、前記接続不良の問題を解決するための対策として、例えば、配線板の四辺を折り曲げ、外部応力に対応する方法が提案されている(特許文献2)。
しかし、この方法では、折り曲げ部から異物が発生したり、多層配線板の場合、層間剥離が起きやすくなったりする問題がある。
Therefore, as a countermeasure for solving the problem of the connection failure, for example, a method of bending the four sides of the wiring board to cope with external stress has been proposed (Patent Document 2).
However, this method has a problem that foreign matter is generated from the bent portion, and delamination is likely to occur in the case of a multilayer wiring board.
また他に、配線基板の絶縁層を形成する際に、予め後の工程にて掛かる熱工程を施しておき、後の工程においての反り増加を抑制する方法なども提案されている(特許文献3)。
この方法では、絶縁層の硬化収縮に伴う反りを抑制する事を目的としているが、硬化収縮するタイミングが、早い段階か遅い段階かで変わるだけであり、最終的に蓄積される内部応力に変化はなく、反りを根本的に解決する施策ではないと考えられる。
In addition, a method has been proposed in which, when an insulating layer of a wiring board is formed, a heat process applied in a later process is performed in advance to suppress an increase in warpage in the later process (Patent Document 3). ).
The purpose of this method is to suppress the warpage associated with the hardening shrinkage of the insulating layer, but the timing of hardening shrinkage only changes depending on whether it is an early stage or a late stage, and changes to the internal stress that is finally accumulated. However, it is not considered to be a measure that fundamentally resolves warpage.
従来は前記のように、多層配線基板のガス抜きの為に導体層の電源またはグランド部に開口を設ける対策と、反りを低減する為の対策とが別々に提案されていた。しかし、これらを同時に解決し、現実に製品を得る為のバランスの良い生産性や品質あるいは性能を備えた多層配線基板を得易い効果的な手法は提案されていなかった。 Conventionally, as described above, a countermeasure for providing an opening in the power supply or ground portion of the conductor layer for degassing the multilayer wiring board and a countermeasure for reducing warpage have been proposed separately. However, an effective method for easily obtaining a multilayer wiring board having a well-balanced productivity, quality or performance for solving these problems at the same time and actually obtaining a product has not been proposed.
本発明は前記従来の技術の問題点に鑑みて成されたもので、ガス抜きによる多層配線基板の剥離やふくれを防ぎながら反りを抑制することができ、実装性や信頼性の高い半導体パッケージ用の多層配線基板とそれを用いた半導体装置を提供する事を目的とする。 The present invention has been made in view of the above problems of the prior art, and can suppress warpage while preventing peeling and blistering of the multilayer wiring board due to degassing, and can be used for semiconductor packages with high mountability and reliability. An object of the present invention is to provide a multilayer wiring board and a semiconductor device using the same.
上記の課題を解決するための手段として、請求項1に記載の発明は、導体層と絶縁層とが積層されており、該導体層は配線層及び、電源またはグランド層を有しており、該電源またはグランド層にはこれらを厚さ方向に貫く開口が形成されており、該開口の該配線層に占める割合が、多層配線基板の導体層の面内の中央側が低く周辺側が高いことを特徴とする多層配線基板である。 As means for solving the above-mentioned problem, the invention according to claim 1 is characterized in that a conductor layer and an insulating layer are laminated, and the conductor layer has a wiring layer and a power supply or ground layer, The power supply or ground layer is formed with an opening penetrating in the thickness direction, and the ratio of the opening to the wiring layer is low in the central side of the conductor layer of the multilayer wiring board and high in the peripheral side. This is a featured multilayer wiring board.
導体層のシグナル部以外の開口率が面内の中央側では低く周辺側では高くしたものである。ここで、開口率が低いということは、導体が残っている割合(以下では単に「残導体率」と記す)が高い、(導体が多く残っている)ということである。中央側では、弾性率が高く主に金属で形成された導体が多く残されていることにより、中央側の剛性が高くなる。一方、周辺側では剛性が低くなる。
具体例としては、図1や表1に示すように、導体面を幾つかの領域に分け、それらの領域ごとに開口率を規定する事が有効である。中央側の剛性が高い事により、基板中央付近の反りが抑えられる。
The aperture ratio of the conductor layer other than the signal portion is low on the central side in the plane and high on the peripheral side. Here, the low aperture ratio means that the proportion of conductor remaining (hereinafter simply referred to as “residual conductor ratio”) is high (many conductors remain). On the central side, the rigidity on the central side is increased by leaving many conductors mainly made of metal having a high elastic modulus. On the other hand, the rigidity is low on the peripheral side.
As a specific example, as shown in FIG. 1 or Table 1, it is effective to divide the conductor surface into several regions and to define the aperture ratio for each region. Due to the high rigidity on the center side, warpage near the center of the substrate can be suppressed.
この結果として、基板全体の反り量が低減される。これは、図2に示すように、もし同一の曲率で多層配線基板が反ったとした場合に、中央側のみが反った場合の方が反り量が大きい為である。
なお、この開口率は開口のサイズ、数、ピッチ、又、配置などを適宜変更する事により調整が出来る。本発明では、この開口率は5〜60%が良好であり、また10〜30%がさらに好適である。本発明では、位置ごとに他の領域と比較して開口率を高く、あるいは低く設定する事が出来るが、導体層や絶縁層の材質、また配線パターンに応じて、適宜、最適化することが望ましい。
As a result, the amount of warpage of the entire substrate is reduced. This is because, as shown in FIG. 2, if the multilayer wiring board warps with the same curvature, the warping amount is larger when only the center side warps.
This aperture ratio can be adjusted by appropriately changing the size, number, pitch, arrangement, etc. of the apertures. In the present invention, the opening ratio is preferably 5 to 60%, and more preferably 10 to 30%. In the present invention, the aperture ratio can be set to be higher or lower than other regions for each position, but can be appropriately optimized depending on the material of the conductor layer and the insulating layer and the wiring pattern. desirable.
また、請求項2に記載の発明は、導体層と絶縁層とが積層されており、該導体層は配線層及び、電源またはグランド層を有しており、該電源またはグランド層にはこれらを厚さ方向に貫く開口が形成されており、該開口が形成されている領域である形成領域の輪郭が成す形状と、該開口が形成されていない領域である非形成領域の輪郭が成す形状の、いずれか片方か又は両方を、該多層配線基板の導体層の面内の中心側から外側に向かう放射状に設けることを特徴とする多層配線基板である。 In the invention according to claim 2, a conductor layer and an insulating layer are laminated, and the conductor layer has a wiring layer and a power source or a ground layer. An opening penetrating in the thickness direction is formed, and a shape formed by the outline of the formation area that is the area where the opening is formed and a shape formed by the outline of the non-formation area that is the area where the opening is not formed. The multilayer wiring board is characterized in that either one or both are provided radially from the center side in the plane of the conductor layer of the multilayer wiring board to the outside.
すなわち、図3(a)、(b)に示すように、意識的に開口を設ける部分と設けない部分を用いることによって、反りの抑制を行うものである。図3(a)に示すように導体層内の中心から放射状に導体部を残す事で、その部分の剛性を高め、反りを低減している。イメージとしては開口の非形成領域に剛体棒を貼り付け反りを抑制している様なものである。一方、図3(b)に示すように、開口の形成領域を規定する方法においても、効果としては図3(a)の場合と同様である。しかし、開口の規定のし易さとして非形成領域を規定するよりも形成領域を規定した方が分りやすい場合も有る為である。これらは本質的には同じ事であるので、設計者の使用の便において任意に使い分ける事が出来る。 That is, as shown in FIGS. 3 (a) and 3 (b), warping is suppressed by consciously using a portion where an opening is provided and a portion where no opening is provided. As shown in FIG. 3A, by leaving the conductor portion radially from the center in the conductor layer, the rigidity of the portion is increased and the warpage is reduced. The image is like sticking a rigid rod to the non-opening region to suppress warpage. On the other hand, as shown in FIG. 3B, the effect of the method for defining the opening formation region is the same as that of FIG. However, there are cases where it is easier to understand that the formation area is defined than the non-formation area is defined as the ease of defining the opening. Since these are essentially the same thing, they can be used arbitrarily for the convenience of the designer.
また、請求項3に記載の発明は、導体層と絶縁層とが積層されており、該導体層は配線層及び、電源またはグランド層を有しており、該電源またはグランド層にはこれらを厚さ方向に貫く開口が形成されており、該配線層に占める該開口の割合が、該多層配線基板の厚さ方向の中心側に在る層では低く、外側に在る層では高いことを特徴とする多層配線基板である。 According to a third aspect of the present invention, a conductor layer and an insulating layer are laminated, and the conductor layer has a wiring layer and a power source or a ground layer. An opening penetrating in the thickness direction is formed, and the ratio of the opening to the wiring layer is low in the layer on the center side in the thickness direction of the multilayer wiring board and high in the layer on the outside. This is a featured multilayer wiring board.
図4と表2に示すように、本発明では、開口率を中心部の層で低く、外側の層で高くすることによって、中心部の層の剛性を高め、外側の層で剛性を低くしている。図5は開口の径を変えて開口率を変化させた例である。また、図10は前述の場合の配線板の断面イメージ図である。シグナル部ではない、電源層もしくはグランド部にて該開口を形成している。 As shown in FIG. 4 and Table 2, in the present invention, by increasing the aperture ratio in the central layer and increasing it in the outer layer, the rigidity of the central layer is increased and the rigidity is decreased in the outer layer. ing. FIG. 5 shows an example in which the aperture ratio is changed by changing the diameter of the aperture. FIG. 10 is a cross-sectional image view of the wiring board in the case described above. The opening is formed in the power supply layer or the ground portion, not the signal portion.
多層基板の場合、一般的に層数が増加し、積層回数が多くなると共に内部応力が増加するが、外側の層の剛性が中心層にくらべて低い為、積層されても中心層の形状に引きずられて、反り量が大きく増加する事はない。開口率としては、5〜60%が良好であり、10〜30%がさらに好適であり、層ごとに他の層と比較して開口率を高く、あるいは低く設定する事が出来るが、導体層、絶縁層の材質、配線パターン応じて種々最適化することが望ましい。 In the case of a multilayer substrate, the number of layers generally increases and the number of laminations increases and the internal stress increases.However, the outer layer has a lower rigidity than the center layer, so that the shape of the center layer is maintained even when laminated. The amount of warpage does not increase greatly when dragged. The aperture ratio is preferably 5 to 60%, more preferably 10 to 30%, and the aperture ratio can be set higher or lower than other layers for each layer. It is desirable to optimize variously according to the material of the insulating layer and the wiring pattern.
また、請求項4に記載の発明は、導体層と絶縁層とが積層されており、該導体層は配線層及び、電源またはグランド層を有しており、該電源またはグランド層にはこれらを厚さ方向に貫く開口が形成されており、該開口の個々の形状は長手方向と短手方向を有しており、該長手方向が、導体層の面内の中心側から外側へ放射状に向かう方向であることを特徴とする多層配線基板である。 According to a fourth aspect of the present invention, a conductor layer and an insulating layer are laminated, and the conductor layer has a wiring layer and a power source or a ground layer. An opening penetrating in the thickness direction is formed, and each shape of the opening has a longitudinal direction and a lateral direction, and the longitudinal direction is directed radially outward from the center side in the plane of the conductor layer. It is a multilayer wiring board characterized by having a direction.
また、請求項5に記載の発明は、導体層と絶縁層とが積層されており、該導体層は配線層及び、電源またはグランド層を有しており、該電源またはグランド層にはこれらを厚さ方向に貫く開口が形成されており、該開口の個々の形状は長手方向と短手方向を有しており、該長手方向が、導体層の面内の中心側と多層配線基板の辺との間の該辺に近い区域では該辺の方向に垂直な方向であることを特徴とする多層配線基板である。 In the invention according to claim 5, a conductor layer and an insulating layer are laminated, and the conductor layer has a wiring layer and a power source or a ground layer. An opening penetrating in the thickness direction is formed, and each shape of the opening has a longitudinal direction and a lateral direction, and the longitudinal direction is the center side in the plane of the conductor layer and the side of the multilayer wiring board. The multilayer wiring board is characterized in that the area close to the side between and is a direction perpendicular to the direction of the side.
請求項4や請求項5の発明によると、図6(a)に示すように開口103の個々の形状が中心からの放射方向を向いている。開口103は方向性が判り易いように短線で模式的に描いている。
尚、請求項4や請求項5、また後述する請求項6や請求項7に係る発明は、技術思想としては、請求項2と共通するところがある。請求項2の場合は開口の配置をマクロ的に放射状としたものであり、一方この場合は、ミクロ的に個別の開口が放射方向を向いたものである。効果としても同等であり、残導体部が放射状に走っているために、剛性の高い領域が反りの抑制を担っている。
According to the invention of claim 4 and claim 5, as shown in FIG. 6 (a), the individual shapes of the
The inventions according to claims 4 and 5 and claims 6 and 7 to be described later have the same technical idea as claim 2. In the case of claim 2, the arrangement of the openings is made macroscopically radial, whereas in this case, the individual openings are oriented in the radial direction in a microscopic manner. The effect is the same, and the remaining conductor portion runs radially, so that a region with high rigidity is responsible for suppressing warpage.
