JP2010228072A - Coated cbn sintered body tool restricting damage to cutting edge lateral boundary part - Google Patents
Coated cbn sintered body tool restricting damage to cutting edge lateral boundary part Download PDFInfo
- Publication number
- JP2010228072A JP2010228072A JP2009080978A JP2009080978A JP2010228072A JP 2010228072 A JP2010228072 A JP 2010228072A JP 2009080978 A JP2009080978 A JP 2009080978A JP 2009080978 A JP2009080978 A JP 2009080978A JP 2010228072 A JP2010228072 A JP 2010228072A
- Authority
- JP
- Japan
- Prior art keywords
- cbn
- cutting
- sintered body
- cutting edge
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 122
- 230000006378 damage Effects 0.000 title claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 31
- 239000013078 crystal Substances 0.000 claims abstract description 28
- 239000002245 particle Substances 0.000 claims abstract description 26
- 239000011248 coating agent Substances 0.000 claims description 19
- 238000000576 coating method Methods 0.000 claims description 19
- 150000004767 nitrides Chemical class 0.000 claims description 14
- 239000011230 binding agent Substances 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 230000000737 periodic effect Effects 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 150000001247 metal acetylides Chemical class 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 abstract description 6
- 239000000956 alloy Substances 0.000 abstract description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 5
- 238000003754 machining Methods 0.000 abstract description 5
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- 230000000979 retarding effect Effects 0.000 abstract 1
- 238000007733 ion plating Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 229910001018 Cast iron Inorganic materials 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 229910010037 TiAlN Inorganic materials 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 238000010891 electric arc Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- -1 TiCN Inorganic materials 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 229910000816 inconels 718 Inorganic materials 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910001060 Gray iron Inorganic materials 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910010038 TiAl Inorganic materials 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910001247 waspaloy Inorganic materials 0.000 description 1
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
Description
本発明は、立方晶窒化硼素(cBN)を主成分とした焼結体を基材とする刃先横境界部の損傷を抑制する被覆cBN焼結体工具に関する。 The present invention relates to a coated cBN sintered body tool that suppresses damage to the cutting edge lateral boundary portion, which is made of a sintered body mainly composed of cubic boron nitride (cBN).
cBN焼結体工具による難削材の加工では刃先の横境界部が損傷し、工具寿命に至る場合がある。例えばインコネル718やワスパロイ等の耐熱合金の切削加工では、cBN含有率が高く、W,Coの硼化物を結合相の主体としたcBN焼結体工具が用いられるが、このとき、刃先の横境界部が溝状の摩耗が発達する等、選択的に損傷し、工具寿命に至る。また、鋳鉄の黒皮粗加工では鋳鉄の表面がチル化されているため、刃先の横境界部に摩耗が発達し、工具寿命に至る。 When machining difficult-to-cut materials with a cBN sintered body tool, the lateral boundary portion of the cutting edge may be damaged, leading to a tool life. For example, in the cutting of heat-resistant alloys such as Inconel 718 and Waspaloy, a cBN sintered body tool having a high cBN content and mainly containing W and Co borides as a binder phase is used. The part is selectively damaged, such as the development of groove-shaped wear, leading to the tool life. Moreover, since the surface of the cast iron is chilled in the black-cut roughing of cast iron, wear develops at the lateral boundary portion of the cutting edge, leading to the tool life.
また、特許文献1にはcBN含有率が20体積%以上のcBN焼結体にTiとAlを主成分とする硬質被膜を0.5μmから15μmの厚さで被覆し、焼入鋼切削加工での耐摩耗性を改善した工具が開示されているが、このような被覆cBN焼結体工具でも、上記の耐熱合金や鋳鉄の黒皮粗加工ではその横境界部の損傷が激しく、短寿命であった。 Patent Document 1 discloses that a cBN sintered body having a cBN content of 20% by volume or more is coated with a hard film mainly composed of Ti and Al in a thickness of 0.5 μm to 15 μm, and the hardened steel is cut by cutting. A tool with improved wear resistance is disclosed, but even in such a coated cBN sintered body tool, the above-mentioned heat-resistant alloy or cast iron has a severe damage on the lateral boundary portion in the rough skin machining, and has a short life. there were.
本発明は、鋳鉄の黒皮粗加工や、耐熱合金等の難削材料の切削加工時において、横切れ刃境界部を含む横切れ刃部分の損傷を低減し、長寿命の被覆cBN焼結体工具を低コストで提供することを課題とする。 The present invention provides a long-life coated cBN sintered body tool that reduces damage to the side cutting edge portion including the boundary portion of the side cutting edge during rough machining of cast iron and cutting of difficult-to-cut materials such as heat-resistant alloys. The problem is to provide at low cost.
本発明者等は上記課題を解決すべく鋭意検討を重ねた結果、横切れ刃境界部を含む横切れ刃部分をcBN単結晶体により構成することが有効であることを見出し、本発明を完成させた。
本発明は以下の特徴を有する。
(1)本発明に係る切削加工用被覆cBN焼結体工具は、cBN粒子を含有する焼結体を切れ刃部分とする刃先横境界部の損傷を抑制する被覆cBN焼結体工具であって、該焼結体のcBN含有率が20−99体積%であり、被削材と接触する切れ刃部分において、切込みが最大となる点から、送り方向の切れ刃が切り込み量のx%(60≦x≦99)からy%(101≦y)までがcBN単結晶体で形成され、被削材と接触する他の切れ刃部分がcBN多結晶体で形成され、少なくとも前記cBN単結晶体および前記cBN多結晶体の表面が硬質皮膜によって被覆され、前記硬質被膜の膜厚が、0.01μm以上10μm以下であることを特徴とする。
(2)上記(1)に記載の被覆cBN焼結体工具であって、前記硬質被膜が、周期律表4a、5a、6a族元素、及びAl、Si、Bの中から選択される一種以上の元素とC、N及びOの中から選択される一種以上の元素とからなる層を有することを特徴とする。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that it is effective to configure the side cutting edge portion including the side cutting edge boundary portion with a cBN single crystal, and completed the present invention. .
The present invention has the following features.
(1) The coated cBN sintered body tool for cutting according to the present invention is a coated cBN sintered body tool that suppresses damage to the cutting edge lateral boundary portion using a sintered body containing cBN particles as a cutting edge portion. The cBN content of the sintered body is 20-99% by volume, and the cutting edge in the feed direction is x% (60% of the cutting amount) in terms of the maximum cutting at the cutting edge portion in contact with the work material. ≦ x ≦ 99) to y% (101 ≦ y) are formed of cBN single crystal, and the other cutting edge portion that contacts the work material is formed of cBN polycrystal, and at least the cBN single crystal and The surface of the cBN polycrystal is coated with a hard film, and the film thickness of the hard film is 0.01 μm or more and 10 μm or less.
(2) The coated cBN sintered body tool according to (1), wherein the hard coating is one or more selected from the group consisting of elements 4a, 5a, and 6a in the periodic table, and Al, Si, and B. And a layer composed of one or more elements selected from C, N, and O.
(3)上記(1)又は(2)に記載の被覆cBN焼結体工具であって、前記焼結体の結合相が、周期律表4a、5a、6a族元素の窒化物、炭化物、硼化物、酸化物、及びこれらの固容体からなる群から選択される少なくとも一種と、Alの窒化物、硼化物、酸化物、及びこれらの固容体からなる群から選択される少なくとも一種とを含む、もしくは、W、Co、Zr、Ni、Cr、Alのうち少なくとも1種以上の窒化物、炭化物、炭窒化物、硼化物、酸化物からなる、もしくはAlの窒化物、硼化物、酸化物のうち少なくとも1種以上からなる、ことを特徴とする。
(4)上記(1)〜(3)のいずれか一に記載の被覆cBN焼結体工具であって、被削材と接触する切れ刃のうち、切込みが最大となる点から、送り方向の切れ刃が、切り込み量のx%(60≦x≦99)からy%(101≦y)までがcBN単結晶体で形成され、このcBN単結晶体の粒子径が50μm以上であることを特徴とする。
(5)上記(1)〜(3)のいずれか一に記載の被覆cBN焼結体工具であって、被削材と接触する切れ刃のうち、切込みが最大となる点から、送り方向の切れ刃が、切り込み量のx%(60≦x≦99)からy%(101≦y)までがcBN単結晶体で形成され、このcBN単結晶体の粒子径が100μm以上であることを特徴とする。
(3) The coated cBN sintered body tool according to the above (1) or (2), wherein a binder phase of the sintered body is a nitride, carbide, boron of the periodic table 4a, 5a, 6a group elements And at least one selected from the group consisting of fluorides, oxides, and solid solutions thereof, and at least one selected from the group consisting of Al nitrides, borides, oxides, and solid solutions thereof, Or at least one of nitrides, carbides, carbonitrides, borides and oxides of W, Co, Zr, Ni, Cr and Al, or Al nitrides, borides and oxides It consists of at least 1 or more types.
(4) The coated cBN sintered body tool according to any one of the above (1) to (3), wherein the cutting direction in the feed direction is the largest among the cutting edges that come into contact with the work material. The cutting edge is formed of a cBN single crystal from x% (60 ≦ x ≦ 99) to y% (101 ≦ y) of the cut amount, and the particle size of the cBN single crystal is 50 μm or more. And
(5) The coated cBN sintered body tool according to any one of the above (1) to (3), wherein the cutting direction in the feed direction is the largest among the cutting edges that come into contact with the work material. The cutting edge is formed of a cBN single crystal from x% (60 ≦ x ≦ 99) to y% (101 ≦ y) of the cut amount, and the particle size of the cBN single crystal is 100 μm or more. And
耐熱合金の切削では切りくず厚みが厚い横境界部で切りくずが加工硬化により高硬度となり、この切りくずが接触する横境界部で損傷が発達する。鋳鉄の黒皮粗加工では、鋳鉄の表面が鋳造時に急冷されチル化して高硬度となっており、チル化された組織と切削する横境界部で損傷が発達する。これら横境界部が損傷する原因は、結合相粒子自体もしくはcBN粒子と結合相の粒界、もしくは、cBN粒子同士の粒界が、切削中に横境界にかかる負荷により損傷し、cBN粒子の脱落が進展するためである。したがって、本発明のcBN焼結体工具は負荷がかかる横切れ刃境界部が強度に優れた単一のcBN粒子から構成されているため、上記の横切れ刃の損傷が抑制され、工具寿命の大幅な改善を可能とする。 In the cutting of a heat-resistant alloy, the chips become hard due to work hardening at the lateral boundary portion where the chip thickness is thick, and damage develops at the lateral boundary portion where the chip contacts. In the rough black machining of cast iron, the surface of the cast iron is rapidly cooled at the time of casting and chilled to have high hardness, and damage develops at the chilled structure and the lateral boundary portion to be cut. The cause of damage to these lateral boundaries is that the bonded phase particles themselves or the grain boundaries between the cBN particles and the bonded phase, or the grain boundaries between the cBN particles are damaged by the load applied to the lateral boundaries during cutting, and the cBN particles fall off. This is because of progress. Therefore, since the cBN sintered body tool of the present invention is composed of a single cBN particle having excellent strength at the side cutting edge boundary where the load is applied, the damage of the side cutting edge is suppressed, and the tool life is greatly increased. Enable improvement.
図1に示すように、本発明に係る切削加工用被覆cBN焼結体工具は、被削材と接触する切れ刃部分において、送り方向の切れ刃が、切込みが最大となる点から、切り込み量のx%(60≦x≦99)からy%(101≦y)までがcBN単結晶体で形成され、被削材と接触する他の切れ刃部分がcBN多結晶体で形成され、少なくとも前記cBN単結晶体および前記cBN多結晶体の表面が硬質皮膜によって被覆されていることを特徴とする。換言すれば、切削加工時に横切れ刃境界部となる切れ刃部分がcBN単結晶体であり、その他の切れ刃部分がcBN多結晶体で形成されていることを特徴とする。
cBN単結晶体はダイヤモンドに次ぐ非常に優れた高度と強度を有する。このため、横境界部で発生する切りくずが加工効果により硬度が高くなり刃先を攻撃する耐熱合金の加工や、横境界部分で表面層がチル化され高硬度となっている鋳鉄の黒皮粗加工においても、横切れ刃境界部の損傷を抑制することが可能となる。
As shown in FIG. 1, the coated cBN sintered body tool for cutting according to the present invention has a cutting amount from the point that the cutting edge in the feed direction has the maximum cutting depth at the cutting edge portion in contact with the work material. X% (60 ≦ x ≦ 99) to y% (101 ≦ y) of cBN is formed of a cBN single crystal, and the other cutting edge portion in contact with the work material is formed of a cBN polycrystal. The cBN single crystal and the surface of the cBN polycrystal are covered with a hard film. In other words, the cutting edge portion that becomes the side cutting edge boundary portion during cutting is a cBN single crystal, and the other cutting edge portions are formed of a cBN polycrystal.
The cBN single crystal has very high altitude and strength after diamond. For this reason, the chip generated at the lateral boundary becomes hard due to the processing effect, and the heat-resistant alloy that attacks the cutting edge is processed. Even in the processing, it is possible to suppress damage at the boundary portion of the horizontal cutting edge.
上記の通り、本発明に係る被覆cBN焼結体工具は、横切れ刃境界部を含む横切れ刃部分が単一のcBN粒子から構成されていることを特徴とする。かかるcBN焼結体チップは、粗粒のcBN粒子と微粒のcBN粒子とを原材料として用いるcBN焼結体から切り出して作製される。すなわち、前記、横切れ刃部分が単一のcBN粒子から構成されるように、該焼結体中の粗粒のcBN粒子部分を選択して横切れ刃となるように切り出せば良い。 As described above, the coated cBN sintered body tool according to the present invention is characterized in that the side cutting edge portion including the side cutting edge boundary portion is composed of a single cBN particle. Such a cBN sintered body chip is produced by cutting out from a cBN sintered body using coarse cBN particles and fine cBN particles as raw materials. That is, the coarse cBN particle portion in the sintered body may be selected and cut to form a horizontal cutting edge so that the horizontal cutting edge portion is composed of a single cBN particle.
このとき、被削材と接触する切れ刃のうち、送り方向の切れ刃が、切り込みが最大となる点から、切り込み量のx%(60≦x≦99)からy%(101≦y)までがcBN単結晶体となるように、横切れ刃部分を構成するように選択される焼結体中のcBN粒子の粒径は、50μm以上であることが好ましい。これにより、切削時に横切れ刃となる切れ刃の大部分を強度に優れたcBN単結晶体により構成することができる。この観点から、横切れ刃を構成するcBN粒子の粒径が100μm以上であることがより好ましい。また、yの値が200以下のときに、コストが特に低くなる。 At this time, among cutting edges that come into contact with the work material, the cutting edge in the feed direction is from the point at which the cutting becomes maximum, from x% (60 ≦ x ≦ 99) to y% (101 ≦ y) of the cutting amount. It is preferable that the particle size of the cBN particles in the sintered body selected so as to constitute the side cutting edge portion is 50 μm or more so that the cBN single crystal is formed. Thereby, most of the cutting edge which becomes a horizontal cutting edge at the time of cutting can be comprised by the cBN single crystal body excellent in intensity | strength. From this viewpoint, it is more preferable that the particle size of the cBN particles constituting the side cutting edge is 100 μm or more. Further, when the value of y is 200 or less, the cost is particularly low.
cBN単結晶体は鉄族金属に対して熱的な摩耗が進行しやすいため、強度が必要な横切れ刃以外の切れ刃部分は熱的な摩耗に対して優れるcBN多結晶体とすることが好ましい。 Since the cBN single crystal body is likely to be thermally worn against the iron group metal, it is preferable that the cutting edge portion other than the side cutting edge that requires strength is a cBN polycrystalline body that is excellent against thermal wear. .
上記cBN焼結体は、cBN含有率が20−99体積%であることを特徴とする。cBNの含有率がこれらの範囲にあることにより、焼結体の強度と耐摩耗性を両立することが可能となる。
更に、焼結体の結合相が、周期律表4a、5a、6a族元素の窒化物、炭化物、硼化物、酸化物、及びこれらの固容体からなる群から選択される少なくとも一種と、Alの窒化物、硼化物、酸化物、及びこれらの固容体からなる群から選択される少なくとも一種とを含む、 もしくは、W、Co、Zr、Ni、Cr、Alのうち少なくとも1種以上の窒化物、炭化物、炭窒化物、硼化物、酸化物からなる、 もしくはAlの窒化物、硼化物、酸化物のうち少なくとも1種以上からなる、ことを特徴とする。
これらの結合材成分により、cBN焼結体の耐摩耗性及び強度を向上させることができる。当然、これらの成分以外にも不可避的に不純物が含まれていても構わない。
The cBN sintered body has a cBN content of 20 to 99% by volume. When the content of cBN is in these ranges, it is possible to achieve both the strength and wear resistance of the sintered body.
Furthermore, the bonded phase of the sintered body is at least one selected from the group consisting of nitrides, carbides, borides, oxides, and solids of the periodic table 4a, 5a, and 6a group elements, and Al. Or at least one selected from the group consisting of nitrides, borides, oxides, and solid solutions thereof, or at least one nitride of W, Co, Zr, Ni, Cr, and Al, It is characterized by being composed of carbide, carbonitride, boride, oxide, or at least one of Al nitride, boride, oxide.
With these binder components, the wear resistance and strength of the cBN sintered body can be improved. Of course, impurities other than these components may inevitably be contained.
刃先の耐摩耗性を更に向上させるために、上記工具の表面が硬質皮膜により被覆されていることが好ましい。これにより横境界部のcBN単結晶体からなる刃先部分の耐摩耗性が改善されるとともに、横切れ刃以外の刃先部分の耐摩耗性も改善される。
これは、鉄系材料を切削する場合、cBN粒子はcBNのhBNへの逆変換や化学反応といった熱的な摩耗要因により耐摩耗性が良くないが、これら熱的な摩耗をより安定な被膜により抑制することができるからである。
In order to further improve the wear resistance of the cutting edge, the surface of the tool is preferably covered with a hard coating. Thereby, the wear resistance of the cutting edge portion made of the cBN single crystal at the lateral boundary portion is improved, and the wear resistance of the cutting edge portion other than the horizontal cutting edge is also improved.
This is because, when cutting iron-based materials, cBN particles have poor wear resistance due to thermal wear factors such as reverse conversion of cBN to hBN and chemical reactions, but these thermal wear is caused by a more stable coating. This is because it can be suppressed.
被膜の成分は、十分な硬度を有して高い耐摩耗性が得られるように、周期律表4a、5a、6a族元素、及びAl、Si、Bの中から選択される一種以上の元素とC、N及びOの中から選択される一種以上の元素とからなる化合物を選択した。 The component of the coating is a periodic table 4a, 5a, 6a group element and one or more elements selected from Al, Si, B so as to obtain sufficient wear resistance and high wear resistance. A compound consisting of one or more elements selected from C, N and O was selected.
硬質被膜の好適な成分の具体例としては、TiAlN、TiCN、TiN、Al2O3、ZrN、ZrC、CrN、VN、HfN、HfCまたはHfCNが挙げられる。耐摩耗性を改善する効果はこれらのいずれの成分を含む硬質皮膜においても見られるが、特にTiAlN、TiCN、TiNを含む被膜で顕著である。
硬質被膜の構成は、単層でも多層でもいずれでも良い。多層構造とした場合、いずれかの層に上記成分の被膜が含まれていれば良い。
Specific examples of suitable components of the hard coating include TiAlN, TiCN, TiN, Al 2 O 3 , ZrN, ZrC, CrN, VN, HfN, HfC or HfCN. The effect of improving the wear resistance can be seen in a hard film containing any of these components, but is particularly remarkable in a film containing TiAlN, TiCN, or TiN.
The configuration of the hard coating may be either a single layer or a multilayer. In the case of a multi-layer structure, any layer may contain a coating of the above components.
硬質被膜の厚さは0.01μm以上10μm以下であることが好ましい。この下限値未満では耐摩耗性を改善する効果が小さくなる。逆に、10μmを超えると硬質皮膜中の残留応力の影響で基材との密着性が低下する。なお、この膜厚は、多層構造の場合、全被膜の厚さについての限定である。 The thickness of the hard coating is preferably 0.01 μm or more and 10 μm or less. Below this lower limit, the effect of improving the wear resistance becomes small. On the other hand, if it exceeds 10 μm, the adhesiveness with the base material is lowered due to the influence of the residual stress in the hard coating. This film thickness is a limitation on the thickness of the entire coating in the case of a multilayer structure.
硬質被膜の形成個所は基材表面の少なくとも一部で良い。切削工具として少なくとも切削に関与する面に被膜を形成する。切削に関与する面とは、すくい面、逃げ面、チャンファー面の少なくとも一つである。より具体的には、すくい面から逃げ面にかけての個所またはすくい面からチャンファー面を経て逃げ面にかけての個所である。特に工具が被削材と接する個所及びその近傍に被膜を形成すると有効である。 The location where the hard coating is formed may be at least part of the substrate surface. As a cutting tool, a film is formed on at least a surface related to cutting. The surface involved in cutting is at least one of a rake surface, a flank surface, and a chamfer surface. More specifically, it is a part from the rake face to the flank face or a part from the rake face to the flank face through the chamfer face. In particular, it is effective to form a coating at a location where the tool contacts the work material and in the vicinity thereof.
硬質被膜の形成手段は公知の成膜技術が利用できる。例えば、スパッタリング、イオンプレーティングなどのPVD法や、プラズマCVD法などのCVD法が利用できる。特にアークイオンプレーティング法は耐摩耗性の良好な硬質被膜を形成できる点で好ましい。耐摩耗性の良好な硬質被膜が形成できるアークイオンプレーティング法については、特開平10−68071号公報に記載されている。 A known film forming technique can be used as the means for forming the hard film. For example, a PVD method such as sputtering or ion plating, or a CVD method such as a plasma CVD method can be used. In particular, the arc ion plating method is preferable in that it can form a hard coating with good wear resistance. An arc ion plating method capable of forming a hard coating with good wear resistance is described in JP-A-10-68071.
超硬合金製のポット及びボールを用いて、TiNとAlN、Ti3Alを混合してから熱処理を施し、その後粉砕して結合材粉末を得た。次に結合材粉末と平均粒径が1μmと平均粒径が150μmのcBN粉末を混合し、熱処理を施し、Mo製容器に充填し、圧力5.3GPa、温度1,300℃で20分焼結し、cBN体積含有率が55%のcBN焼結体を得た。 Using cemented carbide pots and balls, TiN, AlN, and Ti 3 Al were mixed, heat-treated, and then pulverized to obtain a binder powder. Next, the binder powder and cBN powder having an average particle size of 1 μm and an average particle size of 150 μm are mixed, heat-treated, filled in a Mo container, and sintered at a pressure of 5.3 GPa and a temperature of 1,300 ° C. for 20 minutes. As a result, a cBN sintered body having a cBN volume content of 55% was obtained.
この焼結体を切断し、基材として超硬合金製の台金にロー材を用いて接合した後、研磨加工を実施し、その後、この表面にアークイオン式プレーティング法を用いてTiAlNの硬質皮膜を1.5μmの厚みで形成し、被覆cBN焼結体切削工具(CNGN120412)を作製した。このとき、工具の横切れ刃境界部に粗粒のcBN単結晶体が配置され、被削材と接触する切れ刃部分において、切込みが最大となる点から、送り方向の切れ刃が切り込み量のx%(60≦x≦99)からy%(101≦y)までがcBN単結晶体で形成され、被削材と接触する他の切れ刃部分がcBN多結晶体で形成され、x、yが表1に記載された値となるように焼結体中の粗粒cBN単結晶粒子の位置を確認した後、切断、接合、研磨を実施した。 After cutting this sintered body and joining it to a base metal made of cemented carbide using a brazing material as a base material, polishing is carried out, and then TiAlN plating is applied to this surface using an arc ion plating method. A hard film was formed with a thickness of 1.5 μm to prepare a coated cBN sintered body cutting tool (CNGN120212). At this time, a coarse cBN single crystal body is arranged at the boundary portion of the side cutting edge of the tool, and the cutting edge in the feed direction has a cutting amount x from the point where the cutting becomes maximum at the cutting edge portion in contact with the work material. % (60 ≦ x ≦ 99) to y% (101 ≦ y) is formed of a cBN single crystal, and the other cutting edge portion that comes into contact with the work material is formed of a cBN polycrystal, where x and y are After confirming the position of the coarse-grained cBN single crystal particles in the sintered body so as to have the values described in Table 1, cutting, joining, and polishing were performed.
硬質被膜の形成は以下のように実施した。アーク式イオンプレーティング法装置の真空容器の真空度を7×10-3Paの雰囲気とし、次にアルゴンガスを導入し、1×10-1Paの雰囲気に保持しながら、加熱ヒーターを用いて500℃まで加熱し、工具保持具に−1000Vの電圧をかけて洗浄をおこなった。引き続き、真空アーク放電によりTiAlターゲットを蒸発、イオン化させることにより、工具温度が500℃に上昇するまで、金属イオンによる工具表面クリーニングをおこなった。次に真空容器内に窒素ガスを導入し、真空容器内の圧力を2Paに保持し、真空アーク放電により金属ターゲットを蒸発、イオン化させることにより切削工具上にTiAlNの硬質被膜を形成した。このとき、工具保持具に−20から−600Vの電圧をかけておいた。 The hard coating was formed as follows. The degree of vacuum of the vacuum vessel of the arc type ion plating apparatus is set to an atmosphere of 7 × 10 −3 Pa, and then argon gas is introduced and a heater is used while maintaining the atmosphere of 1 × 10 −1 Pa. Cleaning was performed by heating to 500 ° C. and applying a voltage of −1000 V to the tool holder. Subsequently, the TiAl target was evaporated and ionized by vacuum arc discharge, and the tool surface was cleaned with metal ions until the tool temperature rose to 500 ° C. Next, nitrogen gas was introduced into the vacuum vessel, the pressure in the vacuum vessel was maintained at 2 Pa, and the metal target was evaporated and ionized by vacuum arc discharge to form a hard coating of TiAlN on the cutting tool. At this time, a voltage of −20 to −600 V was applied to the tool holder.
この被覆cBN焼結体切削工具を用いて、被削材として表面がチル化されたFCD450を用い、切削速度400m/min、切り込み1mm、送り量0.2mm/rev、wetの条件で、工具横切れ刃を形成する粗粒cBN単結晶体が切削時に被削材に接触する切れ刃のうち、切込みが最大となる点から、送り方向の切れ刃が切り込み量のx%(60≦x≦99)からy%(101≦y)までがcBN単結晶体で形成され、被削材と接触する他の切れ刃部分がcBN多結晶体で形成され、x、yが表1に記載された値となるように設定し、切削試験を実施したところ、寿命判定基準を横境界部の損傷として、表1に記載の工具寿命が得られた。 Using this coated cBN sintered body cutting tool, FCD450 whose surface is chilled is used as the work material, cutting speed is 400 m / min, cutting is 1 mm, feed amount is 0.2 mm / rev, and the tool is cut across. Of the cutting edges in which the coarse cBN single crystal forming the blade contacts the workpiece during cutting, the cutting edge in the feed direction is x% of the cutting amount (60 ≦ x ≦ 99) from the point of maximum cutting. To y% (101 ≦ y) is formed of a cBN single crystal, the other cutting edge portion that contacts the work material is formed of a cBN polycrystal, and x and y are the values described in Table 1. When the cutting test was performed, the tool life shown in Table 1 was obtained with the life criterion as the damage of the lateral boundary.
次に、超硬合金製のポット及びボールを用いて、4a、5a、6a族遷移金属元素やAlの化合物等の結合材材料、もしくはW、Co、Zr、Ni、Cr、Alのうち少なくとも1種以上の窒化物、炭化物、炭窒化物、硼化物、酸化物からなる結合材材料、もしくはAlの窒化物、硼化物、酸化物のうち少なくとも1種以上からなる結合材材料を混合してから熱処理を施し、その後粉砕して結合材粉末を得た。次に結合材粉末とcBN粉末を混合し、熱処理を施し、Mo製容器に充填し、圧力5GPa、温度1,400℃で20分焼結し、cBN焼結体を得た。 Next, using a cemented carbide pot and ball, a binder material such as a 4a, 5a, 6a group transition metal element or an Al compound, or at least one of W, Co, Zr, Ni, Cr, and Al. After mixing a binder material composed of at least one kind of nitride, carbide, carbonitride, boride and oxide, or a binder material composed of at least one of Al nitride, boride and oxide Heat treatment was performed and then pulverized to obtain a binder powder. Next, the binder powder and the cBN powder were mixed, heat-treated, filled in a Mo container, and sintered at a pressure of 5 GPa and a temperature of 1,400 ° C. for 20 minutes to obtain a cBN sintered body.
この焼結体を切断し、基材として超硬合金製の台金にロー材を用いて接合した後、この表面にアークイオン式プレーティング法を用いてTiAlNやTiCN,TiN等の硬質皮膜を形成し、表2に記載の被覆cBN焼結体切削工具(CNGA120412)を作製した。このとき、実施例11〜30においては、工具の横切れ刃境界部に粗粒のcBN単結晶体が配置されるように焼結体中の粗粒cBN単結晶粒子の位置を確認した後、切断、接合、研磨を実施した。 After cutting this sintered body and bonding it to a base metal made of cemented carbide using a brazing material, a hard film such as TiAlN, TiCN, TiN or the like is applied to this surface using an arc ion plating method. Then, a coated cBN sintered body cutting tool (CNGA120204) shown in Table 2 was produced. At this time, in Examples 11 to 30, after confirming the position of the coarse cBN single crystal particles in the sintered body so that the coarse cBN single crystal is disposed at the boundary of the side cutting edge of the tool, cutting is performed. Bonding and polishing were performed.
硬質被膜の形成は以下のように実施した。アーク式イオンプレーティング法装置の真空容器の真空度を7×10-3Paの雰囲気とし、次にアルゴンガスを導入し、1×10-1Paの雰囲気に保持しながら、加熱ヒーターを用いて500℃まで加熱し、工具保持具に−1000Vの電圧をかけて洗浄をおこなった。引き続き、真空アーク放電により金属ターゲットを蒸発、イオン化させることにより、工具温度が500℃に上昇するまで、金属イオンによる工具表面クリーニングをおこなった。次に真空容器内に窒素ガス、水素ガス、アルゴンガス、メタン、アセチレンのいずれか1種類あるいは数種類を導入し、真空容器内の圧力を2Paに保持し、真空アーク放電により金属ターゲットを蒸発、イオン化させることにより切削工具上に硬質被膜を形成した。このとき、工具保持具に−20から−600Vの電圧をかけておいた。 The hard coating was formed as follows. The degree of vacuum of the vacuum vessel of the arc type ion plating apparatus is set to an atmosphere of 7 × 10 −3 Pa, and then argon gas is introduced and a heater is used while maintaining the atmosphere of 1 × 10 −1 Pa. Cleaning was performed by heating to 500 ° C. and applying a voltage of −1000 V to the tool holder. Subsequently, the tool surface was cleaned with metal ions until the tool temperature rose to 500 ° C. by evaporating and ionizing the metal target by vacuum arc discharge. Next, one or several of nitrogen gas, hydrogen gas, argon gas, methane, and acetylene are introduced into the vacuum vessel, the pressure inside the vacuum vessel is maintained at 2 Pa, and the metal target is evaporated and ionized by vacuum arc discharge. By doing so, a hard film was formed on the cutting tool. At this time, a voltage of −20 to −600 V was applied to the tool holder.
この被覆cBN焼結体切削工具を用いて、被削材としてインコネル718(HRC40)を用い、表3に記載の条件で切削試験を実施したところ、寿命判定基準を工具横境界の欠損として、表3に記載の工具寿命が得られた。 Using this coated cBN sintered body cutting tool, a cutting test was performed under the conditions shown in Table 3 using Inconel 718 (HRC40) as a work material. The tool life described in 3 was obtained.
また、この被覆cBN焼結体切削工具を用いて、被削材としてねずみ鋳鉄FC250を用い、表4に記載の条件で黒皮加工の切削試験を実施したところ、寿命判定基準を工具横境界の欠損として、表4に記載の工具寿命が得られた。 In addition, when this coated cBN sintered body cutting tool was used and a gray cast iron FC250 was used as a work material and a cutting test for black skin processing was performed under the conditions shown in Table 4, the life criterion was set to the tool horizontal boundary. The tool life shown in Table 4 was obtained as a defect.
Claims (5)
該焼結体のcBN含有率が20−99体積%であり、
被削材と接触する切れ刃部分において、切込みが最大となる点から、送り方向の切れ刃が
切り込み量のx%からy%までがcBN単結晶体で形成され、
xが60以上99以下であり、
yが101以上であり、
被削材と接触する他の切れ刃部分がcBN多結晶体で形成され、
少なくとも前記cBN単結晶体および前記cBN多結晶体の表面が硬質皮膜によって被覆され、
該硬質被膜の膜厚が0.01μm以上10μm以下である
ことを特徴とする刃先横境界部の損傷を抑制する被覆cBN焼結体工具。 It is a coated cBN sintered body tool that suppresses damage of the cutting edge lateral boundary part with a sintered body containing cBN particles as a cutting edge part,
The cBN content of the sintered body is 20-99% by volume,
From the point where the cutting becomes maximum at the cutting edge part that comes into contact with the work material, the cutting edge in the feed direction is formed of cBN single crystal from x% to y% of the cutting amount,
x is 60 or more and 99 or less,
y is 101 or more,
The other cutting edge part in contact with the work material is formed of cBN polycrystal,
At least the surfaces of the cBN single crystal and the cBN polycrystal are coated with a hard film,
A coated cBN sintered body tool that suppresses damage to the lateral boundary portion of the blade edge, wherein the hard coating has a thickness of 0.01 μm or more and 10 μm or less.
周期律表4a、5a、6a族元素の窒化物、炭化物、硼化物、酸化物、及びこれらの固容体からなる群から選択される少なくとも一種と、Alの窒化物、硼化物、酸化物、及びこれらの固容体からなる群から選択される少なくとも一種とを含む、
もしくは、W、Co、Zr、Ni、Cr、Alのうち少なくとも1種以上の窒化物、炭化物、炭窒化物、硼化物、酸化物からなる、
もしくはAlの窒化物、硼化物、酸化物のうち少なくとも1種以上からなる、
ことを特徴とする、請求項1又は2に記載の刃先横境界部の損傷を抑制する被覆cBN焼結体工具。 The binder phase of the sintered body is
At least one selected from the group consisting of nitrides, carbides, borides, oxides, and solids of group 4a, 5a, and 6a elements of the periodic table, and Al nitrides, borides, oxides, and Including at least one selected from the group consisting of these solids,
Or at least one of nitrides, carbides, carbonitrides, borides and oxides of W, Co, Zr, Ni, Cr and Al.
Or at least one of Al nitride, boride, and oxide,
The coated cBN sintered body tool according to claim 1 or 2, wherein the damage of the edge boundary boundary portion is suppressed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009080978A JP5239061B2 (en) | 2009-03-30 | 2009-03-30 | Coated cBN sintered body tool that suppresses damage at the lateral boundary of the cutting edge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009080978A JP5239061B2 (en) | 2009-03-30 | 2009-03-30 | Coated cBN sintered body tool that suppresses damage at the lateral boundary of the cutting edge |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010228072A true JP2010228072A (en) | 2010-10-14 |
JP5239061B2 JP5239061B2 (en) | 2013-07-17 |
Family
ID=43044429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009080978A Active JP5239061B2 (en) | 2009-03-30 | 2009-03-30 | Coated cBN sintered body tool that suppresses damage at the lateral boundary of the cutting edge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5239061B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010229001A (en) * | 2009-03-30 | 2010-10-14 | Sumitomo Electric Hardmetal Corp | cBN SINTERED COMPACT FOR CUTTING TOOLS CONTAINING COARSE GRAIN cBN PARTICLES |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57107709A (en) * | 1980-12-19 | 1982-07-05 | Toshiba Tungaloy Co Ltd | Cutting tool |
JPS58164603U (en) * | 1982-04-28 | 1983-11-02 | 住友電気工業株式会社 | Tips for precision machining tools |
WO2007057995A1 (en) * | 2005-11-18 | 2007-05-24 | Sumitomo Electric Hardmetal Corp. | cBN SINTERED BODY FOR HIGH-QUALITY SURFACE PROPERTY MACHINING, cBN SINTERED BODY CUTTING TOOL, AND METHOD OF CUTTING WORK THEREWITH |
-
2009
- 2009-03-30 JP JP2009080978A patent/JP5239061B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57107709A (en) * | 1980-12-19 | 1982-07-05 | Toshiba Tungaloy Co Ltd | Cutting tool |
JPS58164603U (en) * | 1982-04-28 | 1983-11-02 | 住友電気工業株式会社 | Tips for precision machining tools |
WO2007057995A1 (en) * | 2005-11-18 | 2007-05-24 | Sumitomo Electric Hardmetal Corp. | cBN SINTERED BODY FOR HIGH-QUALITY SURFACE PROPERTY MACHINING, cBN SINTERED BODY CUTTING TOOL, AND METHOD OF CUTTING WORK THEREWITH |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010229001A (en) * | 2009-03-30 | 2010-10-14 | Sumitomo Electric Hardmetal Corp | cBN SINTERED COMPACT FOR CUTTING TOOLS CONTAINING COARSE GRAIN cBN PARTICLES |
Also Published As
Publication number | Publication date |
---|---|
JP5239061B2 (en) | 2013-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102326622B1 (en) | Surface-coated cutting tool with excellent chipping resistance and wear resistance | |
JP5614460B2 (en) | cBN sintered body tool and coated cBN sintered body tool | |
EP3360632A1 (en) | Coated cutting tool | |
JP6213269B2 (en) | Surface-coated cutting tool that exhibits excellent chipping resistance over a long period of time when cutting hardened steel | |
JP2011083865A (en) | Surface coated cutting tool | |
JP4375691B2 (en) | Composite high hardness material | |
JP2008254159A (en) | Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material | |
JP2007152544A (en) | Surface coated cutting tool which is made of cubic boron nitride base ultra high pressure sintered material and has hard coated layer showing excellent wear resistance in high speed cutting of high hardness steel | |
JP4967396B2 (en) | Si-containing composite nitride film and coated cutting tool | |
JP2007136655A (en) | Surface coated cutting tool made of cubic boron nitride-base ultra-high pressure sintered material having hard coated layer exhibiting excellent wear resistance in high-speed heavy cutting of high-hardness steel | |
JP5239061B2 (en) | Coated cBN sintered body tool that suppresses damage at the lateral boundary of the cutting edge | |
JP5407487B2 (en) | Surface coated cutting tool | |
JP5266587B2 (en) | CBN sintered body for cutting tools containing coarse cBN particles | |
JP5447845B2 (en) | Surface coated cutting tool | |
JP5239059B2 (en) | Coated cBN sintered tool for high precision cutting | |
JP2007268656A (en) | Cutting tool and manufacturing method thereof | |
JP2010284759A (en) | Surface coated cutting tool | |
JP2012066341A (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high-pressure sintered material | |
JP2011051060A (en) | Surface coating cutting tool | |
JP5402155B2 (en) | Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material | |
JP2008302439A (en) | Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material | |
JP5686247B2 (en) | Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material | |
JP2010029980A (en) | Cutting tool | |
JP5239060B2 (en) | CBN sintered compact tool that suppresses damage at the edge boundary | |
JP5201936B2 (en) | Surface coating tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20110922 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130305 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130313 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160412 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5239061 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |