JP2010227860A - Method for treating oil-impregnated granular material - Google Patents
Method for treating oil-impregnated granular material Download PDFInfo
- Publication number
- JP2010227860A JP2010227860A JP2009079440A JP2009079440A JP2010227860A JP 2010227860 A JP2010227860 A JP 2010227860A JP 2009079440 A JP2009079440 A JP 2009079440A JP 2009079440 A JP2009079440 A JP 2009079440A JP 2010227860 A JP2010227860 A JP 2010227860A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- particles
- mass
- coarse
- sludge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 239000008187 granular material Substances 0.000 title claims abstract description 17
- 239000002245 particle Substances 0.000 claims abstract description 65
- 239000010802 sludge Substances 0.000 claims abstract description 43
- 239000007788 liquid Substances 0.000 claims abstract description 28
- 238000005406 washing Methods 0.000 claims abstract description 22
- 238000000926 separation method Methods 0.000 claims abstract description 12
- 239000011362 coarse particle Substances 0.000 claims description 66
- 239000010419 fine particle Substances 0.000 claims description 41
- 238000004140 cleaning Methods 0.000 claims description 16
- 239000002351 wastewater Substances 0.000 claims description 5
- 238000003672 processing method Methods 0.000 claims description 4
- 238000011084 recovery Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 10
- 238000003756 stirring Methods 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract description 6
- 239000002689 soil Substances 0.000 abstract description 5
- 239000003921 oil Substances 0.000 description 69
- 235000019198 oils Nutrition 0.000 description 69
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 42
- 239000007864 aqueous solution Substances 0.000 description 15
- 239000003945 anionic surfactant Substances 0.000 description 13
- 239000012459 cleaning agent Substances 0.000 description 12
- 239000002736 nonionic surfactant Substances 0.000 description 12
- 239000004094 surface-active agent Substances 0.000 description 12
- 239000011163 secondary particle Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 5
- 239000003599 detergent Substances 0.000 description 4
- 230000003749 cleanliness Effects 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000008235 industrial water Substances 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- -1 0.3% by mass Substances 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Landscapes
- Processing Of Solid Wastes (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
この発明は、粗粒と細粒の集合体からなり油を含んでいる含油粒状物(含油スラッジや油汚染土壌等)から油を除去して、再利用可能な状態で回収する処理方法に関する。 The present invention relates to a treatment method in which oil is removed from an oil-containing granular material (oil-containing sludge, oil-contaminated soil, etc.) composed of coarse and fine aggregates and containing oil, and recovered in a reusable state.
従来より、各種工場における排水処理過程で発生する含油スラッジや汚染土壌等を清浄化して、再利用可能な状態で回収する方法が提案されている。
含油スラッジを清浄化して再利用可能な状態で回収する方法としては、下記の特許文献1に記載された方法がある。この方法は、含油スラッジを溶剤と接触させて油分を溶剤に溶かした後に固液分離し、固形分を界面活性剤を含む水で洗浄することで、清浄化されたスラッジを回収する方法である。この方法では、含油スラッジの量に応じた溶剤と界面活性剤を使用するため、大量の含油スラッジを処理する場合には、薬剤費用がかさむとともに、排水量も多くなるため水処理費用もかさみ、処理設備の敷地面積も大きくなる。
Conventionally, a method has been proposed in which oil-containing sludge, contaminated soil, and the like generated during wastewater treatment in various factories are cleaned and recovered in a reusable state.
As a method of cleaning the oil-containing sludge and collecting it in a reusable state, there is a method described in Patent Document 1 below. In this method, oil-containing sludge is brought into contact with a solvent to dissolve the oil in the solvent, and then solid-liquid separation is performed, and the solid is washed with water containing a surfactant to recover the purified sludge. . In this method, a solvent and a surfactant are used according to the amount of oil-containing sludge, so when processing a large amount of oil-containing sludge, the cost of chemicals is increased and the amount of wastewater is also increased, so the water treatment cost is also increased. The site area of the equipment will also increase.
これに対して、下記の特許文献2には、細粒は粗粒と比較して単位体積当たりの表面積が大きいため、粗粒よりも汚染の程度が高いことから、汚染土壌を粗粒分と細粒分(シルト)とに分級し、細粒分のみを、汚染物質を溶出させる液で洗浄する方法が記載されている。粗粒分は解砕した後に更に分級し、この分級で粗粒分となった粒子は、循環水で洗浄後に埋め戻し土等に利用できると記載されている。 On the other hand, in the following Patent Document 2, since the fine particles have a larger surface area per unit volume than the coarse particles, the degree of contamination is higher than the coarse particles. A method is described in which a fine particle (silt) is classified and only the fine particle is washed with a liquid that elutes contaminants. It is described that the coarse particles are further classified after being crushed, and the particles which have become coarse particles by this classification can be used for backfilling soil and the like after washing with circulating water.
この方法のように、分級して細粒分のみを洗浄すれば、分級しないで洗浄する方法よりも、薬剤や水処理にかかる費用を少なくすることができる。しかし、この方法では、分級後の粗粒分に、細粒が粗粒に強固に付着した二次粒子が含まれる。そのため、再利用可能とする粒子の清浄化度の目標値が高い場合、この方法は含油粒状物の処理方法として適していない。 If this method is used to classify and only the fine particles are washed, the cost for chemicals and water treatment can be reduced compared to the method of washing without classifying. However, in this method, secondary particles in which fine particles are firmly attached to the coarse particles are included in the coarse particles after classification. Therefore, when the target value of the degree of cleanliness of particles that can be reused is high, this method is not suitable as a method for treating oil-containing granular materials.
この発明の課題は、粗粒と細粒の集合体からなり油を含んでいる含油粒状物(含油スラッジや油汚染土壌等)から油を除去して、再利用可能な状態で回収する処理方法として、薬剤や水処理にかかる費用を少なくしながら、再利用可能とする粒子の清浄化度の目標値が高い場合でも適用できる方法を提供することである。 The subject of this invention is the processing method which removes oil from the oil-containing granular material (oil-containing sludge, oil-contaminated soil, etc.) which consists of an aggregate | assembly of a coarse grain and a fine grain and contains oil, and collect | recovers in a reusable state It is to provide a method that can be applied even when the target value of the degree of cleanliness of particles that can be reused is high, while reducing costs for chemicals and water treatment.
上記課題を解決するために、この発明の含油粒状物の処理方法は、粗粒と細粒の集合体からなり油を含んでいる含油粒状物に対し、粒子同士の摩擦で粒子を小さくする処理を行う磨砕工程と、磨砕工程後の含油粒状物を(例えば、25μm〜30μmの範囲を分級粒径として)粗粒分と細粒分に分級して、粗粒分に含まれる粒径20μm以下の粒子が20質量%以下になるようにする分級工程と、分級工程後の粗粒分を液体中で洗浄して、前記粗粒分をなす粒子が含有する油分を液体側に移す洗浄工程と、洗浄工程後の前記粒子を含有する液体を固液分離して、油分が除去された粒子を回収する回収工程と、を有することを特徴とする。 In order to solve the above-mentioned problems, the method for treating oil-containing granular materials according to the present invention is a treatment for reducing particles by friction between particles against oil-containing granular materials comprising an aggregate of coarse particles and fine particles and containing oil. And the oil-containing granular material after the grinding step (for example, the range of 25 μm to 30 μm as a classified particle size) is classified into a coarse particle and a fine particle, and the particle size contained in the coarse particle A classifying step in which particles of 20 μm or less become 20% by mass or less, and a washing in which the coarse particles after the classification step are washed in a liquid, and the oil contained in the particles constituting the coarse particles is transferred to the liquid side And a recovery step of recovering the particles from which oil has been removed by solid-liquid separation of the liquid containing the particles after the cleaning step.
この方法によれば、含油粒状物に含まれている二次粒子(粒子同士が強固に付着しているもの)が、磨砕工程で一次粒子に分離される(例えば、細粒が粗粒に強固に付着している二次粒子が、細粒と粗粒に分離される)ため、分級工程前に磨砕工程を行わない場合と比較して、分級工程で細粒が粗粒分に入る確率を低くすることができる。これに対して、分級工程前に磨砕工程を行わない場合には、二次粒子を構成する細粒が粗粒分に入る。 According to this method, secondary particles contained in the oil-containing granular material (particles firmly adhered to each other) are separated into primary particles in the grinding step (for example, fine particles become coarse particles). The secondary particles that are firmly attached are separated into fine and coarse particles), so that the fine particles enter the coarse particles in the classification process compared to the case where the grinding process is not performed before the classification process. Probability can be lowered. On the other hand, when the grinding step is not performed before the classification step, fine particles constituting the secondary particles enter the coarse portion.
また、磨砕工程で粗粒の表面に付着している油分が細粒に移着するため、磨砕工程を行わない場合よりも、細粒側の油分を高く、粗粒側の油分を低くすることができる。
そして、この方法では、細粒の含有率が低い粗粒分を洗浄して回収するため、再利用可能とする粒子の清浄化度の目標値が高い場合でも、目標値が達成できる。また、分級工程で、粗粒分に含まれる粒径20μm以下の粒子が20質量%以下になるようにすることにより、洗浄工程で使用する薬剤の使用量を著しく低減することができる。
Also, since the oil adhering to the surface of the coarse particles in the grinding process is transferred to the fine particles, the oil content on the fine particle side is higher and the oil content on the coarse particle side is lower than when the grinding process is not performed. can do.
In this method, since the coarse particles having a low content of fine particles are washed and collected, the target value can be achieved even when the target value of the degree of cleaning of particles that can be reused is high. In addition, the amount of drug used in the washing step can be significantly reduced by setting the particles having a particle size of 20 μm or less contained in the coarse particles in the classification step to 20 mass% or less.
製鉄所における工程排水のスラッジは、粒径が40μm〜100μm程度の酸化鉄スケールや金属凝集物と、粒径が1μm〜10μm程度の微粒子とで構成されるため、含油粒状物が製鉄所における工程排水のスラッジである場合は、10μm〜30μmの範囲で粗粒分と細粒分を分けることができる。そして、分級粒径を25μm〜30μmの範囲とし、粗粒分に含まれる粒径20μm以下の粒子が20質量%以下になるようにすることで、洗浄工程で使用する薬剤の使用量を著しく低減することができる。 Since the sludge of process wastewater at steelworks is composed of iron oxide scales and metal aggregates with a particle size of about 40 μm to 100 μm and fine particles with a particle size of about 1 μm to 10 μm, the oil-containing granule is a process at the steelworks In the case of wastewater sludge, the coarse particles and fine particles can be separated in the range of 10 μm to 30 μm. And the amount of chemicals used in the washing process is remarkably reduced by setting the classified particle size in the range of 25 μm to 30 μm so that the particles having a particle size of 20 μm or less contained in the coarse particles are 20% by mass or less. can do.
本発明の方法は、粗粒と細粒の集合体からなり油を含んでいる含油粒状物から油を除去して、再利用可能な状態で回収する処理方法として、薬剤や水処理にかかる費用を少なくしながら、再利用可能とする粒子の清浄化度の目標値が高い場合でも適用できる。 The method of the present invention is a method for removing oil from an oil-containing granule comprising an aggregate of coarse particles and fine particles and containing the oil, and recovering it in a reusable state. Even when the target value of the degree of cleanliness of particles that can be reused is high, it can be applied.
以下、この発明の実施形態について説明する。
この実施形態の含油スラッジの処理方法は、磨砕工程と、分級工程と、洗浄工程と、回収工程とからなる。この方法は、図1に示すように、二軸攪拌装置(磨砕装置)1と、サイクロン分級機(分級装置)2と、二軸攪拌装置(洗浄装置)3と、固液分離装置4とからなる処理設備を使用して実施することができる。
Embodiments of the present invention will be described below.
The processing method of the oil-containing sludge of this embodiment consists of a grinding process, a classification process, a washing process, and a recovery process. As shown in FIG. 1, this method includes a biaxial agitator (grinding device) 1, a cyclone classifier (classifier) 2, a biaxial agitator (cleaning device) 3, a solid-liquid separator 4 and Can be carried out using a processing facility consisting of
磨砕工程で、含油スラッジは二軸攪拌装置1に導入され、含油スラッジを構成する粒子同士の摩擦で粒子を小さくする処理が行われ、含油スラッジに含まれている二次粒子が一次粒子に分離される。よって、細粒が粗粒に強固に付着している二次粒子は細粒と粗粒に分離される。また、粗粒の表面に付着している油分が細粒に移着する。
磨砕工程後の含油スラッジはサイクロン分級機2に導入され、設定条件に応じて粗粒分と細粒分に分級される。この分級工程で、分級粒径を25μm〜30μmの範囲とし、粗粒分に含まれる粒径20μm以下の粒子が20質量%以下になるようにする。
In the grinding step, the oil-impregnated sludge is introduced into the biaxial agitator 1, and a process of reducing the particles by friction between the particles constituting the oil-impregnated sludge is performed, and the secondary particles contained in the oil-impregnated sludge are converted into primary particles. To be separated. Therefore, the secondary particles in which the fine particles are firmly attached to the coarse particles are separated into fine particles and coarse particles. Further, the oil adhering to the surface of the coarse particles is transferred to the fine particles.
The oil-containing sludge after the grinding step is introduced into the cyclone classifier 2 and classified into a coarse particle and a fine particle according to the set conditions. In this classification step, the classified particle diameter is set in the range of 25 μm to 30 μm so that the particles having a particle diameter of 20 μm or less contained in the coarse particles are 20% by mass or less.
分級工程後の細粒分は油分の含有率が高いため、脱水処理された後に、焼却あるいは埋め立て等の方法で処分される。
分級工程後の粗粒分は、二軸攪拌装置3に導入されて洗浄工程が行われる。二軸攪拌装置3には、洗浄剤注入管31から洗浄剤として界面活性剤と水酸化ナトリウムを含む水溶液が注入される。二軸攪拌装置3内では、導入された粗粒分をなす粒子が界面活性剤と水酸化ナトリウムで洗浄されて、油分が液体側に移る。
Since the fine-grained fraction after the classification step has a high oil content, it is dehydrated and then disposed of by incineration or landfill.
The coarse particles after the classification step are introduced into the biaxial stirring device 3 and the washing step is performed. An aqueous solution containing a surfactant and sodium hydroxide as a cleaning agent is injected into the biaxial stirring device 3 from the cleaning
二軸攪拌装置3の内容物は洗浄工程後に固液分離装置4に導入されて、油分を含む水は排出され、固形分(油分が除去された粒子)が浄化スラッジとして回収される。排出された油分を含む水は、油分を除去した後に、磨砕工程、分級工程、洗浄工程で、処理対象物に適切な流動性を付与するための水として循環使用することができる。
この実施形態の方法によれば、分級工程前に磨砕工程を行うことで、分級工程で細粒が粗粒分に入る確率を低くすることができ、分級工程で、粗粒分に含まれる粒径20μm以下の粒子が20質量%以下になるようにすることにより、洗浄工程で使用する薬剤(界面活性剤と水酸化ナトリウム)の使用量を著しく低減することができる。
The contents of the biaxial agitator 3 are introduced into the solid-liquid separator 4 after the washing step, the water containing the oil is discharged, and the solid (particles from which the oil has been removed) is recovered as the purified sludge. After the oil is removed, the water containing the discharged oil can be circulated and used as water for imparting appropriate fluidity to the object to be treated in the grinding process, classification process, and washing process.
According to the method of this embodiment, by performing the grinding step before the classification step, it is possible to reduce the probability that the fine particles enter the coarse particles in the classification step, and are included in the coarse particles in the classification step. By making the particles having a particle size of 20 μm or less 20% by mass or less, the amount of the chemicals (surfactant and sodium hydroxide) used in the cleaning process can be significantly reduced.
なお、磨砕工程で使用する磨砕装置としては、二軸攪拌装置以外に、偏心二重ドラムを備えた解砕機などが使用できる。
分級工程で使用する分級装置としては、サイクロン分級機以外に、沈降分離装置、振動篩い装置などが使用できる。
洗浄工程で使用する洗浄剤としては、界面活性剤と水酸化ナトリウムを含む水溶液以外に、界面活性剤を含む水、水酸化ナトリウム水溶液や水酸化カルシウム水溶液などのアルカリ性水溶液などが使用できる。界面活性剤としては、ノニオン系やアニオン系のものが使用できる。
In addition, as a grinding apparatus used at a grinding process, the crusher etc. which equipped the eccentric double drum other than a biaxial stirring apparatus can be used.
As a classification device used in the classification process, in addition to the cyclone classifier, a sedimentation separation device, a vibration sieve device, and the like can be used.
As the cleaning agent used in the cleaning step, in addition to an aqueous solution containing a surfactant and sodium hydroxide, water containing a surfactant, an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous calcium hydroxide solution, or the like can be used. As the surfactant, nonionic or anionic surfactants can be used.
ノニオン系界面活性剤は油分の洗浄力が高く、アニオン系界面活性剤は油分だけでなく複合的な汚染物質を併せて洗浄する場合に好適である。アルカリ性水溶液はケン化作用により動植物性油脂の洗浄力が高い。特に、アルカリ性水溶液とアニオン系界面活性剤の混合物を洗浄剤として用いることで、優れた洗浄作用が発揮される。
回収工程で使用する固液分離装置としては、分離対象物の濃度が比較的高く比重が比較的大きい場合に効率的に固液分離できる装置として、フィルタープレス等の脱水機、クラシファイア等のかき寄せ型固液分離機、沈降分離機などが挙げられる。分離対象物の濃度が比較的低く比重が比較的小さい場合に効率的に固液分離できる装置としては、遠心分離機、浮上分離機、ストレーナや濾材を用いた濾過分離機などが挙げられる。
Nonionic surfactants have high oil detergency, and anionic surfactants are suitable for washing not only oil components but also complex contaminants. Alkaline aqueous solution has high detergency of animal and vegetable oils and fats due to saponification. In particular, by using a mixture of an alkaline aqueous solution and an anionic surfactant as a cleaning agent, an excellent cleaning action is exhibited.
The solid-liquid separation device used in the recovery process is a device that can efficiently perform solid-liquid separation when the concentration of the separation target is relatively high and the specific gravity is relatively large, such as a dehydrator such as a filter press, and a scraper type such as a classifier. Examples thereof include a solid-liquid separator and a sedimentation separator. Examples of the apparatus that can efficiently perform solid-liquid separation when the concentration of the separation target is relatively low and the specific gravity is relatively small include a centrifugal separator, a flotation separator, a filter separator using a strainer and a filter medium, and the like.
図1に示す処理設備を使用して、実施形態に記載した方法により、製鉄所の工程排水から発生した含油スラッジを処理した。
磨砕装置である二軸攪拌装置1として、太平洋機工(株)製の二軸パドルミキサ「SD−55」を設置し、サイクロン分級機2として、村田工業(株)製の液体サイクロン「SC−150」を設置した。この液体サイクロンのトップノズル径は28mmであり、ボトムノズル径は13mmである。洗浄装置である二軸攪拌装置3として、太平洋機工(株)製の二軸パドルミキサ「SD−55」を設置し、固液分離装置4として、(株)氣工社製のかき寄せ型固液分離装置「ハイメッシュセパレータ」を設置した。
Using the treatment facility shown in FIG. 1, oil-containing sludge generated from the process wastewater of an ironworks was treated by the method described in the embodiment.
A twin screw paddle mixer “SD-55” manufactured by Taiheiyo Kiko Co., Ltd. was installed as the twin screw stirring device 1 serving as a grinding device, and a liquid cyclone “SC-150” manufactured by Murata Industrial Co., Ltd. was used as the cyclone classifier 2. Was installed. The hydrocyclone has a top nozzle diameter of 28 mm and a bottom nozzle diameter of 13 mm. A twin-screw paddle mixer “SD-55” manufactured by Taiheiyo Kiko Co., Ltd. was installed as the twin-screw agitator 3 serving as a cleaning device, and a scraping-type solid-liquid separation manufactured by Saiko Co., Ltd. was used as the solid-liquid separator 4. The device “High Mesh Separator” was installed.
サンプルNo. 1では、先ず、含油スラッジを二軸パドルミキサに導入して、10分間作動させることで磨砕工程を行った。次に、磨砕された含油スラッジをサイクロン分級機に導入して、含油スラッジの固形分が10質量%となるように工業用水を添加し、サイクロンの入口圧:0.20MPa、出口圧:0.005MPaの条件(条件1)で作動させることで分級工程を行った。 In sample No. 1, the oil-containing sludge was first introduced into the biaxial paddle mixer, and the grinding process was performed by operating for 10 minutes. Next, the ground oil-containing sludge is introduced into a cyclone classifier, and industrial water is added so that the solid content of the oil-containing sludge is 10% by mass. The inlet pressure of the cyclone: 0.20 MPa, the outlet pressure: 0 The classification step was performed by operating at 0.005 MPa (condition 1).
粗粒分をボトムノズルから取り出し、細粒分をトップノズルから取り出して、それぞれの粒度分布を測定した。磨砕工程の前後にも含油スラッジの粒度分布を測定しておいた。これらの結果をまとめて図2のグラフに示す。また、分級工程後の粗粒分と細粒分の比率は、粗粒分が90質量%、細粒分が10質量%であった。さらに、分級工程後の油含有率を測定したところ、粗粒分が2.2質量%、細粒分が22質量%であった。 The coarse particles were taken out from the bottom nozzle, the fine particles were taken out from the top nozzle, and each particle size distribution was measured. The particle size distribution of the oil-containing sludge was measured before and after the grinding process. These results are summarized in the graph of FIG. In addition, the ratio of the coarse particles to the fine particles after the classification step was 90% by mass for the coarse particles and 10% by mass for the fine particles. Furthermore, when the oil content after the classification step was measured, the coarse particle content was 2.2% by mass and the fine particle content was 22% by mass.
次に、ボトムノズルから取り出した粗粒分を洗浄用の二軸攪拌装置に導入し、洗浄剤注入管から、ノニオン系界面活性剤としてミヨシ油脂(株)製の「ペレソフト207」の含有率が0.3質量%、アニオン系界面活性剤としてミヨシ油脂(株)製の「スパミンS」の含有率が0.3質量%、水酸化ナトリウム含有率が0.8質量%である水溶液からなる洗浄剤を注入した後、二軸攪拌装置を20分間作動させることで洗浄工程を行った。これにより、粗粒分をなす粒子が含有していた油分が液体側に移る。 Next, the coarse particles taken out from the bottom nozzle are introduced into a cleaning biaxial stirrer, and the content of “Pelesoft 207” manufactured by Miyoshi Oil & Fats Co., Ltd. as a nonionic surfactant is determined from the cleaning agent injection tube. Washing comprising an aqueous solution having 0.3% by mass, “Spamin S” manufactured by Miyoshi Oil Co., Ltd. as an anionic surfactant, 0.3% by mass, and sodium hydroxide content of 0.8% by mass After injecting the agent, the cleaning process was performed by operating the biaxial agitator for 20 minutes. Thereby, the oil which the particle | grains which make a coarse particle part contained moves to the liquid side.
次に、二軸攪拌装置の内容物をかき寄せ型固液分離装置に導入して、固液分離が完了するまで作動させた後、固形分(油分が除去された粒子)を取り出した。取り出した固形分を工業用水で2回すすいだ後、浄化スラッジとして回収した。回収した浄化スラッジ(粗粒分)の油含有率を測定したところ0.26質量%であった。
図2のグラフから分かるように、処理前の含油スラッジ(原スラッジ)は主に粒径が5〜20μmである粒子で構成されているが、磨砕工程後に粒径10μm前後の粒子が増加している。これは、磨砕処理によって二次粒子が一次粒子に分離されていることを示している。分級工程後の細粒分は粒径20μm以下の粒子が80%を占め、粗粒分は粒径20μm以下の粒子の含有率が10%である。
Next, the contents of the biaxial agitator were introduced into a scraping type solid-liquid separator and operated until the solid-liquid separation was completed, and then the solid content (particles from which oil was removed) was taken out. The solid matter taken out was rinsed twice with industrial water and then recovered as purified sludge. It was 0.26 mass% when the oil content rate of the collect | recovered purification sludge (coarse grain content) was measured.
As can be seen from the graph of FIG. 2, the oil-containing sludge (raw sludge) before treatment is mainly composed of particles having a particle size of 5 to 20 μm, but the particles having a particle size of about 10 μm increase after the grinding step. ing. This indicates that the secondary particles are separated into primary particles by the grinding treatment. The fine particles after the classification step account for 80% of particles having a particle size of 20 μm or less, and the coarse particles have a content of particles having a particle size of 20 μm or less of 10%.
サンプルNo. 2では、磨砕工程を行わず、含油スラッジを直接サイクロン分級機に導入して、No. 1と同じ条件で分級工程を行い、それ以降の工程も同じ方法で行った。
サンプルNo. 2で、分級工程後の粗粒分と細粒分の比率は、粗粒分が91質量%、細粒分が9質量%であった。分級工程後の油含有率は、粗粒分が3.7質量%、細粒分が7.8質量%であった。また、回収した浄化スラッジ(粗粒分)の油含有率を測定したところ3.2質量%であった。
In sample No. 2, the grinding step was not performed, and the oil-containing sludge was directly introduced into the cyclone classifier, the classification step was performed under the same conditions as in No. 1, and the subsequent steps were also performed in the same manner.
In sample No. 2, the ratio of the coarse particles to the fine particles after the classification step was 91% by mass for the coarse particles and 9% by mass for the fine particles. The oil content after the classification step was 3.7% by mass for the coarse particles and 7.8% by mass for the fine particles. Moreover, it was 3.2 mass% when the oil content rate of the collect | recovered purified sludge (coarse part) was measured.
サンプルNo. 3では、洗浄工程で洗浄剤注入管から注入する洗浄剤を、No. 1と同じノニオン系界面活性剤の含有率が1.0質量%、No. 1と同じアニオン系界面活性剤の含有率が1.0質量%、水酸化ナトリウム含有率が2.4質量%である水溶液とした。これ以外はNo. 2と同じ方法で処理を行った。
サンプルNo. 3で、分級工程後の粗粒分と細粒分の比率は、粗粒分が91質量%、細粒分が9質量%であった。分級工程後の油含有率は、粗粒分が3.7質量%、細粒分が7.8質量%であった。また、回収した浄化スラッジ(粗粒分)の油含有率を測定したところ0.38質量%であった。
In sample No. 3, the cleaning agent injected from the cleaning agent injection tube in the cleaning step is 1.0% by mass of the same nonionic surfactant as in No. 1, and the same anionic surfactant as in No. 1. The aqueous solution was 1.0% by mass and the sodium hydroxide content was 2.4% by mass. Except for this, the treatment was performed in the same manner as in No. 2.
In sample No. 3, the ratio of the coarse particles to the fine particles after the classification step was 91% by mass for the coarse particles and 9% by mass for the fine particles. The oil content after the classification step was 3.7% by mass for the coarse particles and 7.8% by mass for the fine particles. Moreover, it was 0.38 mass% when the oil content rate of the collect | recovered purification sludge (coarse particle content) was measured.
サンプルNo. 4では、No. 1と同じ方法で磨砕工程を行った後に行う分級工程で、サイクロン分級機の作動条件を、サイクロンの入口圧:0.25MPa、出口圧:0.04MPaの条件(条件2)とした。また、洗浄工程で洗浄剤注入管から注入する洗浄剤を、No. 1と同じノニオン系界面活性剤の含有率が0.60質量%、No. 1と同じアニオン系界面活性剤の含有率が0.60質量%、水酸化ナトリウム含有率が1.5質量%である水溶液とした。これらのこと以外はNo. 1と同じ方法で処理を行った。 In sample No. 4, in the classification process performed after the grinding process was performed in the same manner as in No. 1, the operating conditions of the cyclone classifier were the conditions of cyclone inlet pressure: 0.25 MPa and outlet pressure: 0.04 MPa. (Condition 2). In addition, the cleaning agent injected from the cleaning agent injection tube in the cleaning process has a nonionic surfactant content of 0.60% by mass as in No. 1 and an anionic surfactant content as in No. 1. It was set as the aqueous solution which is 0.60 mass% and sodium hydroxide content rate is 1.5 mass%. Except for these, the treatment was performed in the same manner as in No. 1.
サンプルNo. 4で、分級工程後の粗粒分と細粒分の比率は、粗粒分が93質量%、細粒分が7質量%であり、粗粒分における粒径20μm以下の粒子の含有率は25%であった。分級工程後の油含有率は、粗粒分が3.2質量%、細粒分が17質量%であった。また、回収した浄化スラッジ(粗粒分)の油含有率を測定したところ0.62質量%であった。 In the sample No. 4, the ratio of the coarse particles to the fine particles after the classification step is 93% by mass for the coarse particles, 7% by mass for the fine particles, and particles having a particle size of 20 μm or less in the coarse particles. The content rate was 25%. The oil content after the classification step was 3.2% by mass for the coarse particles and 17% by mass for the fine particles. Moreover, it was 0.62 mass% when the oil content rate of the collect | recovered purified sludge (coarse part) was measured.
サンプルNo. 5では、洗浄工程で洗浄剤注入管から注入する洗浄剤を、No. 1と同じノニオン系界面活性剤の含有率が0.75質量%、No. 1と同じアニオン系界面活性剤の含有率が0.75質量%、水酸化ナトリウム含有率が1.8質量%である水溶液とした。これ以外はNo. 4と同じ方法で処理を行った。
サンプルNo. 5で、分級工程後の粗粒分と細粒分の比率は、粗粒分が93質量%、細粒分が7質量%であり、粗粒分における粒径20μm以下の粒子の含有率は25%であった。分級工程後の油含有率は、粗粒分が3.2質量%、細粒分が17質量%であった。また、回収した浄化スラッジ(粗粒分)の油含有率を測定したところ0.35質量%であった。
In sample No. 5, the cleaning agent injected from the cleaning agent injection tube in the cleaning step is 0.75% by mass of the same nonionic surfactant as No. 1 and the same anionic surfactant as No. 1 In an aqueous solution having a sodium hydroxide content of 1.8% by mass. Except for this, the treatment was performed in the same manner as in No. 4.
In the sample No. 5, the ratio of the coarse particles to the fine particles after the classification step is 93% by mass for the coarse particles, 7% by mass for the fine particles, and the particles having a particle size of 20 μm or less in the coarse particles. The content rate was 25%. The oil content after the classification step was 3.2% by mass for the coarse particles and 17% by mass for the fine particles. Moreover, it was 0.35 mass% when the oil content rate of the collect | recovered purification sludge (coarse grain part) was measured.
これらの結果を下記の表1にまとめて示す。 These results are summarized in Table 1 below.
サンプルNo. 1では、磨砕工程を行い、分級工程後の粗粒分中に含まれる粒径20μm以下の粒子の含有率が10質量%であったため、ノニオン系界面活性剤含有率が0.3質量%、アニオン系界面活性剤含有率が0.3質量%、水酸化ナトリウム含有率が0.8質量%という、洗浄剤濃度が低い水溶液で、洗浄後の粗粒分の油含有率を浄化スラッジの目標値である0.40質量%以下にすることができた。 In sample No. 1, the grinding step was performed, and the content of particles having a particle size of 20 μm or less contained in the coarse particles after the classification step was 10% by mass. Therefore, the nonionic surfactant content was 0. 3% by mass, anionic surfactant content is 0.3% by mass, sodium hydroxide content is 0.8% by mass, and the aqueous solution content is low. The target value of the purification sludge was 0.40% by mass or less.
サンプルNo. 2では、磨砕工程を行わないことで、分級後の粗粒分に、油含有率の多い細粒が粗粒に強固に付着した二次粒子が含まれるため、No. 1と同じ洗浄剤濃度の水溶液で洗浄工程を行った結果、洗浄後の粗粒分の油含有率が、浄化スラッジの目標値である0.40質量%以下を満たさない3.2質量%となった。
磨砕工程を行わない方法で、洗浄後の粗粒分の油含有率0.40質量%以下を達成するためには、サンプルNo. 3のように、洗浄剤濃度が高い(ノニオン系界面活性剤含有率が1.0質量%、アニオン系界面活性剤含有率が1.0質量%、水酸化ナトリウム含有率が2.4質量%)水溶液を用いる必要がある。
In sample No. 2, since the grinding process is not performed, the coarse particles after classification include secondary particles in which fine particles having a high oil content are firmly attached to the coarse particles. As a result of performing the washing process with an aqueous solution having the same detergent concentration, the oil content of the coarse particles after washing became 3.2% by mass which does not satisfy the target value of purified sludge of 0.40% by mass or less. .
In order to achieve an oil content of 0.40% by mass or less after washing with a method that does not perform a grinding process, the concentration of the detergent is high as in sample No. 3 (nonionic surfactant) It is necessary to use an aqueous solution having an agent content of 1.0 mass%, an anionic surfactant content of 1.0 mass%, and a sodium hydroxide content of 2.4 mass%.
サンプルNo. 4では、磨砕工程を行っているが、分級工程後の粗粒分中に含まれる粒径20μm以下の粒子の含有率が25質量%であった。洗浄剤濃度がNo. 1のほぼ倍である水溶液で洗浄工程を行った結果、洗浄後の粗粒分の油含有率が、浄化スラッジの目標値である0.40質量%以下を満たさない0.62質量%となった。
サンプルNo. 4と同じ条件で分級工程を行って、洗浄後の粗粒分の油含有率0.40質量%以下を達成するためには、サンプルNo. 5のように、洗浄剤濃度がより高い(ノニオン系界面活性剤含有率が0.75質量%、アニオン系界面活性剤含有率が0.75質量%、水酸化ナトリウム含有率が1.8質量%)水溶液を用いる必要がある。
In Sample No. 4, the grinding process was performed, but the content ratio of particles having a particle diameter of 20 μm or less contained in the coarse particles after the classification process was 25% by mass. As a result of performing the washing process with an aqueous solution having a detergent concentration almost twice that of No. 1, the oil content of the coarse particles after washing does not satisfy the target value of purified sludge of 0.40% by mass or less. It was .62% by mass.
In order to achieve the oil content of 0.40% by mass or less in the coarse particles after washing by performing the classification process under the same conditions as in sample No. 4, the detergent concentration is higher as in sample No. 5. It is necessary to use a high aqueous solution (nonionic surfactant content is 0.75% by mass, anionic surfactant content is 0.75% by mass, and sodium hydroxide content is 1.8% by mass).
また、磨砕工程を同じ条件で行った含油スラッジに対する分級工程を各種条件で行うことで、分級工程後の粗粒分中に含まれる粒径20μm以下の粒子の含有率を、それぞれ9.5質量%、16質量%、19質量%、23質量%、25質量%とした。これらの粗粒分の洗浄工程を、No. 1と同じノニオン系界面活性剤と、No. 1と同じアニオン系界面活性剤と、水酸化ナトリウムからなり、水酸化ナトリウム濃度は0.8質量%で一定にし、ノニオン系界面活性剤とアニオン系界面活性剤の濃度を様々に変化させた水溶液を用いて行いた。ノニオン系界面活性剤とアニオン系界面活性剤は同じ濃度で変化させた。 Moreover, the classification | category process with respect to the oil-containing sludge which performed the grinding process on the same conditions is performed on various conditions, The content rate of the particle | grains with a particle size of 20 micrometers or less contained in the coarse-grain fraction after a classification | category process is each 9.5. The mass%, 16 mass%, 19 mass%, 23 mass%, and 25 mass% were set. The washing process of these coarse particles is made of the same nonionic surfactant as No. 1, the same anionic surfactant as No. 1, and sodium hydroxide, and the sodium hydroxide concentration is 0.8% by mass. And using an aqueous solution in which the concentrations of the nonionic surfactant and the anionic surfactant were varied. Nonionic surfactant and anionic surfactant were changed at the same concentration.
そして、回収した浄化スラッジの油含有率が目標値(0.40質量%以下)となるために必要な界面活性剤濃度の臨界値を調べた。その結果を図3のグラフに示す。このグラフから分かるように、分級工程後の粗粒分中に含まれる粒径20μm以下の粒子の含有率が20質量%以下であると界面活性剤の必要濃度は0.3質量%であり、洗浄工程で使用する界面活性剤の使用量を著しく低減することができる。 And the critical value of surfactant concentration required in order for the oil content rate of the collect | recovered purification sludge to become a target value (0.40 mass% or less) was investigated. The result is shown in the graph of FIG. As can be seen from this graph, the required concentration of the surfactant is 0.3% by mass when the content of the particles having a particle size of 20 μm or less contained in the coarse particles after the classification step is 20% by mass or less, The amount of surfactant used in the cleaning process can be significantly reduced.
1 二軸攪拌装置(磨砕装置)
2 サイクロン分級機(分級装置)
3 二軸攪拌装置(洗浄装置)
31 洗浄剤注入管
4 固液分離装置
1 Biaxial stirring device (grinding device)
2 Cyclone classifier (classifier)
3 Biaxial stirring device (cleaning device)
31 Cleaning agent injection tube 4 Solid-liquid separator
Claims (2)
磨砕工程後の含油粒状物を粗粒分と細粒分に分級して、粗粒分に含まれる粒径20μm以下の粒子が20質量%以下になるようにする分級工程と、
分級工程後の粗粒分を液体中で洗浄して、前記粗粒分をなす粒子が含有する油分を液体側に移す洗浄工程と、
洗浄工程後の前記粒子を含有する液体を固液分離して、油分が除去された粒子を回収する回収工程と、
を有することを特徴とする含油粒状物の処理方法。 A grinding process for reducing the size of particles by friction between particles for oil-impregnated granular materials containing oil consisting of coarse and fine aggregates;
Classifying the oil-containing granular material after the grinding step into coarse and fine particles so that the particles having a particle size of 20 μm or less contained in the coarse particles are 20% by mass or less;
A washing step of washing the coarse particles after the classification step in a liquid, and transferring the oil contained in the particles constituting the coarse particles to the liquid side;
A recovery step of solid-liquid separation of the liquid containing the particles after the cleaning step, and recovering the particles from which oil has been removed;
The processing method of the oil-containing granular material characterized by having.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009079440A JP5417933B2 (en) | 2009-03-27 | 2009-03-27 | Method for processing oil-containing granular materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009079440A JP5417933B2 (en) | 2009-03-27 | 2009-03-27 | Method for processing oil-containing granular materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010227860A true JP2010227860A (en) | 2010-10-14 |
JP5417933B2 JP5417933B2 (en) | 2014-02-19 |
Family
ID=43044246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009079440A Active JP5417933B2 (en) | 2009-03-27 | 2009-03-27 | Method for processing oil-containing granular materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5417933B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015042936A (en) * | 2013-07-25 | 2015-03-05 | 株式会社野田修護商店 | Method for drying metal chip, and metal chip-drying device using the same |
JP2018122279A (en) * | 2017-02-03 | 2018-08-09 | 日鉄住金環境株式会社 | Processing method of oil-containing sludge |
CN110606633A (en) * | 2019-09-12 | 2019-12-24 | 广西博世科环保科技股份有限公司 | Oily sludge recycling and reducing treatment method and treatment system |
CN115007623A (en) * | 2022-05-13 | 2022-09-06 | 大连理工大学盘锦产业技术研究院 | Method and system for treating oil-containing sludge and petroleum-polluted soil |
JP7478605B2 (en) | 2020-06-26 | 2024-05-07 | 花王株式会社 | Soil washing agent composition, multi-type soil washing agent, and method for washing excavated soil |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000239013A (en) * | 1998-12-25 | 2000-09-05 | Sumitomo Chem Co Ltd | Production of aluminum hydroxide for filler |
JP2002129245A (en) * | 2000-10-27 | 2002-05-09 | Kumagai Gumi Co Ltd | Method for treating oil-containing iron powder |
JP2005040764A (en) * | 2003-07-25 | 2005-02-17 | Maeda Corp | Cleaning method of oil polluted soil |
JP2005270915A (en) * | 2004-03-26 | 2005-10-06 | Sumikon Serutekku Kk | Polluted soil cleaning method |
JP2006116397A (en) * | 2004-10-20 | 2006-05-11 | Shimizu Corp | Washing method and washing apparatus of contaminated soil |
-
2009
- 2009-03-27 JP JP2009079440A patent/JP5417933B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000239013A (en) * | 1998-12-25 | 2000-09-05 | Sumitomo Chem Co Ltd | Production of aluminum hydroxide for filler |
JP2002129245A (en) * | 2000-10-27 | 2002-05-09 | Kumagai Gumi Co Ltd | Method for treating oil-containing iron powder |
JP2005040764A (en) * | 2003-07-25 | 2005-02-17 | Maeda Corp | Cleaning method of oil polluted soil |
JP2005270915A (en) * | 2004-03-26 | 2005-10-06 | Sumikon Serutekku Kk | Polluted soil cleaning method |
JP2006116397A (en) * | 2004-10-20 | 2006-05-11 | Shimizu Corp | Washing method and washing apparatus of contaminated soil |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015042936A (en) * | 2013-07-25 | 2015-03-05 | 株式会社野田修護商店 | Method for drying metal chip, and metal chip-drying device using the same |
JP2018122279A (en) * | 2017-02-03 | 2018-08-09 | 日鉄住金環境株式会社 | Processing method of oil-containing sludge |
CN110606633A (en) * | 2019-09-12 | 2019-12-24 | 广西博世科环保科技股份有限公司 | Oily sludge recycling and reducing treatment method and treatment system |
JP7478605B2 (en) | 2020-06-26 | 2024-05-07 | 花王株式会社 | Soil washing agent composition, multi-type soil washing agent, and method for washing excavated soil |
CN115007623A (en) * | 2022-05-13 | 2022-09-06 | 大连理工大学盘锦产业技术研究院 | Method and system for treating oil-containing sludge and petroleum-polluted soil |
CN115007623B (en) * | 2022-05-13 | 2023-10-24 | 大连理工大学盘锦产业技术研究院 | Method and system for treating oily sludge and petroleum contaminated soil |
Also Published As
Publication number | Publication date |
---|---|
JP5417933B2 (en) | 2014-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5128068A (en) | Method and apparatus for cleaning contaminated particulate material | |
JP5172026B1 (en) | Treatment system for aqueous mud containing iron particles and heavy metals | |
JP5417933B2 (en) | Method for processing oil-containing granular materials | |
JP7084883B2 (en) | Waste incineration ash resource recycling method and resource recycling equipment | |
JP6396075B2 (en) | Method and apparatus for wet classification cleaning of contaminated soil | |
JP5761544B1 (en) | Method and apparatus for desalinating chlorine-containing ash | |
JP2001149913A (en) | Cleaning method of contaminated soil | |
JP5912525B2 (en) | Cleaning and volume reduction of radioactive material contaminated earth and sand | |
JP5818096B2 (en) | Cleaning treatment method for cesium contaminated soil | |
JP2004130199A (en) | Method and system for repairing heavy metal-polluted soil | |
JP5276779B2 (en) | Purification method for sediment and soil contaminated with dioxins | |
JP2008036525A (en) | System and method for producing cleaned soil | |
JP4595099B2 (en) | Method and system for cleaning contaminated soil | |
JP5818095B2 (en) | Cleaning treatment method for cesium contaminated soil | |
JP2017029960A (en) | Desalination processing system and desalination processing method of chlorine-containing ash | |
JP3823849B2 (en) | Oil-contaminated soil cleaning equipment | |
JP2012166170A (en) | Washing method for incineration ash and method for converting the incineration ash into cement raw material | |
JP5143070B2 (en) | Powder processing system and powder processing method | |
JP2005262076A (en) | Method for cleaning soil contaminated with oil | |
JP2006000764A (en) | Impurity removing method, impurity removing apparatus and soil washing treatment apparatus | |
JP6618039B2 (en) | Decontamination soil treatment apparatus and method | |
JP2010234217A (en) | Powdery particle material treatment system, and powdery particle material treatment method | |
KR100624444B1 (en) | The process for recovering petroleum-contaminated construction materials | |
JP5983992B2 (en) | Cleaning treatment method for cesium contaminated soil | |
TWI826319B (en) | Deep cleaning technology for highly concentrated contaminated soil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130723 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131022 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131104 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5417933 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |