[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010235347A - Method for producing group iii nitride semiconductor free-standing substrate and substrate for growing group iii nitride semiconductor layer - Google Patents

Method for producing group iii nitride semiconductor free-standing substrate and substrate for growing group iii nitride semiconductor layer Download PDF

Info

Publication number
JP2010235347A
JP2010235347A JP2009082979A JP2009082979A JP2010235347A JP 2010235347 A JP2010235347 A JP 2010235347A JP 2009082979 A JP2009082979 A JP 2009082979A JP 2009082979 A JP2009082979 A JP 2009082979A JP 2010235347 A JP2010235347 A JP 2010235347A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
group iii
iii nitride
grown
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009082979A
Other languages
Japanese (ja)
Inventor
Keizo Yasutomi
敬三 安富
Minoru Kawahara
実 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2009082979A priority Critical patent/JP2010235347A/en
Priority to PCT/JP2010/001388 priority patent/WO2010116596A1/en
Publication of JP2010235347A publication Critical patent/JP2010235347A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a group III nitride semiconductor free-standing substrate by a simple process and at a low cost and a substrate for growing a group III nitride semiconductor layer. <P>SOLUTION: In the method for producing the group III nitride semiconductor free-standing substrate 14, a first group III nitride semiconductor layer 12 containing In is epitaxially grown on a substrate 10 at a first growing temperature, a second group III nitride semiconductor layer 13 is epitaxially grown on the grown first group III nitride semiconductor layer 12 at a second growing temperature higher than the first growing temperature and then the free-standing substrate 14 consisting of a second group III nitride semiconductor is produced by exfoliating the grown second group III nitride semiconductor layer 13 from the substrate. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、III族窒化物半導体自立基板を製造する方法とIII族窒化物半導体自立基板を製造するためのIII族窒化物半導体層成長用基板に関する。   The present invention relates to a method for manufacturing a group III nitride semiconductor free-standing substrate and a group III nitride semiconductor layer growth substrate for manufacturing a group III nitride semiconductor free-standing substrate.

窒化物半導体材料は、禁制帯幅が充分大きく、バンド間遷移も直接遷移型であるため、短波長発光素子への適用が盛んに検討されている。また、電子の飽和ドリフト速度が大きいこと、ヘテロ接合による2次元キャリアガスの利用が可能なこと等から、電子素子への応用も期待されている。   Nitride semiconductor materials have a sufficiently large forbidden band width and a direct transition type between band transitions. Therefore, application to a short wavelength light emitting element has been actively studied. In addition, application to electronic devices is also expected due to the high saturation drift velocity of electrons and the use of a two-dimensional carrier gas by heterojunction.

これらの素子を構成する窒化物半導体層は、有機金属気相成長法(MOVPE:Metal−Organic Vapor Phase Epitaxy)、分子線気相成長法(MBE:Molecular Beam Epitaxy)、ハイドライド気相成長法(HVPE:Hydride Vapor Phase Epitaxy)等の気相成長法を用いて、下地基板上にエピタキシャル成長を行うことにより得られる。ところが、この窒化物半導体層と格子定数の整合する下地基板が存在しないため、良質の成長層を得ることが困難であり、得られる窒化物半導体層中には多くの結晶欠陥が含まれていた。この結晶欠陥は、素子特性の向上を阻害する要因となることから、これまで、窒化物半導体層中の結晶欠陥を低減する検討が盛んに行われてきた。   Nitride semiconductor layers constituting these elements are formed by metal-organic vapor phase epitaxy (MOVPE), molecular beam vapor phase epitaxy (MBE), hydride vapor phase epitaxy (HVPE). : Hydride Vapor Phase Epitaxy) or other vapor phase growth method is used to perform epitaxial growth on the base substrate. However, since there is no underlying substrate having a lattice constant matching with this nitride semiconductor layer, it is difficult to obtain a high-quality growth layer, and the obtained nitride semiconductor layer contains many crystal defects. . Since this crystal defect becomes a factor that hinders improvement in device characteristics, so far, studies have been actively conducted to reduce the crystal defect in the nitride semiconductor layer.

結晶欠陥の比較的少ないIII族元素窒化物系結晶を得るための方法として、サファイア等の異種基板上に低温堆積緩衝層(バッファ層)を形成し、その上にエピタキシャル成長層を形成する方法が知られている。この低温堆積緩衝層を用いた結晶成長法では、まず、サファイア等の基板上にAlN又はGaNを500℃付近で堆積させ、アモルファス状の膜ないし一部多結晶を含む連続膜を形成する。これを1000℃付近に昇温することで一部を蒸発させ、また結晶化することで、密度の高い結晶核を形成する。これを成長の核として比較的結晶性のよいGaN膜が得られる。しかしながら、低温堆積緩衝層を形成する方法を用いても、貫通転位や空孔パイプなどの結晶欠陥が相当程度存在し、現在望まれているような高性能の素子を得るには不充分であった。   As a method for obtaining a group III element nitride-based crystal with relatively few crystal defects, a method of forming a low temperature deposition buffer layer (buffer layer) on a dissimilar substrate such as sapphire and forming an epitaxial growth layer thereon is known. It has been. In the crystal growth method using this low-temperature deposition buffer layer, first, AlN or GaN is deposited on a substrate such as sapphire at around 500 ° C. to form an amorphous film or a continuous film partially including polycrystal. This is heated to around 1000 ° C. to partially evaporate and crystallize to form high-density crystal nuclei. Using this as a growth nucleus, a GaN film with relatively good crystallinity can be obtained. However, even if a method for forming a low temperature deposition buffer layer is used, there are considerable crystal defects such as threading dislocations and hole pipes, and it is not sufficient to obtain a high-performance device that is currently desired. It was.

そこで、結晶成長用の基板としてGaN等のIII族窒化物半導体基板を用い、この上に素子部を構成する半導体多層膜を形成する手法が盛んに検討されている。以下、こうした結晶成長用の基板を、自立基板と称する。例えば、GaNの自立基板を得るための手法として、ELO(Epitaxial Lateral Overgrowth)技術が知られている。ELOとは、下地基板にストライプ状開口部を有するマスクを形成し、開口部からラテラル成長させることにより転位の少ないGaN層を得る技術である。特許文献1では、このELO技術を用いてサファイア基板上にGaN層を形成した後、サファイア基板をエッチング等により除去し、GaN自立基板を得ることが提案されている。   Therefore, a method for forming a semiconductor multilayer film constituting an element portion on a group III nitride semiconductor substrate such as GaN as a substrate for crystal growth has been actively studied. Hereinafter, such a substrate for crystal growth is referred to as a free-standing substrate. For example, as a technique for obtaining a GaN free-standing substrate, ELO (Epitaxial Lateral Overgrowth) technology is known. ELO is a technique for obtaining a GaN layer with few dislocations by forming a mask having a stripe-shaped opening on a base substrate and laterally growing from the opening. In Patent Document 1, it is proposed that a GaN layer is formed on a sapphire substrate using this ELO technique, and then the sapphire substrate is removed by etching or the like to obtain a GaN free-standing substrate.

一方、ELOの手法をさらに発展させた手法としてFIELO(Facet−Initiated Epitaxial Lateral Overgrowth)技術(非特許文献1参照)が開発されている。この技術は、酸化シリコンマスクを用いて選択成長を行う点でELOと共通するが、その際、マスク開口部にファセットを形成する点で相違している。ファセットを形成することにより、転位の伝搬方向を変え、エピタキシャル成長層の上部に至る貫通転位を低減するものである。この方法を用いることにより、たとえばサファイア等の下地基板上に厚膜のGaN層を成長させ、その後下地基板を除去することにより、結晶欠陥の比較的少ない良質のGaN自立基板を得ることができる。   On the other hand, FIELO (Face-Initiated Lateral Overgrowth) technology (see Non-Patent Document 1) has been developed as a technique that further develops the technique of ELO. This technique is common to ELO in that selective growth is performed using a silicon oxide mask, but differs in that facets are formed in the mask opening. By forming facets, the propagation direction of dislocations is changed, and threading dislocations reaching the upper part of the epitaxial growth layer are reduced. By using this method, a high-quality GaN free-standing substrate with relatively few crystal defects can be obtained by growing a thick GaN layer on a base substrate such as sapphire and then removing the base substrate.

また別の技術として、特許文献2には、空隙を利用してGaN自立基板を得る手法が開示されている。この手法では、サファイアC面((0001)面)基板上にGaN層を形成した後、その上にチタン膜を形成する。次いで水素ガス又は水素含有化合物ガスを含む雰囲気中で基板を熱処理してGaN層中に空隙を形成する。その後、GaN層上に新たに厚膜のGaN層を形成することによって反りの少ない良質のGaN自立基板を得ることができる。   As another technique, Patent Document 2 discloses a technique for obtaining a GaN free-standing substrate using a gap. In this method, after forming a GaN layer on a sapphire C-plane ((0001) plane) substrate, a titanium film is formed thereon. Next, the substrate is heat-treated in an atmosphere containing hydrogen gas or a hydrogen-containing compound gas to form voids in the GaN layer. Thereafter, by forming a new thick GaN layer on the GaN layer, a high-quality GaN free-standing substrate with less warpage can be obtained.

特開平11−251253号公報JP-A-11-251253 特開2003−178984号公報JP 2003-178984 A

A. Usui et al., Jpn.J. Appl.Phys. Vol.36(1997) pp.L.899−L.902A. Usui et al. , Jpn. J. et al. Appl. Phys. Vol. 36 (1997) p. L. 899-L. 902

上述したような従来技術で、比較的良質なGaN等のIII族窒化物半導体の自立基板が得られるようになったが、サファイア等の異種基板を除去・剥離したり、金属膜やパターン形成等の複雑な工程が必要となり、製造コストが高くなるという問題があった。このため、現状では、例えばGaNの自立基板はGaN系半導体レーザーダイオード等に用いられ、III族窒化物半導体の自立基板は特に付加価値が高いデバイスにしか採用されていない。   With the prior art as described above, a relatively high-quality group III nitride semiconductor free-standing substrate such as GaN can be obtained, but dissimilar substrates such as sapphire can be removed, peeled off, metal films, pattern formation, etc. Therefore, there is a problem in that the manufacturing process becomes high. Therefore, at present, for example, a GaN free-standing substrate is used for a GaN-based semiconductor laser diode or the like, and a group III nitride semiconductor free-standing substrate is used only for a device with a particularly high added value.

本発明は、上記問題点に鑑みてなされたものであって、簡便なプロセスによりIII族窒化物半導体自立基板を低コストで製造することができる製造方法及びIII族窒化物半導体層成長用基板を提供することを目的とする。   The present invention has been made in view of the above problems, and a manufacturing method and a group III nitride semiconductor layer growth substrate capable of manufacturing a group III nitride semiconductor self-supporting substrate at a low cost by a simple process are provided. The purpose is to provide.

上記目的を達成するために、本発明は、少なくとも、基材上にInを含む第一のIII族窒化物半導体層を第一の成長温度でエピタキシャル成長させた後、該成長させた第一のIII族窒化物半導体層の上に第二のIII族窒化物半導体層を第一の成長温度より高温の第二の成長温度でエピタキシャル成長させて、該成長させた第二のIII族窒化物半導体層を前記基材から剥離させることにより第二のIII族窒化物半導体からなる自立基板を製造することを特徴とするIII族窒化物半導体自立基板の製造方法を提供する。   In order to achieve the above object, at least a first group III nitride semiconductor layer containing In is epitaxially grown at a first growth temperature on a base material, and then the grown first III is formed. A second group III nitride semiconductor layer is epitaxially grown on the group nitride semiconductor layer at a second growth temperature higher than the first growth temperature, and the grown second group III nitride semiconductor layer is formed. A method of manufacturing a group III nitride semiconductor free-standing substrate is provided, wherein a free-standing substrate made of a second group III nitride semiconductor is manufactured by peeling from the base material.

このように、Inを含む第一のIII族窒化物半導体層を成長させ、その上に第二の窒化物半導体層をより高温で成長させることで、良質な第二の窒化物半導体層を成長させて、成長後の降温時には第一のIII族窒化物半導体層が良好な剥離層として機能し、第二の半導体層を容易に剥離させることができるため、自立基板を効率的に得ることができる。また、エピタキシャル成長させた単結晶の第一のIII族窒化物半導体層上に成長させるため、第二のIII族窒化物半導体層は結晶性良く成長させることができ、さらにはエピタキシャル成長させる方法は限定されず、自立基板になり得るような厚膜の第二のIII族窒化物半導体層を効率的に成長させることができる。
以上より、本発明の製造方法によれば、剥離層として、金属膜やマスクパターン形成の必要が無く、Inを含むIII族窒化物半導体層を成長させるのみであるため、簡便な工程により良質なIII族窒化物半導体自立基板を低コストで製造することができる。
As described above, a first group III nitride semiconductor layer containing In is grown, and a second nitride semiconductor layer is grown on the first group III nitride semiconductor layer at a higher temperature, thereby growing a high-quality second nitride semiconductor layer. The first group III nitride semiconductor layer functions as a good release layer when the temperature drops after growth, and the second semiconductor layer can be easily peeled off, so that a free-standing substrate can be obtained efficiently. it can. In addition, since the second group III nitride semiconductor layer can be grown with good crystallinity because it is grown on the epitaxially grown single crystal first group III nitride semiconductor layer, the epitaxial growth method is limited. Therefore, a thick second group III nitride semiconductor layer that can be a free-standing substrate can be efficiently grown.
As described above, according to the manufacturing method of the present invention, it is not necessary to form a metal film or a mask pattern as the peeling layer, and only the group III nitride semiconductor layer containing In is grown. A group III nitride semiconductor free-standing substrate can be manufactured at low cost.

このとき、前記Inを含む第一のIII族窒化物半導体層を、InGa1−xN(x>0)の層とすることが好ましい。
InGa1−xN(x>0)の層であれば、基材上に比較的簡易に成長させることができ、さらに本発明によりGaN自立基板を製造するのに好適である。
At this time, the first group III nitride semiconductor layer containing In is preferably a layer of In x Ga 1-x N (x> 0).
If it is a layer of In x Ga 1-x N (x> 0), it can be grown relatively easily on the base material, and is suitable for producing a GaN free-standing substrate according to the present invention.

このとき、前記Inを含む第一のIII族窒化物半導体層をMOVPE法で成長させて、前記第二のIII族窒化物半導体層をHVPE法で成長させることが好ましい。
このように、MOVPE法であれば、熱膨張係数の異なる基材上に、比較的低温で良好なInを含む第一のIII族窒化物半導体層を成長させることができ、HVPE法であれば、厚膜の第二のIII族窒化物半導体層を効率的に成長させることができる。
At this time, it is preferable that the first group III nitride semiconductor layer containing In is grown by MOVPE and the second group III nitride semiconductor layer is grown by HVPE.
Thus, with the MOVPE method, the first group III nitride semiconductor layer containing good In can be grown at a relatively low temperature on substrates having different thermal expansion coefficients. The thick second group III nitride semiconductor layer can be grown efficiently.

このとき、前記基材上にバッファ層を成長させた後、前記成長させたバッファ層上に前記Inを含む第一のIII族窒化物半導体層をエピタキシャル成長させることが好ましい。
このように、バッファ層を成長させることで、高温時でも基材の熱膨張による歪みが第一の窒化物半導体層に伝わりにくく、その上に成長させられる第二の窒化物半導体層もより良好な品質のものが形成される。
At this time, it is preferable that after the buffer layer is grown on the base material, the first group III nitride semiconductor layer containing In is epitaxially grown on the grown buffer layer.
In this way, by growing the buffer layer, distortion due to thermal expansion of the base material is not easily transmitted to the first nitride semiconductor layer even at high temperatures, and the second nitride semiconductor layer grown thereon is also better. Of good quality.

前記第二のIII族窒化物半導体層を、GaNの層とすることが好ましい。
本発明であれば、製造が困難で、付加価値の高い、良質なGaNの自立基板を低コストで製造することができるため、好適である。
The second group III nitride semiconductor layer is preferably a GaN layer.
The present invention is preferable because it is difficult to manufacture, and a high-value-added, high-quality GaN free-standing substrate can be manufactured at low cost.

このとき、前記Inを含む第一のIII族窒化物半導体層を成長させた後、該成長させたInを含む第一のIII族窒化物半導体層上にGaNの層をMOVPE法で成長させて、該成長させたGaNの層上に前記第二のIII族窒化物半導体層としてGaNの層をHVPE法で成長させることが好ましい。
このように、Inを含む第一のIII族窒化物半導体層上にMOVPE法で結晶性良くGaNの層を成長させ、その上にHVPE法で厚いGaNの層を成長させることによって、より結晶性の良いGaNの自立基板を効率的に製造することができる。
At this time, after the first group III nitride semiconductor layer containing In is grown, a GaN layer is grown on the grown first group III nitride semiconductor layer containing In by the MOVPE method. Preferably, a GaN layer is grown as the second group III nitride semiconductor layer on the grown GaN layer by HVPE.
Thus, by growing a GaN layer with good crystallinity by the MOVPE method on the first group III nitride semiconductor layer containing In, and then growing a thick GaN layer by the HVPE method, the crystallinity can be further increased. A GaN free-standing substrate with good quality can be efficiently manufactured.

また、本発明のIII族窒化物半導体自立基板の製造方法により製造されたものであることを特徴とするIII族窒化物半導体自立基板を提供する。
このように、本発明の製造方法により製造されたIII族窒化物半導体自立基板であれば、安価で、高品質の自立基板となる。
Also provided is a group III nitride semiconductor free-standing substrate manufactured by the method for manufacturing a group III nitride semiconductor free-standing substrate of the present invention.
As described above, the group III nitride semiconductor free-standing substrate manufactured by the manufacturing method of the present invention is inexpensive and high-quality free-standing substrate.

また、本発明は、III族窒化物半導体層をエピタキシャル成長させるための基板であって、少なくとも、前記III族窒化物半導体層をエピタキシャル成長させる側の基材上の表面に、Inを含むIII族窒化物半導体の単結晶層を有するものであることを特徴とするIII族窒化物半導体層成長用基板を提供する。
このような、III族窒化物半導体層成長用基板であれば、Inを含むIII族窒化物半導体の単結晶層上に良質のIII族窒化物半導体層を成長させることができ、その後の剥離も容易であるため、簡便に高品質のIII族窒化物半導体自立基板を製造することができる。
Further, the present invention is a substrate for epitaxially growing a group III nitride semiconductor layer, and at least a group III nitride containing In on the surface of the base material on the side on which the group III nitride semiconductor layer is epitaxially grown Provided is a substrate for growing a group III nitride semiconductor layer, characterized by having a semiconductor single crystal layer.
With such a group III nitride semiconductor layer growth substrate, a high-quality group III nitride semiconductor layer can be grown on a single crystal layer of a group III nitride semiconductor containing In, and subsequent peeling is also possible. Since it is easy, a high-quality group III nitride semiconductor free-standing substrate can be easily manufactured.

このとき、前記Inを含むIII族窒化物半導体の単結晶層上に、MOVPE法で成長されたGaNの層を有するものであることが好ましい。
このような、MOVPE法で剥離が生じない程度に比較的低温で成長されたGaNの層を有するものであれば、そのGaNの層上に、より良質のGaNの層を厚く効率的に成長させることができるため、より高品質のIII族窒化物半導体自立基板を製造することができる。
At this time, it is preferable to have a GaN layer grown by the MOVPE method on the single crystal layer of the group III nitride semiconductor containing In.
If the MOVPE method has a GaN layer grown at a relatively low temperature to the extent that peeling does not occur, a higher quality GaN layer is grown thickly and efficiently on the GaN layer. Therefore, a higher-quality group III nitride semiconductor free-standing substrate can be manufactured.

以上のように、本発明の製造方法又はIII族窒化物半導体層成長用基板によれば、簡便なプロセスにより高品質のIII族窒化物半導体自立基板を低コストで製造することができる。   As described above, according to the manufacturing method or the group III nitride semiconductor layer growth substrate of the present invention, a high-quality group III nitride semiconductor free-standing substrate can be manufactured at a low cost by a simple process.

本発明のIII族窒化物半導体自立基板の製造方法の実施態様の一例を示すフロー図である。It is a flowchart which shows an example of the embodiment of the manufacturing method of the group III nitride semiconductor self-supporting substrate of this invention. 本発明のIII族窒化物半導体層成長用基板の一例を示す概略図である。It is the schematic which shows an example of the board | substrate for group III nitride semiconductor layer growth of this invention. 本発明のIII族窒化物半導体層成長用基板の他の一例を示す概略図である。It is the schematic which shows another example of the board | substrate for group III nitride semiconductor layer growth of this invention.

本発明の骨子は、熱的に弱いInを含むIII族窒化物半導体層を剥離層として利用することにある。剥離層として窒化物半導体の一種を用いることができるので、従来技術と比較して格別に簡易な一環プロセスの中で剥離層を組み込み、剥離を実施することが可能となる。   The gist of the present invention is to use a group III nitride semiconductor layer containing thermally weak In as a release layer. Since one type of nitride semiconductor can be used as the release layer, it is possible to incorporate the release layer in a partly simpler process compared to the prior art and perform the release.

以下、本発明のIII族窒化物半導体自立基板の製造方法及びIII族窒化物半導体層成長用基板について、実施態様の一例を、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
図1は、本発明のIII族窒化物半導体自立基板の製造方法の一例を示すフロー図である。図2、3は、本発明のIII族窒化物半導体層成長用基板の一例を示す概略図である。
Hereinafter, an example of the embodiment of the method for manufacturing a group III nitride semiconductor free-standing substrate and the substrate for growing a group III nitride semiconductor layer according to the present invention will be described in detail with reference to the drawings. Is not to be done.
FIG. 1 is a flowchart showing an example of a method for producing a group III nitride semiconductor free-standing substrate of the present invention. 2 and 3 are schematic views showing an example of a group III nitride semiconductor layer growth substrate of the present invention.

図2に示すように、本発明のIII族窒化物半導体層成長用基板15は、III族窒化物半導体層をエピタキシャル成長させる側の基材10上の表面にInを含むIII族窒化物半導体の単結晶層12を有する。
このような、III族窒化物半導体層成長用基板であれば、Inを含むIII族窒化物半導体の単結晶層上に良質のIII族窒化物半導体層を成長させることができ、成長後の降温によってInを含むIII族窒化物半導体の単結晶層12が剥離層として機能するため、簡便にIII族窒化物半導体自立基板を製造することができる。また、最表層が単結晶であるため、その上にIII族窒化物半導体層を結晶性良くエピタキシャル成長させることができ、成長させるIII族窒化物半導体の種類や成長方法も限定されない。また、図2に示すように、基材10上にバッファ層11が形成されてもよく、その上にInを含むIII族窒化物半導体の単結晶層12を有することにより、より良質の単結晶層が形成されるため、成長させるIII族窒化物半導体層の欠陥をより低減でき、好ましい。
As shown in FIG. 2, the substrate for growing a group III nitride semiconductor layer 15 of the present invention is a single group III nitride semiconductor containing In on the surface of the base material 10 on the side on which the group III nitride semiconductor layer is epitaxially grown. A crystal layer 12 is provided.
With such a group III nitride semiconductor layer growth substrate, a high-quality group III nitride semiconductor layer can be grown on the single crystal layer of group III nitride semiconductor containing In, and the temperature drop after the growth Thus, the group III nitride semiconductor single crystal layer 12 containing In functions as a release layer, and thus a group III nitride semiconductor free-standing substrate can be easily manufactured. In addition, since the outermost layer is a single crystal, the group III nitride semiconductor layer can be epitaxially grown with good crystallinity on it, and the type and growth method of the group III nitride semiconductor to be grown are not limited. Further, as shown in FIG. 2, a buffer layer 11 may be formed on a base material 10, and a single crystal layer 12 of a group III nitride semiconductor containing In is provided thereon, so that a single crystal of higher quality can be obtained. Since the layer is formed, defects in the group III nitride semiconductor layer to be grown can be further reduced, which is preferable.

また、図3に示すように、Inを含むIII族窒化物半導体の単結晶層12上に、MOVPE法で成長されたGaNの層16を有するIII族窒化物半導体層成長用基板15であることが好ましい。
このような、MOVPE法で剥離が生じない程度に比較的低温で成長された薄いGaNの層を有するものであれば、そのGaNの層上に、より良質のGaNの層を厚く効率的に成長させることができるため、より高品質のIII族窒化物半導体自立基板を製造することができる。このMOVPE法で成長されたGaNの層の厚さとしては、特に限定されないが、1μm以下であれば、高コストにならず、剥離も生じにくいため好ましい。
Further, as shown in FIG. 3, the substrate 15 for group III nitride semiconductor layer growth has a GaN layer 16 grown by the MOVPE method on the single crystal layer 12 of group III nitride semiconductor containing In. Is preferred.
If the MOVPE method has a thin GaN layer grown at a relatively low temperature to the extent that peeling does not occur, a higher quality GaN layer is thickly and efficiently grown on the GaN layer. Therefore, a higher-quality group III nitride semiconductor free-standing substrate can be manufactured. The thickness of the GaN layer grown by this MOVPE method is not particularly limited, but if it is 1 μm or less, it is preferable because the cost is not high and peeling does not easily occur.

本発明のIII族窒化物半導体自立基板の製造方法は、図1(a)に示すように、まず基材10となる基板を準備する。
準備する基板としては、特に限定されず、例えばサファイア基板を準備することができる。
In the method for manufacturing a group III nitride semiconductor free-standing substrate of the present invention, a substrate to be a base material 10 is first prepared as shown in FIG.
It does not specifically limit as a board | substrate to prepare, For example, a sapphire board | substrate can be prepared.

次に、図1(b)に示すように、準備した基材10上にバッファ層11を成長させることが好ましい。バッファ層11としては、特に限定されず、二層以上成長させてもよく、例えばGaNやAlN等をMOVPE法等で成長させることができる。
このように、バッファ層を成長させることで、高温時でも基材の熱膨張による歪みが第一の窒化物半導体層に伝わりにくく、良質な層が形成され、その上に成長させられる第二の窒化物半導体層も欠陥が低減された、より良好なものが形成される。
Next, as shown in FIG.1 (b), it is preferable to grow the buffer layer 11 on the prepared base material 10. FIG. The buffer layer 11 is not particularly limited, and two or more layers may be grown. For example, GaN, AlN, or the like can be grown by the MOVPE method or the like.
In this way, by growing the buffer layer, the strain due to the thermal expansion of the base material is not easily transmitted to the first nitride semiconductor layer even at high temperatures, and a high-quality layer is formed and grown on the second layer. A better nitride semiconductor layer with reduced defects is formed.

次に、図1(c)に示すように、基材10のバッファ層11上に、Inを含む第一のIII族窒化物半導体層12を第一の成長温度でエピタキシャル成長させることにより、本発明のIII族窒化物半導体層成長用基板15を作製する。
このとき成長させる第一のIII族窒化物半導体層としては、Inを含むものであれば特に限定されず、例えばInGa1−xN(x>0)の層をMOVPE法によりエピタキシャル成長させることが好ましい。InGa1−xN(x>0)の層であれば、基材上に比較的簡易に成長させることができる。
また、第一のIII族窒化物半導体層12中のInの濃度としては、Inの濃度が高い方が、より良好な剥離が生じるため好ましい。
Next, as shown in FIG. 1C, the first group III nitride semiconductor layer 12 containing In is epitaxially grown on the buffer layer 11 of the base material 10 at the first growth temperature. The substrate for growing a group III nitride semiconductor layer 15 is prepared.
The first group III nitride semiconductor layer grown at this time is not particularly limited as long as it contains In. For example, an In x Ga 1-x N (x> 0) layer is epitaxially grown by the MOVPE method. Is preferred. If it is a layer of In x Ga 1-x N (x> 0), it can be grown on the substrate relatively easily.
In addition, as the In concentration in the first group III nitride semiconductor layer 12, a higher In concentration is preferable because more excellent peeling occurs.

このとき、Inを含む第一のIII族窒化物半導体層12を成長させる方法として、MOVPE法であれば、熱膨張係数の異なる基材上に、比較的低温で良好なInを含む第一のIII族窒化物半導体層を成長させることができるため好ましい。また、第一の成長温度としても特に限定されず、例えば600℃〜800℃とすることができ、低温であるほど、基材上に、より良好なIII族窒化物半導体層が形成される。   At this time, if the MOVPE method is used as a method for growing the first group III nitride semiconductor layer 12 containing In, the first In containing good In at a relatively low temperature on a substrate having a different thermal expansion coefficient. This is preferable because a group III nitride semiconductor layer can be grown. Also, the first growth temperature is not particularly limited and can be set to, for example, 600 ° C. to 800 ° C. The lower the temperature, the better the group III nitride semiconductor layer is formed on the substrate.

次に、図1(d)に示すように、成長させたInを含む第一のIII族窒化物半導体層12の上に第二のIII族窒化物半導体層13を第一の成長温度より高温の第二の成長温度でエピタキシャル成長させる。
第一のIII族窒化物半導体層に含まれるInは熱に弱いため、第二のIII族窒化物半導体層の高温下での成長時には良好なバッファ層として機能し、また、単結晶である第一のIII族窒化物半導体層上に成長させることができるため、欠陥が低減されたIII族窒化物半導体層を成長させることができる。
Next, as shown in FIG. 1D, the second group III nitride semiconductor layer 13 is formed on the grown first group III nitride semiconductor layer 12 containing In at a temperature higher than the first growth temperature. The epitaxial growth is performed at the second growth temperature.
Since In contained in the first group III nitride semiconductor layer is vulnerable to heat, the second group III nitride semiconductor layer functions as a good buffer layer when grown at a high temperature, and is a single crystal. Since it can be grown on one group III nitride semiconductor layer, a group III nitride semiconductor layer with reduced defects can be grown.

このとき、第二のIII族窒化物半導体層13としては、特には限定されず、AlGaNやAlN等の層とすることができるが、GaNの層とすることが好ましい。
本発明であれば、製造が困難で、付加価値の高い、良質なGaNの自立基板を低コストで製造することができるため、好適である。
At this time, the second group III nitride semiconductor layer 13 is not particularly limited and may be a layer of AlGaN or AlN, but is preferably a GaN layer.
The present invention is preferable because it is difficult to manufacture, and a high-value-added, high-quality GaN free-standing substrate can be manufactured at low cost.

このとき第二のIII族窒化物半導体層を成長させる方法としては、特に限定されないが、HVPE法で成長させることが好ましい。
HVPE法であれば、厚膜のIII族窒化物半導体層を効率的に成長させることができるため、剥離して自立基板を製造するのに好適である。
At this time, the method for growing the second group III nitride semiconductor layer is not particularly limited, but it is preferably grown by the HVPE method.
If the HVPE method is used, a thick group III nitride semiconductor layer can be efficiently grown.

また、成長させたInを含む第一のIII族窒化物半導体層12上にGaNの層16をMOVPE法で成長させて、図3に示すようなIII族窒化物半導体層成長用基板15を作製し、そのGaNの層16上に第二のIII族窒化物半導体層13としてGaNの層をHVPE法で成長させることが好ましい。
このように、Inを含む第一のIII族窒化物半導体層上にMOVPE法により比較的低温で結晶性良くGaNの層を成長させて、その上にHVPE法で厚いGaNの層を成長させることにより、GaNの厚い層を同じ組成の層上に成長させることができるため、より結晶性良く成長させることができる。このときの、MOVPE法により成長させるGaNの層16の厚さとしては、特に限定されず、1μm以下であれば、高コストにならず、剥離を起こさないように成長させることができるため好ましい。
なお、このMOVPE法で成長させる薄い層としては、GaN以外も成長させることができ、特に限定されないが、第二のIII族窒化物半導体層として成長させる層と同じ組成の層を成長させることが好ましい。
Also, a GaN layer 16 is grown on the grown first group III nitride semiconductor layer 12 containing In by the MOVPE method, and a group 15 nitride semiconductor layer growth substrate 15 as shown in FIG. 3 is produced. Preferably, a GaN layer is grown on the GaN layer 16 as the second group III nitride semiconductor layer 13 by the HVPE method.
In this way, a GaN layer is grown on the first group III nitride semiconductor layer containing In by MOVPE method at a relatively low temperature with good crystallinity, and a thick GaN layer is grown thereon by HVPE method. Thus, since a thick layer of GaN can be grown on a layer having the same composition, it can be grown with better crystallinity. The thickness of the GaN layer 16 grown by the MOVPE method at this time is not particularly limited, and if it is 1 μm or less, it is preferable because it can be grown without causing high cost and without causing peeling.
In addition, as a thin layer grown by this MOVPE method, other than GaN can be grown and is not particularly limited, but a layer having the same composition as the layer grown as the second group III nitride semiconductor layer can be grown. preferable.

次に、図1(e)に示すように、成長させた第二のIII族窒化物半導体層13を基材10から剥離させることにより、第二のIII族窒化物半導体からなる自立基板14を製造する。このとき、第二のIII族窒化物半導体層13成長後の降温時に自然剥離するか、又は降温時に自然剥離しなかった場合でも、降温後でも容易に剥離させることができる。
このように、Inを含む第一のIII族窒化物半導体層が剥離層として機能するため、従来のような金属膜の形成やパターン形成等の複雑な工程が不要であり、上記のように単結晶上に結晶性良く成長した第二のIII族窒化物半導体層を自然剥離させることができるため、高品質のIII族窒化物半導体の自立基板を簡便な方法で効率的に得ることができる。
Next, as shown in FIG. 1E, the grown second group III nitride semiconductor layer 13 is peeled off from the base material 10, whereby the freestanding substrate 14 made of the second group III nitride semiconductor is formed. To manufacture. At this time, even when the temperature is lowered after the second group III nitride semiconductor layer 13 is grown, it can be peeled off naturally, or even if it is not naturally peeled off when the temperature is lowered, it can be easily peeled even after the temperature is lowered.
As described above, since the first group III nitride semiconductor layer containing In functions as a release layer, a complicated process such as formation of a metal film or pattern formation as in the related art is not necessary, and a single process as described above is performed. Since the second group III nitride semiconductor layer grown with good crystallinity on the crystal can be naturally peeled, a high-quality group III nitride semiconductor free-standing substrate can be efficiently obtained by a simple method.

以上のような本発明の製造方法により製造されたIII族窒化物半導体自立基板14であれば、安価で結晶性の良いIII族窒化物半導体自立基板となる。   The group III nitride semiconductor free-standing substrate 14 manufactured by the manufacturing method of the present invention as described above is a group III nitride semiconductor free-standing substrate that is inexpensive and has good crystallinity.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
まず、TMGa、TMIn、NHを原料に用いてMOVPE法によりサファイア基板上に500〜600℃程度の低温でGaN第一バッファ層を成長させた後、成長温度を1000〜1100℃に上げてGaN第二バッファ層を成長させた。
その後、成長温度を600〜800℃程度に下げて、第一のIII族窒化物半導体層としてInGaN/GaN多重量子井戸構造を成長させた。このMOVPEウェーハを洗浄した後、HVPE装置に仕込んで第二のIII族窒化物半導体層として厚いGaN膜を1000℃で成長させた。HVPE装置中ではIII族元素のハロゲン化物であるGaClとNHを原料として、例えば100(μm/h)程度の高速でGaN層を成長させることが可能である。本実施例では、このような成長速度で約800μmの厚膜GaN層を成長させ、ウェーハをHVPE装置から取り出したところ、サファイア基板と厚膜GaN層が容易に剥離して、GaNの自立基板が得られた。
発明者らが鋭意検討した結果、MOVPE法で成長させたInGaN層中のIn濃度が高い程、より良好な剥離が生じることが判明した。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
(Example)
First, a GaN first buffer layer is grown on a sapphire substrate at a low temperature of about 500 to 600 ° C. on a sapphire substrate by MOVPE using TMGa, TMIn, and NH 3 as raw materials, and then the growth temperature is increased to 1000 to 1100 ° C. A second buffer layer was grown.
Thereafter, the growth temperature was lowered to about 600 to 800 ° C., and an InGaN / GaN multiple quantum well structure was grown as the first group III nitride semiconductor layer. After the MOVPE wafer was cleaned, a thick GaN film was grown at 1000 ° C. as a second group III nitride semiconductor layer by charging into the HVPE apparatus. In the HVPE apparatus, it is possible to grow a GaN layer at a high speed of, for example, about 100 (μm / h) using GaCl and NH 3 which are halides of group III elements as raw materials. In this example, a thick GaN layer of about 800 μm was grown at such a growth rate, and when the wafer was taken out of the HVPE apparatus, the sapphire substrate and the thick GaN layer were easily peeled off, and a GaN free-standing substrate was formed. Obtained.
As a result of intensive studies by the inventors, it was found that the higher the In concentration in the InGaN layer grown by the MOVPE method, the better the peeling.

(比較例)
実施例と同様に、但し、InGaN/GaN多重量子井戸構造を成長させないで、Inを含まないGaNバッファ層上に厚膜GaN層をHVPE装置で成長させた。
この場合、100μm程度の膜厚を成長させた時点でクラックが発生してウェーハが割れる結果となった。
(Comparative example)
As in the example, except that an InGaN / GaN multiple quantum well structure was not grown, a thick GaN layer was grown on the GaN buffer layer not containing In by an HVPE apparatus.
In this case, when the film thickness of about 100 μm was grown, a crack occurred and the wafer was broken.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

10…基材、 11…バッファ層、
12…Inを含む第一のIII族窒化物半導体層、
13…第二のIII族窒化物半導体層、 14…自立基板、
15…III族窒化物半導体層成長用基板、
16…GaNの層。
10 ... base material, 11 ... buffer layer,
12... First Group III nitride semiconductor layer containing In,
13 ... Second group III nitride semiconductor layer, 14 ... Free-standing substrate,
15 ... Group III nitride semiconductor layer growth substrate,
16: GaN layer.

Claims (9)

少なくとも、基材上にInを含む第一のIII族窒化物半導体層を第一の成長温度でエピタキシャル成長させた後、該成長させた第一のIII族窒化物半導体層の上に第二のIII族窒化物半導体層を第一の成長温度より高温の第二の成長温度でエピタキシャル成長させて、該成長させた第二のIII族窒化物半導体層を前記基材から剥離させることにより第二のIII族窒化物半導体からなる自立基板を製造することを特徴とするIII族窒化物半導体自立基板の製造方法。   At least a first group III nitride semiconductor layer containing In on the substrate is epitaxially grown at the first growth temperature, and then the second group III nitride semiconductor layer is grown on the grown first group III nitride semiconductor layer. The group III nitride semiconductor layer is epitaxially grown at a second growth temperature higher than the first growth temperature, and the grown second group III nitride semiconductor layer is peeled off from the base material to form a second III A method of manufacturing a group III nitride semiconductor free-standing substrate, comprising manufacturing a free-standing substrate made of a group nitride semiconductor. 前記Inを含む第一のIII族窒化物半導体層を、InGa1−xN(x>0)の層とすることを特徴とする請求項1に記載のIII族窒化物半導体自立基板の製造方法。 2. The group III nitride semiconductor free-standing substrate according to claim 1, wherein the first group III nitride semiconductor layer containing In is a layer of In x Ga 1-x N (x> 0). Production method. 前記Inを含む第一のIII族窒化物半導体層をMOVPE法で成長させて、前記第二のIII族窒化物半導体層をHVPE法で成長させることを特徴とする請求項1又は請求項2に記載のIII族窒化物半導体自立基板の製造方法。   The first group III nitride semiconductor layer containing In is grown by a MOVPE method, and the second group III nitride semiconductor layer is grown by an HVPE method. The manufacturing method of the group III nitride semiconductor free-standing substrate of description. 前記基材上にバッファ層を成長させた後、前記成長させたバッファ層上に前記Inを含む第一のIII族窒化物半導体層をエピタキシャル成長させることを特徴とする請求項1乃至請求項3のいずれか一項に記載のIII族窒化物半導体自立基板の製造方法。   The first group III nitride semiconductor layer containing In is epitaxially grown on the grown buffer layer after the buffer layer is grown on the substrate. The manufacturing method of the group III nitride semiconductor free-standing substrate as described in any one of Claims. 前記第二のIII族窒化物半導体層を、GaNの層とすることを特徴とする請求項1乃至請求項4のいずれか一項に記載のIII族窒化物半導体自立基板の製造方法。   The method for producing a group III nitride semiconductor free-standing substrate according to any one of claims 1 to 4, wherein the second group III nitride semiconductor layer is a GaN layer. 前記Inを含む第一のIII族窒化物半導体層を成長させた後、該成長させたInを含む第一のIII族窒化物半導体層上にGaNの層をMOVPE法で成長させて、該成長させたGaNの層上に前記第二のIII族窒化物半導体層としてGaNの層をHVPE法で成長させることを特徴とする請求項1乃至請求項5のいずれか一項に記載のIII族窒化物半導体自立基板の製造方法。   After the first group III nitride semiconductor layer containing In is grown, a GaN layer is grown on the grown first group III nitride semiconductor layer containing In by the MOVPE method. 6. The group III nitriding according to claim 1, wherein a GaN layer is grown as the second group III nitride semiconductor layer on the GaN layer formed by HVPE. Method for manufacturing a semiconductor substrate. 請求項1乃至請求項6のいずれか一項に記載のIII族窒化物半導体自立基板の製造方法により製造されたものであることを特徴とするIII族窒化物半導体自立基板。   A group III nitride semiconductor self-supporting substrate manufactured by the method for manufacturing a group III nitride semiconductor self-supporting substrate according to any one of claims 1 to 6. III族窒化物半導体層をエピタキシャル成長させるための基板であって、少なくとも、前記III族窒化物半導体層をエピタキシャル成長させる側の基材上の表面に、Inを含むIII族窒化物半導体の単結晶層を有するものであることを特徴とするIII族窒化物半導体層成長用基板。   A substrate for epitaxially growing a group III nitride semiconductor layer, wherein a single crystal layer of a group III nitride semiconductor containing In is formed on at least a surface of a substrate on a side on which the group III nitride semiconductor layer is epitaxially grown A substrate for growing a group III nitride semiconductor layer, comprising: 前記Inを含むIII族窒化物半導体の単結晶層上に、MOVPE法で成長されたGaNの層を有するものであることを特徴とする請求項8に記載のIII族窒化物半導体層成長用基板。   9. The substrate for growing a group III nitride semiconductor layer according to claim 8, comprising a GaN layer grown by a MOVPE method on the single crystal layer of the group III nitride semiconductor containing In. .
JP2009082979A 2009-03-30 2009-03-30 Method for producing group iii nitride semiconductor free-standing substrate and substrate for growing group iii nitride semiconductor layer Pending JP2010235347A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009082979A JP2010235347A (en) 2009-03-30 2009-03-30 Method for producing group iii nitride semiconductor free-standing substrate and substrate for growing group iii nitride semiconductor layer
PCT/JP2010/001388 WO2010116596A1 (en) 2009-03-30 2010-03-02 Method for manufacturing free-standing iii nitride semiconductor substrate, and substrate for growing iii nitride semiconductor layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009082979A JP2010235347A (en) 2009-03-30 2009-03-30 Method for producing group iii nitride semiconductor free-standing substrate and substrate for growing group iii nitride semiconductor layer

Publications (1)

Publication Number Publication Date
JP2010235347A true JP2010235347A (en) 2010-10-21

Family

ID=42935896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009082979A Pending JP2010235347A (en) 2009-03-30 2009-03-30 Method for producing group iii nitride semiconductor free-standing substrate and substrate for growing group iii nitride semiconductor layer

Country Status (2)

Country Link
JP (1) JP2010235347A (en)
WO (1) WO2010116596A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009003A (en) * 2000-06-23 2002-01-11 Ricoh Co Ltd Semiconductor substrate, its manufacturing method, and light emitting device
JP2003178984A (en) * 2001-03-27 2003-06-27 Nec Corp Iii group nitride semiconductor substrate, and method for manufacturing it
JP2009152305A (en) * 2007-12-19 2009-07-09 Furukawa Electric Co Ltd:The Method for manufacturing nitride semiconductor single-crystal substrate, and nitride semiconductor single-crystal substrate and substrate for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009003A (en) * 2000-06-23 2002-01-11 Ricoh Co Ltd Semiconductor substrate, its manufacturing method, and light emitting device
JP2003178984A (en) * 2001-03-27 2003-06-27 Nec Corp Iii group nitride semiconductor substrate, and method for manufacturing it
JP2009152305A (en) * 2007-12-19 2009-07-09 Furukawa Electric Co Ltd:The Method for manufacturing nitride semiconductor single-crystal substrate, and nitride semiconductor single-crystal substrate and substrate for manufacturing the same

Also Published As

Publication number Publication date
WO2010116596A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP4581490B2 (en) III-V group nitride semiconductor free-standing substrate manufacturing method and III-V group nitride semiconductor manufacturing method
JP4932121B2 (en) Method for manufacturing group III-V nitride semiconductor substrate
JP4735949B2 (en) Method for producing group III-V nitride semiconductor crystal and method for producing group III-V nitride semiconductor substrate
JP5328931B2 (en) Low defect density free-standing gallium nitride substrate manufacturing method and device manufactured thereby
JP3821232B2 (en) Porous substrate for epitaxial growth, method for producing the same, and method for producing group III nitride semiconductor substrate
TWI437637B (en) Method for manufacturing gallium nitride single crystalline substrate using self-split
JP5244487B2 (en) Gallium nitride growth substrate and method for manufacturing gallium nitride substrate
JP4672753B2 (en) GaN-based nitride semiconductor free-standing substrate manufacturing method
JP2002343728A (en) Gallium nitride crystalline substrate and method for manufacturing the same
US8158496B2 (en) Method for preparing compound semiconductor substrate
JP2006128626A (en) Nitride semiconductor device and its manufacturing method
JP2007070154A (en) Group iii-v nitride-based semiconductor substrate and its manufacturing method
JP2010056555A (en) Semiconductor structure and method for manufacturing the same
JP2011042542A (en) Method for producing group iii nitride substrate, and group iii nitride substrate
JP2009167057A (en) Method for manufacturing nitride semiconductor substrate
JP5056299B2 (en) Nitride semiconductor base substrate, nitride semiconductor multilayer substrate, and method of manufacturing nitride semiconductor base substrate
JP2011051849A (en) Nitride semiconductor self-supporting substrate and method for manufacturing the same
JP2009208991A (en) Method for producing nitride semiconductor substrate
JP2009018975A (en) Manufacturing method of nonpolar plane group iii nitride single crystal
JP5233894B2 (en) Manufacturing method of nitride semiconductor free-standing substrate
JP2017226584A (en) Production method of self-standing substrate
JP2005203418A (en) Nitride compound semiconductor substrate and its manufacturing method
WO2010116596A1 (en) Method for manufacturing free-standing iii nitride semiconductor substrate, and substrate for growing iii nitride semiconductor layer
JP4810517B2 (en) Group III-V nitride semiconductor substrate
JP2009084136A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110214

A131 Notification of reasons for refusal

Effective date: 20121218

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20130215

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20130702

Free format text: JAPANESE INTERMEDIATE CODE: A02