また、請求項6に記載の発明は、導体層と絶縁層とが積層されており、該導体層は配線層及び、電源またはグランド層を有しており、該電源またはグランド層にはこれらを厚さ方向に貫く開口が形成されており、
該開口の個々の形状は長手方向と短手方向を有しており、該長手方向が、導体層の面内の中心側から外側へ放射状に向かう方向に垂直な方向であることを特徴とする多層配線基板である。
According to a sixth aspect of the present invention, a conductor layer and an insulating layer are laminated, and the conductor layer has a wiring layer and a power source or a ground layer. An opening penetrating in the thickness direction is formed,
Each shape of the opening has a longitudinal direction and a lateral direction, and the longitudinal direction is a direction perpendicular to a direction radially outward from the center side in the plane of the conductor layer. It is a multilayer wiring board.
また、請求項7に記載の発明は、導体層と絶縁層とが積層されており、該導体層は配線層及び、電源またはグランド層を有しており、該電源またはグランド層にはこれらを厚さ方向に貫く開口が形成されており、
該開口の個々の形状は長手方向と短手方向を有しており、該長手方向が、導体層の面内の中心側と多層配線基板の辺との間の該辺に近い区域では該辺の方向に平行な方向であることを特徴とする多層配線基板である。
In the invention according to claim 7, a conductor layer and an insulating layer are laminated, and the conductor layer has a wiring layer and a power source or a ground layer. An opening penetrating in the thickness direction is formed,
The individual shapes of the openings have a longitudinal direction and a lateral direction, and the longitudinal direction is the side in a region close to the side between the center side in the plane of the conductor layer and the side of the multilayer wiring board. The multilayer wiring board is characterized in that it is in a direction parallel to the direction.
請求項6や7は、請求項4や5と対照的な構成要件を提供している。図6(b)に示すように開口の個々の形状が中心からの放射方向から垂直な方向を向いているものである。この場合は同心円方向に剛性の高い部分が出来る為、基板端部でのうねりが大きい場合に、うねりを抑制する事が出来、有効である。請求項4〜7に関わる形状はそれぞれの基板の反りの状態に応じて種々適用する事が望ましい。 Claims 6 and 7 provide constituent elements in contrast to claims 4 and 5. As shown in FIG. 6B, the individual shapes of the openings are directed in the direction perpendicular to the radial direction from the center. In this case, since a highly rigid portion is formed in the concentric direction, the undulation can be suppressed when the undulation at the end of the substrate is large, which is effective. It is desirable to apply various shapes according to claims 4 to 7 in accordance with the state of warpage of each substrate.
請求項4〜7の発明によると、図6(a)に示すように開口の個々の形状が中心からの放射方向を向いている。これは、思想としては、請求項2と共通するところがある。請求項2の場合は開口の配置をマクロ的に放射状としたものであり、一方この場合は、ミクロ的に個別の開口が放射方向を向いたものである。効果としても同等であり、残導体部が放射状に走っているために、剛性の高い領域が反りの抑制を担っている。 According to the fourth to seventh aspects of the present invention, as shown in FIG. 6A, the individual shapes of the openings are directed in the radial direction from the center. This is in common with claim 2 as an idea. In the case of claim 2, the arrangement of the openings is made macroscopically radial, whereas in this case, the individual openings are oriented in the radial direction in a microscopic manner. The effect is the same, and the remaining conductor portion runs radially, so that a region with high rigidity is responsible for suppressing warpage.
尚、請求項4〜7の発明では、開口の方向性をもった個々の形状の例としては長丸、楕円、平行四辺形、長方形、又は菱形などの多角形、あるいは、それらを組み合わせた複合形状、等のいずれかであることが好ましい。
即ち、開口の形状は設計、加工、配置の便を考慮して、図7に例示したように種々に適宜変形する事が出来る。図7の矢印が方向性を表しており、開口の形成領域および開口の残し部(非形成領域)にてミクロ領域での剛性を規定するものである。
In the inventions of claims 4 to 7, examples of individual shapes having the directionality of the opening include polygons such as oval, ellipse, parallelogram, rectangle, or rhombus, or a combination of these. It is preferably any one of shape, etc.
That is, the shape of the opening can be variously modified as illustrated in FIG. 7 in consideration of the convenience of design, processing, and arrangement. The arrows in FIG. 7 indicate the directionality, and the rigidity in the micro region is defined by the formation region of the opening and the remaining portion of the opening (non-formation region).
また、請求項8に記載の発明は、前記開口が、前記多層配線基板の回路の1MHz以上の交流信号が流れる部分以外の箇所に配置されていることを特徴とする請求項1乃至7のいずれかに記載の多層配線基板である。 The invention according to claim 8 is characterized in that the opening is arranged at a location other than a portion where an AC signal of 1 MHz or more flows in the circuit of the multilayer wiring board. A multilayer wiring board according to claim 1.
すなわち、一般にシグナル層とも呼ばれ1MHzより高い高周波数領域での信号伝送に関係する部分を除いた配線層の部分である、電源、グラウンド部分、多層配線板において機械的強度を保持する為のパターンであるいわゆるダミーパターン、又は、エッチングなどのパターニングの補正のために用いる電気的には通電されないダミーパターン、等に、選択的に開口を配置することにより、高周波電気特性を低下させることのない多層プリント配線板を提供できる。
また、高周波伝送の信号伝送部は、高密度な配線ルールとなることが多く、配線が細いため、この部分に開口を配置すると、機械的な強度が低下する。このため、上記部分に選択的に開口を配置しない事によって信頼性が高い多層基板を提供できる。
又、これまでの項ではあえて、高速信号が流れるシグナル部の領域を意識しないで、残導体率(1―開口率)を記述してきたが、反りを効果的に抑制する為には、シグナル層を含めて残導体率を算出することが望ましい。
That is, a pattern for maintaining mechanical strength in the power source, ground portion, and multilayer wiring board, which is a portion of the wiring layer excluding a portion related to signal transmission in a high frequency region higher than 1 MHz, generally called a signal layer. Multilayers that do not degrade high-frequency electrical characteristics by selectively arranging openings in so-called dummy patterns or dummy patterns that are not electrically energized used for patterning correction such as etching. A printed wiring board can be provided.
Further, a signal transmission unit for high-frequency transmission often has a high-density wiring rule, and the wiring is thin. Therefore, if an opening is disposed in this part, the mechanical strength is lowered. For this reason, a multilayer substrate with high reliability can be provided by not disposing openings selectively in the above-mentioned portions.
In the previous section, the remaining conductor ratio (1-aperture ratio) has been described without considering the signal area where high-speed signals flow, but in order to effectively suppress warping, the signal layer It is desirable to calculate the remaining conductor ratio including.
また、請求項9に記載の発明は、請求項1乃至7のいずれかに2以上に記載の多層配線基板の特徴が組み合わされていることを特徴とする多層配線基板である。
The invention according to
請求項1〜6の構成を組み合わせる事により、個々の反り抑制効果の相乗作用により飛躍的に反りを低減する事が出来る。図8と表3は請求項1、請求項5を組み合わせた例に関するもので、基板の(面内のおよび厚さ方向の)中心側に行くにつれて開口率が小さく、外側では大きくなっている。 By combining the configurations of claims 1 to 6, warpage can be drastically reduced by the synergistic action of the individual warp suppression effects. FIG. 8 and Table 3 relate to an example in which claims 1 and 5 are combined. The aperture ratio decreases toward the center (in the plane and in the thickness direction) of the substrate, and increases at the outside.
尚、本発明では、多層配線基板の絶縁層の少なくとも一層にポリイミドからなる層を含むことが好ましい。ポリイミド系材料は、半導体パッケージ用多層基板の絶縁層用材料として一般的なエポキシ系の材料などに比べ、低い誘電率や、低い誘電正接の値などの非常に良好な電気特性を有して高速対応に有利であり、かつガラス転移点の温度が高いため熱耐性が高く、引っ張り強度耐性が良いなどの優れた機械的特性を持つ。
これらの特性により、絶縁機能を維持した上で、薄くすることができる。これにより、基板の薄化、軽量化に有効である。
In the present invention, it is preferable that at least one insulating layer of the multilayer wiring board includes a layer made of polyimide. Polyimide-based materials have very good electrical characteristics such as low dielectric constant and low dielectric loss tangent compared to general epoxy-based materials as insulating layer materials for multilayer substrates for semiconductor packages. It is advantageous for handling and has excellent mechanical properties such as high heat resistance due to high glass transition temperature and good tensile strength resistance.
With these characteristics, the insulating function can be maintained and the thickness can be reduced. This is effective for reducing the thickness and weight of the substrate.
また、請求項10に記載の発明は、請求項1乃至9のいずれかに記載の多層配線基板に、半導体素子が実装されていることを特徴とする半導体装置である。 According to a tenth aspect of the present invention, a semiconductor device is characterized in that a semiconductor element is mounted on the multilayer wiring board according to any one of the first to ninth aspects.
本発明の請求項1〜9の多層配線基板を利用している結果、これらに半導体素子が実装された半導体装置は、実装性や信頼性に優れたものとなる。 As a result of using the multilayer wiring board according to claims 1 to 9 of the present invention, a semiconductor device having a semiconductor element mounted thereon has excellent mountability and reliability.
本発明によれば、電気的特性を損なわないまま、基板中のガスを効果的に放散することができ、加熱工程等においてもふくれや剥離の発生し難く、かつ反りを抑制することで、実装性、信頼性の高い半導体パッケージ用多層基板が提案することが出来る。 According to the present invention, it is possible to effectively dissipate the gas in the substrate without impairing the electrical characteristics, it is difficult to cause blistering or peeling even in the heating process, etc. A highly reliable and reliable multilayer substrate for a semiconductor package can be proposed.
図9は本発明に係る多層配線基板の代表的な構成につき、ここでは6層の場合の断面を模式的に描いたものである。 FIG. 9 shows a typical configuration of the multilayer wiring board according to the present invention, in which a cross section in the case of six layers is schematically drawn.
本発明に係る多層配線基板は、導体から成る配線層11,21,31,41,51、61と、有機材料から成る絶縁層12、22、32、42、52と、有機材料から成り最表層に形成されるソルダーレジスト105、によって構成される。そして、ビア14,24,34,44,54により層間接続が行われる。
The multilayer wiring board according to the present invention includes wiring layers 11, 21, 31, 41, 51, 61 made of a conductor, insulating
また本発明に用いられる積層される絶縁層の有機材料としては、ポリイミド系材料、エポキシ系材料、ポリオレフィン系材料、又は液晶ポリマー構造の有機材料などや、ガラスエポキシ材料などの複合材料などを用いることができる。
本発明に関わる配線層の材料としては、銅やアルミニウムなどの金属や、カーボンナノチューブ、あるいは導電性高分子のような導電性材料を用いることができる。
また、ソルダーレジストとしては、半導体パッケージ用として各社から販売されている公知のものを用いる事が出来る。
In addition, as an organic material of the laminated insulating layer used in the present invention, a polyimide material, an epoxy material, a polyolefin material, an organic material having a liquid crystal polymer structure, a composite material such as a glass epoxy material, or the like is used. Can do.
As a material for the wiring layer according to the present invention, a metal such as copper or aluminum, a carbon nanotube, or a conductive material such as a conductive polymer can be used.
Moreover, as a solder resist, the well-known thing sold by each company for semiconductor packages can be used.
図9において、絶縁層32の上下に、配線層31と41とが配置され、パターニングされる。さらに、配線層31の上に絶縁層22を、また、配線層41の下に絶縁層42を配置する。この時、加熱しながら圧力をかけることで、配線層31,41のパターンの間にそれぞれの絶縁層22,42の有機材料が充填され、パターン間の隙間が埋められる。
次に、配線層21と配線層51をそれぞれ配置し、パターニングを行う。同様の方法で絶縁層12、52が形成され、配線層11、61も形成される。
In FIG. 9, wiring layers 31 and 41 are disposed above and below the insulating layer 32 and patterned. Further, the insulating layer 22 is disposed on the
Next, the
配線層のパターンを形成するには、めっき工法などにより金属等の導電性の膜を形成し、フォトリソグラフィー法などにより、パターニングすることができる。
具体的には、最初に厚くめっきして形成した金属膜をフォトリソグラフィー法でパターニングして配線パターンを形成するサブトラクティブ工法や、薄く無電解めっきをして形成した金属膜の上に、フォトリソグラフィー法によりレジストのパターンを形成し、該レジストのないところに電解めっきにより厚く金属パターンを形成した後にレジストを除去し、さらに全体をエッチングして、薄い無電解めっき層を除去することで、配線パターンを形成するセミアディティブ工法などを適用して形成してもよい。また、カーボンナノチューブや、導電性有機高分子材料などを、コーティングなどの工法や、スパッタなどの装置を用いた工法で膜形成し、フォトリソグラフィー法などによって、配線パターンを形成してもよい。
In order to form the pattern of the wiring layer, a conductive film such as a metal can be formed by a plating method or the like, and patterning can be performed by a photolithography method or the like.
Specifically, a metal film formed by first thick plating is patterned by a photolithography method to form a wiring pattern, or photolithography is performed on a metal film formed by thin electroless plating. By forming a resist pattern by the method, forming a thick metal pattern by electroplating where there is no resist, removing the resist, and then etching the whole to remove the thin electroless plating layer, wiring pattern It may be formed by applying a semi-additive method or the like that forms the film. Further, a carbon nanotube, a conductive organic polymer material, or the like may be formed into a film by a method such as coating or a method using an apparatus such as sputtering, and a wiring pattern may be formed by a photolithography method or the like.
配線層のパターンを形成する場合に、本発明に係る開口を同時に設ける事が望ましい。本発明に係る開口は、製造工程中に発生する気体のガス抜き孔であると同時に、(非開口との協力の下で)反り抑制の効果を担っている。導体層、絶縁層の材質、配線パターン、等を考慮した上で、本発明の効果が高まるよう、開口率および残導体率を決定する事が望ましい。 When forming the pattern of the wiring layer, it is desirable to provide the opening according to the present invention at the same time. The opening according to the present invention is a vent hole for gas generated during the manufacturing process, and at the same time has an effect of suppressing warpage (in cooperation with the non-opening). In consideration of the material of the conductor layer and the insulating layer, the wiring pattern, etc., it is desirable to determine the aperture ratio and the residual conductor ratio so that the effect of the present invention is enhanced.
絶縁層32に配線層31、41を積層する方法については、ラミネート法、接着法、熱融着法、キャスト法、スパッタリング法などを用いることが出来る。 As a method of laminating the wiring layers 31 and 41 on the insulating layer 32, a laminating method, an adhesion method, a heat sealing method, a casting method, a sputtering method, or the like can be used.
その後、配線層31、41間の導通を取る為のビア34を形成する。フォトリソグラフィー法を用いてエッチングを円形に部分的に行って導体部を除去し、その除去した部分にUV−YAGレーザを用いたレーザ加工に絶縁層32に開口を形成した後、絶縁層32の孔の内部のレーザの熱により変性した残渣をデスミア処理によって除去する。前記開口に無電解銅めっきによって下地めっきを施した後に、フィルドビア用銅めっき液を用いて、電解銅めっきを行って銅を貫通孔に充填し配線層31と配線層41を接続するビア34を形成する。また、ビアを完全に埋めず残った部分に有機物等を充填するコンフォーマルビアを形成しても良い。
Thereafter, a via 34 is formed to establish conduction between the wiring layers 31 and 41. Etching is partially performed in a circular shape using a photolithography method to remove the conductor portion, and an opening is formed in the insulating layer 32 by laser processing using a UV-YAG laser in the removed portion. Residue denatured by the heat of the laser inside the hole is removed by desmear treatment. After the base plating is performed on the opening by electroless copper plating, the via 34 for connecting the
前記絶縁層32,配線層31,41と同様にして絶縁層22,42,配線層21,51を形成した。また、前記ビア34と同様にして、ビア24、44を形成した。さらに、前記配線層31、41のパターニングと同様にして、配線層21、51のパターニングを行った。このようにして4層の多層配線板を作成した。
Insulating
同様にして、絶縁層と、配線層の形成を行い絶縁層12,52、配線層11,61ビア14,54を形成し、6層多層配線板を作成した。本実施の形態においては積層を逐次行ったが、パターニングされた配線層、絶縁層をそれぞれ用意し一括にて積層、層間接続を行ってもよい。
Similarly, an insulating layer and a wiring layer were formed to form insulating
このようにして作成した6層配線板の最外層上にソルダーレジスト105を印刷により形成した。形成方法にはスプレーコート、ディップコート、ドライフィルム型ソルダーレジストのラミネートなどを用いる事ができる。 A solder resist 105 was formed by printing on the outermost layer of the thus prepared six-layer wiring board. As the forming method, spray coating, dip coating, dry film type solder resist laminate, or the like can be used.
その後、配線層11の側にベアの半導体チップを実装するための表面処理を行い、半導体チップの実装側とした。
すなわち、まず、該半導体チップと該多層プリント配線板とを電気的に接続するため、配線層11、61に、配置された接続部となるパッドの部分にソルダーレジスト105の開口を設けた。全体を金めっき浴につけることにより、該パッド用開口に選択的に金メッキを行った。開口の表面処理には銀やパラジウム合金などのめっきを施して用いてもよい。また、これらの金属が、下地となる導体に拡散するのを防止するためや、硬度を高めるために、ニッケルまたはニッケル合金などのめっきを前記金や銀やパラジウム合金などのめっきの前に施してもよい。
次に配線層11の該パッド上にSn−Ag−Cu系はんだを印刷して形成した後、前記はんだリフローを行い、該半導体チップと接続するためのはんだバンプの形成を行った
Thereafter, a surface treatment for mounting a bare semiconductor chip on the
That is, first, in order to electrically connect the semiconductor chip and the multilayer printed wiring board, the wiring layers 11 and 61 were provided with openings of the solder resist 105 in the pad portions serving as connecting portions arranged. By putting the whole in a gold plating bath, the pad opening was selectively gold-plated. For the surface treatment of the openings, silver or palladium alloy plating may be used. In addition, in order to prevent these metals from diffusing into the underlying conductor or to increase the hardness, plating such as nickel or nickel alloy is performed before the plating such as gold, silver or palladium alloy. Also good.
Next, Sn-Ag-Cu solder was formed on the pads of the
本発明においては絶縁層はすべてポリイミド材料を用いた。まず、両面銅箔付きポリイミド基材を用意し、UVレーザーによりビア孔を形成した。その後、ビア孔内の洗浄を過マンガン酸塩により行い、無電会めっき、電解めっきを行う事でビアフィルドを行った。めっき後には化学研磨処理により銅の厚さを所望の値までおとし、フォトリソグラフィー、塩化第二鉄によるエッチングにてパターンを両面同時に形成した。なお本発明の開口も同時に形成した。開口の形成状態については後述する。 In the present invention, a polyimide material is used for all insulating layers. First, a polyimide base material with a double-sided copper foil was prepared, and via holes were formed by UV laser. Thereafter, the via hole was washed by permanganate, followed by non-electric plating and electrolytic plating. After plating, the thickness of copper was reduced to a desired value by chemical polishing treatment, and a pattern was formed on both sides simultaneously by photolithography and etching with ferric chloride. The opening of the present invention was also formed at the same time. The formation state of the opening will be described later.
続いて、接着剤付きポリイミド銅箔(銅/ポリイミド/接着剤)を先ほど作製した2層基材の上下に配置し、一括プレスにより積層を行った。同様の方法で、ビア形成、パターニングを行い4層基材を作製した。
その後さらに、積層、ビア形成、パターニングを行い6層基材を作製した。また、最表面にソルダーレジストのパターンを形成し、表面処理としてはNi/Auめっきを行った。半導体チップ側にハンダバンプを形成した。基板のサイズは40mm角とした。
Subsequently, a polyimide copper foil with an adhesive (copper / polyimide / adhesive) was placed on the top and bottom of the two-layer base material previously produced, and lamination was performed by a collective press. By the same method, via formation and patterning were performed to prepare a four-layer base material.
Thereafter, lamination, via formation, and patterning were further performed to prepare a 6-layer base material. Also, a solder resist pattern was formed on the outermost surface, and Ni / Au plating was performed as the surface treatment. Solder bumps were formed on the semiconductor chip side. The size of the substrate was 40 mm square.
実施例1における各層の開口の状態を以下に示す。層内の領域を2つに分け中心部の開口率を30%とし、外周部の開口率を40%とした。さらに、図3(a)の用に開口の非形成領域をX字状に形成し、個々の形状を図6(a)の用に放射状の菱形として配置した。中心部の開口率が30%の領域を20mm角とし、非線形領域の幅を2mmとした。 The state of the opening of each layer in Example 1 is shown below. The region in the layer was divided into two, the opening ratio of the central part was 30%, and the opening ratio of the outer peripheral part was 40%. Further, a non-opening region was formed in an X shape for FIG. 3A, and the individual shapes were arranged as radial diamonds for FIG. 6A. A region with an aperture ratio of 30% at the center was 20 mm square, and the width of the nonlinear region was 2 mm.
実施例1の開口の配置や開口の形状に関わる方向性を変更した事以外は、実施例1と同様にして、実施例2の6層の多層配線基板を形成した。
層内の配置は図6(b)の様に個々の開口は、多層配線基板の領域それぞれで、多層配線基板の面の中心から各辺に向かう方向の垂直方向に向いた長丸形状として、層ごとの開口率を規定した。多層配線基板の断面の様子を模式的に描くと図9の様になり、各層の開口率を、導体層11,61については40%に、導体層21,51については30%に、また導体層31,41については20%とした。
A six-layer multilayer wiring board of Example 2 was formed in the same manner as in Example 1 except that the directionality related to the arrangement of the openings and the shape of the openings in Example 1 was changed.
As shown in FIG. 6 (b), the individual openings in each of the multilayer wiring board regions are in the shape of an ellipse oriented in the vertical direction in the direction from the center of the surface of the multilayer wiring board to each side. The aperture ratio for each layer was defined. The cross-sectional state of the multilayer wiring board is schematically drawn as shown in FIG. 9, and the aperture ratio of each layer is 40% for the conductor layers 11 and 61, 30% for the conductor layers 21 and 51, and the conductor. The
比較例として、実施例1に対して、開口の配置や開口の形状に関わる方向性を変更した事以外は、実施例1の場合と同様として、6層の配線基板を形成した。開口率は多層配線基板内で一律に30%として、開口は多層配線基板の面内で均等に配置した。 As a comparative example, a six-layer wiring board was formed in the same manner as in Example 1, except that the directionality related to the arrangement of the openings and the shape of the openings was changed with respect to Example 1. The aperture ratio was uniformly 30% in the multilayer wiring board, and the openings were evenly arranged in the plane of the multilayer wiring board.
上記のように製造した多層配線基板について、実装前後の反りや実装性を評価した。まず、実装工程前の反り量を測定した。反り量は、レーザ変位計にて、測定器のステージ面を基準として、基板範囲内にて最もステージ面から離れている点と近い面との差を、基板全体の仮想平面を計算して傾き成分を除去した後に計測した。各10枚測定し、反りの平均値が実施例1にて95μm、実施例2にて100μm、比較例にて160μmであった。 The multilayer wiring board manufactured as described above was evaluated for warpage and mounting properties before and after mounting. First, the amount of warpage before the mounting process was measured. The amount of warpage is calculated by calculating the virtual plane of the entire substrate, and calculating the difference between the point farthest from the stage surface within the substrate range and the closest surface with the laser displacement meter as the reference. The measurement was performed after removing the components. Ten sheets were measured, and the average value of warpage was 95 μm in Example 1, 100 μm in Example 2, and 160 μm in Comparative Example.
その後、ダミーチップへ一次実装を行い、実装前と同様の方法にて反りを測定した。実装後の反りは、実施例1にて180μm、実施例2にて195μm、比較例にて280μmであった。また、はんだ接合不良については、実施例1、実施例2では全10個の基板の内で発生はゼロ個であったが(発生しなかったが)、比較例では全10個の基板に対して1個発生してしまった。
結局、本発明によると、反りを有効に低減する事が出来、また実装性も向上させる事が出来た。
Thereafter, primary mounting was performed on the dummy chip, and the warpage was measured by the same method as before mounting. The warpage after mounting was 180 μm in Example 1, 195 μm in Example 2, and 280 μm in Comparative Example. In addition, regarding the solder joint failure, the occurrence was zero in all the 10 substrates in Example 1 and Example 2 (although it did not occur), but in the comparative example, for all 10 substrates. One has occurred.
As a result, according to the present invention, it was possible to effectively reduce the warpage and improve the mountability.
1A、1B、1C、9I、9II ・・・開口の形成領域の区分けの一つ
4A、4B、4C、9A、9B ・・・開口を形成する層の区分けの一つ
100 ・・・基板
11、21、31、41、51、61 ・・・配線層
102、12、22、32、42、52、62 ・・・絶縁層
103、13、23、33、43、53、63 ・・・開口
14、24、34、44、54 ・・・ビア
105 ・・・ソルダーレジスト
106 ・・・シグナル層
107 ・・・電源もしくはグランド層
r ・・・曲率半径
1A, 1B, 1C, 9I, 9II ... one of the divisions of the formation area of the
107: Power source or ground layer r: Radius of curvature
Claims (10)
該開口の該配線層に占める割合が、多層配線基板の導体層の面内の中央側が低く周辺側が高いことを特徴とする多層配線基板。 A conductor layer and an insulating layer are laminated, and the conductor layer has a wiring layer and a power supply or ground layer, and the power supply or ground layer has an opening penetrating them in the thickness direction. ,
A multilayer wiring board characterized in that the ratio of the opening to the wiring layer is low on the center side in the plane of the conductor layer of the multilayer wiring board and high on the peripheral side.
該開口が形成されている領域である形成領域の輪郭が成す形状と、該開口が形成されていない領域である非形成領域の輪郭が成す形状の、いずれか片方か又は両方を、該多層配線基板の導体層の面内の中心側から外側に向かう放射状に設けることを特徴とする多層配線基板。 A conductor layer and an insulating layer are laminated, and the conductor layer has a wiring layer and a power supply or ground layer, and the power supply or ground layer has an opening penetrating them in the thickness direction. ,
Either one or both of the shape formed by the contour of the formation region that is the region where the opening is formed and the shape formed by the contour of the non-formation region that is the region where the opening is not formed are connected to the multilayer wiring. A multilayer wiring board characterized by being provided radially from the center side in the plane of the conductor layer of the board toward the outside.
該配線層に占める該開口の割合が、該多層配線基板の厚さ方向の中心側に在る層では低く、外側に在る層では高いことを特徴とする多層配線基板。 A conductor layer and an insulating layer are laminated, and the conductor layer has a wiring layer and a power supply or ground layer, and the power supply or ground layer has an opening penetrating them in the thickness direction. ,
A multilayer wiring board characterized in that a ratio of the opening in the wiring layer is low in a layer on the center side in the thickness direction of the multilayer wiring board and high in a layer on the outer side.
該開口の個々の形状は長手方向と短手方向を有しており、該長手方向が、導体層の面内の中心側から外側へ放射状に向かう方向であることを特徴とする多層配線基板。 A conductor layer and an insulating layer are laminated, and the conductor layer has a wiring layer and a power supply or ground layer, and the power supply or ground layer has an opening penetrating them in the thickness direction. ,
Each of the openings has a longitudinal direction and a transverse direction, and the longitudinal direction is a direction radially extending from the center side in the plane of the conductor layer to the outside.
該開口の個々の形状は長手方向と短手方向を有しており、該長手方向が、導体層の面内の中心側と多層配線基板の辺との間の該辺に近い区域では該辺の方向に垂直な方向であることを特徴とする多層配線基板。 A conductor layer and an insulating layer are laminated, and the conductor layer has a wiring layer and a power supply or ground layer, and the power supply or ground layer has an opening penetrating them in the thickness direction. ,
The individual shapes of the openings have a longitudinal direction and a lateral direction, and the longitudinal direction is the side in a region close to the side between the center side in the plane of the conductor layer and the side of the multilayer wiring board. A multilayer wiring board characterized by being in a direction perpendicular to the direction of the wiring.
該開口の個々の形状は長手方向と短手方向を有しており、該長手方向が、導体層の面内の中心側から外側へ放射状に向かう方向に垂直な方向であることを特徴とする多層配線基板。 A conductor layer and an insulating layer are laminated, and the conductor layer has a wiring layer and a power supply or ground layer, and the power supply or ground layer has an opening penetrating them in the thickness direction. ,
Each shape of the opening has a longitudinal direction and a lateral direction, and the longitudinal direction is a direction perpendicular to a direction radially outward from the center side in the plane of the conductor layer. Multilayer wiring board.
該開口の個々の形状は長手方向と短手方向を有しており、該長手方向が、導体層の面内の中心側と多層配線基板の辺との間の該辺に近い区域では該辺の方向に平行な方向であることを特徴とする多層配線基板。 A conductor layer and an insulating layer are laminated, and the conductor layer has a wiring layer and a power supply or ground layer, and the power supply or ground layer has an opening penetrating them in the thickness direction. ,
The individual shapes of the openings have a longitudinal direction and a lateral direction, and the longitudinal direction is the side in a region close to the side between the center side in the plane of the conductor layer and the side of the multilayer wiring board. A multilayer wiring board, characterized in that the direction is parallel to the direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009081781A JP5625250B2 (en) | 2009-03-30 | 2009-03-30 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009081781A JP5625250B2 (en) | 2009-03-30 | 2009-03-30 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010238692A true JP2010238692A (en) | 2010-10-21 |
JP5625250B2 JP5625250B2 (en) | 2014-11-19 |
Family
ID=43092801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009081781A Expired - Fee Related JP5625250B2 (en) | 2009-03-30 | 2009-03-30 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5625250B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013098235A (en) * | 2011-10-28 | 2013-05-20 | Kyocera Corp | Thin film wiring board |
JP2015023473A (en) * | 2013-07-19 | 2015-02-02 | 株式会社東芝 | Antenna device |
JP2015119090A (en) * | 2013-12-19 | 2015-06-25 | 京セラ株式会社 | Wiring board and multilayer wiring board |
WO2015108051A1 (en) * | 2014-01-17 | 2015-07-23 | 株式会社村田製作所 | Laminated wiring board and inspection device provided with same |
JP2016025337A (en) * | 2014-07-25 | 2016-02-08 | 京セラサーキットソリューションズ株式会社 | Wiring board |
JP2016025338A (en) * | 2014-07-25 | 2016-02-08 | 京セラサーキットソリューションズ株式会社 | Wiring board |
US20160163611A1 (en) * | 2014-12-03 | 2016-06-09 | International Business Machines Corporation | Laminate substrates having radial cut metallic planes |
JP2016181574A (en) * | 2015-03-24 | 2016-10-13 | 京セラ株式会社 | Wiring board |
US11224119B2 (en) | 2017-11-16 | 2022-01-11 | Murata Manufacturing Co., Ltd. | Resin multilayer substrate, electronic component, and mounting structure thereof |
CN114204124A (en) * | 2020-08-28 | 2022-03-18 | 郡是株式会社 | Wound body |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03270088A (en) * | 1990-03-19 | 1991-12-02 | Nec Corp | Printed board |
JP2000114676A (en) * | 1998-10-05 | 2000-04-21 | Hitachi Media Electoronics Co Ltd | High-frequency module |
JP2002261402A (en) * | 2001-03-01 | 2002-09-13 | Alps Electric Co Ltd | Circuit board for electronic circuit unit |
JP2002324979A (en) * | 2001-04-24 | 2002-11-08 | Ngk Spark Plug Co Ltd | Wiring board |
JP2003136623A (en) * | 2001-08-22 | 2003-05-14 | Tdk Corp | Module part, core substrate element assembly, multilayered substrate, method for manufacturing core substrate element assembly, method for manufacturing multilayered substrate, and method for manufacturing module part |
JP2005019730A (en) * | 2003-06-26 | 2005-01-20 | Kyocera Corp | Wiring substrate and electronic device using it |
JP2005317587A (en) * | 2004-04-27 | 2005-11-10 | Kyocera Corp | Multilayer wiring board |
JP2008085340A (en) * | 2006-09-27 | 2008-04-10 | Samsung Electronics Co Ltd | Circuit board for preventing warpage, and method for manufacturing the same |
-
2009
- 2009-03-30 JP JP2009081781A patent/JP5625250B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03270088A (en) * | 1990-03-19 | 1991-12-02 | Nec Corp | Printed board |
JP2000114676A (en) * | 1998-10-05 | 2000-04-21 | Hitachi Media Electoronics Co Ltd | High-frequency module |
JP2002261402A (en) * | 2001-03-01 | 2002-09-13 | Alps Electric Co Ltd | Circuit board for electronic circuit unit |
JP2002324979A (en) * | 2001-04-24 | 2002-11-08 | Ngk Spark Plug Co Ltd | Wiring board |
JP2003136623A (en) * | 2001-08-22 | 2003-05-14 | Tdk Corp | Module part, core substrate element assembly, multilayered substrate, method for manufacturing core substrate element assembly, method for manufacturing multilayered substrate, and method for manufacturing module part |
JP2005019730A (en) * | 2003-06-26 | 2005-01-20 | Kyocera Corp | Wiring substrate and electronic device using it |
JP2005317587A (en) * | 2004-04-27 | 2005-11-10 | Kyocera Corp | Multilayer wiring board |
JP2008085340A (en) * | 2006-09-27 | 2008-04-10 | Samsung Electronics Co Ltd | Circuit board for preventing warpage, and method for manufacturing the same |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013098235A (en) * | 2011-10-28 | 2013-05-20 | Kyocera Corp | Thin film wiring board |
US9698482B2 (en) | 2013-07-19 | 2017-07-04 | Kabushiki Kaisha Toshiba | Antenna device |
JP2015023473A (en) * | 2013-07-19 | 2015-02-02 | 株式会社東芝 | Antenna device |
JP2015119090A (en) * | 2013-12-19 | 2015-06-25 | 京セラ株式会社 | Wiring board and multilayer wiring board |
WO2015108051A1 (en) * | 2014-01-17 | 2015-07-23 | 株式会社村田製作所 | Laminated wiring board and inspection device provided with same |
JPWO2015108051A1 (en) * | 2014-01-17 | 2017-03-23 | 株式会社村田製作所 | Multilayer wiring board and inspection apparatus including the same |
JP2016025338A (en) * | 2014-07-25 | 2016-02-08 | 京セラサーキットソリューションズ株式会社 | Wiring board |
JP2016025337A (en) * | 2014-07-25 | 2016-02-08 | 京セラサーキットソリューションズ株式会社 | Wiring board |
US20160163611A1 (en) * | 2014-12-03 | 2016-06-09 | International Business Machines Corporation | Laminate substrates having radial cut metallic planes |
US9818682B2 (en) * | 2014-12-03 | 2017-11-14 | International Business Machines Corporation | Laminate substrates having radial cut metallic planes |
JP2016181574A (en) * | 2015-03-24 | 2016-10-13 | 京セラ株式会社 | Wiring board |
US11224119B2 (en) | 2017-11-16 | 2022-01-11 | Murata Manufacturing Co., Ltd. | Resin multilayer substrate, electronic component, and mounting structure thereof |
CN114204124A (en) * | 2020-08-28 | 2022-03-18 | 郡是株式会社 | Wound body |
Also Published As
Publication number | Publication date |
---|---|
JP5625250B2 (en) | 2014-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5625250B2 (en) | Semiconductor device | |
KR101375998B1 (en) | Method of Manufacturing Multilayer Wiring Substrate, and Multilayer Wiring Substrate | |
US8499441B2 (en) | Method of manufacturing a printed circuit board | |
TWI451536B (en) | Multi-layer wiring board and method of manufacturing the same | |
KR101281410B1 (en) | Multilayer Wiring Substrate | |
US8785789B2 (en) | Printed circuit board and method for manufacturing the same | |
US8866025B2 (en) | Multilayer wiring board | |
JP2015233085A (en) | Wiring board, semiconductor device and wiring board manufacturing method | |
KR20130028861A (en) | Wiring board and method of manufacturing the same | |
US9332658B2 (en) | Wiring board, semiconductor device, and method for manufacturing wiring board | |
JP2017084997A (en) | Printed wiring board and method of manufacturing the same | |
JP2005236067A (en) | Wiring substrate, its manufacturing method and semiconductor package | |
JP2010226075A (en) | Wiring board and method for manufacturing the same | |
JP2006019591A (en) | Method for manufacturing wiring board and wiring board | |
CN102076180B (en) | Circuit board structure and forming method thereof | |
JP4445777B2 (en) | Wiring board and method for manufacturing wiring board | |
JP2014131034A (en) | Package substrate and method for manufacturing the same, and package-on-package substrate | |
JP2017152477A (en) | Printed-wiring board | |
JP2013219204A (en) | Core board for wiring board manufacturing and wiring board | |
JP6107021B2 (en) | Wiring board manufacturing method | |
JP2009076928A (en) | Method for manufacturing circuit board | |
JP2012174870A (en) | Multilayer wiring board | |
KR101109277B1 (en) | Manufacturing method of printed circuit board | |
JP5206217B2 (en) | Multilayer wiring board and electronic device using the same | |
JP2012156325A (en) | Manufacturing method of multilayer wiring board and mask for paste printing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130305 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131008 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140408 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140902 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140915 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5625250 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |