[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010238385A - Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2010238385A
JP2010238385A JP2009082249A JP2009082249A JP2010238385A JP 2010238385 A JP2010238385 A JP 2010238385A JP 2009082249 A JP2009082249 A JP 2009082249A JP 2009082249 A JP2009082249 A JP 2009082249A JP 2010238385 A JP2010238385 A JP 2010238385A
Authority
JP
Japan
Prior art keywords
secondary battery
aqueous electrolyte
fluorinated
nitrile
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009082249A
Other languages
Japanese (ja)
Other versions
JP5398321B2 (en
Inventor
Akira Mogi
亮 茂木
Osamu Omae
理 大前
Takanobu Chiga
貴信 千賀
Hiroyuki Matsumoto
浩友紀 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd, Sanyo Electric Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP2009082249A priority Critical patent/JP5398321B2/en
Publication of JP2010238385A publication Critical patent/JP2010238385A/en
Application granted granted Critical
Publication of JP5398321B2 publication Critical patent/JP5398321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain superior load characteristics through restraint of reaction of nonaqueous electrolyte with an electrode, even when a volume of nitrile system solvent is increased and superior battery characteristics over a long period through restraint in the degradation of battery capacity, even under high-temperature conditions, in a nonaqueous electrolyte secondary battery using nonaqueous electrolyte containing a nitrile system solvent in a nonaqueous system solvent. <P>SOLUTION: For the nonaqueous electrolyte secondary battery provided with a cathode 1, an anode 2, and electrolyte, fluorinated nitrile of CF<SB>3</SB>-R-CN (in the formula, R denotes an alkyl group with the carbon number of 1 or 2, and part of hydrogen may be substituted with fluorine.) is to be contained in a nonaqueous system solvent, in the nonaqueous electrolyte within a range of 35 to 95 vol.%, and a fluorinated cyclic carbonate within a range of 5 to 40 vol.%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、二次電池用非水電解液及びこのような二次電池用非水電解液を用いた非水電解液二次電池に関するものである。特に、二次電池用非水電解液を改善し、非水電解液二次電池における負荷特性を向上させると共に、高温条件下においても電池容量が低下するのを抑制し、長期にわたって良好な電池特性が得られるようにした点に特徴を有するものである。   The present invention relates to a non-aqueous electrolyte for a secondary battery and a non-aqueous electrolyte secondary battery using such a non-aqueous electrolyte for a secondary battery. In particular, it improves the non-aqueous electrolyte for secondary batteries, improves the load characteristics in non-aqueous electrolyte secondary batteries, suppresses battery capacity from decreasing even under high temperature conditions, and has good battery characteristics over a long period of time It has a feature in that it can be obtained.

近年、高出力,高エネルギー密度の新型二次電池として、非水系溶媒に電解質のリチウム塩が含有された非水電解液を用い、リチウムイオンを正極と負極との間で移動させて充放電を行うようにした非水電解液二次電池が広く利用されている。   In recent years, as a new secondary battery with high output and high energy density, a non-aqueous electrolyte containing a lithium salt of an electrolyte in a non-aqueous solvent is used, and lithium ions are moved between the positive and negative electrodes for charging and discharging. Non-aqueous electrolyte secondary batteries made to be used are widely used.

そして、このような非水電解液二次電池において、良好な充放電特性が得られるようにするため、従来においては、上記の非水電解液として、非水系溶媒に、エチレンカーボネート等の環状カーボネートと、ジエチルカーボネート,エチルメチルカーボネート,ジメチルカーボネート等の鎖状カーボネートとを混合させた混合溶媒を用い、この混合溶媒にLiPF6やLiBF4等のリチウム塩からなる電解質を溶解したものが使用されている。 In order to obtain good charge / discharge characteristics in such a non-aqueous electrolyte secondary battery, conventionally, as the non-aqueous electrolyte, a cyclic carbonate such as ethylene carbonate is used as a non-aqueous solvent. And a mixed solvent in which chain carbonates such as diethyl carbonate, ethyl methyl carbonate, and dimethyl carbonate are mixed, and an electrolyte composed of a lithium salt such as LiPF 6 or LiBF 4 is used in this mixed solvent. Yes.

しかし、上記のような非水電解液を用いた非水電解液二次電池における耐久性等を評価するために、この非水電解液二次電池を充電状態で高温条件下に放置させる充電保存試験を行った場合、上記の非水電解液が正極や負極と副反応を起こし、電池容量が低下するという問題があった。   However, in order to evaluate the durability of the non-aqueous electrolyte secondary battery using the non-aqueous electrolyte as described above, the non-aqueous electrolyte secondary battery is charged and stored under high temperature conditions in a charged state. When the test was performed, there was a problem that the above-described non-aqueous electrolyte caused a side reaction with the positive electrode and the negative electrode, resulting in a decrease in battery capacity.

また、近年においては、携帯電話、ノートパソコン、PDA等のモバイル機器の小型化・軽量化が著しく進行しており、また多機能化に伴って消費電力も増加しており、これらの電源として使用される非水電解質二次電池の高容量化が要望されている。   In recent years, mobile devices such as mobile phones, notebook PCs, and PDAs have been remarkably reduced in size and weight, and power consumption has increased with the increase in functionality. There is a demand for higher capacity of nonaqueous electrolyte secondary batteries.

しかし、非水電解質二次電池を高容量化させるために、正極や負極における電極材料の塗布量や充填密度を高くした場合、これらの電極内に上記の非水電解液が十分に浸透されず、良好な負荷特性が得られなくなるという問題もあった。   However, in order to increase the capacity of the non-aqueous electrolyte secondary battery, when the application amount and packing density of the electrode material in the positive electrode and the negative electrode are increased, the above non-aqueous electrolyte does not sufficiently penetrate into these electrodes. There is also a problem that good load characteristics cannot be obtained.

そして、従来においては、特許文献1に示されるように、電解質にパーフルオロアルカンスルホン酸リチウムを用いると共に、非水系溶媒にプロピレンカーボネートと1,2−ジメトキシエタンと脂肪族ニトリルとの混合溶媒を用い、非水電解液の電導度を高めて、電池における放電特性を向上させるようにしたものが提案されている。   Conventionally, as shown in Patent Document 1, lithium perfluoroalkanesulfonate is used as an electrolyte, and a mixed solvent of propylene carbonate, 1,2-dimethoxyethane, and an aliphatic nitrile is used as a non-aqueous solvent. There have been proposed those in which the electrical conductivity of the non-aqueous electrolyte is increased to improve the discharge characteristics of the battery.

しかし、上記のような非水電解液を使用した非水電解液二次電池を高温条件下において放置させた場合、非水系溶媒に含まれる上記の脂肪族ニトリルが正極や負極と反応して分解し、高温条件下における保存特性等が大きく低下するという問題があった。   However, when a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte as described above is allowed to stand under high temperature conditions, the aliphatic nitrile contained in the non-aqueous solvent reacts with the positive electrode and negative electrode to decompose. However, there has been a problem that storage characteristics and the like under high temperature conditions are greatly reduced.

また、特許文献2においては、非水電解液中にフッ素化されたニトリル化合物を含有させ、初期の充電時から電極表面にリチウムイオン透過性で安定性の良い被膜を効率よく生成し、過度の非水電解液の分解を抑制して、充放電効率や保存特性を向上させるようにしたものが提案されている。   In Patent Document 2, a non-aqueous electrolyte contains a fluorinated nitrile compound, and a lithium ion permeable and stable coating is efficiently generated on the electrode surface from the initial charging, Proposals have been made to improve the charge / discharge efficiency and storage characteristics by suppressing the decomposition of the non-aqueous electrolyte.

しかし、この特許文献2においては、非水電解液における上記のフッ素化されたニトリル化合物の量を0.01〜10重量%にし、このフッ素化されたニトリル化合物の量が多くなりすぎると、電池特性に悪影響を及ぼすとしている。   However, in Patent Document 2, if the amount of the fluorinated nitrile compound in the non-aqueous electrolyte is 0.01 to 10% by weight and the amount of the fluorinated nitrile compound is too large, the battery It has an adverse effect on characteristics.

また、特許文献3においては、非水電解液に、環状エステルを含むエステル系溶媒70〜95体積%と、ニトリル系溶媒5〜30体積%を含む非水系溶媒を用い、非水電解液二次電池における高温スウェリングを抑制するようにしたものが提案されている。   Moreover, in patent document 3, the non-aqueous electrolyte secondary solution which uses 70-95 volume% of ester solvents containing cyclic ester and the nonaqueous solvent containing 5-30 volume% of nitrile solvents is used for nonaqueous electrolyte solution. A battery that suppresses high-temperature swelling in a battery has been proposed.

そして、この特許文献3においては、ニトリル系溶媒の量が上記の範囲よりも多くなると、電池性能に問題が生じるとしている。   And in this patent document 3, when the quantity of a nitrile-type solvent becomes larger than said range, it is said that a problem will arise in battery performance.

ここで、ニトリル系の溶媒は、一般に粘度が低く、誘電率が高いため、非水電解液二次電池における負荷特性を向上させるのに寄与するが、電極との反応性が高いという欠点がある。   Here, the nitrile solvent generally has a low viscosity and a high dielectric constant, which contributes to improving the load characteristics in the non-aqueous electrolyte secondary battery, but has a drawback of high reactivity with the electrode. .

従って、非水電解液中におけるニトリル系の溶媒の量を多くすると、この非水電解液二次電池を高温条件下において放置させた場合に、上記のニトリル系溶媒が電極と反応して保存特性が低下するという問題が生じるため、上記の特許文献2や特許文献3に示されるように、非水電解液中におけるニトリル系の溶媒の量を少なくしていると考えられる。   Therefore, if the amount of the nitrile solvent in the non-aqueous electrolyte is increased, when the non-aqueous electrolyte secondary battery is allowed to stand under high temperature conditions, the above nitrile solvent reacts with the electrode to preserve the storage characteristics. Therefore, it is considered that the amount of the nitrile solvent in the non-aqueous electrolyte is reduced as shown in Patent Document 2 and Patent Document 3 described above.

しかし、このように非水電解液中におけるニトリル系の溶媒の量を少なくすると、依然として、非水電解液二次電池における負荷特性を向上させて、電池容量を十分に高めることが困難になるという問題があった。   However, if the amount of the nitrile solvent in the non-aqueous electrolyte is reduced in this way, it is still difficult to improve the load characteristics in the non-aqueous electrolyte secondary battery and sufficiently increase the battery capacity. There was a problem.

特開平5−144470号公報JP-A-5-144470 特開2003−7336号公報JP 2003-7336 A 特開2005−72003号公報JP 2005-72003 A

本発明は、非水電解液を用いた非水電解液二次電池における上記のような問題を解決することを課題とするものである。   This invention makes it a subject to solve the above problems in the nonaqueous electrolyte secondary battery using a nonaqueous electrolyte.

すなわち、本発明においては、非水系溶媒にニトリル系溶媒を含む非水電解液を用いた非水電解液二次電池において、非水電解液二次電池における負荷特性を向上させるために、非水系溶媒中におけるニトリル系溶媒の量を多くした場合においても、非水電解液が電極と反応するのを抑制し、良好な負荷特性が得られると共に、高温条件下においても電池容量が低下するのが抑制され、良好な保存特性が得られるようにすることを課題とするものである。   That is, in the present invention, in a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing a nitrile solvent as a non-aqueous solvent, in order to improve the load characteristics in the non-aqueous electrolyte secondary battery, Even when the amount of the nitrile solvent in the solvent is increased, the non-aqueous electrolyte can be prevented from reacting with the electrode, and good load characteristics can be obtained, and the battery capacity can be reduced even under high temperature conditions. It is an object of the present invention to be suppressed and to obtain good storage characteristics.

本発明においては、上記のような課題を解決するため、非水系溶媒に電解質のリチウム塩が含有された二次電池用非水電解液において、上記の非水系溶媒に、少なくとも下記の化学式(1)に示したフッ素化ニトリルと、フッ素化環状カーボネートとが含有され、非水系溶媒中に、上記のフッ素化ニトリルが35〜95体積%の範囲で含まれると共に、上記のフッ素化環状カーボネートが5〜40体積%の範囲で含まれるようにした。   In the present invention, in order to solve the above problems, in the non-aqueous electrolyte for a secondary battery in which a lithium salt of an electrolyte is contained in a non-aqueous solvent, the non-aqueous solvent includes at least the following chemical formula (1 ) And a fluorinated cyclic carbonate, and the non-aqueous solvent contains the fluorinated nitrile in an amount of 35 to 95% by volume, and the fluorinated cyclic carbonate is 5%. It was made to be contained in the range of ˜40% by volume.

CF−R−CN (1)
式中、Rは炭素数が1又は2のアルキル基を示し、一部の水素がフッ素で置換されていてもよい。
CF 3 -R-CN (1)
In the formula, R represents an alkyl group having 1 or 2 carbon atoms, and a part of hydrogen may be substituted with fluorine.

ここで、非水系溶媒に、上記のようなフッ素化ニトリルとフッ素化環状カーボネートとを含有させると、上記のフッ素化ニトリルとフッ素化環状カーボネートとが電極の表面において特異的に相互に分解して、電極の表面に良好な被膜が形成され、フッ素化ニトリルが電極の表面においてさらに分解するのが抑制されると考えられる。   Here, when the non-aqueous solvent contains the fluorinated nitrile and the fluorinated cyclic carbonate as described above, the fluorinated nitrile and the fluorinated cyclic carbonate are specifically decomposed mutually on the surface of the electrode. It is considered that a good film is formed on the surface of the electrode, and further decomposition of the fluorinated nitrile on the surface of the electrode is suppressed.

このため、非水電解液二次電池における負荷特性を向上させるために、非水系溶媒中に上記のようなフッ素化ニトリルが35〜95体積%の範囲で含まれるようにしても、このフッ素化ニトリルが電極の表面においてさらに分解するのが抑制され、高温条件下においても良好な保存特性が得られるようになる。   For this reason, in order to improve the load characteristics in the non-aqueous electrolyte secondary battery, the fluorinated nitrile may be contained in the non-aqueous solvent in the range of 35 to 95% by volume. Further decomposition of nitrile on the surface of the electrode is suppressed, and good storage characteristics can be obtained even under high temperature conditions.

なお、本発明において、上記の化学式(1)に示すように末端の炭素が全てフッ素化されたフッ素化ニトリルを用いるようにしたのは、CHF−やCHF−のように、末端の炭素がすべてフッ素化されずに水素が残っているフッ素化ニトリルの場合、非水電解液の粘度が増加して、非水電解液二次電池における負荷特性を十分に向上させることができなくなるためである。また、末端の炭素が全くフッ素化されていないニトリル化合物の場合には、負荷特性は向上されるが、フッ素化ニトリルのように、フッ素化環状カーボネートと電極の表面において特異的に相互に分解して、電極の表面に良好な被膜が形成されるということがなく、高温条件下における保存特性が低下するためである。 In the present invention, as shown in the chemical formula (1), the fluorinated nitrile in which the terminal carbons are all fluorinated is used because the terminal carbon atoms are not similar to CH 2 F— or CHF 2 —. In the case of a fluorinated nitrile in which all of the carbon is not fluorinated and hydrogen remains, the viscosity of the non-aqueous electrolyte increases and the load characteristics of the non-aqueous electrolyte secondary battery cannot be sufficiently improved. It is. In addition, in the case of a nitrile compound in which the terminal carbon is not fluorinated at all, the load characteristics are improved. However, like a fluorinated nitrile, the fluorinated cyclic carbonate and the electrode surface are specifically decomposed to each other. This is because a good film is not formed on the surface of the electrode, and the storage characteristics under high temperature conditions deteriorate.

また、上記のフッ素化ニトリルにおいて、式中におけるRの炭素数が多くなると、この場合にも、非水電解液の粘度が増加して、非水電解液二次電池における負荷特性を十分に向上させることができなくなる。このため、Rとして、上記のように炭素数が1又は2のアルキル基やその一部の水素がフッ素で置換されたものを用いるようにし、好ましくは、上記のフッ素化ニトリルとして、3,3,3−トリフルオロプロピオニトリルCF3CH2CNを用いるようにする。 In the above fluorinated nitrile, when the carbon number of R in the formula increases, the viscosity of the non-aqueous electrolyte also increases in this case, and the load characteristics in the non-aqueous electrolyte secondary battery are sufficiently improved. Can not be made. For this reason, as R, an alkyl group having 1 or 2 carbon atoms or a part of hydrogen substituted with fluorine as described above is used. Preferably, as the fluorinated nitrile, 3, 3 is used. , 3-trifluoropropionitrile CF 3 CH 2 CN is used.

また、上記の非水系溶媒中における上記のフッ素化ニトリルの量が少ないと、非水電解液二次電池における負荷特性を十分に向上させることが困難になる一方、その量が多くなりすぎると、相対的にフッ素化環状カーボネートの量が低下して、電極の表面に良好な被膜が形成されなくなる。このため、本発明においては、非水系溶媒中における上記のフッ素化ニトリルの量を35〜95体積%の範囲にしており、好ましくは、40〜80体積%の範囲になるようにする。   Further, if the amount of the fluorinated nitrile in the non-aqueous solvent is small, it becomes difficult to sufficiently improve the load characteristics in the non-aqueous electrolyte secondary battery, while the amount is too large, The amount of the fluorinated cyclic carbonate is relatively lowered, and a good film is not formed on the surface of the electrode. Therefore, in the present invention, the amount of the fluorinated nitrile in the non-aqueous solvent is in the range of 35 to 95% by volume, and preferably in the range of 40 to 80% by volume.

一方、非水系溶媒中におけるフッ素化環状カーボネートの量が少ないと、上記のように電極の表面に良好な被膜が形成されなくなる一方、その量が多くなりすぎると、非水電解液の粘度が増加して、非水電解液二次電池における負荷特性を十分に向上させることができなくなる。このため、本発明においては、上記のように非水系溶媒中において、フッ素化環状カーボネートが5〜40体積%の範囲で含まれるようにしている。   On the other hand, if the amount of the fluorinated cyclic carbonate in the non-aqueous solvent is small, a good film cannot be formed on the surface of the electrode as described above. On the other hand, if the amount is too large, the viscosity of the non-aqueous electrolyte increases. As a result, the load characteristics in the non-aqueous electrolyte secondary battery cannot be sufficiently improved. For this reason, in the present invention, the fluorinated cyclic carbonate is contained in the range of 5 to 40% by volume in the non-aqueous solvent as described above.

ここで、上記のフッ素化環状カーボネートとしては、各種のフッ素化環状カーボネートを用いることができるが、4−フルオロエチレンカーボネートを用いることが好ましい。   Here, various fluorinated cyclic carbonates can be used as the fluorinated cyclic carbonate, but 4-fluoroethylene carbonate is preferably used.

そして、フッ素化環状カーボネートとして4−フルオロエチレンカーボネートを用いる場合、4−フルオロエチレンカーボネートの量が少ないと、上記のように電極に十分な被膜が形成されず、フッ素化ニトリルが分解されて、非水電解液二次電池を充電状態で高温条件下において放置させた場合における保存特性が低下する一方、4−フルオロエチレンカーボネートの量が多くなり過ぎると、非水電解液の粘度が上昇して負荷特性が低下する。このため、非水系溶媒中における4−フルオロエチレンカーボネートの量を10〜30体積%の範囲にすることがより好ましい。   When 4-fluoroethylene carbonate is used as the fluorinated cyclic carbonate, if the amount of 4-fluoroethylene carbonate is small, a sufficient film is not formed on the electrode as described above, and the fluorinated nitrile is decomposed. When the water electrolyte secondary battery is left in a charged state under a high temperature condition, the storage characteristics deteriorate. On the other hand, if the amount of 4-fluoroethylene carbonate is excessive, the viscosity of the non-aqueous electrolyte increases and the load is increased. Characteristics are degraded. For this reason, it is more preferable to make the quantity of 4-fluoroethylene carbonate in a non-aqueous solvent into the range of 10-30 volume%.

また、上記の二次電池用非水電解液においては、上記の非水系溶媒に、上記のフッ素化ニトリルとフッ素化環状カーボネートとの他に、他の非水系溶媒を加えることも可能である。ここで、このような他の非水系溶媒としては、例えば、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、酢酸メチル、プロピオン酸メチル、酢酸エチル等を用いることができる。   In the non-aqueous electrolyte for a secondary battery, other non-aqueous solvent can be added to the non-aqueous solvent in addition to the fluorinated nitrile and the fluorinated cyclic carbonate. Here, as such other non-aqueous solvents, for example, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl acetate, methyl propionate, ethyl acetate, and the like can be used.

さらに、上記の非水電解液の導電率を高めるために、高誘電率溶媒であるエチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン等を混合させることも可能である。   Further, in order to increase the electrical conductivity of the non-aqueous electrolyte, it is possible to mix ethylene carbonate, propylene carbonate, γ-butyrolactone, etc., which are high dielectric constant solvents.

また、本発明の二次電池用非水電解液においては、負極に適切な被膜を形成する被膜形成剤として、炭素の二重結合C=Cを有する環状炭酸エステルを添加させることも可能である。   In the non-aqueous electrolyte for a secondary battery of the present invention, a cyclic carbonate having a carbon double bond C = C can be added as a film forming agent for forming a suitable film on the negative electrode. .

ここで、このような炭素の二重結合C=Cを有する環状炭酸エステルとしては、例えば、ビニレンカーボネート、4,5−ジメチルビニレンカーボネート、4,5−ジエチルビニレンカーボネート、4−エチル−5−メチルビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネート等を用いることができ、特に、負極上に良好な被膜を形成する点からは、ビニレンカーボネートやビニルエチレンカーボネートを用いることが好ましい。   Here, as the cyclic carbonate having such a carbon double bond C = C, for example, vinylene carbonate, 4,5-dimethylvinylene carbonate, 4,5-diethylvinylene carbonate, 4-ethyl-5-methyl Vinylene carbonate, vinyl ethylene carbonate, divinyl ethylene carbonate, and the like can be used. In particular, vinylene carbonate and vinyl ethylene carbonate are preferably used from the viewpoint of forming a good film on the negative electrode.

また、本発明の二次電池用非水電解液において、上記の非水系溶媒に溶解させるリチウム塩からなる電解質としては、非水電解液二次電池において一般に使用されているリチウム塩を用いることができる。そして、このようなリチウム塩としては、例えば、LiPF6,LiBF4,LiCF3SO3,LiClO4,LiN(CF3SO22,LiN(C25SO22,LiN(CF3SO2)(C49SO2),LiC(CF3SO23,LiC(C25SO23,LiB(C242,LiBF2(C24)等を用いることができ、特に、LiPF6,LiBF4,LiN(CF3SO22,LiB(C242を用いることが好ましい。 Moreover, in the non-aqueous electrolyte for secondary batteries of the present invention, as an electrolyte composed of a lithium salt dissolved in the above non-aqueous solvent, a lithium salt generally used in non-aqueous electrolyte secondary batteries can be used. it can. And, as such a lithium salt, e.g., LiPF 6, LiBF 4, LiCF 3 SO 3, LiClO 4, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiB (C 2 O 4 ) 2 , LiBF 2 (C 2 O 4 ), etc. In particular, LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiB (C 2 O 4 ) 2 are preferably used.

また、本発明の非水電解液二次電池は、正極と負極と非水電解液とを備えた非水電解液二次電池において、非水電解液として、上記のような二次電池用非水電解液を用いることを特徴とするものであり、その正極における正極活物質や負極における負極活物質等については特に限定されない。   Further, the non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte. A water electrolyte is used, and the positive electrode active material in the positive electrode and the negative electrode active material in the negative electrode are not particularly limited.

ここで、この非水電解液二次電池の正極に用いる正極活物質としては、リチウムを吸蔵、放出することができ、その電位が貴な材料であれば特に限定されず、一般に使用されている公知の正極活物質を用いることができる。例えば、層状構造や、スピネル型構造や、オリビン型構造を有するリチウム遷移金属複合酸化物を単独又は複数組み合わせて使用することができ、特に、高エネルギー密度の非水電解液二次電池を得るためには、層状構造を有するリチウム遷移金属複合酸化物を用いることが好ましい。   Here, the positive electrode active material used for the positive electrode of the non-aqueous electrolyte secondary battery is not particularly limited as long as it is a material that can occlude and release lithium and has a noble potential, and is generally used. A known positive electrode active material can be used. For example, lithium transition metal composite oxides having a layered structure, a spinel structure, or an olivine structure can be used singly or in combination, and in particular, to obtain a high energy density non-aqueous electrolyte secondary battery. It is preferable to use a lithium transition metal complex oxide having a layered structure.

そして、このような層状構造を有するリチウム遷移金属複合酸化物としては、例えば、リチウム・コバルト複合酸化物、リチウム・コバルト・ニッケル・マンガン複合酸化物、リチウム・コバルト・ニッケル・アルミニウム複合酸化物からなるリチウム遷移金属複合酸化物を用いることが好ましい。特に、結晶構造の安定性の観点からは、Al又はMgが結晶内部に固溶され、かつZrが粒子表面に固着したコバルト酸リチウムを用いることが好ましい。   Examples of the lithium transition metal composite oxide having such a layered structure include lithium / cobalt composite oxide, lithium / cobalt / nickel / manganese composite oxide, and lithium / cobalt / nickel / aluminum composite oxide. It is preferable to use a lithium transition metal composite oxide. In particular, from the viewpoint of the stability of the crystal structure, it is preferable to use lithium cobalt oxide in which Al or Mg is dissolved in the crystal and Zr is fixed to the particle surface.

また、この非水電解液二次電池の負極に用いる負極活物質としては、リチウムを吸蔵、放出することができる材料であれば特に限定されず、一般に使用されている公知の負極活物質を用いることができる。例えば、金属リチウム、リチウム−アルミニウム合金,リチウム−鉛合金,リチウム−シリコン合金,リチウム−スズ合金等のリチウム合金、黒鉛,コークス,有機物焼成体等の炭素材料、リチウム・チタン複合酸化物やリチウム・バナジウム複合酸化物等の電位が正極活物質に比べて卑な金属酸化物を用いることができ、特に、リチウムの吸蔵、放出に伴う体積変化が少なくて可逆性に優れる黒鉛系の炭素材料を用いることが好ましい。   The negative electrode active material used for the negative electrode of the non-aqueous electrolyte secondary battery is not particularly limited as long as it is a material capable of occluding and releasing lithium, and a commonly used negative electrode active material is used. be able to. For example, lithium metal such as lithium metal, lithium-aluminum alloy, lithium-lead alloy, lithium-silicon alloy, lithium-tin alloy, carbon materials such as graphite, coke, organic fired body, lithium / titanium composite oxide, lithium Metal oxides that have a lower potential than the positive electrode active material can be used, such as vanadium composite oxides, and in particular, graphite-based carbon materials that are less reversible and have excellent reversibility due to the volume change associated with insertion and extraction of lithium are used. It is preferable.

本発明においては、非水電解液二次電池における非水電解液として、その非水系溶媒中に、上記の化学式(1)に示したフッ素化ニトリルが35〜95体積%の範囲で含まれると共に、フッ素化環状カーボネートが5〜40体積%の範囲で含まれたものを用いるようにしたため、上記のフッ素化ニトリルによって非水電解液二次電池における負荷特性が向上されると共に、このフッ素化ニトリルとフッ素化環状カーボネートとが電極の表面において特異的に相互に分解して、電極の表面に良好な被膜が形成されるようになり、フッ素化ニトリルが電極の表面においてさらに分解するのが抑制されるようになる。   In the present invention, as the non-aqueous electrolyte in the non-aqueous electrolyte secondary battery, the fluorinated nitrile represented by the above chemical formula (1) is contained in the range of 35 to 95% by volume in the non-aqueous solvent. Since the fluorinated cyclic carbonate contained 5 to 40% by volume is used, the above fluorinated nitrile improves the load characteristics in the non-aqueous electrolyte secondary battery, and the fluorinated nitrile. And fluorinated cyclic carbonate are specifically decomposed on the surface of the electrode to form a good coating on the surface of the electrode, and further decomposition of the fluorinated nitrile on the surface of the electrode is suppressed. Become so.

この結果、このような非水電解液を用いた非水電解液二次電池においては、上記のフッ素化ニトリルによって負荷特性が向上されると共に、高温条件下においてもフッ素化ニトリルが継続して分解するのが抑制され、高温条件下において電池容量が低下するのが防止されて、良好な保存特性が得られるようになった。   As a result, in the non-aqueous electrolyte secondary battery using such a non-aqueous electrolyte, the load characteristics are improved by the fluorinated nitrile and the fluorinated nitrile is continuously decomposed even under high temperature conditions. Therefore, the battery capacity is prevented from decreasing under high temperature conditions, and good storage characteristics can be obtained.

本発明の実施例及び比較例において作製した非水電解液二次電池の概略断面図である。It is a schematic sectional drawing of the nonaqueous electrolyte secondary battery produced in the Example and comparative example of this invention.

次に、この発明に係る二次電池用非水電解液及び非水電解質二次電池について、実施例を挙げて具体的に説明すると共に、この実施例に係る非水電解質二次電池においては、負荷特性が向上すると共に、高温条件下において電池容量が低下するのが防止されて、保存特性が向上することを、比較例を挙げて明らかにする。なお、本発明の二次電池用非水電解液及び非水電解質二次電池は下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。   Next, the non-aqueous electrolyte for a secondary battery and the non-aqueous electrolyte secondary battery according to the present invention will be specifically described with examples, and in the non-aqueous electrolyte secondary battery according to this example, A comparative example will clarify that load characteristics are improved and that battery capacity is prevented from decreasing under high-temperature conditions and storage characteristics are improved. The non-aqueous electrolyte for secondary battery and the non-aqueous electrolyte secondary battery of the present invention are not limited to those shown in the following examples, and can be appropriately modified and implemented without departing from the scope of the invention. Is.

(実施例1)
実施例1においては、下記のようにして作製した正極と負極と非水電解液とを用い、図1に示すような円筒型で設計容量が2300mAhの非水電解液二次電池を作製した。
Example 1
In Example 1, a nonaqueous electrolyte secondary battery having a cylindrical shape and a design capacity of 2300 mAh as shown in FIG. 1 was prepared using a positive electrode, a negative electrode, and a nonaqueous electrolyte prepared as described below.

[正極の作製]
正極を作製するにあたっては、正極活物質として、コバルト酸リチウムLiCoO2にAlとMgとがそれぞれ1.0mol%固溶されると共にその固溶体の粒子表面にZrが0.05mol%付与されたものを用いた。
[Production of positive electrode]
In producing the positive electrode, as the positive electrode active material, 1.0 mol% of Al and Mg were respectively dissolved in lithium cobalt oxide LiCoO 2 and 0.05 mol% of Zr was added to the particle surface of the solid solution. Using.

そして、この正極活物質と、導電剤の炭素と、結着剤のポリフッ化ビニリデンとが、95:2.5:2.5の重量比になるようにして、これらをN−メチル−2−ピロリドン溶液中で混練して正極合剤スラリーを作製した。そして、この正極合剤スラリーをアルミニウム箔からなる正極集電体の両面に塗布し、これを乾燥させた後、圧延させて正極を作製した。   Then, the positive electrode active material, the carbon of the conductive agent, and the polyvinylidene fluoride of the binder are in a weight ratio of 95: 2.5: 2.5, and these are converted into N-methyl-2- A positive electrode mixture slurry was prepared by kneading in a pyrrolidone solution. And this positive electrode mixture slurry was apply | coated on both surfaces of the positive electrode electrical power collector which consists of aluminum foil, and after drying this, it rolled and produced the positive electrode.

[負極の作製]
負極を作製するにあたっては、負極活物質の黒鉛と、結着剤のスチレン・ブタジエンゴムと、増粘剤のカルボキシメチルセルロースとを97.5:1.5:1の重量比になるようにして、これらを水溶液中において混練して負極合剤スラリーを作製した。そして、この負極合剤スラリーを銅箔からなる負極集電体の両面に塗布させ、これを乾燥させた後、圧延させて負極を作製した。
[Production of negative electrode]
In producing the negative electrode, the negative electrode active material graphite, the binder styrene-butadiene rubber, and the thickener carboxymethyl cellulose in a weight ratio of 97.5: 1.5: 1, These were kneaded in an aqueous solution to prepare a negative electrode mixture slurry. And this negative electrode mixture slurry was apply | coated on both surfaces of the negative electrode collector which consists of copper foils, and after drying this, it rolled and produced the negative electrode.

[非水電解液の作製]
非水電解液を作製するにあたっては、非水系溶媒として、フッ素化環状カーボネートの4−フルオロエチレンカーボネート(FEC)と、上記の化学式(1)に示したフッ素化ニトリルである3,3,3−トリフルオロプロピオニトリルCF3CH2CNとを2:8の体積比で混合させた混合溶媒を用い、この混合溶媒に電解質としてヘキサフルオロリン酸リチウムLiPF6を1mol/lの割合で溶解させて、非水電解液を作製した。
[Preparation of non-aqueous electrolyte]
In preparing the non-aqueous electrolyte, as the non-aqueous solvent, 4-fluoroethylene carbonate (FEC), which is a fluorinated cyclic carbonate, and 3,3,3-, which is the fluorinated nitrile shown in the above chemical formula (1), are used. Using a mixed solvent in which trifluoropropionitrile CF 3 CH 2 CN was mixed at a volume ratio of 2: 8, lithium hexafluorophosphate LiPF 6 was dissolved as an electrolyte in the mixed solvent at a ratio of 1 mol / l, A non-aqueous electrolyte was prepared.

ここで、フッ素化ニトリルとして用いた上記の3,3,3−トリフルオロプロピオニトリルCF3CH2CNの合成方法を下記に示す。 Here, the above-mentioned 3,3,3 trifluoropropyne synthesis of propionitrile CF 3 CH 2 CN used as fluorinated nitrile below.

窒素シールを施したジムロート冷却管と温度計とを備えた1リットルのナス型フラスコに、3,3,3-トリフルオロプロピオンアミド114g(0.90mol)とキシレン600mlと五酸化二リン64g(0.45mol/0.5eq)を加え、これらを撹拌しながら130〜145℃に加熱し、1時間還流させた。その後、これを室温まで冷却した後、蒸留装置をフラスコに取り付けて常圧で蒸留し、92〜97℃の留分を収集した。次いで、モレキュラシーブ4Aで乾燥させた後、再度蒸留を行って精製し、3,3,3-トリフルオロプロピオニトリルを57g(0.52mol、収率58%)得た。   Into a 1 liter eggplant type flask equipped with a nitrogen-sealed Dimroth condenser and a thermometer, 114 g (0.90 mol) of 3,3,3-trifluoropropionamide, 600 ml of xylene and 64 g of diphosphorus pentoxide (0 .45 mol / 0.5 eq) was added and these were heated to 130-145 ° C. with stirring and refluxed for 1 hour. Then, after cooling this to room temperature, the distillation apparatus was attached to the flask and it distilled at normal pressure, and the fraction of 92-97 degreeC was collected. Subsequently, after drying with molecular sieve 4A, the product was purified by distillation again to obtain 57 g (0.52 mol, yield 58%) of 3,3,3-trifluoropropionitrile.

そして、非水電解液二次電池を作製するにあたっては、図1に示すように、上記のようにして作製した正極1と負極2との間に、セパレータ3としてリチウムイオン透過性のポリエチレン製の微多孔膜を介在させ、これらをスパイラル状に巻いて電池缶4内に収容させた後、この電池缶4内に上記の非水電解液を注液して封口し、上記の正極1を正極タブ1aにより、正極蓋5に取り付けられた正極外部端子5aに接続させると共に、上記の負極2を負極タブ2aにより電池缶4に接続させ、電池缶4と正極蓋5とを絶縁パッキン6により電気的に分離させた。   And in producing a non-aqueous electrolyte secondary battery, as shown in FIG. 1, a lithium ion permeable polyethylene-made separator 3 is provided between the positive electrode 1 and the negative electrode 2 produced as described above. After interposing a microporous film and winding them in a spiral shape and accommodating them in the battery can 4, the non-aqueous electrolyte solution is injected into the battery can 4 and sealed, and the positive electrode 1 is connected to the positive electrode. The tab 1a is connected to the positive electrode external terminal 5a attached to the positive electrode lid 5, and the negative electrode 2 is connected to the battery can 4 by the negative electrode tab 2a. The battery can 4 and the positive electrode lid 5 are electrically connected by the insulating packing 6. Separated.

(実施例2)
実施例2においては、上記の実施例1における非水電解液の作製において、非水系溶媒として、フッ素化環状カーボネートの4−フルオロエチレンカーボネート(FEC)と、上記の化学式(1)に示したフッ素化ニトリルである3,3,3−トリフルオロプロピオニトリルCF3CH2CNと、エチルメチルカーボネート(EMC)とを2:4:4の体積比で混合させた混合溶媒を用い、それ以外は、上記の実施例1の場合と同様にして非水電解液二次電池を作製した。
(Example 2)
In Example 2, in the preparation of the non-aqueous electrolyte in Example 1 above, 4-fluoroethylene carbonate (FEC), which is a fluorinated cyclic carbonate, and fluorine shown in the above chemical formula (1) are used as the non-aqueous solvent. and 3,3,3-trifluoropropyne propionitrile CF 3 CH 2 CN which is a nitrile, and ethyl methyl carbonate (EMC) 2: 4: using a mixed solvent obtained by mixing at a volume ratio of 4, otherwise, A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 above.

(比較例1)
比較例1においては、非水系溶媒として、エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)とを3:7の体積比で混合させた混合溶媒を用い、この混合溶媒に電解質としてヘキサフルオロリン酸リチウムLiPF6を1mol/lの割合で溶解させ、これに対して、ビニレンカーボネート(VC)を2重量%の割合で添加した非水電解液を用い、それ以外は、上記の実施例1の場合と同様にして非水電解液二次電池を作製した。
(Comparative Example 1)
In Comparative Example 1, a mixed solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 3: 7 was used as a non-aqueous solvent, and hexafluorophosphorus was used as an electrolyte in the mixed solvent. the lithium LiPF 6 was dissolved in a proportion of 1 mol / l, contrast, vinylene carbonate (VC) with the added nonaqueous electrolyte in a proportion of 2 wt%, otherwise the above example 1 A non-aqueous electrolyte secondary battery was produced in the same manner as in the case.

(比較例2)
比較例2においては、上記の実施例1における非水電解液の作製において、非水系溶媒として、フッ素化環状カーボネートの4−フルオロエチレンカーボネート(FEC)と、フッ素化されていないプロピオニトリルCH3CH2CNとを2:8の体積比で混合させた混合溶媒を用い、それ以外は、上記の実施例1の場合と同様にして非水電解液二次電池を作製した。
(Comparative Example 2)
In Comparative Example 2, in the preparation of the non-aqueous electrolyte in Example 1 above, 4-fluoroethylene carbonate (FEC), which is a fluorinated cyclic carbonate, and non-fluorinated propionitrile CH 3 are used as non-aqueous solvents. A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 1 except that a mixed solvent in which CH 2 CN was mixed at a volume ratio of 2: 8 was used.

(比較例3)
比較例3においては、上記の実施例1における非水電解液の作製において、非水系溶媒として、フッ素化環状カーボネートの4−フルオロエチレンカーボネート(FEC)と、フッ素化されていないプロピオニトリルCH3CH2CNと、エチルメチルカーボネート(EMC)とを2:4:4の体積比で混合させた混合溶媒を用い、それ以外は、上記の実施例1の場合と同様にして非水電解液二次電池を作製した。
(Comparative Example 3)
In Comparative Example 3, in the preparation of the non-aqueous electrolyte in Example 1 described above, fluorinated cyclic carbonate 4-fluoroethylene carbonate (FEC) and non-fluorinated propionitrile CH 3 were used as the non-aqueous solvent. CH 2 CN and, the ethyl methyl carbonate (EMC) 2: 4: using a mixed solvent obtained by mixing at a volume ratio of 4, otherwise, if the on to the non-aqueous electrolyte solution similar two above examples 1 A secondary battery was produced.

(比較例4)
比較例4においては、上記の実施例1における非水電解液の作製において、非水系溶媒として、フッ素化されていない環状カーボネートであるエチレンカーボネート(EC)と、上記の化学式(1)に示したフッ素化ニトリルである3,3,3−トリフルオロプロピオニトリルCF3CH2CNとを2:8の体積比で混合させた混合溶媒を用い、それ以外は、上記の実施例1の場合と同様にして非水電解液二次電池を作製した。
(Comparative Example 4)
In Comparative Example 4, the preparation of the non-aqueous electrolyte in Example 1 described above was shown as non-fluorinated cyclic carbonate ethylene carbonate (EC) as the non-aqueous solvent and the above chemical formula (1). A mixed solvent obtained by mixing fluorinated nitrile 3,3,3-trifluoropropionitrile CF 3 CH 2 CN in a volume ratio of 2: 8 was used, and other than that, the same as in the case of Example 1 above. Thus, a non-aqueous electrolyte secondary battery was produced.

次に、上記のようにして作製した実施例1,2及び比較例1〜4の各非水電解液二次電池を、それぞれ25℃において、460mAの定電流で4.2Vになるまで充電し、さらに4.2Vの定電圧で電流値が46mAになるまで定電圧充電させた後、460mAの定電流で2.75Vになるまで放電させて、各非水電解液二次電池の初期放電容量を測定した。   Next, the non-aqueous electrolyte secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 4 manufactured as described above were charged to 4.2 V at a constant current of 460 mA at 25 ° C., respectively. Furthermore, after charging at a constant voltage of 4.2 V until the current value reaches 46 mA, the battery is discharged at a constant current of 460 mA until it reaches 2.75 V, and the initial discharge capacity of each non-aqueous electrolyte secondary battery Was measured.

そして、比較例1の非水電解液二次電池における初期放電容量を100として、各非水電解液二次電池の初期放電容量を算出し、その結果を下記の表1に示した。なお、表においては、4−フルオロエチレンカーボネートをFEC、エチレンカーボネートをEC、エチルメチルカーボネートをEMC、ビニレンカーボネートをVCとして示した。   Then, assuming that the initial discharge capacity in the nonaqueous electrolyte secondary battery of Comparative Example 1 was 100, the initial discharge capacity of each nonaqueous electrolyte secondary battery was calculated, and the results are shown in Table 1 below. In the table, 4-fluoroethylene carbonate is indicated as FEC, ethylene carbonate as EC, ethyl methyl carbonate as EMC, and vinylene carbonate as VC.

Figure 2010238385
Figure 2010238385

この結果、実施例1,2及び比較例1〜3の各非水電解液二次電池においては、初期の充放電が行えて、初期放電容量もほほ同じ結果が得られた。   As a result, in each of the nonaqueous electrolyte secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 3, the initial charge / discharge could be performed and the initial discharge capacity was almost the same.

これに対して、非水系溶媒に、フッ素化されていない環状カーボネートであるエチレンカーボネート(EC)と、フッ素化ニトリルである3,3,3−トリフルオロプロピオニトリルCF3CH2CNとを用い、非水系溶媒中におけるフッ素化ニトリルの割合が80体積%と多くなった比較例4の非水電解液二次電池においては、定電圧充電時に電流値が減衰せずに異常充電が生じて、充放電を行うことができなかった。これは、非水系溶媒中にフッ素化環状カーボネートを含有させないでフッ素化ニトリルの量を多くした場合、電極の表面でのフッ素化ニトリルの分解が進み、前記の特許文献2や特許文献3に記載されているように、このフッ素化ニトリルが電池特性に悪影響を及ぼす材料として作用したためであると考えられる。 On the other hand, as a non-aqueous solvent, ethylene carbonate (EC), which is a non-fluorinated cyclic carbonate, and 3,3,3-trifluoropropionitrile CF 3 CH 2 CN, which is a fluorinated nitrile, In the non-aqueous electrolyte secondary battery of Comparative Example 4 in which the ratio of the fluorinated nitrile in the non-aqueous solvent was increased to 80% by volume, the current value did not decay during constant voltage charging, and abnormal charging occurred. The discharge could not be performed. This is because when the amount of the fluorinated nitrile is increased without containing the fluorinated cyclic carbonate in the non-aqueous solvent, the decomposition of the fluorinated nitrile proceeds on the surface of the electrode, which is described in Patent Document 2 and Patent Document 3 described above. It is considered that this is because the fluorinated nitrile acted as a material that adversely affects the battery characteristics.

次に、上記の実施例1,2及び比較例1〜3の各非水電解液二次電池を、それぞれ25℃において、2300mAの定電流で4.2Vになるまで充電し、さらに4.2Vの定電圧で電流値が46mAになるまで定電圧充電させた。   Next, each of the nonaqueous electrolyte secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 3 was charged to 4.2 V at a constant current of 2300 mA at 25 ° C., and then 4.2 V. The battery was charged at a constant voltage until the current value reached 46 mA at a constant voltage of.

そして、このように充電させた各非水電解液二次電池を、それぞれ460mA(0.2C)の電流で2.75Vまで放電させた場合の放電容量Q0.2Cと、4600mA(2C)の電流で2.75Vまで放電させた場合の放電容量Q2Cとを測定した。 Each of the non-aqueous electrolyte secondary batteries charged in this way has a discharge capacity Q 0.2C and 4600 mA (2C) of discharge capacity when discharged to 2.75 V at a current of 460 mA (0.2 C). a discharge capacity Q 2C when was discharged at a current to 2.75V were measured.

そして、負荷特性として、下記の式により0.2Cでの放電容量Q0.2Cに対する2Cでの放電容量Q2Cの容量比率(%)を求め、その結果を下記の表2に示した。 Then, as the load characteristics, determine the volume ratio of the discharge capacity Q 2C in 2C to the discharge capacity Q 0.2 C at 0.2 C (%) by the following equation. The results are shown in Table 2 below.

容量比率(%)=(Q2C/Q0.2C)×100 Capacity ratio (%) = (Q 2C / Q 0.2C ) × 100

Figure 2010238385
Figure 2010238385

この結果、非水系溶媒に、フッ素化ニトリルやフッ素化されていないニトリルからなるニトリル系溶媒を含有させた実施例1,2及び比較例2,3の各非水電解液二次電池は、上記のニトリル系溶媒を含有させていない比較例1の非水電解液二次電池と比べて上記の容量比率が高くなっており、負荷特性が向上していた。これは、粘度が低く、誘電率が高いニトリル系溶媒を非水系溶媒に含有させたためであると考えられる。   As a result, each of the nonaqueous electrolyte secondary batteries of Examples 1 and 2 and Comparative Examples 2 and 3 in which a nitrile solvent composed of a fluorinated nitrile or a non-fluorinated nitrile was contained in the nonaqueous solvent was Compared with the non-aqueous electrolyte secondary battery of Comparative Example 1 which did not contain the nitrile solvent, the capacity ratio was high, and the load characteristics were improved. This is considered to be because a non-aqueous solvent contains a nitrile solvent having a low viscosity and a high dielectric constant.

また、上記の実施例1,2及び比較例1〜3の各非水電解液二次電池について、それぞれ25℃において、460mAの定電流で4.2Vになるまで充電し、さらに4.2Vの定電圧で電流値が46mAになるまで定電圧充電させた後、460mAの定電流で2.75Vになるまで放電させて保存前の放電容量D1を測定した。 Moreover, about each nonaqueous electrolyte secondary battery of said Examples 1, 2 and Comparative Examples 1-3, it charged until it became 4.2V with a constant current of 460 mA at 25 degreeC, respectively, and also 4.2V After charging at a constant voltage until the current value reached 46 mA, the battery was discharged at a constant current of 460 mA until it reached 2.75 V, and the discharge capacity D 1 before storage was measured.

次いで、上記の各非水電解液二次電池を、それぞれ25℃において、2300mAの定電流で4.2Vになるまで充電し、さらに4.2Vの定電圧で電流値が46mAになるまで定電圧充電させ、この状態で、各非水電解液二次電池を恒温槽内において60℃で10日間保存した後、保存後の各非水電解液二次電池について、それぞれ25℃において、460mAの定電流で2.75Vになるまで放電させて保存後の残存容量D2を求めた。 Next, each non-aqueous electrolyte secondary battery is charged at 25 ° C. with a constant current of 2300 mA until it reaches 4.2 V, and further with a constant voltage of 4.2 V, a constant voltage until the current value reaches 46 mA. In this state, each non-aqueous electrolyte secondary battery was stored in a thermostatic bath at 60 ° C. for 10 days, and each non-aqueous electrolyte secondary battery after storage was stored at a constant temperature of 460 mA at 25 ° C. The remaining capacity D 2 after storage was determined by discharging until the current reached 2.75V.

そして、上記のように測定した保存前の放電容量D1、保存後の残存容量D2に基づき、下記の式により実施例1,2及び比較例1〜3の各非水電解液二次電池の保存後における容量残存率(%)を求め、その結果を下記の表3に示した。 Then, based on the discharge capacity D 1 before storage and the remaining capacity D 2 after storage measured as described above, the nonaqueous electrolyte secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 3 are expressed by the following equations. The residual capacity rate (%) after storage was determined, and the results are shown in Table 3 below.

容量残存率(%)=(D2/D1)×100 Capacity remaining rate (%) = (D 2 / D 1 ) × 100

Figure 2010238385
Figure 2010238385

この結果、非水系溶媒として、フッ素化環状カーボネートである4−フルオロエチレンカーボネート(FEC)と、上記の化学式(1)に示したフッ素化ニトリルであるCF3CH2CNとの混合溶媒を用いた実施例1,2の非水電解液二次電池は、ニトリル系溶媒としてフッ素化されていないニトリルを用いた比較例2,3の非水電解液二次電池に比べて、上記の保存後の容量残存率が大きく向上しており、また従来より一般に用いられているエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒にビニレンカーボネート(VC)を添加させた非水系溶媒を用いた比較例1の非水電解液二次電池に比べても、保存後の容量残存率が向上していた。 As a result, a mixed solvent of 4-fluoroethylene carbonate (FEC), which is a fluorinated cyclic carbonate, and CF 3 CH 2 CN, which is a fluorinated nitrile represented by the above chemical formula (1), was used as a non-aqueous solvent. The non-aqueous electrolyte secondary batteries of Examples 1 and 2 were compared with the non-aqueous electrolyte secondary batteries of Comparative Examples 2 and 3 using a non-fluorinated nitrile as a nitrile solvent. The non-aqueous solvent in which vinylene carbonate (VC) was added to a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC), which has been widely used in the past, was used. Compared to the nonaqueous electrolyte secondary battery of Comparative Example 1, the capacity remaining rate after storage was improved.

これは、比較例2,3の非水電解液二次電池のように末端の炭素が全くフッ素化されていないニトリル化合物を用いた場合、フッ素化ニトリルを用いた実施例1,2の非水電解液二次電池のように、フッ素化環状カーボネートと電極の表面において特異的に相互に分解して、電極の表面に良好な被膜が形成されるということがないため、実施例1,2の非水電解液二次電池に比べて、高温条件下における保存特性が低下したものと考えられる。   This is because when the nitrile compound in which the terminal carbon is not fluorinated at all is used as in the non-aqueous electrolyte secondary batteries of Comparative Examples 2 and 3, the non-aqueous solutions of Examples 1 and 2 using fluorinated nitriles. Unlike the electrolyte secondary battery, the fluorinated cyclic carbonate and the surface of the electrode are not specifically decomposed to form a good film on the surface of the electrode. It is considered that the storage characteristics under high temperature conditions are reduced as compared with the non-aqueous electrolyte secondary battery.

(比較例5)
比較例5においては、上記の実施例1における非水電解液の作製において、非水系溶媒として、フッ素化環状カーボネートの4−フルオロエチレンカーボネート(FEC)と、プロピレンカーボネート(PC)と、エチルメチルカーボネート(EMC)とを20:5:75の体積比で混合させた混合溶媒を用い、それ以外は、上記の実施例1の場合と同様にして非水電解液二次電池を作製した。
(Comparative Example 5)
In Comparative Example 5, in the preparation of the non-aqueous electrolyte in Example 1 above, as the non-aqueous solvent, fluorinated cyclic carbonate 4-fluoroethylene carbonate (FEC), propylene carbonate (PC), and ethyl methyl carbonate A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 1 except that a mixed solvent in which (EMC) was mixed at a volume ratio of 20: 5: 75 was used.

(比較例6)
比較例6においては、上記の実施例1における非水電解液の作製において、非水系溶媒として、フッ素化環状カーボネートの4−フルオロエチレンカーボネート(FEC)と、プロピレンカーボネート(PC)と、エチルメチルカーボネート(EMC)とを20:5:75の体積比で混合させた混合溶媒を用い、この混合溶媒に電解質としてヘキサフルオロリン酸リチウムLiPF6を1mol/lの割合で溶解させ、これに対して、上記の化学式(1)に示したフッ素化ニトリルである3,3,3−トリフルオロプロピオニトリルCF3CH2CNを1重量%の割合で添加した非水電解液を用い、それ以外は、上記の実施例1の場合と同様にして非水電解液二次電池を作製した。なお、上記のフッ素化ニトリルの非水系溶媒中における割合は、約1体積%になっていた。
(Comparative Example 6)
In Comparative Example 6, in the preparation of the non-aqueous electrolyte in Example 1 above, as the non-aqueous solvent, fluorinated cyclic carbonates 4-fluoroethylene carbonate (FEC), propylene carbonate (PC), and ethyl methyl carbonate (EMC) was mixed in a volume ratio of 20: 5: 75, and lithium hexafluorophosphate LiPF 6 was dissolved as an electrolyte in the mixed solvent at a ratio of 1 mol / l. A nonaqueous electrolytic solution to which 3,3,3-trifluoropropionitrile CF 3 CH 2 CN, which is a fluorinated nitrile represented by the above chemical formula (1), was added at a ratio of 1% by weight was used. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1. In addition, the ratio in said non-aqueous solvent of said fluorinated nitrile was about 1 volume%.

そして、このように作製した比較例5,6の各非水電解液二次電池についても、上記の実施例1等の非水電解液二次電池と同様にして、初期放電容量を測定し、比較例5の非水電解液二次電池における初期放電容量を100として、各非水電解液二次電池の初期放電容量を算出し、その結果を下記の表4に示した。   And about each nonaqueous electrolyte secondary battery of Comparative Examples 5 and 6 produced in this way, the initial discharge capacity was measured in the same manner as the nonaqueous electrolyte secondary battery of Example 1 and the like, The initial discharge capacity of the non-aqueous electrolyte secondary battery of Comparative Example 5 was set to 100, and the initial discharge capacity of each non-aqueous electrolyte secondary battery was calculated. The results are shown in Table 4 below.

また、上記の比較例5,6の各非水電解液二次電池についても、上記の実施例1等の非水電解液二次電池と同様にして、負荷特性として、0.2Cでの放電容量Q0.2Cに対する2Cでの放電容量Q2Cの容量比率(%)を求めると共に、各非水電解液二次電池における保存後における容量残存率(%)を求め、これらの結果を下記の表4に示した。 Further, each non-aqueous electrolyte secondary battery of Comparative Examples 5 and 6 was also discharged at 0.2 C as load characteristics in the same manner as the non-aqueous electrolyte secondary battery of Example 1 and the like. together determine the capacity ratio of the discharge capacity Q 2C in 2C to volume Q 0.2 C (%), obtains the residual capacity ratio (%) after storage at each of the non-aqueous electrolyte secondary batteries, these results below It is shown in Table 4.

Figure 2010238385
Figure 2010238385

この結果、上記の化学式(1)に示したフッ素化ニトリルである3,3,3−トリフルオロプロピオニトリルCF3CH2CNを非水系溶媒中に約1体積%しか含有させなかった比較例6の非水電解液二次電池は、上記のフッ素化ニトリルを含有させていない比較例5の非水電解液二次電池と上記の容量比率が同じであり、負荷特性が向上するということがなく、上記の容量残存率は逆に少し低下しており、高温条件下における保存特性が向上しなかった。このため、非水系溶媒に、化学式(1)に示したフッ素化ニトリルとフッ素化環状カーボネートとを含有させるにあたり、上記のフッ素化ニトリルの量が少ないと十分な効果が得られないことが分かる。 As a result, Comparative Example 6 in which 3,3,3-trifluoropropionitrile CF 3 CH 2 CN, which is a fluorinated nitrile represented by the above chemical formula (1), was contained in only about 1% by volume in the non-aqueous solvent. The non-aqueous electrolyte secondary battery has the same capacity ratio as the non-aqueous electrolyte secondary battery of Comparative Example 5 that does not contain the fluorinated nitrile, and the load characteristics are not improved. On the contrary, the capacity remaining rate was slightly reduced, and the storage characteristics under high temperature conditions were not improved. For this reason, it is understood that when the non-aqueous solvent contains the fluorinated nitrile and the fluorinated cyclic carbonate represented by the chemical formula (1), a sufficient effect cannot be obtained if the amount of the fluorinated nitrile is small.

1 正極
1a 正極タブ
2 負極
2a 負極タブ
3 セパレータ
4 電池缶
5 正極蓋
5a 正極外部端子
6 絶縁パッキン
DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode tab 2 Negative electrode 2a Negative electrode tab 3 Separator 4 Battery can 5 Positive electrode cover 5a Positive electrode external terminal 6 Insulation packing

Claims (6)

非水系溶媒に電解質のリチウム塩が含有された二次電池用非水電解液において、上記の非水系溶媒に、少なくとも下記の化学式(1)に示したフッ素化ニトリルと、フッ素化環状カーボネートとが含有され、非水系溶媒中に、上記のフッ素化ニトリルが35〜95体積%の範囲で含まれると共に、上記のフッ素化環状カーボネートが5〜40体積%の範囲で含まれていることを特徴とする二次電池用非水電解液。
CF−R−CN (1)
式中、Rは炭素数が1又は2のアルキル基を示し、一部の水素がフッ素で置換されていてもよい。
In a non-aqueous electrolyte for a secondary battery in which an electrolyte lithium salt is contained in a non-aqueous solvent, the non-aqueous solvent includes at least a fluorinated nitrile represented by the following chemical formula (1) and a fluorinated cyclic carbonate. In the non-aqueous solvent, the fluorinated nitrile is contained in the range of 35 to 95% by volume, and the fluorinated cyclic carbonate is contained in the range of 5 to 40% by volume. Non-aqueous electrolyte for secondary battery.
CF 3 -R-CN (1)
In the formula, R represents an alkyl group having 1 or 2 carbon atoms, and a part of hydrogen may be substituted with fluorine.
請求項1に記載の二次電池用非水電解液において、上記のフッ素化ニトリルが、CF3CH2CNであることを特徴とする二次電池用非水電解液。 In the non-aqueous electrolyte solution for a secondary battery according to claim 1, said fluorinated nitriles, non-aqueous electrolyte secondary battery which is a CF 3 CH 2 CN. 請求項1又は請求項2に記載の二次電池用非水電解液において、上記のフッ素化ニトリルが、非水系溶媒中に40〜80体積%の範囲で含まれていることを特徴とする二次電池用非水電解液。   The non-aqueous electrolyte for a secondary battery according to claim 1 or 2, wherein the fluorinated nitrile is contained in a non-aqueous solvent in a range of 40 to 80% by volume. Nonaqueous electrolyte for secondary batteries. 請求項1〜請求項3の何れか1項に記載の二次電池用非水電解液において、上記のフッ素化環状カーボネートが、4−フルオロエチレンカーボネートであることを特徴とする二次電池用非水電解液。   4. The non-aqueous electrolyte for a secondary battery according to claim 1, wherein the fluorinated cyclic carbonate is 4-fluoroethylene carbonate. 5. Water electrolyte. 請求項4に記載の二次電池用非水電解液において、上記の4−フルオロエチレンカーボネートが、非水系溶媒中に10〜30体積%の範囲で含まれていることを特徴とする二次電池用非水電解液。   5. The secondary battery according to claim 4, wherein the 4-fluoroethylene carbonate is contained in a non-aqueous solvent in a range of 10 to 30% by volume. 6. Non-aqueous electrolyte for use. 正極と負極と非水電解液とを備えた非水電解液二次電池において、その非水電解液に請求項1〜5の何れか1項に記載の二次電池用非水電解液を用いたことを特徴とする非水電解液二次電池。   In the non-aqueous electrolyte secondary battery provided with the positive electrode, the negative electrode, and the non-aqueous electrolyte, the non-aqueous electrolyte for secondary batteries of any one of Claims 1-5 is used for the non-aqueous electrolyte. A non-aqueous electrolyte secondary battery characterized by
JP2009082249A 2009-03-30 2009-03-30 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery Active JP5398321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009082249A JP5398321B2 (en) 2009-03-30 2009-03-30 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009082249A JP5398321B2 (en) 2009-03-30 2009-03-30 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2010238385A true JP2010238385A (en) 2010-10-21
JP5398321B2 JP5398321B2 (en) 2014-01-29

Family

ID=43092552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009082249A Active JP5398321B2 (en) 2009-03-30 2009-03-30 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5398321B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002369A1 (en) * 2013-02-19 2014-08-22 Commissariat Energie Atomique ELECTROCHEMICAL CELL FOR LITHIUM ION BATTERY COMPRISING A NEGATIVE ELECTRODE BASED ON SILICON AND A SPECIFIC ELECTROLYTE
CN105680088A (en) * 2016-02-03 2016-06-15 东莞市凯欣电池材料有限公司 Non-aqueous electrolyte solution for high-voltage lithium ion secondary battery and high-voltage lithium ion secondary battery
EP3312929A4 (en) * 2015-06-22 2018-04-25 Soulbrain Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN115763960A (en) * 2022-12-05 2023-03-07 惠州亿纬锂能股份有限公司 Silicon-based negative electrode electrolyte, preparation method and lithium ion battery thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164249A (en) * 1998-11-27 2000-06-16 Mitsui Chemicals Inc Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2001256998A (en) * 2000-03-13 2001-09-21 Central Glass Co Ltd Electrolytic solution for electrochemical device
JP2002175948A (en) * 2000-12-08 2002-06-21 Asahi Glass Co Ltd Electric double-layer capacitor and nonaqueous electrolytic solution
JP2003007336A (en) * 2001-06-22 2003-01-10 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution for use in the same
JP2006134719A (en) * 2004-11-05 2006-05-25 Sony Corp Electrolyte and battery
WO2007094626A1 (en) * 2006-02-15 2007-08-23 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device with an improved safety
JP2008166271A (en) * 2006-12-06 2008-07-17 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164249A (en) * 1998-11-27 2000-06-16 Mitsui Chemicals Inc Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2001256998A (en) * 2000-03-13 2001-09-21 Central Glass Co Ltd Electrolytic solution for electrochemical device
JP2002175948A (en) * 2000-12-08 2002-06-21 Asahi Glass Co Ltd Electric double-layer capacitor and nonaqueous electrolytic solution
JP2003007336A (en) * 2001-06-22 2003-01-10 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution for use in the same
JP2006134719A (en) * 2004-11-05 2006-05-25 Sony Corp Electrolyte and battery
WO2007094626A1 (en) * 2006-02-15 2007-08-23 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device with an improved safety
JP2009527088A (en) * 2006-02-15 2009-07-23 エルジー・ケム・リミテッド Non-aqueous electrolyte and electrochemical device with improved safety
JP2008166271A (en) * 2006-12-06 2008-07-17 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002369A1 (en) * 2013-02-19 2014-08-22 Commissariat Energie Atomique ELECTROCHEMICAL CELL FOR LITHIUM ION BATTERY COMPRISING A NEGATIVE ELECTRODE BASED ON SILICON AND A SPECIFIC ELECTROLYTE
WO2014128130A1 (en) * 2013-02-19 2014-08-28 Commissariat à l'énergie atomique et aux énergies alternatives Electrochemical cell for a lithium-ion battery including a negative electrode made of silicon and a specific electrolyte
JP2016507150A (en) * 2013-02-19 2016-03-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Electrochemical cell for lithium ion battery having negative electrode made of silicon and specific electrolyte
US9887435B2 (en) 2013-02-19 2018-02-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electrochemical cell for a lithium-ion battery including a negative electrode made of silicon and a specific electrolyte
EP3312929A4 (en) * 2015-06-22 2018-04-25 Soulbrain Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2018523270A (en) * 2015-06-22 2018-08-16 ソウルブレイン シーオー., エルティーディー. ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
US10720665B2 (en) 2015-06-22 2020-07-21 Soulbrain Co., Ltd. Lithium secondary battery including a perfluoro nitrile compound
CN105680088A (en) * 2016-02-03 2016-06-15 东莞市凯欣电池材料有限公司 Non-aqueous electrolyte solution for high-voltage lithium ion secondary battery and high-voltage lithium ion secondary battery
CN115763960A (en) * 2022-12-05 2023-03-07 惠州亿纬锂能股份有限公司 Silicon-based negative electrode electrolyte, preparation method and lithium ion battery thereof
CN115763960B (en) * 2022-12-05 2024-03-26 惠州亿纬锂能股份有限公司 Silicon-based negative electrode electrolyte, preparation method and lithium ion battery thereof

Also Published As

Publication number Publication date
JP5398321B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5461883B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP5235437B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP7116311B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP4703203B2 (en) Nonaqueous electrolyte secondary battery
JP4012174B2 (en) Lithium battery with efficient performance
JP5116329B2 (en) Nonaqueous electrolyte secondary battery
JP2000133304A (en) Non-aqueous electrolyte and lithium secondary battery using it
JP2006216378A5 (en)
JP2001332297A (en) Nonaqueous electrolytic solution and lithium secondary battery using the same
JP2002358999A (en) Non-aqueous electrolyte secondary battery
JP4679064B2 (en) Non-aqueous electrolyte secondary battery
JP5062459B2 (en) Nonaqueous electrolyte secondary battery
WO2016024496A1 (en) Non-aqueous electrolyte containing monofluorophosphate ester and non-aqueous electrolyte battery using same
JP4710116B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JPH11273724A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JP5398321B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JPH11273725A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using it
JPH11329494A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JPH11329490A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JP4075416B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP5110057B2 (en) Lithium secondary battery
JP4737952B2 (en) Non-aqueous electrolyte secondary battery
JPH11273723A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JP2002231305A (en) Electrolyte for battery, and nonaqueous electrolyte battery
JP2009283473A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5398321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250