JP2010238425A - Manufacturing method and manufacturing device of battery - Google Patents
Manufacturing method and manufacturing device of battery Download PDFInfo
- Publication number
- JP2010238425A JP2010238425A JP2009083160A JP2009083160A JP2010238425A JP 2010238425 A JP2010238425 A JP 2010238425A JP 2009083160 A JP2009083160 A JP 2009083160A JP 2009083160 A JP2009083160 A JP 2009083160A JP 2010238425 A JP2010238425 A JP 2010238425A
- Authority
- JP
- Japan
- Prior art keywords
- separator
- laminate
- electrode
- holding
- back surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 46
- 238000010030 laminating Methods 0.000 claims abstract description 25
- 230000035699 permeability Effects 0.000 claims abstract description 9
- 239000003566 sealing material Substances 0.000 claims description 49
- 238000002156 mixing Methods 0.000 abstract description 21
- 238000000034 method Methods 0.000 description 66
- 230000008569 process Effects 0.000 description 64
- 239000003792 electrolyte Substances 0.000 description 26
- 230000007246 mechanism Effects 0.000 description 23
- 239000010410 layer Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 14
- 230000004048 modification Effects 0.000 description 14
- 238000012986 modification Methods 0.000 description 14
- 238000007789 sealing Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical group CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- 239000011267 electrode slurry Substances 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 238000003475 lamination Methods 0.000 description 9
- -1 polypropylene Polymers 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000006837 decompression Effects 0.000 description 6
- 239000007773 negative electrode material Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000007774 positive electrode material Substances 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- 230000037303 wrinkles Effects 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910003002 lithium salt Inorganic materials 0.000 description 4
- 159000000002 lithium salts Chemical class 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 239000002905 metal composite material Substances 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 239000004071 soot Substances 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000011245 gel electrolyte Substances 0.000 description 3
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910021385 hard carbon Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、電池の製造方法および製造装置に関する。 The present invention relates to a battery manufacturing method and a manufacturing apparatus.
双極型二次電池や非双極型(積層型)二次電池は、電極とセパレータとが積層された積層体を貼り合せて、複数積層することにより製造されている(例えば、特許文献1参照。)。 Bipolar secondary batteries and non-bipolar (stacked) secondary batteries are manufactured by laminating a stacked body in which electrodes and separators are stacked and stacking a plurality of stacked bodies (for example, see Patent Document 1). ).
しかし、電極とセパレータとが積層された積層体を貼り合せて積層する際において、電極とセパレータとの間に、気泡が混入する可能性がある。混入した気泡は、デッドスペースを発生させたり、セパレータに皺が発生させたりする。そのため、セパレータでのイオンの移動が妨げられ(抵抗が増大)、出力が低下する問題を有する。 However, when the laminated body in which the electrode and the separator are laminated is bonded and laminated, bubbles may be mixed between the electrode and the separator. The mixed bubbles generate dead space or wrinkles in the separator. Therefore, there is a problem that the movement of ions in the separator is hindered (resistance increases), and the output decreases.
本発明は、上記従来技術に伴う課題を解決するためになされたものであり、気泡の混入を抑制することにより良好な電池性能を有する電池の製造方法および製造装置を、提供することを目的とする。 The present invention has been made in order to solve the problems associated with the above-described prior art, and an object thereof is to provide a battery manufacturing method and a manufacturing apparatus having good battery performance by suppressing the mixing of bubbles. To do.
上記目的を達成するための本発明の一様相は、電極とセパレータとが積層された積層体を貼り合せて、複数積層することにより電池を製造するための製造方法である。当該製造方法は、第1積層体の貼り合せ面の背面を、第1保持手段によって保持しながら、前記第1積層体を、第2積層体の貼り合せ面の背面を保持する第2保持手段に対して近接させ、前記第1積層体を、前記第2積層体に貼り合して積層する積層工程を有する。また、前記第1積層体の背面には、通気性を有するセパレータが位置しており、少なくとも前記第1積層体が前記第2積層体に貼り合されて積層されるまで、前記第1保持手段によって、前記セパレータが負圧保持される。 The uniform phase of the present invention for achieving the above object is a manufacturing method for manufacturing a battery by laminating a laminated body in which an electrode and a separator are laminated and laminating a plurality of laminated bodies. In the manufacturing method, the first holding body holds the back surface of the bonding surface of the second stacked body while the back surface of the bonding surface of the first stacked body is held by the first holding means. The first laminated body is bonded to the second laminated body and laminated. In addition, a separator having air permeability is positioned on the back surface of the first laminated body, and the first holding means is at least used until the first laminated body is bonded and laminated to the second laminated body. Thus, the separator is held at a negative pressure.
上記目的を達成するための本発明の別の一様相は、電極とセパレータとが積層された積層体を貼り合せて、複数積層することにより電池を製造するための製造装置である。当該製造装置は、第1積層体の貼り合せ面の背面を負圧保持自在の第1保持手段と、第2積層体の貼り合せ面の背面を保持する第2保持手段と、前記第1積層体の背面を負圧保持する前記第1保持手段を、前記第2積層体の背面を保持する前記第2保持手段に対して近接させ、前記第1積層体を、前記第2積層体に貼り合して積層するための駆動手段と、を有する。また、前記第1積層体の背面には、通気性を有するセパレータが位置しており、前記第1保持手段は、少なくとも前記第1積層体が前記第2積層体に貼り合されて積層されるまで、前記セパレータを負圧保持する。 Another uniform phase of the present invention for achieving the above object is a manufacturing apparatus for manufacturing a battery by laminating and laminating a laminate in which electrodes and separators are laminated. The manufacturing apparatus includes: a first holding unit that can hold a back surface of a bonding surface of a first laminated body under negative pressure; a second holding unit that holds a back surface of a bonding surface of a second laminated body; The first holding means for holding the back surface of the body under negative pressure is brought close to the second holding means for holding the back surface of the second stacked body, and the first stacked body is attached to the second stacked body. Driving means for stacking together. In addition, an air-permeable separator is positioned on the back surface of the first laminated body, and the first holding unit is laminated with at least the first laminated body bonded to the second laminated body. Until the separator is kept under negative pressure.
本発明の一様相に係る電池の製造方法および別の一様相に係る電池の製造方法によれば、第1積層体の貼り合せ面の背面に位置するセパレータは、通気性を有し、かつ、負圧によって保持されており、第1積層体を第2積層体に貼り合して積層するまで、セパレータを介して気泡が排出されるため、気泡の残留を抑制することが可能である。また、第1積層体および第2積層体の保持部位は、外周ではなく、貼り合せ面の背面であるため、積層体同士を面接触させ、貼り合せ面における気泡の残留を抑制することが可能である。これにより、気泡の混入によるデッドスペースおよび皺の発生が削減されるため、電池(発電要素)出力の低下を避けることができる。したがって、気泡の混入を抑制し得る電池の製造方法および製造装置を、提供することができる。 According to the method for producing a battery according to the uniform phase of the present invention and the method for producing a battery according to another uniform phase, the separator located on the back surface of the bonding surface of the first laminate has air permeability, and Since the bubbles are discharged through the separator until the first laminated body is bonded to the second laminated body and laminated, the bubbles can be prevented from remaining. Moreover, since the holding | maintenance site | part of a 1st laminated body and a 2nd laminated body is not the outer periphery but the back surface of a bonding surface, it is possible to make a laminated body surface-contact and suppress a bubble remaining in a bonding surface. It is. Thereby, since the generation of dead space and soot due to the mixing of bubbles is reduced, it is possible to avoid a decrease in battery (power generation element) output. Therefore, it is possible to provide a battery manufacturing method and a manufacturing apparatus that can suppress the mixing of bubbles.
以下、本発明の実施の形態を、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1および図2は、本発明の実施の形態に係る電池を説明するための斜視図および断面図である。 1 and 2 are a perspective view and a cross-sectional view for explaining a battery according to an embodiment of the present invention.
本実施の形態に係る電池10は、双極型のリチウム二次電池であり、外装ケース14、外装ケース14の内部に配置される電池本体部16および端子プレート11,12を有する。電池本体部16は、後述するように、気泡の混入が抑制されており、電池10は、良好な電池性能を備えている。
The
外装ケース14は、外部からの衝撃や環境劣化を防止するために使用されており、シート材の外周部の一部または全部を、熱融着により接合することで形成される。シート材は、軽量化および熱伝導性の観点から、アルミニウム、ステンレス、ニッケル、銅などの金属(合金を含む)をポリプロピレンフィルム等の絶縁体で被覆した高分子−金属複合ラミネートフィルムから構成されることが好ましい。
The
電池本体部16は、複数の単電池(電池要素)を有しており、双極型電極20、電解質層30、第1シール部25および第2シール部27を有する。双極型電極20は、負極22、正極23および集電体21を有する。正極23および負極22は、集電体21の一方および他方の面に形成されており、集電体21は、正極23および負極22の間に位置している。
The
負極22は、ハードカーボン(難黒鉛化炭素材料)からなる負極活物質を有する。負極活物質は、例えば、黒鉛系炭素材料や、リチウム−遷移金属複合酸化物を利用することも可能である。しかし、カーボンおよびリチウム−遷移金属複合酸化物からなる負極活物質は、容量および出力特性の観点から好ましい。正極23は、LiMn2O4からなる正極活物質を有する。正極活物質は、LiMn2O4に制限されないが、容量および出力特性の観点から、リチウム−遷移金属複合酸化物を適用することが好ましい。正極23および負極22の厚さは、電池の使用目的(例えば、出力重視あるいはエネルギー重視)や、イオン伝導性を考慮して適宜設定される。
The
集電体21は、ステンレススチール箔から形成される。集電体21の素材として、アルミニウム箔、ニッケルとアルミニウムのクラッド材、銅とアルミニウムのクラッド材、あるいはこれらの金属の組み合わせのめっき材を、利用することも可能である。
The
電解質層30は、通気性を有するセパレータに非水電解質を浸透させてなる基部層、および、セパレータと正極23あるいはセパレータと負極22との間でイオンを伝導する電解質からなる表面層を有する。
The
セパレータは、多孔性(ポーラス)のPE(ポリエチレン)から形成され、通気性を有する。セパレータの素材として、PP(ポリプロピレン)などの他のポリオレフィン、PP/PE/PPの3層構造をした積層体、ポリアミド、ポリイミド、アラミド、不織布を、利用することが可能である。不織布は、例えば、綿、レーヨン、アセテート、ナイロン、ポリエステルである。なお、セパレータは、絶縁体であるが、電解質が浸透することによって、イオンの透過性および電気伝導性を呈することとなる。 The separator is formed of porous (porous) PE (polyethylene) and has air permeability. As a material for the separator, other polyolefins such as PP (polypropylene), a laminate having a three-layer structure of PP / PE / PP, polyamide, polyimide, aramid, and non-woven fabric can be used. Nonwoven fabrics are, for example, cotton, rayon, acetate, nylon, and polyester. In addition, although a separator is an insulator, when electrolyte penetrates, it will exhibit ion permeability and electrical conductivity.
電解質は、ゲルポリマー系であり、電解液およびホストポリマーを有する。 The electrolyte is a gel polymer system and has an electrolytic solution and a host polymer.
電解液は、PC(プロピレンカーボネート)およびEC(エチレンカーボネート)からなる有機溶媒、支持塩としてのリチウム塩(LiPF6)を含んでいる。有機溶媒は、例えば、その他の環状カーボネート類、ジメチルカーボネート等の鎖状カーボネート類、テトラヒドロフラン等のエーテル類を適用することが可能である。リチウム塩は、例えば、その他の無機酸陰イオン塩、LiCF3SO3等の有機酸陰イオン塩を、適用することが可能である。 The electrolytic solution contains an organic solvent composed of PC (propylene carbonate) and EC (ethylene carbonate), and a lithium salt (LiPF 6 ) as a supporting salt. As the organic solvent, for example, other cyclic carbonates, chain carbonates such as dimethyl carbonate, and ethers such as tetrahydrofuran can be applied. As the lithium salt, for example, other inorganic acid anion salts and organic acid anion salts such as LiCF 3 SO 3 can be applied.
ホストポリマーは、HFP(ヘキサフルオロプロピレン)コポリマーを10%含むPVDF−HFP(ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体)である。ホストポリマーは、その他のリチウムイオン伝導性を持たない高分子や、イオン伝導性を有する高分子(固体高分子電解質)を適用することも可能である。その他のリチウムイオン伝導性を持たない高分子は、例えば、PAN(ポリアクリロニトリル)、PMMA(ポリメチルメタクリレート)である。イオン伝導性を有する高分子は、例えば、PEO(ポリエチレンオキシド)やPPO(ポリプロピレンオキシド)である。 The host polymer is PVDF-HFP (copolymer of polyvinylidene fluoride and hexafluoropropylene) containing 10% of HFP (hexafluoropropylene) copolymer. As the host polymer, other polymer having no lithium ion conductivity or polymer having ion conductivity (solid polymer electrolyte) can be applied. Other polymers having no lithium ion conductivity are, for example, PAN (polyacrylonitrile) and PMMA (polymethyl methacrylate). Examples of the polymer having ion conductivity include PEO (polyethylene oxide) and PPO (polypropylene oxide).
第1シール部25は、集電体21の一方の面に配置されかつ正極23の周囲を取り囲むように延長している充填部であり、良好なシール効果を発揮し、例えば、水分の内部混入を抑制する。電解質層30は、正極23および第1シール部25を覆うように配置されている。第2シール部27は、第1シール部25と位置合せされて、集電体21の他方の面に配置されかつ負極22の周囲を取り囲むように延長している充填部であり、良好なシール効果を発揮し、例えば、水分の内部混入を抑制する。
The
第1シール部25および第2シール部27を構成するシール材は、一液熱硬化型エポキシ樹脂であるが、特に限定されず、その他の熱硬化型樹脂(ポリプロピレンやポリエチレン等)を適用することが可能であり、使用環境下において良好なシール効果を発揮するものを、用途に応じて適宜選択することが好ましい。
The sealing material constituting the
端子プレート11,12は、高導電性部材からなり、外装ケース14の内部から外部に向かって延長しており、電池本体部16から電流を引き出すための電極タブを兼用している。独立した別体の電極タブを配置し、直接的あるいはリードを利用して、端子プレート11,12と接続することで、電池本体部16から電流を引き出すことも可能である。高導電性部材は、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス、これらの合金である。
The
端子プレート11,12は、電池本体部16の最外層(最上位および最下位)に配置され、その電極投影面の全てを、少なくとも覆うように構成されている。したがって、最外層の電流取り出し部(面方向の電流取り出し)は、低抵抗化され、電池の高出力化が可能になる。なお、電池本体部16の最外層に位置する集電体21によって、端子プレート11,12を構成することも可能である。また、端子プレート11,12のさらに外側に、補強板を配置することも可能である。
The
図3は、図1に示される電池を利用する組電池を説明するための斜視図である。 FIG. 3 is a perspective view for explaining an assembled battery using the battery shown in FIG.
電池10は、単独で使用することが可能であるが、組電池50の形態で利用することが可能である。組電池50は、電池10を直列化および/又は並列化し、複数接続して構成されており、導電バー52,54を有する。導電バー52,54は、各電池10の外装ケース14から延長する端子プレート11,12に接続されている。接続方法は、例えば、超音波溶接、熱溶接、レーザー溶接、リベット、かしめ、電子ビームである。容量および電圧は、例えば、電池10を接続する際に、適宜、直列あるいは並列化することで、自由に調整することが可能である。
The
図4は、図3に示される組電池が搭載されている車両の概略図である。 FIG. 4 is a schematic view of a vehicle on which the assembled battery shown in FIG. 3 is mounted.
組電池50自体を、直列化および/又は並列化し、複数接続することで組電池モジュール(大型の組電池)60として提供することも可能である。組電池モジュール60は、大出力を確保し得るため、車両70のモータ駆動用電源として搭載することが可能である。車両は、例えば、電気自動車、ハイブリッド電気自動車、電車である。
The assembled
組電池モジュール60は、例えば、内蔵する外装ケース14毎あるいは組電池50毎の充電制御を行うなど、非常にきめ細かい制御ができるため、1回の充電あたりの走行距離の延長、車載電池としての寿命の長期化などの性能の向上を図ることが可能である。
The assembled
図5は、本発明の実施の形態に係る電池の製造方法を説明するための工程図である
本実施の形態に係る電池の製造方法は、電極ユニットを形成するための電極ユニット形成工程と、電極ユニットとセパレータとが積層されたサブアッシーユニット(積層体)を形成し、当該サブアッシーユニットを複数積層した双極型二次電池(電池本体部)を形成するためのアッシー工程と、電池本体部を外装ケースに収容するため組立工程と、を有する。なお、アッシー工程においては、良好な電池性能を有するように、気泡の混入を抑制している。
FIG. 5 is a process diagram for explaining a battery manufacturing method according to an embodiment of the present invention. A battery manufacturing method according to the present embodiment includes an electrode unit forming step for forming an electrode unit; An assembly process for forming a sub-assembly unit (stacked body) in which an electrode unit and a separator are stacked, and forming a bipolar secondary battery (battery body section) in which a plurality of the sub-assembly units are stacked; An assembling process for housing the housing in the exterior case. In the assembly process, air bubbles are prevented from being mixed so as to have good battery performance.
電極ユニット形成工程は、電極形成工程、電解質配置工程および第1シール材配置工程に分割される。アッシー工程は、サブアッシーユニット形成工程(第1積層体形成工程)、搬送工程、第2シール材配置工程、積層工程、加熱プレス工程、ゲル界面形成工程および初充電工程に分割される。 The electrode unit formation step is divided into an electrode formation step, an electrolyte arrangement step, and a first seal material arrangement step. The assembly process is divided into a sub assembly unit formation process (first laminated body formation process), a transport process, a second sealing material arrangement process, a lamination process, a hot press process, a gel interface formation process, and an initial charging process.
次に、電極ユニット形成工程の各工程を詳述する。 Next, each step of the electrode unit forming step will be described in detail.
図6および図7は、図5に示される電極形成工程を説明するための平面図および背面図、図8は、図6の線VIII−VIIIに関する断面図である。 6 and 7 are a plan view and a rear view for explaining the electrode forming step shown in FIG. 5, and FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG.
電極形成工程においては、図6および図7に示されるように、集電体21の一方および他方の面に、正極スラリー23Aおよび負極スラリー22Aが、それぞれ塗布される。集電体21は、例えば、厚さ20μmのステンレススチール箔である。
In the electrode formation step, as shown in FIGS. 6 and 7, the
正極スラリーは、例えば、正極活物質[85重量%]、導電助剤[5重量%]およびバインダ[10重量%]を有し、粘度調整溶媒を添加することで、所定の粘度に調整されている。正極活物質は、LiMn2O4である。導電助剤は、アセチレンブラックである。バインダは、PVDF(ポリフッ化ビニリデン)である。粘度調整溶媒は、NMP(N−メチル−2−ピロリドン)である。導電助剤は、カーボンブラックやグラファイトを利用することも可能である。バインダおよび粘度調整溶媒は、PVDFおよびNMPに限定されない。 The positive electrode slurry has, for example, a positive electrode active material [85 wt%], a conductive additive [5 wt%], and a binder [10 wt%], and is adjusted to a predetermined viscosity by adding a viscosity adjusting solvent. Yes. The positive electrode active material is LiMn 2 O 4 . The conductive auxiliary agent is acetylene black. The binder is PVDF (polyvinylidene fluoride). The viscosity adjusting solvent is NMP (N-methyl-2-pyrrolidone). Carbon black or graphite can also be used as the conductive assistant. The binder and viscosity adjusting solvent are not limited to PVDF and NMP.
負極スラリーは、例えば、負極活物質[90重量%]およびバインダ[10重量%]を有し、粘度調整溶媒を添加することで、所定の粘度に調整されている。負極活物質は、ハードカーボンである。バインダおよび粘度調整溶媒は、PVDFおよびNMPである。 The negative electrode slurry has, for example, a negative electrode active material [90% by weight] and a binder [10% by weight], and is adjusted to a predetermined viscosity by adding a viscosity adjusting solvent. The negative electrode active material is hard carbon. The binder and viscosity adjusting solvent are PVDF and NMP.
正極スラリーの塗膜および負極スラリーの塗膜は、例えば、真空オーブンを利用して、乾燥させられ、図8に示されるように、正極活物質層からなる正極23および負極活物質層からなる負極22を形成する。この際、NMPは、揮発することで除去される。正極23および負極22の厚みは、例えば、30μmである。
The coating film of the positive electrode slurry and the coating film of the negative electrode slurry are dried using, for example, a vacuum oven. As shown in FIG. 8, the
電解質配置工程においては、集電体21の一方および他方の面に、電解質(不図示)が、塗布される。電解質の塗布部位は、正極23および負極22の電極部である。
In the electrolyte arrangement step, an electrolyte (not shown) is applied to one and the other surfaces of the
電解質は、例えば、電解液[90重量%]およびホストポリマー[10重量%]の有し、粘度調整溶媒を添加することで、塗布に適した粘度にされている。電解液は、PCおよびECからなる有機溶媒、支持塩としてのリチウム塩を含んでいる。リチウム塩濃度は、1Mである。ホストポリマーは、HFPコポリマーを10%含むPVDF−HFPである。粘度調製溶媒は、DMC(ジメチルカーボネート)である。粘度調製溶媒は、DMCに限定されない。 The electrolyte has, for example, an electrolytic solution [90% by weight] and a host polymer [10% by weight], and has a viscosity suitable for coating by adding a viscosity adjusting solvent. The electrolytic solution contains an organic solvent composed of PC and EC, and a lithium salt as a supporting salt. The lithium salt concentration is 1M. The host polymer is PVDF-HFP containing 10% HFP copolymer. The viscosity adjusting solvent is DMC (dimethyl carbonate). The viscosity adjusting solvent is not limited to DMC.
図9は、図5に示される第1シール材配置工程を説明するための平面図、図10は、図9の線X−Xに関する断面図である。 FIG. 9 is a plan view for explaining the first sealing material arranging step shown in FIG. 5, and FIG. 10 is a cross-sectional view taken along line XX in FIG.
第1シール材配置工程においては、第1シール材24が、集電体21が露出している正極側外周部かつ正極23の周囲を延長するように配置される。第1シール材24は、第1シール部25を構成することとなる一液熱硬化型エポキシ樹脂(未硬化)からなる前駆体である。第1シール材24の配置は、例えば、ディスペンサを用いる塗布が適用される。これにより、電極ユニット35が形成される。なお、第1シール材24の厚みH2は、正極(電極)23の厚みH1よりも大きくなるように設定される。
In the first sealing material arrangement step, the
図11は、図5に示されるアッシー工程に適用される製造装置を説明するための概略図である。 FIG. 11 is a schematic view for explaining a manufacturing apparatus applied to the assembly process shown in FIG.
製造装置100は、電極ユニット35とセパレータ31とが積層されたサブアッシーユニット(積層体)40を形成し、当該サブアッシーユニット40を複数積層した双極型二次電池(電池本体部)を製造するために使用され、載置台(第2保持手段)110、上部アーム(第1保持手段)120および駆動機構(駆動手段)150を有する。以下において、載置台110によって保持されるサブアッシーユニットを、下方積層体(第2積層体)40Aで参照し、上部アーム120によって保持されるサブアッシーユニットを、上方積層体(第1積層体)40Bで参照する。なお、積層の初回においては、上部アーム120によって保持される上方積層体40Bは、載置台110にそのまま配置され、下方積層体40Aとなる。
The manufacturing apparatus 100 forms a subassembly unit (stacked body) 40 in which the
載置台110は、下方積層体40Aの貼り合せ面42の背面44を、保持するために使用され、平面からなる当接面114を有する。
The mounting table 110 is used to hold the
上部アーム120は、上方積層体40Bの背面44を、負圧によって保持するために使用され、負圧保持機構121および負圧保持機構121が配置される基部128を有する。負圧保持機構121は、上方積層体40Bの背面44と当接する吸着パッド(支持部)122、および、外部の負圧源に連結される負圧導入部126を有する。吸着パッド122は、多孔性材料からなり、平面からなる当接面124を有する。負圧保持機構121は、吸着パッド122の当接面124の下方に位置する上方積層体40Bの背面44を吸引することで、上方積層体40Bの背面44全体を保持自在に設定されている。
The
上方積層体40Bの背面44には、通気性を有するセパレータ31が位置している。また、上部アーム120は、少なくとも上方積層体40Bが下方積層体40Aに貼り合されて積層されるまで、セパレータ31を負圧保持するように設定されている。
The
駆動機構150は、上部アーム120を、載置台110に対して近接させ、上方積層体40Bを、下方積層体40Aに貼り合して積層するために使用され、例えば、多関節(多軸)式ロボットアームからなる。
The
また、製造装置100は、電極ユニット35とセパレータ31とを貼り合して、積層することにより上方積層体40Bを形成する手段(第1積層体形成手段)を、さらに有する。当該手段は、本実施の形態において、上部アーム120および駆動機構150によって兼用されている。つまり、上部アーム120は、セパレータ31の貼り合せ面の背面を負圧保持し、駆動機構150は、上部アーム120を、電極ユニット35に対して近接させ、セパレータ31を、電極ユニット35に貼り合して積層するために使用される。
The manufacturing apparatus 100 further includes means (first laminate forming means) for forming the
以上のように、製造装置100においては、上方積層体40Bの貼り合せ面42の背面44に位置するセパレータ31は、通気性を有し、かつ、負圧によって保持されており、上方積層体40Bを下方積層体40Aに貼り合して積層するまで、セパレータ31を介して気泡が排出されるため、気泡の残留を抑制することが可能である。また、上方積層体40Bおよび下方積層体40Aの保持部位は、外周ではなく、貼り合せ面42の背面44であるため、積層体同士を面接触させ、貼り合せ面における気泡の残留を抑制することが可能である。これにより、気泡の混入によるデッドスペースおよび皺の発生が削減されるため、電池(発電要素)出力の低下を避けることができる。つまり、気泡の混入を抑制することにより良好な電池性能を有する電池を、提供することが可能である。
As described above, in the manufacturing apparatus 100, the
載置台110および上部アーム120によって保持される下方積層体40Aおよび上方積層体40Bの貼り合せ面42は、平面からなる当接面114,124によってその背面44が支持され、平面を維持した状態で貼り合せて積層されるため、吸着時のズレなどによる皺が発生し難くかつ気泡を確実に排除することが可能である。
The
また、上方積層体40Bを形成する際において、セパレータ31を介して気泡が排出されるため、気泡の残留を抑制することが可能である。つまり、気泡の混入が抑制された上方積層体40Bを形成することができる。
Moreover, when forming the upper
形成された上方積層体40Bは、上部アーム120によって継続して負圧保持されながら、下方積層体40Aに貼り合して積層されるため、移動(搬送)中における気泡の混入が抑制される。また、上部アーム120の当接面124は、正極23に塗布されているゲル電解質と接触しないため、搬送時のハンドリングも容易である。
Since the formed upper
なお、電極ユニット35とセパレータ31とを貼り合して、積層することにより上方積層体40Bを形成する装置を、独立して配置することも可能である。
In addition, it is also possible to arrange | position the apparatus which forms the upper
次に、製造装置100が適用されるアッシー工程の各工程を説明する。 Next, each process of the assembly process to which the manufacturing apparatus 100 is applied will be described.
図12は、図5に示されるサブアッシーユニット形成工程を説明するための断面図である。 FIG. 12 is a cross-sectional view for explaining the sub-assembly unit forming step shown in FIG.
サブアッシーユニット形成工程においては、電極ユニット35を、載置台110の平面からなる当接面114に配置する一方、通気性を有するセパレータ31の背面を、平面からなる当接面124を介して上部アーム120によって負圧保持する。そして、駆動機構150によって上部アーム120を制御し、上部アーム120を、電極ユニット35に対して近接させ、セパレータ31を、電極ユニット35に貼り合して積層する。これにより、セパレータ31が、正極23(電解質)および第1シール材24に重ねられ、上方積層体40Bが形成される。セパレータ31の厚みは、例えば、12μmである。
In the sub assembly unit forming step, the
この際、電極ユニット35に貼り合して積層されるセパレータ31は、通気性を有し、かつ、負圧によって保持されており、上方積層体40Bを形成する際において、セパレータ31を介して気泡が排出されるため、気泡の残留を抑制することが可能である。これにより、気泡の混入が抑制された上方積層体40Bを形成することができる。
At this time, the
第1シール材24の厚みH2は、貼り合せ面に対して直交する積層方向に関し、正極23の厚みH1よりも大きくなるように設定されており(図10参照)、第1シール材24が正極23より突出している。そのため、セパレータ31を電極ユニット35に貼り合して積層する際、第1シール材24がセパレータ31に接触した後で、気泡(気体)が外に抜けようとする。
The thickness H 2 of the
この際、第1シール材24は、外方向に伸展させられる結果、第1シール材24の分布は、均一となり、良好かつ安定したシール性能を確保することが可能である。例えば、第1シール材24が集電体21のエッジ部まで満遍なく広がることで、集電体エッジでの短絡が低減され、初期不良率を改善できる。また、第1シール材24の伸展は、外方向(面方向で外側)であり、内側の位置する硬化前の電解質と接触することが防止されるため、電解質と反応して第1シール材24が硬化しなくなる現象を避けることで、シール不良が低減される。
At this time, as a result of the
セパレータ31および電極ユニット35の背面は、上部アーム120および載置台110における平面からなる当接面114,124によって支持されている。そのため、セパレータ31および電極ユニット35の貼り合せ面は、平面を維持した状態で貼り合せて積層されるため、吸着時のズレなどによる皺が発生し難くかつ気泡を確実に排除することが可能である。
The back surfaces of the
図13は、図5に示される搬送工程を説明するための断面図である。 FIG. 13 is a cross-sectional view for explaining the conveying step shown in FIG.
搬送工程においては、駆動機構150によって上部アーム120を制御し、形成された上方積層体40Bを、載置台110の平面からなる当接面114に配置されている下方積層体40Aに相対するように位置決めする。この際、上方積層体40Bの背面44に位置するセパレータ31は、上部アーム120によって継続して負圧保持される。したがって、移動(搬送)中における気泡の混入が抑制される。また、上部アーム120の当接面124は、正極23に塗布されているゲル電解質と接触しないため、搬送時のハンドリングも容易である。
In the transporting process, the
図14は、図5に示される第2シール材配置工程を説明するための断面図である。 FIG. 14 is a cross-sectional view for explaining the second sealing material arranging step shown in FIG.
第2シール材配置工程においては、第2シール材26が、下方積層体40Aの貼り合せ面42(セパレータ31)上に配置され。この際、第2シール材26は、第1シール材24の配置部位と対応するように(重なるように)位置決めされる。第2シール材26は、第2シール部27を構成することとなる一液熱硬化型エポキシ樹脂(未硬化)からなる前駆体である。第2シール材26の配置は、例えば、ディスペンサを用いる塗布が適用される。
In the second sealing material arranging step, the
なお、第2シール材配置工程は、積層工程の前であれば、搬送工程と積層工程との間に配置することに特に限定されない。 In addition, if a 2nd sealing material arrangement | positioning process is before a lamination process, it will not specifically limit to arrange | positioning between a conveyance process and a lamination process.
図15は、図5に示される積層工程を説明するための断面図である。 FIG. 15 is a cross-sectional view for explaining the stacking step shown in FIG.
積層工程においては、上方積層体40Bの背面44を、上部アーム120によって負圧保持しながら、上方積層体40Bを、下方積層体40Aの背面44を保持する載置台110に対して近接させ、上方積層体40Bを、下方積層体40Aに貼り合して積層する。この際、上方積層体40Bの背面44には、通気性を有するセパレータ31が位置しており、少なくとも上方積層体40Bが下方積層体40Aに貼り合されて積層されるまで、上方積層体40Bによって、セパレータ31が負圧保持される。
In the stacking step, while holding the
これにより、上方積層体40Bを下方積層体40Aに貼り合して積層するまで、セパレータ31を介して気泡が排出されるため、気泡の残留を抑制することが可能である。また、上方積層体40Bおよび下方積層体40Aの保持部位は、外周ではなく、貼り合せ面42の背面44であるため、積層体同士を面接触させ、貼り合せ面における気泡の残留を抑制することが可能である。これにより、気泡の混入によるデッドスペースおよび皺の発生が削減されるため、電池(発電要素)出力の低下を避けることができる。つまり、気泡の混入を抑制することにより良好な電池性能を有する電池を、提供することが可能である。
Thus, since the bubbles are discharged through the
載置台110および上部アーム120によって保持される下方積層体40Aおよび上方積層体40Bの貼り合せ面42は、平面からなる当接面114,124によってその背面44が支持され、平面を維持した状態で貼り合せて積層されるため、吸着時のズレなどによる皺が発生し難くかつ気泡を確実に排除することが可能である。なお、積層の初回においては、上部アーム120によって保持される上方積層体40Bは、載置台110にそのまま配置され、下方積層体40Aとなる。
The
図16は、サブアッシーユニット形成工程〜積層工程の繰り返しを説明するための断面図である。 FIG. 16 is a cross-sectional view for explaining the repetition of the sub-assembly unit forming process to the stacking process.
積層工程が完了すると、上部アーム120は、上方積層体40Bの保持を解除し、上昇する。これにより、貼り合されて積層された上方積層体40Bと一体化された下方積層体40Aが、載置台110によって保持されることになる。そして、サブアッシーユニット形成工程〜積層工程が所定回数繰り返される。つまり、サブアッシーユニット形成工程〜積層工程を繰り返す毎に、載置台110によって保持される下方積層体40Aに含まれるサブアッシーユニットが増加していくことになる。
When the stacking process is completed, the
加熱プレス工程においては、例えば、熱プレス機によって、所定のサブアッシーユニットを有する下方積層体40Aが、加熱された状態でプレスされる。加圧力は、例えば、0.98×105Paである。加熱条件は、例えば、80℃で1時間である。これにより、下方積層体40Aに含まれる第1および第2シール材24,26の厚みを、所定に値(極厚みと同等の厚み)に調整し、かつ、第1および第2シール材24,26を熱硬化し、第1および第2シール部25,27を形成することで、電池本体部16が形成される。
In the hot press step, for example, the
なお、加熱プレス工程を、第1および第2シール材24,26の厚みを調整するプレス工程と、第1および第2シール材24,26を熱硬化する加熱工程とに分割することも可能である。この場合、製造装置100の上部アーム120によって下方積層体40Aをプレス(押圧)するように構成する場合、積層工程とプレス工程とを連続的に実施することが可能である。
In addition, it is also possible to divide a heat press process into the press process which adjusts the thickness of the 1st and
ゲル界面形成工程においては、電池本体部16を加熱下で加圧することで、電池本体部に含まれるセパレータ31に、電解質が浸透させられ、ゲル界面が形成される。
In the gel interface forming step, by pressurizing the
初充電工程においては、電池本体部16と電気的に接続された充放電装置によって、初回充電が行われ、気泡が発生させさられる。
In the initial charging process, the initial charging is performed by the charge / discharge device electrically connected to the
組立工程においては、電池本体部16が、外装ケース14に収容され、電池10(図1参照)が製造される。
In the assembly process, the
図17は、本発明の実施の形態に係る変形例1を説明するための断面図である。 FIG. 17 is a cross-sectional view for explaining the first modification according to the embodiment of the present invention.
セパレータのサイズは、集電体のサイズより大きい形態に限定されない。例えば、図17に示されるように、セパレータ31Aのサイズを、集電体21のサイズより小さくすることも可能であり、この場合、シール材24Aは、下方積層体40Aの集電体21に配置される。
The size of the separator is not limited to a form larger than the size of the current collector. For example, as shown in FIG. 17, it is possible to make the size of the
シール材24Aの厚みは、セパレータ31A、負極22および正極23および集電体21の合計厚みより大きくなるように設定することが好ましい。これにより、積層工程において、上方積層体40Bを下方積層体40Aに貼り合して積層する際、下方積層体40Aのシール材24Aが、上方積層体40Bの集電体21に接触した後で、気泡(気体)が外に抜けようとする。この際、シール材24Aは、外方向に伸展させられる結果、シール材24Aの分布は、均一となり、良好かつ安定したシール性能を確保することが可能である。
The thickness of the sealing
図18は、本発明の実施の形態に係る変形例2を説明するための断面図である。 FIG. 18 is a cross-sectional view for explaining the second modification according to the embodiment of the present invention.
載置台は、サブアッシーユニット形成工程および積層工程において、電極ユニット35および下方積層体40Aを自重によって保持する形態に限定されない。例えば、図18に示される載置台110Aのように、負圧保持機構111と負圧保持機構111が配置される基部118とを設けることが可能である。なお、負圧保持機構111は、吸着パッド(支持部)112、および、外部の負圧源に連結される負圧導入部116を有する。吸着パッド112は、多孔性材料からなり、平面からなる当接面114を有する。
The mounting table is not limited to a form in which the
これにより、サブアッシーユニット形成工程においては、電極ユニット35が載置台110Aによって負圧保持することが可能である。したがって、セパレータ31を電極ユニット35に貼り合して積層する際、電極ユニット35のズレが抑制されるため、積層精度が向上する。また、電極ユニット35の背面が負圧保持されるため、電極ユニット35の貼り合せ面の平滑性が向上する。
Thereby, in the sub assembly unit forming step, the
一方、積層工程においては、下方積層体40Aが載置台110Aによって負圧保持することが可能である。したがって、上方積層体40Bを下方積層体40Aに貼り合して積層する際、下方積層体40Aのズレが抑制されるため、積層精度が向上する。また、下方積層体40Aの背面が負圧保持されるため、下方積層体40Aの貼り合せ面の平滑性が向上する。
On the other hand, in the stacking process, the lower
図19は、本発明の実施の形態に係る変形例3を説明するための断面図である。 FIG. 19 is a cross-sectional view for explaining a third modification according to the embodiment of the present invention.
積層工程は、大気圧(常圧)下で実施する形態に限定されない。例えば、図19に示されるように、製造装置100に密閉手段130および減圧機構140を設けることで、積層工程を減圧下で実施することが可能である。なお、密閉手段130は、下方積層体40Aを保持している載置台110Aと、上方積層体40Bを保持している上部アーム120と、の間に形成される空間を、密閉するために使用され、上部気密シール132、下部気密シール134およびケーシング部136を有する。
A lamination process is not limited to the form implemented under atmospheric pressure (normal pressure). For example, as shown in FIG. 19, by providing the manufacturing apparatus 100 with the sealing means 130 and the
上部気密シール132は、弾性体からなり、上部アーム120の基部128の外周に沿って配置されている。下部気密シール134は、弾性体からなり、載置台110Aの基部118の外周に沿って配置されている。ケーシング部136は、下方積層体40Aおよび上方積層体40Bをそれぞれ保持した載置台110Aおよび上部アーム120が、スライド自在に構成されている。
The upper
このため、上部気密シール132が、ケーシング部136の内面と上部アーム120の基部128の外周との間に位置する一方、下部気密シール134が、ケーシング部136の内面と載置台110Aの基部118の外周との間に位置する場合、載置台110Aと上部アーム120との間の空間は、密閉されることになる。つまり、ケーシング部136、上部アーム120および載置台110Aは、上部気密シール132および下部気密シール134を介在させることで、一体として、密閉チェンバを形成する。
Therefore, the upper
減圧機構140は、密閉手段130によって密閉された前記空間を減圧するために使用され、減圧配管系142および排出手段144を有する。減圧配管系142は、真空ポンプ等の外部の減圧源(不図示)に連結されている。排出手段144は、前記空間の内部に存在する気体を排出するために使用され、ケーシング部136に配置される排気口からなる。
The
したがって、積層工程において、上部アーム120が、ケーシング部136の内面をスライドしながら載置台110に向かって降下する際、上部気密シール132は、ケーシング部136の内面と上部アーム120の基部128の外周との間に位置する一方、下部気密シール134は、ケーシング部136の内面と載置台110の基部118の外周との間に位置する。したがって、載置台110と上部アーム120との間の空間は、密閉される。
Accordingly, in the stacking process, when the
そして、上部アーム120の降下を継続し、下方積層体40Aと上方積層体40Bとを貼り合して積層する直前において、減圧機構140を作動させ、ケーシング部136に配置される排気口144および減圧配管系142を経由して、密閉空間内部に存在する気体を排出することで、密閉空間を減圧する。
Then, the lowering of the
上部アーム120の降下をさらに継続し、上部アーム120によって保持される上方積層体40Bの貼り合せ面42と、載置台110によって保持される下方積層体40Aの貼り合せ面42と、を当接させて、上方積層体40Bと下方積層体40Aとを貼り合して積層する。
The lowering of the
変形例3に係る積層工程においては、上記のように、上部アーム120により保持される上方積層体40Bと、載置台110により保持される下方積層体40Aとを、減圧下で、貼り合して積層することが可能であり、下方積層体40Aと上方積層体40Bとの貼り合せ面における気泡の混入を抑制することができる。
In the stacking process according to Modification 3, as described above, the
図20、図21および図22は、本発明の実施の形態に係る変形例4を説明するための断面図、工程図および概略図である。 20, FIG. 21, and FIG. 22 are cross-sectional views, process drawings, and schematic diagrams for explaining a fourth modification according to the embodiment of the present invention.
一般に、双極型二次電池では、上述のようにシール部25を配置することで、集電体を介して隣接する単電池層の電解質が、集電体を超えて移動して電気的に接続されることを抑制し、液絡が生じて電池機能が停止することを避けている。しかし、シール部25を構成することとなる第1シール材24は、セパレータを積層する際にセパレータと接触するため、電極表面とセパレータ間に残留した気泡を、排出することが困難である。一方、本実施の形態においては、セパレータを介して気泡が排出されるため、シール部25(第1シール材24)が存在する場合であっても、電極表面とセパレータ間に残留する気泡を抑制することが可能である。つまり、本実施の形態は、集電体の周囲を延長するように配置されるシール部(シール材)を有する形態の双極型二次電池に、特に有効である。
In general, in a bipolar secondary battery, by arranging the
しかし、本実施の形態は、図20に示されるような非双極型(積層型)の二次電池10Aに適用することも可能である。
However, this embodiment can also be applied to a non-bipolar (stacked)
電池10Aの電池本体部16は、第1および第2シール部25,27を有しておらず、電解質層30を介して負極22と正極23とが対向するように、負極22を有する非双極型電極、電解質層30、正極23を有する非双極型電極の順に、積層されて形成される。なお、負極22を有する非双極型電極は、負極22が両面に形成される負極集電体21Aを有する。正極23を有する非双極型電極は、正極23が両面に形成される正極集電体21Bを有する。
The
負極集電体21Aおよび正極集電体21Bは、高導電性部材からなる負極集電板17および正極集電板18に接続されている。負極集電板17および正極集電板18は、外装ケース14の内部から外部に向かって延長しており、電池本体部16から電流を引き出すための電極タブを兼用している。
The negative electrode
変形例4に係る製造方法は、図21に示されるように、電極形成工程および電解質配置工程に分割される電極ユニット形成工程と、サブアッシーユニット形成工程、搬送工程、積層工程、ゲル界面形成工程および初充電工程に分割されるアッシー工程と、電池本体部を外装ケースに収容するため組立工程と、を有する。なお、加熱プレス工程〜組立工程は、既述の本実施の形態と略一致するため、その説明を省略する。 As shown in FIG. 21, the manufacturing method according to Modification 4 includes an electrode unit forming process divided into an electrode forming process and an electrolyte arranging process, a sub-assembly unit forming process, a transporting process, a laminating process, and a gel interface forming process. And an assembly process divided into an initial charging process and an assembling process for accommodating the battery main body in the outer case. In addition, since a hot press process-an assembly process substantially correspond to this Embodiment mentioned above, the description is abbreviate | omitted.
電極形成工程においては、正極集電体21Bの両面に、正極スラリーが、塗布される。正極集電体21Bは、例えば、厚さ20μmのアルミニウム箔である。また、負極集電体21Aの両面に、負極スラリーが、塗布される。負極集電体21Aは、例えば、厚さ20μmの銅箔である。
In the electrode forming step, the positive electrode slurry is applied to both surfaces of the positive electrode
電解質配置工程においては、正極集電体21Bの両面に、電解質(不図示)が、塗布され、正極電極ユニット(非双極型電極)が形成される。電解質の塗布部位は、正極23の電極部である。また、負極集電体21Aの両面に、電解質(不図示)が、塗布され、負極電極ユニット(非双極型電極)が形成される。電解質の塗布部位は、負極22の電極部である。
In the electrolyte arrangement step, an electrolyte (not shown) is applied to both surfaces of the positive electrode
サブアッシーユニット形成工程においては、図21に示されるように、電極ユニット35Aを、載置台110の平面からなる当接面114に配置する一方、通気性を有するセパレータ31の背面を、平面からなる当接面124を介して上部アーム120によって負圧保持する。そして、駆動機構150によって上部アーム120を制御し、上部アーム120を、電極ユニット35に対して近接させ、セパレータ31を、電極ユニット35に貼り合して積層する。これにより、セパレータ31が、電解質および第1シール材24に重ねられ、上方積層体40Bが形成される。セパレータ31の厚みは、例えば、12μmである。なお、電極ユニット35Aとして、正極電極ユニットと負極電極ユニットとが交互に適用される。
In the sub-assembly unit forming step, as shown in FIG. 21, the
搬送工程においては、駆動機構150によって上部アーム120を制御し、形成された上方積層体40Bを、載置台110の平面からなる当接面114に配置されている下方積層体40Aに相対するように位置決めする。
In the transporting process, the
積層工程においては、上方積層体40Bの背面44を、上部アーム120によって負圧保持しながら、上方積層体40Bを、下方積層体40Aの背面44を保持する載置台110に対して近接させ、上方積層体40Bを、下方積層体40Aに貼り合して積層する。
In the stacking step, while holding the
図23は、本発明の実施の形態に係る電池の微小短絡試験結果を説明するための図表である。 FIG. 23 is a chart for explaining the results of the micro short circuit test of the battery according to the embodiment of the present invention.
微小短絡試験においては、初回充電を正極の塗布重量から概算された容量ベースで、21V−0.5Cで4時間充電を行った後、1時間経過後の電圧を測定した。完成時の外観不良、初期充電できないもの、電圧の高いものを初期不良として、100個あたりの歩留まり(%)を算出した。 In the micro short circuit test, the initial charge was charged at 21 V-0.5 C for 4 hours on the capacity basis estimated from the coating weight of the positive electrode, and then the voltage after 1 hour was measured. The yield (%) per 100 pieces was calculated by taking the appearance defect at the time of completion, those that could not be initially charged, and those with high voltage as the initial failure.
実施例1は、変形例4に関し、非双極型電極を12枚重ねることで単電池が12積層されている。実施例2は、第1および第2シール材を有しておらず、双極型二次電極を13枚重ねることで単電池が12積層されている。実施例3は、50μm厚の第1および第2シール材が配置されている点を除き、実施例2と一致している。比較例は、セパレータを負圧保持せず、手で積層して、形成されている。なお、実施例1における電極面、集電体およびセパレータのサイズ(mm)は、160×128、160×133および170×140である。実施例2,3および比較例における電極面、集電体およびセパレータのサイズ(mm)は、140×110、160×130および170×140である。 Example 1 relates to Modification Example 4 and 12 unit cells are stacked by stacking 12 non-bipolar electrodes. Example 2 does not have the first and second sealing materials, and 12 unit cells are stacked by stacking 13 bipolar secondary electrodes. Example 3 is the same as Example 2 except that the first and second sealing materials having a thickness of 50 μm are arranged. The comparative example is formed by manually stacking the separators without holding negative pressure. In addition, the size (mm) of the electrode surface, current collector, and separator in Example 1 is 160 × 128, 160 × 133, and 170 × 140. The sizes (mm) of the electrode surfaces, current collectors, and separators in Examples 2 and 3 and the comparative example are 140 × 110, 160 × 130, and 170 × 140.
図23に示されるように、比較例の歩留まりが94%に対し、実施例1〜3の歩留まりは、97〜99%であり、良好な結果を示した。 As shown in FIG. 23, the yield of Comparative Examples was 94%, while the yields of Examples 1 to 3 were 97 to 99%, indicating good results.
以上のように、本実施の形態に係る電池の製造方法および製造装置においては、上方積層体を下方積層体に貼り合して積層するまで、セパレータを介して気泡が排出されるため、気泡の残留を抑制することが可能である。また、上方積層体および下方積層体の保持部位は、外周ではなく、貼り合せ面の背面であるため、積層体同士を面接触させ、貼り合せ面における気泡の残留を抑制することが可能である。これにより、気泡の混入によるデッドスペースおよび皺の発生が削減されるため、電池(発電要素)出力の低下を避けることができる。つまり、気泡の混入を抑制することにより良好な電池性能を有する電池を、提供することが可能である。したがって、気泡の混入を抑制することにより良好な電池性能を有する電池の製造方法および製造装置を、提供することが可能である。 As described above, in the method and apparatus for manufacturing a battery according to the present embodiment, bubbles are discharged through the separator until the upper laminate is bonded to the lower laminate and stacked. Residue can be suppressed. Moreover, since the holding | maintenance site | part of an upper laminated body and a lower laminated body is not the outer periphery but the back surface of a bonding surface, it is possible to surface-contact each other and to suppress the bubble remaining in a bonding surface. . Thereby, since the generation of dead space and soot due to the mixing of bubbles is reduced, it is possible to avoid a decrease in battery (power generation element) output. That is, it is possible to provide a battery having good battery performance by suppressing the mixing of bubbles. Therefore, it is possible to provide a battery manufacturing method and a manufacturing apparatus having good battery performance by suppressing the mixing of bubbles.
載置台および上部アームによって保持される下方積層体および上方積層体の貼り合せ面は、平面からなる当接面によってその背面が支持され、平面を維持した状態で貼り合せて積層されるため、吸着時のズレなどによる皺が発生し難くかつ気泡を確実に排除することが可能である。 Adhering surfaces of the lower laminate and upper laminate, which are held by the mounting table and upper arm, are supported by a flat abutment surface, and the laminate is bonded and laminated while maintaining a flat surface. It is difficult for wrinkles to occur due to time shifts, and it is possible to reliably eliminate bubbles.
上方積層体を形成する際において、セパレータを介して気泡が排出されるため、気泡の残留を抑制することが可能である。つまり、気泡の混入が抑制された上方積層体を形成することができる。また、形成された上方積層体は、上部アームによって継続して負圧保持されながら、下方積層体に貼り合して積層されるため、移動(搬送)中における気泡の混入が抑制される。また、上部アームの当接面は、正極に塗布されているゲル電解質と接触しないため、搬送時のハンドリングも容易である。 When forming the upper laminate, the bubbles are discharged through the separator, so that the bubbles can be prevented from remaining. That is, it is possible to form an upper laminated body in which mixing of bubbles is suppressed. Further, since the formed upper laminated body is bonded and laminated to the lower laminated body while the negative pressure is continuously maintained by the upper arm, mixing of bubbles during movement (conveyance) is suppressed. Further, since the contact surface of the upper arm does not come into contact with the gel electrolyte applied to the positive electrode, handling during transportation is easy.
第1シール材の厚みは、貼り合せ面に対して直交する積層方向に関し、正極の厚みよりも大きくなるように設定されており、第1シール材が正極より突出している。そのため、セパレータを電極ユニットに貼り合して積層する際、第1シール材がセパレータに接触した後で、気泡(気体)が外に抜けようとする。この際、第1シール材は、外方向に伸展させられる結果、第1シール材の分布は、均一となり、良好かつ安定したシール性能を確保することが可能である。 The thickness of the first sealing material is set to be larger than the thickness of the positive electrode in the stacking direction orthogonal to the bonding surface, and the first sealing material protrudes from the positive electrode. Therefore, when the separator is bonded to the electrode unit and stacked, the bubbles (gas) try to escape outside after the first sealing material contacts the separator. At this time, as a result of the first sealing material being extended outward, the distribution of the first sealing material becomes uniform, and it is possible to ensure good and stable sealing performance.
なお、載置台は、負圧保持機構を設けることが好ましい。この場合、サブアッシーユニット形成工程および積層工程においては、電極ユニットおよび下方積層体のズレが抑制されるため、積層精度が向上する。また、電極ユニットおよび下方積層体の背面が負圧保持されるため、電極ユニットおよび下方積層体の貼り合せ面の平滑性が向上する。 The mounting table is preferably provided with a negative pressure holding mechanism. In this case, in the sub assembly unit forming step and the laminating step, misalignment between the electrode unit and the lower laminated body is suppressed, so that the laminating accuracy is improved. Moreover, since the negative pressure is maintained on the back surfaces of the electrode unit and the lower laminated body, the smoothness of the bonding surfaces of the electrode unit and the lower laminated body is improved.
また、積層工程においては、上部アームにより保持される上方積層体と、載置台により保持される下方積層体とを、減圧下で、貼り合して積層することが好ましい。この場合、下方積層体と上方積層体との貼り合せ面における気泡の混入を抑制することができる。 In the stacking step, it is preferable that the upper stacked body held by the upper arm and the lower stacked body held by the mounting table are bonded and stacked under reduced pressure. In this case, mixing of bubbles on the bonding surface of the lower laminate and the upper laminate can be suppressed.
本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲で種々改変することができる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims.
例えば、第1および第2シール材は、熱可塑性樹脂を適用することも可能である。この場合、第1および第2シール材は、加熱することによって塑性変形し、第1および第2シール部を形成することとなる。 For example, a thermoplastic resin can be applied to the first and second sealing materials. In this case, the first and second sealing materials are plastically deformed by heating to form the first and second sealing portions.
10 双極型二次電池、
10A 非双極型(積層型)二次電池、
11,12 端子プレート、
14 外装ケース、
16 電池本体部(積層体)、
17 負極集電板
18 正極集電板
20 双極型電極、
21 集電体、
21A 負極集電体、
21B 正極集電体、
22 負極、
22A 負極スラリー、
23 正極、
23A 正極スラリー、
24 第1シール材、
24A シール材、
25 第1シール部、
26 第2シール材、
27 第2シール部、
30 電解質層、
31,31A セパレータ、
35,35A 電極ユニット、
40 サブアッシーユニット(積層体)、
40A 下方積層体(第2積層体)、
40B 上方積層体(第1積層体)、
42 貼り合せ面、
44 背面、
50 組電池、
52,54 導電バー、
60 組電池モジュール、
70 車両、
100 製造装置、
110,110A 載置台(第2保持手段)、
111 負圧保持機構、
112 吸着パッド(支持部)、
114 当接面、
116 負圧導入部、
118 基部、
120 上部アーム(第1保持手段)、
121 負圧保持機構、
122 吸着パッド、
124 当接面、
126 負圧導入部、
128 基部、
130 密閉手段、
132 上部気密シール、
134 下部気密シール、
136 ケーシング部、
140 減圧機構、
142 減圧配管系、
144 排気口(排出手段)、
150 駆動機構(駆動手段)、
H1,H2 厚み。
10 Bipolar secondary battery,
10A non-bipolar (stacked) secondary battery,
11,12 terminal plate,
14 exterior case,
16 Battery body (laminate),
17 Negative
21 current collector,
21A negative electrode current collector,
21B positive electrode current collector,
22 negative electrode,
22A negative electrode slurry,
23 positive electrode,
23A positive electrode slurry,
24 first sealing material,
24A sealing material,
25 first seal part,
26 second sealing material,
27 Second seal part,
30 electrolyte layer,
31, 31A separator,
35, 35A electrode unit,
40 Sub-assembly unit (laminate),
40A lower laminate (second laminate),
40B Upper laminate (first laminate),
42 Bonding surface,
44 back,
50 battery packs,
52, 54 conductive bar,
60 battery module,
70 vehicles,
100 manufacturing equipment,
110, 110A mounting table (second holding means),
111 negative pressure holding mechanism,
112 Suction pad (support),
114 abutment surface,
116 negative pressure introduction part,
118 base,
120 upper arm (first holding means),
121 negative pressure holding mechanism,
122 suction pads,
124 abutment surface,
126 negative pressure introduction part,
128 base,
130 sealing means,
132 upper hermetic seal,
134 Lower airtight seal,
136 casing part,
140 decompression mechanism,
142 decompression piping system,
144 Exhaust port (discharge means),
150 drive mechanism (drive means),
H 1 and H 2 thickness.
Claims (7)
第1積層体の貼り合せ面の背面を、第1保持手段によって保持しながら、前記第1積層体を、第2積層体の貼り合せ面の背面を保持する第2保持手段に対して近接させ、前記第1積層体を、前記第2積層体に貼り合して積層する積層工程を有し、
前記第1積層体の背面には、通気性を有するセパレータが位置しており、少なくとも前記第1積層体が前記第2積層体に貼り合されて積層されるまで、前記第1保持手段によって、前記セパレータが負圧保持される
ことを特徴とする製造方法。 A production method for producing a battery by laminating a laminate in which an electrode and a separator are laminated, and laminating a plurality of layers,
While holding the back surface of the bonding surface of the first laminated body by the first holding means, the first laminated body is brought close to the second holding means for holding the back surface of the bonding surface of the second laminated body. , Having a laminating step of laminating the first laminate to the second laminate,
A separator having air permeability is located on the back surface of the first laminate, and at least until the first laminate is laminated to the second laminate by the first holding means, The manufacturing method, wherein the separator is held under negative pressure.
前記第1積層体形成において、前記セパレータの貼り合せ面の背面を、前記第1保持手段によって負圧保持しながら、前記セパレータを、前記電極に貼り合して積層する
ことを特徴とする請求項1又は請求項2に記載の製造方法。 Before the laminating step, the electrode and the separator are bonded to each other and further laminated to form the first laminated body, and further includes a first laminated body forming step,
In forming the first laminated body, the separator is bonded to the electrode and stacked while holding the back surface of the bonding surface of the separator at a negative pressure by the first holding means. The manufacturing method of Claim 1 or Claim 2.
前記第1積層体形成工程の前において、前記集電体の一方の面における前記電極の周囲に、シール材を配置するシール材配置工程を、さらに有し、
前記シール材の厚みは、前記貼り合せ面に対して直交する積層方向に関し、前記電極の厚みよりも大きい
ことを特徴とする請求項2又は請求項3に記載の製造方法。 The electrode is disposed on one surface of the current collector;
Before the first laminated body forming step, further comprising a sealing material arranging step of arranging a sealing material around the electrode on one surface of the current collector,
The manufacturing method according to claim 2, wherein a thickness of the sealing material is greater than a thickness of the electrode with respect to a stacking direction orthogonal to the bonding surface.
第1積層体の貼り合せ面の背面を負圧保持自在の第1保持手段と、
第2積層体の貼り合せ面の背面を保持する第2保持手段と、
前記第1積層体の背面を負圧保持する前記第1保持手段を、前記第2積層体の背面を保持する前記第2保持手段に対して近接させ、前記第1積層体を、前記第2積層体に貼り合して積層するための駆動手段と、を有し、
前記第1積層体の背面には、通気性を有するセパレータが位置しており、
前記第1保持手段は、少なくとも前記第1積層体が前記第2積層体に貼り合されて積層されるまで、前記セパレータを負圧保持する
ことを特徴とする製造装置。 A manufacturing apparatus for manufacturing a battery by laminating a laminate in which an electrode and a separator are laminated, and laminating a plurality of layers,
First holding means capable of holding negative pressure on the back surface of the bonding surface of the first laminate;
Second holding means for holding the back surface of the bonding surface of the second laminate;
The first holding means for holding negative pressure on the back surface of the first stacked body is brought close to the second holding means for holding the back surface of the second stacked body, and the first stacked body is moved to the second position. Driving means for laminating and laminating the laminate,
A separator having air permeability is located on the back of the first laminate,
The manufacturing apparatus, wherein the first holding unit holds the separator at a negative pressure until at least the first stacked body is bonded to the second stacked body and stacked.
前記第1積層体形成手段は、前記第1保持手段と前記駆動手段とからなり、
前記第1保持手段は、前記セパレータの貼り合せ面の背面を負圧保持し、
前記駆動手段は、前記セパレータの背面を負圧保持する前記第1保持手段を、前記電極に対して近接させ、前記セパレータを、前記電極に貼り合して積層する
ことを特徴とする請求項5又は請求項6に記載の製造装置。 The first laminate forming means for forming the first laminate by laminating and laminating the electrode and the separator,
The first laminated body forming means comprises the first holding means and the driving means,
The first holding means holds the back surface of the bonding surface of the separator under negative pressure,
The said drive means makes the said 1st holding means which hold | maintains the negative pressure of the back surface of the said separator adjoining with the said electrode, The said separator is bonded and laminated | stacked on the said electrode. Or the manufacturing apparatus of Claim 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009083160A JP5375263B2 (en) | 2009-03-30 | 2009-03-30 | Battery manufacturing method and manufacturing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009083160A JP5375263B2 (en) | 2009-03-30 | 2009-03-30 | Battery manufacturing method and manufacturing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010238425A true JP2010238425A (en) | 2010-10-21 |
JP5375263B2 JP5375263B2 (en) | 2013-12-25 |
Family
ID=43092590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009083160A Active JP5375263B2 (en) | 2009-03-30 | 2009-03-30 | Battery manufacturing method and manufacturing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5375263B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013073855A (en) * | 2011-09-28 | 2013-04-22 | Sekisui Chem Co Ltd | Method of manufacturing multilayer membrane electrode assembly, method of manufacturing lithium ion secondary battery and lithium ion secondary battery |
CN114453498A (en) * | 2020-11-10 | 2022-05-10 | 安爀 | Forming die structure for removing shape wrinkles of bag-type secondary battery |
WO2023100453A1 (en) * | 2021-12-02 | 2023-06-08 | 株式会社豊田自動織機 | Electrode unit manufacturing device, and electrode unit manufacturing method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008166254A (en) * | 2006-12-08 | 2008-07-17 | Nissan Motor Co Ltd | Bipolar battery, and its manufacturing method and device |
JP2008282756A (en) * | 2007-05-14 | 2008-11-20 | Nec Tokin Corp | Method for manufacturing device of laminated structure battery, and manufacturing device thereof |
-
2009
- 2009-03-30 JP JP2009083160A patent/JP5375263B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008166254A (en) * | 2006-12-08 | 2008-07-17 | Nissan Motor Co Ltd | Bipolar battery, and its manufacturing method and device |
JP2008282756A (en) * | 2007-05-14 | 2008-11-20 | Nec Tokin Corp | Method for manufacturing device of laminated structure battery, and manufacturing device thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013073855A (en) * | 2011-09-28 | 2013-04-22 | Sekisui Chem Co Ltd | Method of manufacturing multilayer membrane electrode assembly, method of manufacturing lithium ion secondary battery and lithium ion secondary battery |
CN114453498A (en) * | 2020-11-10 | 2022-05-10 | 安爀 | Forming die structure for removing shape wrinkles of bag-type secondary battery |
WO2023100453A1 (en) * | 2021-12-02 | 2023-06-08 | 株式会社豊田自動織機 | Electrode unit manufacturing device, and electrode unit manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP5375263B2 (en) | 2013-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5157354B2 (en) | Bipolar battery and manufacturing method thereof | |
JP5233435B2 (en) | Bipolar secondary battery | |
JP5266618B2 (en) | Bipolar battery | |
JP5272494B2 (en) | Bipolar secondary battery | |
KR101543065B1 (en) | Electrode assembly and electrochemical cell containing the same | |
JP4370902B2 (en) | Bipolar battery and manufacturing method thereof. | |
US7807295B2 (en) | Bipolar battery and method of manufacturing same | |
JP2008140638A (en) | Bipolar battery | |
JP2008097940A (en) | Bipolar type secondary battery | |
JP2007194090A (en) | Bipolar type battery, battery module, and battery pack | |
JP5119652B2 (en) | Method for manufacturing bipolar battery | |
JP2004164897A (en) | Bipolar battery | |
KR20130128033A (en) | Device for removing gas from battery cell | |
JP5261883B2 (en) | Bipolar secondary battery | |
JP5343663B2 (en) | Method and apparatus for manufacturing bipolar secondary battery | |
JP5494726B2 (en) | Bipolar battery manufacturing method and manufacturing apparatus | |
JP5151123B2 (en) | Bipolar battery manufacturing method and manufacturing apparatus | |
JP2008140624A (en) | Manufacturing device and manufacturing method of bipolar battery | |
JP5040272B2 (en) | Bipolar battery manufacturing method and manufacturing apparatus | |
JP4055640B2 (en) | Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle | |
JP2019192564A (en) | All-solid battery | |
JP5375263B2 (en) | Battery manufacturing method and manufacturing apparatus | |
CN112840495B (en) | Battery cell | |
JP5205749B2 (en) | Bipolar battery manufacturing method | |
JP4066760B2 (en) | Bipolar battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120131 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130423 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130716 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130805 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130827 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130909 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5375263 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |