JP2010226113A - High voltage electrolytic capacitor - Google Patents
High voltage electrolytic capacitor Download PDFInfo
- Publication number
- JP2010226113A JP2010226113A JP2010065796A JP2010065796A JP2010226113A JP 2010226113 A JP2010226113 A JP 2010226113A JP 2010065796 A JP2010065796 A JP 2010065796A JP 2010065796 A JP2010065796 A JP 2010065796A JP 2010226113 A JP2010226113 A JP 2010226113A
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic capacitor
- electrolyte
- capacitor according
- acid
- wet electrolytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 64
- 239000003792 electrolyte Substances 0.000 claims abstract description 94
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 23
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 239000002184 metal Substances 0.000 claims abstract description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 23
- -1 organic acid salt Chemical class 0.000 claims abstract description 15
- 238000002048 anodisation reaction Methods 0.000 claims abstract description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 37
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 18
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 16
- 239000002904 solvent Substances 0.000 claims description 14
- 150000003839 salts Chemical class 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- 239000002253 acid Substances 0.000 claims description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 11
- 239000010936 titanium Substances 0.000 claims description 11
- 229910052719 titanium Inorganic materials 0.000 claims description 11
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 9
- 150000007524 organic acids Chemical class 0.000 claims description 9
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 8
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 claims description 7
- 150000001768 cations Chemical class 0.000 claims description 7
- 235000006408 oxalic acid Nutrition 0.000 claims description 6
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 5
- 150000001735 carboxylic acids Chemical class 0.000 claims description 5
- 229910000484 niobium oxide Inorganic materials 0.000 claims description 5
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 5
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 4
- 239000001361 adipic acid Substances 0.000 claims description 4
- 235000011037 adipic acid Nutrition 0.000 claims description 4
- 239000011975 tartaric acid Substances 0.000 claims description 4
- 235000015165 citric acid Nutrition 0.000 claims description 3
- 229920000123 polythiophene Polymers 0.000 claims description 3
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 3
- 235000002906 tartaric acid Nutrition 0.000 claims description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 2
- 238000010494 dissociation reaction Methods 0.000 claims description 2
- 230000005593 dissociations Effects 0.000 claims description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 7
- 239000000243 solution Substances 0.000 description 15
- 239000008367 deionised water Substances 0.000 description 12
- 229910021641 deionized water Inorganic materials 0.000 description 12
- FLDCSPABIQBYKP-UHFFFAOYSA-N 5-chloro-1,2-dimethylbenzimidazole Chemical compound ClC1=CC=C2N(C)C(C)=NC2=C1 FLDCSPABIQBYKP-UHFFFAOYSA-N 0.000 description 11
- 239000001741 Ammonium adipate Substances 0.000 description 11
- 235000019293 ammonium adipate Nutrition 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 229910052715 tantalum Inorganic materials 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- NGPGDYLVALNKEG-UHFFFAOYSA-N azanium;azane;2,3,4-trihydroxy-4-oxobutanoate Chemical compound [NH4+].[NH4+].[O-]C(=O)C(O)C(O)C([O-])=O NGPGDYLVALNKEG-UHFFFAOYSA-N 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 5
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 4
- 239000005695 Ammonium acetate Substances 0.000 description 4
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 235000019257 ammonium acetate Nutrition 0.000 description 4
- 229940043376 ammonium acetate Drugs 0.000 description 4
- VBIXEXWLHSRNKB-UHFFFAOYSA-N ammonium oxalate Chemical compound [NH4+].[NH4+].[O-]C(=O)C([O-])=O VBIXEXWLHSRNKB-UHFFFAOYSA-N 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 239000010955 niobium Substances 0.000 description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- 239000001632 sodium acetate Substances 0.000 description 4
- 235000017281 sodium acetate Nutrition 0.000 description 4
- 229960001367 tartaric acid Drugs 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000747 cardiac effect Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000004310 lactic acid Substances 0.000 description 3
- 235000014655 lactic acid Nutrition 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011244 liquid electrolyte Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 238000005381 potential energy Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 2
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 2
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- WXHLLJAMBQLULT-UHFFFAOYSA-N 2-[[6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-n-(2-methyl-6-sulfanylphenyl)-1,3-thiazole-5-carboxamide;hydrate Chemical compound O.C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1S WXHLLJAMBQLULT-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 2
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-XIXRPRMCSA-N Mesotartaric acid Chemical compound OC(=O)[C@@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-XIXRPRMCSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 235000011054 acetic acid Nutrition 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229960004050 aminobenzoic acid Drugs 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 2
- 238000007743 anodising Methods 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- HNYOPLTXPVRDBG-UHFFFAOYSA-N barbituric acid Chemical compound O=C1CC(=O)NC(=O)N1 HNYOPLTXPVRDBG-UHFFFAOYSA-N 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 235000013985 cinnamic acid Nutrition 0.000 description 2
- 229930016911 cinnamic acid Natural products 0.000 description 2
- 239000002322 conducting polymer Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 229940074391 gallic acid Drugs 0.000 description 2
- 235000004515 gallic acid Nutrition 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000174 gluconic acid Substances 0.000 description 2
- 235000012208 gluconic acid Nutrition 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 239000001630 malic acid Substances 0.000 description 2
- 235000011090 malic acid Nutrition 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 2
- 150000005338 nitrobenzoic acids Chemical group 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 235000021313 oleic acid Nutrition 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000002685 polymerization catalyst Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 235000019260 propionic acid Nutrition 0.000 description 2
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- HELHAJAZNSDZJO-OLXYHTOASA-L sodium L-tartrate Chemical compound [Na+].[Na+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O HELHAJAZNSDZJO-OLXYHTOASA-L 0.000 description 2
- 239000001433 sodium tartrate Substances 0.000 description 2
- 239000011877 solvent mixture Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- BWRBVBFLFQKBPT-UHFFFAOYSA-N (2-nitrophenyl)methanol Chemical compound OCC1=CC=CC=C1[N+]([O-])=O BWRBVBFLFQKBPT-UHFFFAOYSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 1
- SUGXZLKUDLDTKX-UHFFFAOYSA-N 1-(2-nitrophenyl)ethanone Chemical compound CC(=O)C1=CC=CC=C1[N+]([O-])=O SUGXZLKUDLDTKX-UHFFFAOYSA-N 0.000 description 1
- ARKIFHPFTHVKDT-UHFFFAOYSA-N 1-(3-nitrophenyl)ethanone Chemical compound CC(=O)C1=CC=CC([N+]([O-])=O)=C1 ARKIFHPFTHVKDT-UHFFFAOYSA-N 0.000 description 1
- KKTRZAZFCRHFFW-UHFFFAOYSA-N 1-nitrocyclohexa-3,5-diene-1,2-dicarboxylic acid Chemical compound OC(=O)C1C=CC=CC1(C(O)=O)[N+]([O-])=O KKTRZAZFCRHFFW-UHFFFAOYSA-N 0.000 description 1
- CCXSGQZMYLXTOI-UHFFFAOYSA-N 13506-76-8 Chemical compound CC1=CC=CC([N+]([O-])=O)=C1C(O)=O CCXSGQZMYLXTOI-UHFFFAOYSA-N 0.000 description 1
- YPQAFWHSMWWPLX-UHFFFAOYSA-N 1975-50-4 Chemical compound CC1=C(C(O)=O)C=CC=C1[N+]([O-])=O YPQAFWHSMWWPLX-UHFFFAOYSA-N 0.000 description 1
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- CFBYEGUGFPZCNF-UHFFFAOYSA-N 2-nitroanisole Chemical compound COC1=CC=CC=C1[N+]([O-])=O CFBYEGUGFPZCNF-UHFFFAOYSA-N 0.000 description 1
- CMWKITSNTDAEDT-UHFFFAOYSA-N 2-nitrobenzaldehyde Chemical compound [O-][N+](=O)C1=CC=CC=C1C=O CMWKITSNTDAEDT-UHFFFAOYSA-N 0.000 description 1
- SLAMLWHELXOEJZ-UHFFFAOYSA-N 2-nitrobenzoic acid Chemical compound OC(=O)C1=CC=CC=C1[N+]([O-])=O SLAMLWHELXOEJZ-UHFFFAOYSA-N 0.000 description 1
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical compound OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 description 1
- CCTFMNIEFHGTDU-UHFFFAOYSA-N 3-methoxypropyl acetate Chemical compound COCCCOC(C)=O CCTFMNIEFHGTDU-UHFFFAOYSA-N 0.000 description 1
- XDTTUTIFWDAMIX-UHFFFAOYSA-N 3-methyl-4-nitrobenzoic acid Chemical compound CC1=CC(C(O)=O)=CC=C1[N+]([O-])=O XDTTUTIFWDAMIX-UHFFFAOYSA-N 0.000 description 1
- WGYFINWERLNPHR-UHFFFAOYSA-N 3-nitroanisole Chemical compound COC1=CC=CC([N+]([O-])=O)=C1 WGYFINWERLNPHR-UHFFFAOYSA-N 0.000 description 1
- ZETIVVHRRQLWFW-UHFFFAOYSA-N 3-nitrobenzaldehyde Chemical compound [O-][N+](=O)C1=CC=CC(C=O)=C1 ZETIVVHRRQLWFW-UHFFFAOYSA-N 0.000 description 1
- AFPHTEQTJZKQAQ-UHFFFAOYSA-N 3-nitrobenzoic acid Chemical compound OC(=O)C1=CC=CC([N+]([O-])=O)=C1 AFPHTEQTJZKQAQ-UHFFFAOYSA-N 0.000 description 1
- CWNPOQFCIIFQDM-UHFFFAOYSA-N 3-nitrobenzyl alcohol Chemical compound OCC1=CC=CC([N+]([O-])=O)=C1 CWNPOQFCIIFQDM-UHFFFAOYSA-N 0.000 description 1
- RTZZCYNQPHTPPL-UHFFFAOYSA-N 3-nitrophenol Chemical compound OC1=CC=CC([N+]([O-])=O)=C1 RTZZCYNQPHTPPL-UHFFFAOYSA-N 0.000 description 1
- KFIRODWJCYBBHY-UHFFFAOYSA-N 3-nitrophthalic acid Chemical compound OC(=O)C1=CC=CC([N+]([O-])=O)=C1C(O)=O KFIRODWJCYBBHY-UHFFFAOYSA-N 0.000 description 1
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 1
- BBEWSMNRCUXQRF-UHFFFAOYSA-N 4-methyl-3-nitrobenzoic acid Chemical compound CC1=CC=C(C(O)=O)C=C1[N+]([O-])=O BBEWSMNRCUXQRF-UHFFFAOYSA-N 0.000 description 1
- YQYGPGKTNQNXMH-UHFFFAOYSA-N 4-nitroacetophenone Chemical compound CC(=O)C1=CC=C([N+]([O-])=O)C=C1 YQYGPGKTNQNXMH-UHFFFAOYSA-N 0.000 description 1
- BXRFQSNOROATLV-UHFFFAOYSA-N 4-nitrobenzaldehyde Chemical compound [O-][N+](=O)C1=CC=C(C=O)C=C1 BXRFQSNOROATLV-UHFFFAOYSA-N 0.000 description 1
- OTLNPYWUJOZPPA-UHFFFAOYSA-N 4-nitrobenzoic acid Chemical compound OC(=O)C1=CC=C([N+]([O-])=O)C=C1 OTLNPYWUJOZPPA-UHFFFAOYSA-N 0.000 description 1
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 1
- SLBQXWXKPNIVSQ-UHFFFAOYSA-N 4-nitrophthalic acid Chemical compound OC(=O)C1=CC=C([N+]([O-])=O)C=C1C(O)=O SLBQXWXKPNIVSQ-UHFFFAOYSA-N 0.000 description 1
- QRRSIFNWHCKMSW-UHFFFAOYSA-N 5-methyl-2-nitrobenzoic acid Chemical compound CC1=CC=C([N+]([O-])=O)C(C(O)=O)=C1 QRRSIFNWHCKMSW-UHFFFAOYSA-N 0.000 description 1
- DGDAVTPQCQXLGU-UHFFFAOYSA-N 5437-38-7 Chemical compound CC1=CC=CC(C(O)=O)=C1[N+]([O-])=O DGDAVTPQCQXLGU-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004135 Bone phosphate Substances 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- BNUHAJGCKIQFGE-UHFFFAOYSA-N Nitroanisol Chemical compound COC1=CC=C([N+]([O-])=O)C=C1 BNUHAJGCKIQFGE-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 229960004365 benzoic acid Drugs 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 235000019524 disodium tartrate Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- VPCCKEJZODGJBT-UHFFFAOYSA-K iron(3+) phenylmethanesulfonate Chemical compound [Fe+3].[O-]S(=O)(=O)Cc1ccccc1.[O-]S(=O)(=O)Cc1ccccc1.[O-]S(=O)(=O)Cc1ccccc1 VPCCKEJZODGJBT-UHFFFAOYSA-K 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- GKQWYZBANWAFMQ-UHFFFAOYSA-M lithium;2-hydroxypropanoate Chemical compound [Li+].CC(O)C([O-])=O GKQWYZBANWAFMQ-UHFFFAOYSA-M 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- YZMHQCWXYHARLS-UHFFFAOYSA-N naphthalene-1,2-disulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(S(=O)(=O)O)=CC=C21 YZMHQCWXYHARLS-UHFFFAOYSA-N 0.000 description 1
- 230000007383 nerve stimulation Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 229920000417 polynaphthalene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229960002167 sodium tartrate Drugs 0.000 description 1
- 235000011004 sodium tartrates Nutrition 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/145—Liquid electrolytic capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/035—Liquid electrolytes, e.g. impregnating materials
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
通常、電解コンデンサは、他のいくつかの種類のコンデンサよりも単位容積当たりの静電容量が高く、このため比較的高電流かつ低周波の電気回路において有益なものとなっている。開発されてきた1つの種類のコンデンサに、焼結されたタンタル粉末陽極を含む「湿式」電解コンデンサがある。これらのタンタルの「スラグ」は、非常に大きな内部表面積を有する。これらのタンタルのスラグは、タンタル体の外面及び内面全体を覆う誘電体として機能する酸化物層を形成する電気化学的酸化を最初に受ける。その後、陽極酸化されたタンタルのスラグは、導電性及び腐食性の高い液体電解質溶液を含有するとともにこの液体電解質溶液へ電流が流れるようにする導電性ライニングを含む表面積の大きな缶の中に密閉される。 Electrolytic capacitors typically have a higher capacitance per unit volume than some other types of capacitors, which makes them useful in relatively high current, low frequency electrical circuits. One type of capacitor that has been developed is a “wet” electrolytic capacitor that includes a sintered tantalum powder anode. These tantalum “slags” have a very large internal surface area. These tantalum slags first undergo electrochemical oxidation to form an oxide layer that functions as a dielectric covering the entire outer and inner surfaces of the tantalum body. The anodized tantalum slag is then sealed in a high surface area can that contains a conductive and highly corrosive liquid electrolyte solution and includes a conductive lining that allows current to flow to the liquid electrolyte solution. The
湿式タンタル電解コンデンサで使用される電解質溶液は、従来より2つの基本配合物のうちの1つで構成されてきた。第1の配合物は塩化リチウムの水溶液からなる。湿式タンタルコンデンサに従来より使用されている第2の電解質配合物は、35〜40%の硫酸水溶液からなる。腐食性であるにもかかわらず、このような硫酸電解質は、低い抵抗性、広い温度性能、及び比較的高い最高動作電圧を有し、このため硫酸電解質が従来の大半にの湿式タンタルコンデンサとっての選択肢となってきた。それでもなお、湿式コンデンサ用の他の電解質を開発する努力が行われてきた。例えば、Shah他に付与された米国特許第6,219,222号には、水及びエチレングリコールを含む溶媒系、並びにアンモニウム塩を使用する電解質が記載されている。Shah他は、この電解質が高い導電率及び絶縁破壊電圧を有し、これが等価直列抵抗を低下させることを示している。残念ながら、このようなコンデンサはいまだに高電圧値に達するのが困難であるという点において課題が残る。 The electrolyte solution used in wet tantalum electrolytic capacitors has traditionally consisted of one of two basic formulations. The first formulation consists of an aqueous solution of lithium chloride. The second electrolyte formulation conventionally used in wet tantalum capacitors consists of 35-40% aqueous sulfuric acid. Despite being corrosive, such sulfuric acid electrolytes have low resistance, wide temperature performance, and relatively high maximum operating voltage, which makes sulfuric acid electrolytes more common than conventional wet tantalum capacitors. Has become an option. Nevertheless, efforts have been made to develop other electrolytes for wet capacitors. For example, US Pat. No. 6,219,222 issued to Shah et al . Describes a solvent system comprising water and ethylene glycol, and an electrolyte using an ammonium salt. Shah et al. Show that this electrolyte has high conductivity and breakdown voltage, which reduces the equivalent series resistance. Unfortunately, the problem remains in that such capacitors are still difficult to reach high voltage values.
このため現在、高電圧を得ることができる電解コンデンサの必要性が存在する。 Therefore, there is a need for an electrolytic capacitor that can obtain a high voltage.
本発明の1つの実施形態によれば、陽極酸化により形成された誘電体層を含む多孔質陽極体と、導電性ポリマーで被覆された金属基材を含む陰極と、陰極及び陽極に接触して配置された水性電解質とを備えた電解コンデンサが開示される。電解質は、弱有機酸の塩と水性溶媒とを含む。電解質は、25℃の温度で測定したときに、約0.1〜約30ミリシーメンス/センチメートルのイオン伝導率を有し、pHが約4.5〜約7.0である。 According to one embodiment of the present invention, a porous anode body including a dielectric layer formed by anodization, a cathode including a metal substrate coated with a conductive polymer, and in contact with the cathode and the anode An electrolytic capacitor comprising an aqueous electrolyte disposed is disclosed. The electrolyte includes a salt of a weak organic acid and an aqueous solvent. The electrolyte has an ionic conductivity of about 0.1 to about 30 milliSiemens / centimeter and a pH of about 4.5 to about 7.0 when measured at a temperature of 25 ° C.
本発明のその他の特徴及び態様については、以下でより詳細に説明する。 Other features and aspects of the present invention are described in more detail below.
当業者を対象とする本発明の最良の形態を含む本発明の完全な及び実施可能な開示について、本明細書の残りの部分において添付図を参照しながらさらに詳細に説明する。 The complete and practicable disclosure of the present invention, including the best mode of the present invention, directed to those skilled in the art will be described in further detail with reference to the accompanying drawings in the remainder of the specification.
本明細書及び図面における参照符号の反復使用は、本発明の同じ又は類似の特徴又は要素を示すことを意図するものである。 Repeat use of reference signs in the present specification and drawings is intended to indicate same or analogous features or elements of the invention.
当業者であれば、本考察は例示的な実施形態について説明するものにすぎず、例示的な構成において具体化される本発明のより広い態様を限定することを意図するものではないことを理解すべきである。 Those skilled in the art will appreciate that the discussion is merely illustrative of exemplary embodiments and is not intended to limit the broader aspects of the invention embodied in the exemplary configurations. Should.
大まかに言えば、本発明は、誘電体層を含む多孔質陽極体と、導電性ポリマーで被覆された金属基材を含む陰極と、水性電解質とを含む。電解質のイオン伝導率は、コンデンサを高電圧に充電できるように特定の範囲内に選択的に制御される。より詳細には、電解質は通常、25℃の温度で(Oakton Con Series 11などの)いずれかの公知の導電率計を使用して測定したときに、約0.1〜約30ミリシーメンス/センチメートル(「mS/cm」)、実施形態によっては約0.5〜約25mS/cm、実施形態によっては約1〜約20mS/cm、及び実施形態によっては約2〜約15mS/cmのイオン伝導率を有する。上述の範囲内において、電解質のイオン伝導率が、有意な電荷分離をもたらすのに十分な長さ(デバイ長)まで液体電解質内に電界を広げることができると考えられている。これにより、誘電体のポテンシャルエネルギーが電解質にまで広がるため、結果として得られるコンデンサは、誘電体酸化物層の厚みから予測されるよりもさらに多くのポテンシャルエネルギーを蓄積できるようになる。換言すれば、誘電体の形成電圧を超える電圧までコンデンサを充電することができる。コンデンサを充電できる最大電圧の、形成電圧に対する比率は、例えば約1.0〜2.0、実施形態によっては約1.1〜約1.8、及び実施形態によっては約1.2〜約1.6であることができる。一例として、コンデンサを充電する最大電圧は、約200〜約350V、実施形態によっては約220〜約320V、及び実施形態によっては約250〜約300Vであってもよい。 Broadly speaking, the present invention includes a porous anode body including a dielectric layer, a cathode including a metal substrate coated with a conductive polymer, and an aqueous electrolyte. The ionic conductivity of the electrolyte is selectively controlled within a specific range so that the capacitor can be charged to a high voltage. More specifically, the electrolyte is typically about 0.1 to about 30 milliSiemens / cm when measured using any known conductivity meter (such as Oakton Con Series 11) at a temperature of 25 ° C. Ion conductivity in meters (“mS / cm”), in some embodiments from about 0.5 to about 25 mS / cm, in some embodiments from about 1 to about 20 mS / cm, and in some embodiments from about 2 to about 15 mS / cm Have a rate. Within the above range, it is believed that the ionic conductivity of the electrolyte can extend the electric field into the liquid electrolyte to a length (Debye length) sufficient to provide significant charge separation. This spreads the potential energy of the dielectric to the electrolyte so that the resulting capacitor can store more potential energy than expected from the thickness of the dielectric oxide layer. In other words, the capacitor can be charged to a voltage exceeding the dielectric formation voltage. The ratio of the maximum voltage that can charge the capacitor to the forming voltage is, for example, from about 1.0 to 2.0, in some embodiments from about 1.1 to about 1.8, and in some embodiments from about 1.2 to about 1. .6. As an example, the maximum voltage to charge the capacitor may be about 200 to about 350V, in some embodiments about 220 to about 320V, and in some embodiments about 250 to about 300V.
電解質のイオン伝導率は、ある濃度範囲内の特定の種類の塩を選択することにより、ある程度達成される。すなわち、本発明者らは、電解質の所望の導電率の達成に使用するには弱有機酸の塩が特に有効であることを発見した。塩のカチオンとして、(Li+、Na+、K+、Rb+、又はCs+などの)アルカリ金属、(Be2+、Mg2+、Ca2+、Sr2+、又はBa2+などの)アルカリ土類金属、(Ag+、Fe2+、Fe3+などの)遷移金属のような単原子カチオン、並びにNH4 +などの多原子カチオンを挙げることができる。一価のアンモニウム(NH4 +)、ナトリウム(K+ミスタイプNa+)、及びリチウム(Li+)が、本発明における使用に特に適したカチオンである。塩のアニオンの形成に使用される有機酸は、25℃で測定したときに、通常約0〜約11、実施形態によっては約1〜約10、及び実施形態によっては約2〜約10の第1酸解離定数(pKa1)を有するという意味で「弱い」ものである。本発明では、アクリル酸、メタクリル酸、マロン酸、コハク酸、サリチル酸、スルホサリチル酸、アジピン酸、マレイン酸、リンゴ酸、オレイン酸、没食子酸、(デキストロ酒石酸、メソ酒石酸などの)酒石酸、クエン酸、ギ酸、酢酸、グリコール酸、シュウ酸、プロピオン酸、フタール酸、イソフタール酸、グルタール酸、グルコン酸、乳酸、アスパラギン酸、グルタミン酸、イタコン酸、トリフルオロ酢酸、バルビツール酸、桂皮酸、安息香酸、4−ヒドロキシ安息香酸、アミノ安息香酸などのカルボン酸、及びこれらの混和物などのいずれかの適切な弱有機酸を使用することができる。塩の形成に使用するには、アジピン酸(4.43のpKa1及び5.41のpKa2)、α−酒石酸(2.98のpKa1及び4.34のpKa2)、メソ酒石酸(3.22のpKa1及び4.82のpKa2)、シュウ酸(1.23のpKa1及び4.19のpKa2)、乳酸(4.43のpKa1、5.41のpKa2、及び5.41のpKa3)などの(二塩基、三塩基などの)多塩基酸が特に望ましい。 The ionic conductivity of the electrolyte is achieved to some extent by selecting a particular type of salt within a certain concentration range. That is, the inventors have discovered that salts of weak organic acids are particularly effective for use in achieving the desired conductivity of the electrolyte. As salt cations, alkali metals (such as Li + , Na + , K + , Rb + , or Cs + ), such as Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , or Ba 2+ ) Alkaline earth metals, monoatomic cations such as transition metals (such as Ag + , Fe 2+ , Fe 3+ ) and polyatomic cations such as NH 4 + . Monovalent ammonium (NH 4 + ), sodium (K + mistype Na + ), and lithium (Li + ) are particularly suitable cations for use in the present invention. The organic acid used to form the anion of the salt is usually from about 0 to about 11, in some embodiments from about 1 to about 10, and in some embodiments from about 2 to about 10, as measured at 25 ° C. It is “weak” in the sense that it has a single acid dissociation constant (pK a1 ). In the present invention, acrylic acid, methacrylic acid, malonic acid, succinic acid, salicylic acid, sulfosalicylic acid, adipic acid, maleic acid, malic acid, oleic acid, gallic acid, tartaric acid (such as dextrotartaric acid, mesotartaric acid), citric acid, Formic acid, acetic acid, glycolic acid, oxalic acid, propionic acid, phthalic acid, isophthalic acid, glutaric acid, gluconic acid, lactic acid, aspartic acid, glutamic acid, itaconic acid, trifluoroacetic acid, barbituric acid, cinnamic acid, benzoic acid, 4 Any suitable weak organic acid, such as carboxylic acids such as hydroxybenzoic acid, aminobenzoic acid, and mixtures thereof can be used. For use in the formation of salts, (pK a2 of pK a1 and 5.41 4.43) adipic acid, alpha-tartaric acid (2.98 in pK a1 and 4.34 pK a2), meso-tartaric acid (3 .22 pK a2 of pK a1 and 4.82 of), pK a2 of pKa1 and 4.19 of oxalic acid (1.23), pK a1 of lactic acid (4.43, 5.41 of pK a2, and 5. Polybasic acids (such as dibasic and tribasic) such as 41 pK a3 ) are particularly desirable.
電解質内の弱有機酸塩の濃度は、所望のイオン伝導率を達成するように選択される。実際の量は、使用する特定の塩、電解質で使用する(単複の)溶媒内の塩の溶解度、及びその他の構成成分の存在次第で様々であってもよいが、このような弱有機酸塩は、通常は電解質内に、約0.1〜約25重量%、実施形態によっては約0.2〜約20重量%、実施形態によっては約0.3〜約15重量%、及び実施形態によっては約0.5〜約5重量%の量で存在する。 The concentration of the weak organic acid salt in the electrolyte is selected to achieve the desired ionic conductivity. The actual amount may vary depending on the particular salt used, the solubility of the salt in the solvent (s) used in the electrolyte, and the presence of other components, but such weak organic acid salts. Typically within the electrolyte from about 0.1 to about 25% by weight, in some embodiments from about 0.2 to about 20% by weight, in some embodiments from about 0.3 to about 15% by weight, and in some embodiments. Is present in an amount of about 0.5 to about 5 weight percent.
一般に、水性電解質は、溶液、分散液、ゲルなどの様々な形態のいずれかを有することができる。しかしながら、その形態にかかわらず、水性電解質は溶媒として(脱イオン水などの)水を含有する。例えば、(脱イオン水などの)水は、電解質の約20重量%〜約95重量%、実施形態によっては約30重量%〜約90重量%、及び実施形態によっては約40重量%〜約85重量%を構成することができる。いくつかの場合、水とともに二次溶媒を使用して溶媒混合物を形成することができる。適当な二次溶媒として、例えば、(エチレングリコール、プロピレングリコール、ブチレングリコール、トリエチレングリコール、ヘキシレングリコール、ポリエチレングリコール、エトキシジグリコール、ジプロピレングリコールなどの)グリコール、(メチルグリコールエーテル、エチルグリコールエーテル、イソプロピルグリコールエーテル、その他などの)グリコールエーテル、(メタノール、エタノール、n−プロパノール、イソプロパノール、及びブタノールなどの)アルコール、(アセトン、メチルエチルケトン、及びメチルイソブチルケトンなどの)ケトン、(酢酸エチル、酢酸ブチル、ジエチレングリコールエーテルアセテート、酢酸メトキシプロピル、エチレンカーボネート、プロピレンカーボネートなどの)エステル、(ジメチルホルマミド、ジメチルアセタミド、ジメチルカプリリック/カプリック脂肪酸アミド及びN−アルキルピロリドンなどの)アミド、及び(ジメチルスルホキシド(DMSO)及びスルホランなどの)スルホキシド又はスルホンなどが挙げられる。通常、このような溶媒混合物は、約40重量%〜約80重量%、実施形態によっては約50重量%〜約75重量%、及び実施形態によっては約55重量%〜約70重量%の量の水を含有し、約20重量%〜約60重量%、実施形態によっては約25重量%〜約50重量%、及び実施形態によっては約30重量%〜約45重量%の量の(単複の)二次溶媒を含有する。例えば、(単複の)二次溶媒は、電解質の約5重量%〜約45重量%、実施形態によっては約10重量%〜約40重量%、及び実施形態によっては約15重量%〜約35重量%を構成することができる。 In general, the aqueous electrolyte can have any of a variety of forms such as solutions, dispersions, gels, and the like. However, regardless of its form, the aqueous electrolyte contains water (such as deionized water) as a solvent. For example, water (such as deionized water) can be from about 20% to about 95% by weight of the electrolyte, in some embodiments from about 30% to about 90%, and in some embodiments from about 40% to about 85%. % By weight can be constituted. In some cases, a secondary solvent can be used with water to form a solvent mixture. Suitable secondary solvents include, for example, glycols (such as ethylene glycol, propylene glycol, butylene glycol, triethylene glycol, hexylene glycol, polyethylene glycol, ethoxydiglycol, dipropylene glycol), (methyl glycol ether, ethyl glycol ether) Glycol ethers (such as methanol, ethanol, n-propanol, isopropanol, and butanol), ketones (such as acetone, methyl ethyl ketone, and methyl isobutyl ketone), (ethyl acetate, butyl acetate, etc.) , Esters such as diethylene glycol ether acetate, methoxypropyl acetate, ethylene carbonate, propylene carbonate) (Dimethyl formamide de, dimethylacetamide, such as dimethyl caprylic / Kapurikku fatty acid amide and N- alkylpyrrolidones) amide, and (such as dimethyl sulfoxide (DMSO) and sulfolane) and the like sulfoxide or sulfone. Typically, such solvent mixtures are in an amount of from about 40% to about 80%, in some embodiments from about 50% to about 75%, and in some embodiments from about 55% to about 70% by weight. Contains water, in an amount of about 20% to about 60%, in some embodiments from about 25% to about 50%, and in some embodiments from about 30% to about 45% by weight. Contains a secondary solvent. For example, the secondary solvent (s) can be from about 5% to about 45% by weight of the electrolyte, in some embodiments from about 10% to about 40%, and in some embodiments from about 15% to about 35%. % Can be made up.
水性電解質は比較的中性でもあり、約4.5〜約7.0の、実施形態によっては約5.0〜約6.5の、及び実施形態によっては約5.5〜約6.0のpHを有する。必要であれば、(酸、塩基などの)1又はそれ以上のpH調整剤を使用して所望のpHの達成に役立てることができる。1つの実施形態では、酸を使用してpHを所望の範囲に低下させる。適当な酸として、例えば、塩酸、硝酸、硫酸、リン酸、ポリリン酸、ホウ酸、ボロン酸などの無機酸、及びアクリル酸、メタクリル酸、マロン酸、コハク酸、サリチル酸、スルホサリチル酸、アジピン酸、マレイン酸、リンゴ酸、オレイン酸、没食子酸、酒石酸、クエン酸、ギ酸、酢酸、グリコール酸、シュウ酸、プロピオン酸、フタール酸、イソフタール酸、グルタール酸、グルコン酸、乳酸、アスパラギン酸、グルタミン酸、イタコン酸、トリフルオロ酢酸、バルビツール酸、桂皮酸、安息香酸、4−ヒドロキシ安息香酸、アミノ安息香酸などのカルボン酸と、メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、トリフルオロメタンスルホン酸、スチレンスルホン酸、ナフタレンジスルホン酸、ヒドロキシベンゼンスルホン酸などのスルホン酸と、ポリ(アクリル)又はポリ(メタクリル)酸及び(マレイン−アクリル、スルホン−アクリル、及びスチレン−アクリルのコポリマーなどの)これらのコポリマー、カラギニン酸、カルボキシメチルセルロース、アルギン酸などのポリマー酸とを含む有機酸が挙げられる。pH調整剤の総濃度は様々であってもよいが、pH調整剤は、通常、電解質の約0.01重量%〜約10重量%、実施形態によっては約0.05重量%〜約5重量%、及び実施形態によっては約0.1重量%〜約2重量%の量で存在する。 The aqueous electrolyte is also relatively neutral, from about 4.5 to about 7.0, in some embodiments from about 5.0 to about 6.5, and in some embodiments from about 5.5 to about 6.0. Having a pH of If necessary, one or more pH adjusters (acid, base, etc.) can be used to help achieve the desired pH. In one embodiment, an acid is used to lower the pH to the desired range. Suitable acids include, for example, inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, boric acid, boronic acid, and acrylic acid, methacrylic acid, malonic acid, succinic acid, salicylic acid, sulfosalicylic acid, adipic acid, Maleic acid, malic acid, oleic acid, gallic acid, tartaric acid, citric acid, formic acid, acetic acid, glycolic acid, oxalic acid, propionic acid, phthalic acid, isophthalic acid, glutaric acid, gluconic acid, lactic acid, aspartic acid, glutamic acid, itacone Carboxylic acids such as acid, trifluoroacetic acid, barbituric acid, cinnamic acid, benzoic acid, 4-hydroxybenzoic acid, aminobenzoic acid, methanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, trifluoromethanesulfonic acid, styrenesulfone Acid, naphthalene disulfonic acid, hydroxybenzenesulfone And sulfonic acids such as poly (acrylic) or poly (methacrylic) acid and their copolymers (such as maleic-acrylic, sulfone-acrylic, and styrene-acrylic copolymers), polymeric acids such as carrageenic acid, carboxymethylcellulose, alginic acid, etc. And organic acids containing Although the total concentration of the pH adjuster may vary, the pH adjuster is typically about 0.01% to about 10% by weight of the electrolyte, and in some embodiments about 0.05% to about 5% by weight. %, And in some embodiments from about 0.1% to about 2% by weight.
電解質は、コンデンサの電気的性能の改善に役立つその他の成分を含むこともできる。電解質に減極剤を使用して、電解コンデンサの陰極における水素ガスの発生を抑える役に立てることができ、減極剤を使用しなければ水素ガスがコンデンサを膨らませ最終的には破損させる恐れがある。使用する場合、減極剤は、通常、電解質の約1〜約500ppm、実施形態によっては約10〜約200ppm、及び実施形態によっては約20〜約150ppmを構成する。適当な減極剤として、2−ニトロフェノール、3−ニトロフェノール、4−ニトロフェノール、2−ニトロ安息香酸、3−ニトロ安息香酸、4−ニトロ安息香酸、2−ニトロアセトフェノン、3−ニトロアセトフェノン、4−ニトロアセトフェノン、2−ニトロアニソール、3−ニトロアニソール、4−ニトロアニソール、2−ニトロベンズアルデヒド、3−ニトロベンズアルデヒド、4−ニトロベンズアルデヒド、2−ニトロベンジルアルコール、3−ニトロベンジルアルコール、4−ニトロベンジルアルコール、2−ニトロフタール酸、3−ニトロフタール酸、及び4−ニトロフタール酸などのニトロ芳香族化合物を挙げることができる。本発明における使用に特に適したニトロ芳香族減極剤は、(メチル、エチル、プロピル、ブチルなどの)1又はそれ以上のアルキル基で置換されたニトロ安息香酸、これらの無水物又は塩である。このようなアルキル置換ニトロ安息香酸化合物の特定の例として、例えば、2−メチル−3−ニトロ安息香酸、2−メチル−6−ニトロ安息香酸、3−メチル−2−ニトロ安息香酸、3−メチル−4−ニトロ安息香酸、3−メチル−6−ニトロ安息香酸、4−メチル−3−ニトロ安息香酸、及びこれらの無水物又は塩などが挙げられる。理論によって制限することを意図するわけではないが、陰極電位が低領域に達し又はセル電圧が高い場合、アルキル置換ニトロ安息香酸化合物が陰極表面の活性部位に優先的に電気化学的に吸着することができ、陰極電位が上昇し又はセル電圧が低い場合、その後そこから電解質内に脱着することができると考えられている。このように、この化合物は「電気化学的に可逆的」であり、これにより水素ガスの発生をさらに抑えることができる。 The electrolyte can also include other components that help improve the electrical performance of the capacitor. A depolarizer can be used in the electrolyte to help prevent the generation of hydrogen gas at the cathode of the electrolytic capacitor. If the depolarizer is not used, the hydrogen gas can expand the capacitor and eventually damage it. . When used, the depolarizer typically comprises about 1 to about 500 ppm of the electrolyte, in some embodiments about 10 to about 200 ppm, and in some embodiments about 20 to about 150 ppm. Suitable depolarizers include 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2-nitrobenzoic acid, 3-nitrobenzoic acid, 4-nitrobenzoic acid, 2-nitroacetophenone, 3-nitroacetophenone, 4-nitroacetophenone, 2-nitroanisole, 3-nitroanisole, 4-nitroanisole, 2-nitrobenzaldehyde, 3-nitrobenzaldehyde, 4-nitrobenzaldehyde, 2-nitrobenzyl alcohol, 3-nitrobenzyl alcohol, 4-nitro Mention may be made of nitroaromatic compounds such as benzyl alcohol, 2-nitrophthalic acid, 3-nitrophthalic acid, and 4-nitrophthalic acid. Particularly suitable nitroaromatic depolarizers for use in the present invention are nitrobenzoic acids substituted with one or more alkyl groups (such as methyl, ethyl, propyl, butyl, etc.), their anhydrides or salts . Specific examples of such alkyl-substituted nitrobenzoic acid compounds include, for example, 2-methyl-3-nitrobenzoic acid, 2-methyl-6-nitrobenzoic acid, 3-methyl-2-nitrobenzoic acid, 3-methyl Examples include -4-nitrobenzoic acid, 3-methyl-6-nitrobenzoic acid, 4-methyl-3-nitrobenzoic acid, and anhydrides or salts thereof. Without intending to be limited by theory, when the cathodic potential reaches a low region or the cell voltage is high, the alkyl-substituted nitrobenzoic acid compound preferentially adsorbs electrochemically to the active site on the cathode surface. It is believed that if the cathode potential rises or the cell voltage is low, it can then be desorbed from there into the electrolyte. Thus, this compound is “electrochemically reversible”, which can further suppress the generation of hydrogen gas.
電解コンデンサの陽極は、約5,000μF*V/g以上、実施形態によっては約25,000μF*V/g以上、実施形態によっては約50,000μF*V/g以上、及び実施形態によっては約70,000〜約300,000μF*V/gのような高い比電荷を有するバルブ金属組成物で形成できる多孔質体を含む。バルブ金属組成物は、タンタル、ニオブ、アルミニウム、ハフニウム、チタン、これらの合金、これらの酸化物、及びこれらの窒化物などのバルブ金属(すなわち酸化できる金属)又はバルブ金属ベースの化合物を含む。例えば、バルブ金属組成物は、ニオブの酸素に対する原子比が1:1.0±1.0、実施形態によっては1:10±0.3、実施形態によっては1:10±0.1、及び実施形態によっては1:1±0.05のニオブ酸化物のようなニオブの導電性酸化物を含むことができる。例えば、ニオブ酸化物は、NbO0.7、NbO1.0、NbO1.1、及びNbO2であってもよい。このようなバルブ金属酸化物の例が、Fifeに付与された米国特許第6,322,912号、Fife他に付与された第6,391,275号、Fife他に付与された第6,416,730号、Fifeに付与された第6,527,937号、Kimmel他に付与された第6,576,099号、Fife他に付与された第6,592,740号、Kimmel他に付与された第6,639,787号、及びKimmel他に付与された第7,220,397号、並びにSchnitterへの米国特許出願公開第2005/0019581号、Schnitter他への米国特許出願公開第2005/0103638号、Thomas他への米国特許出願公開第2005/0013765号に記載されており、これらの特許の全てはあらゆる目的によるこれらへの参照によりその全体が本明細書に組み入れられる。 The anode of the electrolytic capacitor is about 5,000 μF * V / g or higher, in some embodiments about 25,000 μF * V / g or higher, in some embodiments about 50,000 μF * V / g or higher, and in some embodiments about It includes a porous body that can be formed from a valve metal composition having a high specific charge such as 70,000 to about 300,000 μF * V / g. Valve metal compositions include valve metals (ie, metals that can be oxidized) or valve metal based compounds such as tantalum, niobium, aluminum, hafnium, titanium, alloys thereof, oxides thereof, and nitrides thereof. For example, the valve metal composition has an atomic ratio of niobium to oxygen of 1: 1.0 ± 1.0, in some embodiments 1: 10 ± 0.3, in some embodiments 1: 10 ± 0.1, and In some embodiments, a conductive oxide of niobium such as 1: 1 ± 0.05 niobium oxide can be included. For example, the niobium oxide may be NbO 0.7 , NbO 1.0 , NbO 1.1 , and NbO 2 . Examples of such valve metal oxides, granted U.S. Patent No. 6,322,912 to Fife, No. 6,391,275, issued to Fife et first granted in Fife other 6,416 , 730, No. 6,527,937 granted to Fife , No. 6,576,099 granted to Kimmel et al ., No. 6,592,740 granted to Fife et al. , Granted to Kimmel et al. No. 6,639,787, and 7,220,397 to Kimmel et al., And US Patent Application Publication No. 2005/0019581 to Schnitter , US Patent Application Publication No. 2005/0103638 to Schnitter et al . No., are described in U.S. Patent application Publication No. 2005/0013765 to Thomas et al., these patents Their entirety by reference thereto by any object Te are incorporated herein.
一般に、従来の作製手順を使用して多孔質陽極体を形成することができる。1つの実施形態では、最初に特定の粒径を有するタンタル又はニオブ酸化物粉末が選択される。例えば、粒子は、フレーク状、角状、瘤状、及びこれらの混合又は変形であってもよい。粒子はまた、通常少なくとも約60メッシュ、実施形態によっては約60メッシュ〜約325メッシュ、及び実施形態によっては約100〜約200メッシュの篩サイズ分布も有する。さらに比表面積は、約0.1〜約10.0m2/g、実施形態によっては約0.5〜約5.0m2/g、及び実施形態によっては約1.0〜約2.0m2/gである。「比表面積」という用語は、吸着ガスとして窒素を使用する、Bruanauer,Emmet,and Teller著,Journal of American Chemical Society,第60巻,1938年,309ページの物理的ガス吸着法(B.E.T.)により測定される表面積を意味する。同様に、バルク(又はScott)密度は、通常約0.1〜約5.0g/cm3、実施形態によっては約0.2〜約4.0g/cm3、及び実施形態によっては約0.5〜約3.0g/cm3である。 In general, porous anode bodies can be formed using conventional fabrication procedures. In one embodiment, a tantalum or niobium oxide powder having a specific particle size is first selected. For example, the particles may be flaky, horned, knurled, and mixtures or variations thereof. The particles also typically have a sieve size distribution of at least about 60 mesh, in some embodiments from about 60 mesh to about 325 mesh, and in some embodiments from about 100 to about 200 mesh. Further, the specific surface area is from about 0.1 to about 10.0 m 2 / g, in some embodiments from about 0.5 to about 5.0 m 2 / g, and in some embodiments from about 1.0 to about 2.0 m 2. / G. The term “specific surface area” refers to the physical gas adsorption method (B. E., et al., Branauer, Emmet, and Teller, Journal of American Chemical Society, Vol. 60, 1938, page 309, which uses nitrogen as the adsorption gas. T.) means the surface area measured. Similarly, the bulk (or Scott) density is typically about 0.1 to about 5.0 g / cm 3 , in some embodiments about 0.2 to about 4.0 g / cm 3 , and in some embodiments about 0.0. 5 to about 3.0 g / cm 3 .
陽極体の構成を容易化するために、導電性粒子に他の組成物を添加することができる。例えば、導電性粒子を結合剤及び/又は潤滑剤と任意に混合して、陽極体を形成すべく加圧されたときに粒子が相互に正確に付着し合うのを確実にすることができる。適当な結合剤として、樟脳、ステアリン酸及びその他の石鹸状の脂肪酸、Carbowax(Union Carbide社)、Glyptal(General Electric社)、ポリビニルアルコール、ナフタリン、植物性ワックス、及びマイクロワックス(精製パラフィン)を挙げることができる。結合剤は、溶媒内で溶解又は分散することができる。例示的な溶媒として、水、アルコールなどを挙げることができる。利用する場合、結合剤及び/又は潤滑剤の割合は、全質量の約0.1重量%〜約8重量%まで様々であってもよい。しかしながら、結合剤及び潤滑剤は、本発明において必須ではないことを理解されたい。 In order to facilitate the configuration of the anode body, another composition can be added to the conductive particles. For example, the conductive particles can optionally be mixed with a binder and / or lubricant to ensure that the particles adhere to each other correctly when pressurized to form the anode body. Suitable binders include camphor, stearic acid and other soapy fatty acids, Carbowax (Union Carbide), Glyptal (General Electric), polyvinyl alcohol, naphthalene, vegetable wax, and micro wax (purified paraffin). be able to. The binder can be dissolved or dispersed in the solvent. Exemplary solvents include water, alcohol, and the like. When utilized, the proportion of binder and / or lubricant may vary from about 0.1% to about 8% by weight of the total mass. However, it should be understood that binders and lubricants are not essential in the present invention.
得られた粉末は、いずれかの従来の粉末プレス成形を使用して圧縮することができる。例えば、プレス成形は、ダイと1又は複数のパンチとを使用する単一ステーション圧縮プレスであってもよい。或いは、ダイ及び単一の下方パンチのみを使用するアンビル型圧縮プレス成型を使用することができる。単一ステーション圧縮プレス成型は、単動、複動、フローティングダイ、可動プラテン、対向ラム、ねじプレス、インパクトプレス、加熱プレス、鋳造又は定寸などの様々な能力を有するカムプレス、トグル/ナックルプレス及び偏心/クランクプレスのようないくつかの基本型で利用可能である。必要であれば、真空下で形成ペレットを(約150℃〜約500℃などの)一定の温度で数分間加熱したりすることにより、圧縮後にあらゆる結合剤/潤滑剤を除去することができる。或いは、Bishop他に付与された米国特許第6,197,252号などに記載されるように、ペレットを水溶液と接触させることによって結合剤/潤滑剤を除去することもでき、該特許はあらゆる目的によるこの特許への参照によりその全体が本明細書に組み入れられる。 The resulting powder can be compressed using any conventional powder press molding. For example, the press molding may be a single station compression press using a die and one or more punches. Alternatively, anvil-type compression press molding using only a die and a single lower punch can be used. Single station compression press molding includes single acting, double acting, floating die, movable platen, opposed ram, screw press, impact press, heating press, cam press with various capabilities such as casting or sizing, toggle / knuckle press and Available in several basic types such as eccentric / crank press. If necessary, any binder / lubricant can be removed after compression by heating the formed pellets under vacuum at a constant temperature (such as about 150 ° C. to about 500 ° C.) for several minutes. Alternatively, the binder / lubricant can be removed by contacting the pellet with an aqueous solution as described in US Pat. No. 6,197,252 to Bishop et al. Is hereby incorporated by reference in its entirety.
加圧された陽極体の厚みは、約4ミリメートル以下、実施形態によっては約0.05〜約2ミリメートル、及び実施形態によっては約0.1〜約1ミリメートルのような比較的薄いものであってもよい。陽極体の形状もまた、結果として得られるコンデンサの電気特性を向上させるように選択することができる。例えば、陽極体は、曲線、正弦曲線、長方形、U字形、V字形などの形状を有することができる。陽極体は、体積に対する表面の割合を増やしてESRを最小化するとともに、静電容量の周波数応答を拡げるために、1又はそれ以上の畝、溝、凹部、又は窪みを含むという点において「溝付き」形状を有することもできる。このような「溝付き」陽極が、例えば、Webber他に付与された米国特許第6,191,936号、Maeda他に付与された第5,949,639号、及びBougault他に付与された第3,345,545号、並びにHahn他への米国特許出願公開第2005/0270725号に記載されており、これらの特許の全てはあらゆる目的によるこれらへの参照によりその全体が本明細書に組み入れられる。 The thickness of the pressurized anode body is relatively thin, such as about 4 millimeters or less, in some embodiments from about 0.05 to about 2 millimeters, and in some embodiments from about 0.1 to about 1 millimeter. May be. The shape of the anode body can also be selected to improve the electrical properties of the resulting capacitor. For example, the anode body can have a shape such as a curve, a sine curve, a rectangle, a U-shape, or a V-shape. The anode body “grooves” in that it includes one or more ridges, grooves, recesses, or indentations to increase the surface to volume ratio to minimize ESR and broaden the frequency response of the capacitance. It can also have a “with” shape. Such “grooved” anodes are described, for example, in US Pat. No. 6,191,936 to Webber et al ., No. 5,949,639 to Maeda et al., And No. 5 to Bougault et al . No. 3,345,545 and U.S. Patent Application Publication No. 2005/0270725 to Hahn et al ., All of which are incorporated herein by reference for all purposes. .
陽極体を陽極的に酸化(「陽極酸化」)して、陽極を覆って及び/又はその内部に誘電体層が形成されるようにすることができる。例えば、タンタル(Ta)陽極を五酸化タンタル(Ta2O5)に陽極酸化することができる。通常、陽極酸化は、陽極を電解質内に浸漬するなどして最初に陽極に溶液を加えることにより行われる。一般的には、(脱イオン水のような)水などの溶媒が使用される。イオン伝導率を高めるために、溶媒内で解離してイオンを形成できる化合物を使用することができる。このような化合物の例として、例えば上述したような酸が挙げられる。例えば、(リン酸などの)酸は、陽極酸化溶液の約0.01重量%〜約5重量%、実施形態によっては約0.05重量%〜約0.8重量%、及び実施形態によっては約0.1重量%〜約0.5重量%を構成することができる。必要であれば、酸の混和物を使用することもできる。 The anode body may be anodically oxidized (“anodized”) so that a dielectric layer is formed over and / or within the anode. For example, a tantalum (Ta) anode can be anodized to tantalum pentoxide (Ta 2 O 5 ). Usually, anodic oxidation is performed by first adding a solution to the anode, such as by immersing the anode in an electrolyte. Generally, a solvent such as water (such as deionized water) is used. In order to increase the ionic conductivity, a compound that can be dissociated in a solvent to form ions can be used. Examples of such compounds include the acids as described above. For example, the acid (such as phosphoric acid) may be about 0.01% to about 5% by weight of the anodizing solution, about 0.05% to about 0.8% by weight, and in some embodiments, About 0.1% to about 0.5% by weight can be comprised. If necessary, an admixture of acids can also be used.
電流が陽極酸化溶液を通過して誘電体層を形成する。形成電圧の値が誘電体層の厚みを管理する。例えば、必要な電圧に達するまで、最初は電源装置を定電流モードに設定することができる。その後、電源装置を定電位モードに切り換えて、陽極の表面を覆って所望の誘電体の厚みが形成されるのを確実にすることができる。言うまでもなく、パルス又はステップ式定電位法などのその他の公知の方法を使用することもできる。陽極酸化が行われる電圧は、通常、約4〜約250V、実施形態によっては約9〜約200V、及び実施形態によっては約20〜約150Vの範囲に及ぶ。陽極酸化中、陽極酸化溶液を約30℃以上、実施形態によっては約40℃〜約200℃、及び実施形態によっては約50℃〜約100℃などの高い温度に維持することができる。陽極酸化を大気温度以下で行うこともできる。結果として生じる誘電体層を陽極の表面上又はその細孔内に形成することができる。 A current passes through the anodizing solution to form a dielectric layer. The value of the formation voltage controls the thickness of the dielectric layer. For example, the power supply can be initially set to a constant current mode until the required voltage is reached. Thereafter, the power supply can be switched to the constant potential mode to ensure that the desired dielectric thickness is formed over the surface of the anode. Needless to say, other known methods such as pulsed or stepped potentiostatic methods can also be used. The voltage at which anodization is performed typically ranges from about 4 to about 250V, in some embodiments from about 9 to about 200V, and in some embodiments from about 20 to about 150V. During anodization, the anodization solution can be maintained at a temperature as high as about 30 ° C or higher, in some embodiments from about 40 ° C to about 200 ° C, and in some embodiments from about 50 ° C to about 100 ° C. Anodization can also be performed below atmospheric temperature. The resulting dielectric layer can be formed on the surface of the anode or in its pores.
湿式電解コンデンサの陰極は、タンタル、ニオブ、アルミニウム、ニッケル、ハフニウム、チタン、銅、銀、(ステンレスなどの)鋼、(導電性酸化物などの)これらの合金、及び(導電性酸化物で被覆された金属などの)これらの複合体などのいずれかの金属を含有することができる金属基材を含む。チタン金属並びにこの合金が、本発明における使用に特に適する。一般に、基材の幾何学的構造は、当業者の間で周知のようにコンテナ、カン、ホイル、シート、スクリーン、メッシュなどの形のように様々であってもよい。基材の表面積は、約0.05〜約5平方センチ、実施形態によっては約0.1〜約3平方センチ、及び実施形態によっては約0.5〜約2平方センチの範囲に及ぶことができる。 The cathodes of wet electrolytic capacitors are coated with tantalum, niobium, aluminum, nickel, hafnium, titanium, copper, silver, steel (such as stainless steel), alloys thereof (such as conductive oxides), and (conductive oxide) Metal substrates that can contain any metal, such as these composites (such as a modified metal). Titanium metal as well as its alloys are particularly suitable for use in the present invention. In general, the substrate geometry may vary as in the form of containers, cans, foils, sheets, screens, meshes, etc. as is well known to those skilled in the art. The surface area of the substrate can range from about 0.05 to about 5 square centimeters, in some embodiments from about 0.1 to about 3 square centimeters, and in some embodiments from about 0.5 to about 2 square centimeters. it can.
金属基材上には導電性ポリマー被覆も存在する。理論によって制限することを意図するわけではないが、本発明者らは、コンデンサを(例えば形成電圧よりも高い)高電圧に充電することにより電解質のイオンがポリマー層内に追い込まれ、これが導電性ポリマー系内の水性電解質の小さな濡れ角により促進されると考えている。イオンの移動がポリマーを「膨潤」させ、イオンを電極面近くに保持することにより電荷密度が高まる。とは言うものの、一般に導電性ポリマーはアモルファスかつ非晶質であるので、導電性ポリマーは高電圧に伴う熱を放散及び/又は吸収することもできる。放電時には、導電性ポリマーが「弛緩」して電解質内のイオンをポリマー層の外へ移動できるようにするとも考えられている。このような膨潤及び弛緩のメカニズムを通じて、電解質との化学反応を伴わずに電極近くの電荷密度を高めることができる。 There is also a conductive polymer coating on the metal substrate. Without intending to be limited by theory, we have charged the capacitors to a high voltage (e.g., higher than the forming voltage) to drive electrolyte ions into the polymer layer, which is conductive. It is believed to be facilitated by the small wetting angle of the aqueous electrolyte in the polymer system. The movement of ions causes the polymer to “swell” and increase the charge density by holding the ions close to the electrode surface. Nevertheless, since conductive polymers are generally amorphous and amorphous, conductive polymers can also dissipate and / or absorb heat associated with high voltages. During discharge, it is also believed that the conductive polymer “relaxes” to allow ions in the electrolyte to move out of the polymer layer. Through such swelling and relaxation mechanisms, the charge density near the electrode can be increased without chemical reaction with the electrolyte.
一般的に言えば、導電性ポリマーは、酸化又は還元後に導電性を有するようになるπ共役ポリマーである。このような導電性ポリマーの例として、例えば、ポリピロール、ポリチオフェン、ポリアニリン、ポリアセチレン、(ポリ(p−フェニレンスルフィド)又はポリ(p−フェニレンビニレン)などの)ポリ−p−フェニレン、ポリフルオレン、ポリテトラチアフルバレン、ポリナフタレン、上述のポリマーの誘導体、及びこれらの混和物などを挙げることができる。1つの特に適した部類の導電性ポリマーは、ポリ(3,4−エチレンジオキシチオフェン)(PEDT)などのポリ(アルキレンチオフェン)である。様々な適した導電性ポリマーが、Bruner他に付与された米国特許第7,471,503号、Merker他に付与された第7,411,779号、Merker他に付与された第7,377,947号、Reuter他に付与された第7,341,801号、Merker他に付与された第7,297,015号、Merker他に付与された第7,154,740号、Merker他に付与された第6,987,663号、及びJonas他に付与された第4,910,645号にも記載されており、これらの特許の全てはあらゆる目的によるこれらへの参照によりその全体が本明細書に組み入れられる。 Generally speaking, a conductive polymer is a π-conjugated polymer that becomes conductive after oxidation or reduction. Examples of such conductive polymers include, for example, polypyrrole, polythiophene, polyaniline, polyacetylene, poly-p-phenylene (such as poly (p-phenylene sulfide) or poly (p-phenylene vinylene)), polyfluorene, polytetra Examples include thiafulvalene, polynaphthalene, derivatives of the aforementioned polymers, and mixtures thereof. One particularly suitable class of conductive polymers is poly (alkylene thiophenes) such as poly (3,4-ethylenedioxythiophene) (PEDT). Various suitable conducting polymer, Bruner other granted U.S. Patent Nos. 7,471,503, No. 7,411,779, issued to Merker other, first issued to Merker another 7,377, 947 No., No. 7,341,801, issued to Reuter et No. 7,297,015 issued to Merker other, No. 7,154,740, issued to Merker other, granted to Merker other No. 6,987,663 and 4,910,645 to Jonas et al ., All of which are hereby incorporated by reference in their entirety for all purposes. Is incorporated into.
様々な目的で、導電性ポリマー被覆内に他の材料を使用することができる。例えば、活性炭、カーボンブラック、グラファイトなどの導電性充填剤を使用して導電率を高めることができる。いくつかの適した形の活性炭及びこれらを形成するための技術が、Ivey他に付与された米国特許第5,726,118号、Wellen他に付与された第5,858,911号、並びにShinozaki他に付与された米国特許出願公開第2003/0158342号に記載されており、これらの特許の全てはあらゆる目的によるこれらへの参照によりその全体が本明細書に組み入れられる。導電性ポリマーに伴うあらゆる電荷に対処するためにポリマーアニオンを使用できることもある。例えば、アニオンは、ポリアクリル酸、ポリメタクリル酸又はポリマレイン酸などのポリマーカルボン酸、又はポリスチレンスルホン酸(「PSS」)及びポリビニルスルホン酸などのポリマースルホン酸であってもよい。使用する場合、このようなポリマーアニオン及び導電性ポリマーは、それぞれ約0.5:1〜約50:1、実施形態によっては約1:1〜約30:1、及び実施形態によっては約2:1〜約20:1の重量比率で存在することができる。 Other materials can be used in the conductive polymer coating for various purposes. For example, the conductivity can be increased by using a conductive filler such as activated carbon, carbon black, or graphite. Some suitable forms of activated carbon and techniques for forming them are described in US Pat. No. 5,726,118 to Ivey et al., 5,858,911 to Wellen et al., And Shinozaki. All other granted U.S. Patent Application Publication No. 2003/0158342 are hereby incorporated by reference in their entirety for all purposes. In some cases, polymer anions can be used to handle any charge associated with the conducting polymer. For example, the anion may be a polymer carboxylic acid such as polyacrylic acid, polymethacrylic acid or polymaleic acid, or a polymer sulfonic acid such as polystyrene sulfonic acid (“PSS”) and polyvinyl sulfonic acid. When used, such polymer anions and conductive polymers are each about 0.5: 1 to about 50: 1, in some embodiments about 1: 1 to about 30: 1, and in some embodiments about 2: It can be present in a weight ratio of 1 to about 20: 1.
導電性ポリマーを1又は複数の層の形で金属基材に付加することができ、また様々な公知の技術を使用して形成することができる。例えば、スクリーン印刷法、浸漬法、電着コーティング法、及び噴霧法などの技術を使用してコーティングを形成することができる。例えば、1つの実施形態では、(PEDTなどの)導電性ポリマーの形成に使用する(単複の)モノマーを、最初に重合触媒と混合して分散液を形成する。1つの適当な重合触媒に、CLEVIOS C(Bayer Corporation)があり、これはトルエンスルホン酸鉄(III)及びn−ブタノールである。CELVIOS Cは、これもまたBayer Corporationにより販売されているPEDTのモノマーであるCELVIOS M用の市販の触媒であり、このCELVIOS Mは3,4−エチレンジオキシチオフェンである。分散液が生成されると、この分散液に基板を浸漬することにより導電性ポリマーを形成できるようになる。或いは、触媒と(単複の)モノマーとを別々に加えることもできる。例えば、触媒を(ブタノールなどの)溶媒内で溶解し、その後浸漬液として加えることができる。様々な方法について上述したが、導電性ポリマーコーティングを含むコーティングを施すための他のあらゆる方法を利用することもできると理解されたい。例えば、1又はそれ以上の導電性ポリマーを含むこのようなコーティングを施すための他の方法が、Sakata他に付与された米国特許第5,457,862号、Sakata他に付与された5,473,503号、Sakata他に付与された5,724,428号、及びKudoh他に付与された5,812,367号に記載されており、これらの特許はあらゆる目的によるこれらへの参照によりその全体が本明細書に組み入れられる。 The conductive polymer can be applied to the metal substrate in the form of one or more layers and can be formed using various known techniques. For example, the coating can be formed using techniques such as screen printing, dipping, electrodeposition coating, and spraying. For example, in one embodiment, the monomer (s) used to form the conductive polymer (such as PEDT) is first mixed with the polymerization catalyst to form a dispersion. One suitable polymerization catalyst is CLEVIOS C (Bayer Corporation), which is iron (III) toluenesulfonate and n-butanol. CELVIOS C is a commercial catalyst for CELVIOS M, a monomer of PEDT also sold by Bayer Corporation, which is 3,4-ethylenedioxythiophene. When the dispersion liquid is generated, a conductive polymer can be formed by immersing the substrate in the dispersion liquid. Alternatively, the catalyst and the monomer (s) can be added separately. For example, the catalyst can be dissolved in a solvent (such as butanol) and then added as an immersion liquid. Although various methods have been described above, it should be understood that any other method for applying a coating, including a conductive polymer coating, can be utilized. For example, other methods for applying such a coating comprising one or more conductive polymer, granted to Sakata other U.S. Patent No. 5,457,862, issued to Sakata other 5,473 , 503, 5,724,428 granted to Sakata et al., And 5,812,367 granted to Kudoh et al. , These patents are incorporated by reference in their entirety for all purposes. Is incorporated herein.
コンデンサの陽極、陰極、及び電解質の物理的配置は、一般に当業で周知のように様々であってもよい。例えば図1を参照すると、陽極20と陰極43との間に配置された水性電解質44を含む電解コンデンサ40の1つの実施形態を示している。陽極20は、誘電体膜21を含むとともに(タンタル線などの)リード42を埋め込まれる。陰極43は、上述したような基材41及び導電性ポリマー被覆49から形成される。この実施形態では、陰極基材41は、蓋を取り付けられた円筒形の「カン」の形をしている。陽極20を陰極43に接続して封止する(ガラス金属封じなどの)シール23を使用することもできる。必要であれば、陰極43と陽極20との間に(紙、プラスチック繊維、ガラス繊維、多孔性膜、及びNafion(登録商標)などのイオン透過性材料のような)セパレータを配置して、陽極と陰極との直接接触は防ぐが、電極への電解質44のイオン電流のフローは許可するようにすることができる。
The physical arrangement of the capacitor's anode, cathode, and electrolyte may generally vary as is well known in the art. For example, referring to FIG. 1, one embodiment of an
本発明の電解コンデンサは、以下に限定されるわけではないが、植込型除細動器、ペースメーカー、心臓除細動器、神経刺激装置、薬剤投与装置などの医療機器、自動車用途、RADARシステムなどの軍事用途、及びラジオ、テレビなどの家庭用電化製品などを含む様々な用途に使用することができる。1つの実施形態では、例えば、(約500ボルト〜約850ボルト、又は望ましくは約600ボルト〜約800ボルトなどの)治療用高電圧を患者に与えるように構成された植込型医療機器にコンデンサを使用することができる。この機器は、密封された生物学的に不活性なコンテナ又はハウジングを含むことができる。機器と患者の心臓との間に静脈を介して1又はそれ以上のリード線が電気的に結合される。心臓活動を検知し、及び/又は心臓に電圧を供給するために心臓電極が設けられる。(リードの先端部などの)リードの少なくとも一部を、心臓の心室及び心房の1又はそれ以上に近接又は接触させて配置することができる。機器はまた、通常2又はそれ以上のコンデンサを含むコンデンサバンクも含み、これらのコンデンサは直列に接続されるとともに、機器の内部又は外部に存在してコンデンサバンクにエネルギーを供給するバッテリに結合される。本発明のコンデンサは、ひとつには高い導電率により優れた電気特性を実現することができ、従って植込型医療機器のコンデンサバンクにおける使用に適することができる。 The electrolytic capacitor of the present invention is not limited to the following, but is a medical device such as an implantable cardioverter defibrillator, a pacemaker, a cardiac defibrillator, a nerve stimulation device, a drug administration device, an automobile application, a RADAR system. It can be used for various uses including military use such as home appliances such as radio and television. In one embodiment, for example, a capacitor in an implantable medical device configured to provide a patient with a therapeutic high voltage (such as about 500 volts to about 850 volts, or desirably about 600 volts to about 800 volts) Can be used. The device can include a sealed biologically inert container or housing. One or more leads are electrically coupled via a vein between the device and the patient's heart. Cardiac electrodes are provided to detect cardiac activity and / or supply voltage to the heart. At least a portion of the lead (such as the tip of the lead) can be placed proximate to or in contact with one or more of the heart's ventricles and atria. The device also includes a capacitor bank that typically includes two or more capacitors that are connected in series and coupled to a battery that resides inside or outside the device and supplies energy to the capacitor bank. . The capacitors of the present invention can achieve superior electrical characteristics due in part to high electrical conductivity and are therefore suitable for use in capacitor banks of implantable medical devices.
以下の実施例を参照することにより、本発明をさらに良く理解することができる。 The invention can be better understood with reference to the following examples.
10.65グラムのアジピン酸アンモニウム(NH4OC(O)(CH2)4C(O)ONH4)を55ミリリットルの脱イオン水に溶解させることにより電解質を形成した。その後、26ミリリットルのエチレングリコール及び0.5グラムのH3PO4(85%)を溶液に添加した。 An electrolyte was formed by dissolving 10.65 grams of ammonium adipate (NH 4 OC (O) (CH 2 ) 4 C (O) ONH 4 ) in 55 milliliters of deionized water. Thereafter, 26 milliliters of ethylene glycol and 0.5 grams of H 3 PO4 (85%) were added to the solution.
5.3グラムのアジピン酸アンモニウムを使用したことを除き、実施例1で説明したように電解質を形成した。 The electrolyte was formed as described in Example 1 except that 5.3 grams of ammonium adipate was used.
2.65グラムのアジピン酸アンモニウムを使用したことを除き、実施例1で説明したように電解質を形成した。 The electrolyte was formed as described in Example 1 except that 2.65 grams of ammonium adipate was used.
10.65グラムのアジピン酸アンモニウムを55ミリリットルの脱イオン水に溶解させることにより電解質を形成した。その後、26ミリリットルのエチレングリコール、0.1グラムの3−メチル−4−ニトロ安息香酸及び0.5グラムのH3PO4(85%)を溶液に添加した。 An electrolyte was formed by dissolving 10.65 grams of ammonium adipate in 55 milliliters of deionized water. Was then added ethylene glycol 26 ml of 0.1 grams of 3-methyl-4-nitrobenzoic acid and 0.5 grams of H 3 PO4 (85%) to the solution.
5.3グラムのアジピン酸アンモニウムを使用したことを除き、実施例4で説明したように電解質を形成した。 The electrolyte was formed as described in Example 4 except that 5.3 grams of ammonium adipate was used.
2.65グラムのアジピン酸アンモニウムを使用したことを除き、実施例4で説明したように電解質を形成した。 The electrolyte was formed as described in Example 4 except that 2.65 grams of ammonium adipate was used.
10.65グラムの酢酸アンモニウム(NH4OC(O)CH3)を55ミリリットルの脱イオン水に溶解させることにより電解質を形成した。その後、26ミリリットルのエチレングリコール及び0.5グラムのH3PO4(85%)を溶液に添加した。 An electrolyte was formed by dissolving 10.65 grams of ammonium acetate (NH 4 OC (O) CH 3 ) in 55 milliliters of deionized water. Thereafter, 26 milliliters of ethylene glycol and 0.5 grams of H 3 PO4 (85%) were added to the solution.
5.3グラムの酢酸アンモニウムを使用したことを除き、実施例7で説明したように電解質を形成した。 The electrolyte was formed as described in Example 7, except that 5.3 grams of ammonium acetate was used.
2.65グラムの酢酸アンモニウムを使用したことを除き、実施例7で説明したように電解質を形成した。 The electrolyte was formed as described in Example 7, except that 2.65 grams of ammonium acetate was used.
10.65グラムの酢酸ナトリウム(NaOC(O)CH3)を55ミリリットルの脱イオン水に溶解させることにより電解質を形成した。その後、26ミリリットルのエチレングリコール及び0.5グラムのH3PO4(85%)を溶液に添加した。 An electrolyte was formed by dissolving 10.65 grams of sodium acetate (NaOC (O) CH 3 ) in 55 milliliters of deionized water. Thereafter, 26 milliliters of ethylene glycol and 0.5 grams of H 3 PO4 (85%) were added to the solution.
5.3グラムの酢酸ナトリウムを使用したことを除き、実施例10で説明したように電解質を形成した。 The electrolyte was formed as described in Example 10, except that 5.3 grams of sodium acetate was used.
2.65グラムの酢酸ナトリウムを使用したことを除き、実施例10で説明したように電解質を形成した。 The electrolyte was formed as described in Example 10, except that 2.65 grams of sodium acetate was used.
5.3グラムの酢酸リチウム(LiOC(O)CH3)を55ミリリットルの脱イオン水に溶解させることにより電解質を形成した。その後、26ミリリットルのエチレングリコール及び0.5グラムのH3PO4(85%)を溶液に添加した。 An electrolyte was formed by dissolving 5.3 grams of lithium acetate (LiOC (O) CH 3 ) in 55 milliliters of deionized water. Thereafter, 26 milliliters of ethylene glycol and 0.5 grams of H 3 PO4 (85%) were added to the solution.
2.65グラムの酢酸リチウムを使用したことを除き、実施例13で説明したように電解質を形成した。 The electrolyte was formed as described in Example 13, except that 2.65 grams of lithium acetate was used.
2.65グラムの乳酸リチウム(LiOC(O)CH(OH)CH3)を55ミリリットルの脱イオン水に溶解させることにより電解質を形成した。その後、26ミリリットルのエチレングリコール及び0.5グラムのH3PO4(85%)を溶液に添加した。 An electrolyte was formed by dissolving 2.65 grams of lithium lactate (LiOC (O) CH (OH) CH 3 ) in 55 milliliters of deionized water. Thereafter, 26 milliliters of ethylene glycol and 0.5 grams of H 3 PO4 (85%) were added to the solution.
2グラムのシュウ酸アンモニウム(NH4OC(O)C(O)ONH4)を54ミリリットルの脱イオン水に溶解させることにより電解質を形成した。その後、26ミリリットルのエチレングリコール及び0.5グラムのH3PO4(85%)を溶液に添加した。 The electrolyte was formed by dissolving 2 grams of ammonium oxalate (NH 4 OC (O) C (O) ONH 4 ) in 54 milliliters of deionized water. Thereafter, 26 milliliters of ethylene glycol and 0.5 grams of H 3 PO4 (85%) were added to the solution.
1グラムのシュウ酸アンモニウムを使用したことを除き、実施例16で説明したように電解質を形成した。 The electrolyte was formed as described in Example 16, except that 1 gram of ammonium oxalate was used.
0.5グラムのシュウ酸アンモニウムを使用したことを除き、実施例16で説明したように電解質を形成した。 An electrolyte was formed as described in Example 16, except that 0.5 grams of ammonium oxalate was used.
2グラムの酒石酸アンモニウム(NH4OC(O)CH(OH)CH(OH)C(O)ONH4)を54ミリリットルの脱イオン水に溶解させることにより電解質を形成した。その後、26ミリリットルのエチレングリコール及び0.5グラムのH3PO4(85%)を溶液に添加した。 An electrolyte was formed by dissolving 2 grams of ammonium tartrate (NH 4 OC (O) CH (OH) CH (OH) C (O) ONH 4 ) in 54 milliliters of deionized water. Thereafter, 26 milliliters of ethylene glycol and 0.5 grams of H 3 PO4 (85%) were added to the solution.
1グラムの酒石酸アンモニウムを使用したことを除き、実施例19で説明したように電解質を形成した。 The electrolyte was formed as described in Example 19, except that 1 gram of ammonium tartrate was used.
0.5グラムの酒石酸アンモニウムを使用したことを除き、実施例19で説明したように電解質を形成した。 An electrolyte was formed as described in Example 19, except that 0.5 grams of ammonium tartrate was used.
2.7グラムの酒石酸二ナトリウム(NH4OC(O)CH(OH)CH(OH)C(O)ONH4)を54ミリリットルの脱イオン水に溶解させることにより電解質を形成した。その後、26ミリリットルのエチレングリコール及び0.5グラムのH3PO4(85%)を溶液に添加した。 An electrolyte was formed by dissolving 2.7 grams of disodium tartrate (NH4OC (O) CH (OH) CH (OH) C (O) ONH4) in 54 milliliters of deionized water. Thereafter, 26 milliliters of ethylene glycol and 0.5 grams of H 3 PO4 (85%) were added to the solution.
実施例のテスト
実施例1〜実施例14及び実施例16〜実施例22の電解質の様々な特性をテストした。より具体的には、チタン缶を脱脂し、これをシュウ酸(10重量%水溶液)でエッチングし、プレートを乾燥させ、缶の内面をサンドペーパー及びドレメルツールで粗面化することにより金属基材を形成した。その後、粗面化した表面をPEDTポリマーで被覆した。CLEVIOUS Cを1−ブタノールに溶解させた溶液内にチタン金属を浸漬することにより被覆を施した。CLEVIOS Cを付加した後、金属をCLEVIOUS Mに浸漬し、湿度及び温度を制御したボックス内に30分間置いた。チャンバの相対湿度は75〜85%の範囲にあり、温度は22℃〜25℃の範囲にあった。その後、被覆された金属をメタノール又はエタノールで4回洗浄して、Baytron Cからあらゆる未重合材料及び残留物を除去した。最後の乾燥ステップも、湿度を約60%の相対湿度に制御したチャンバ内で行った。被覆、洗浄及び乾燥を4回繰り返して、チタン金属上に約20〜約50μmの被覆厚を達成した。
Example Testing Various properties of the electrolytes of Examples 1 to 14 and Examples 16 to 22 were tested. More specifically, a titanium base can is degreased, etched with oxalic acid (10% by weight aqueous solution), the plate is dried, and the inner surface of the can is roughened with sandpaper and a dremel tool to form a metal substrate. Formed. Thereafter, the roughened surface was coated with PEDT polymer. The coating was applied by immersing titanium metal in a solution of CLEVIOUS C dissolved in 1-butanol. After adding CLEVIOS C, the metal was immersed in CLEVIOUS M and placed in a humidity and temperature controlled box for 30 minutes. The relative humidity of the chamber was in the range of 75 to 85% and the temperature was in the range of 22 ° C to 25 ° C. The coated metal was then washed 4 times with methanol or ethanol to remove any unpolymerized material and residues from Baytron C. The final drying step was also performed in a chamber where the humidity was controlled to about 60% relative humidity. Coating, washing and drying were repeated four times to achieve a coating thickness of about 20 to about 50 μm on the titanium metal.
その後、得られた陰極を電解質内に浸漬した。電解質をテストするために、205Vで形成された五酸化タンタル誘電体を含む多孔質タンタル円筒体を陽極として使用した。ポリプロピレンのセパレータ材料を電解質で濡らした。陽極体を電解質内に完全に浸漬し、その後取り出して濡れたセパレータ材料を付着させた。陽極の周囲にセパレータを取り付けた状態でアセンブリを電解質内に置き、その後真空加熱炉内に15分間置いた。これとは別に、チタン陰極を1ミリリットルの電解質で満たした。その後、陽極/セパレータをチタン缶内に置いた。アセンブリを電源装置と接続((+)極を円筒形陽極に且つ(−)極をチタン缶に)し、1kΩの抵抗を通じて10〜40ミリアンペアの範囲の電流で充電した。充電電流は充電時間に影響したが、10mAで4.3秒〜40mAで1.3秒の範囲であった。電源装置により設定された電圧までアセンブリを充電した。セルを設定電圧まで充電した後、充電電流で数分間保持した。その後、100Ωの抵抗を通じてセルを放電した。 Thereafter, the obtained cathode was immersed in the electrolyte. To test the electrolyte, a porous tantalum cylinder containing a tantalum pentoxide dielectric formed at 205V was used as the anode. A polypropylene separator material was wetted with electrolyte. The anode body was completely immersed in the electrolyte, and then taken out and a wet separator material was adhered. The assembly was placed in the electrolyte with a separator around the anode and then placed in a vacuum furnace for 15 minutes. Separately, the titanium cathode was filled with 1 milliliter of electrolyte. The anode / separator was then placed in a titanium can. The assembly was connected to a power supply ((+) pole to cylindrical anode and (−) pole to titanium can) and charged with a current in the range of 10-40 milliamps through a 1 kΩ resistor. The charging current affected the charging time, but ranged from 4.3 seconds at 10 mA to 1.3 seconds at 40 mA. The assembly was charged to the voltage set by the power supply. After charging the cell to the set voltage, it was held at the charging current for several minutes. Thereafter, the cell was discharged through a 100Ω resistor.
pH、電圧、充電時間、及び放電時間を計測した。結果を以下の表1〜表5に示す。 The pH, voltage, charge time, and discharge time were measured. The results are shown in Tables 1 to 5 below.
表1:実施例1〜実施例6の特性
Table 1: Characteristics of Examples 1 to 6
アジピン酸アンモニウム電解質のテストの結果、セルを280Vまで充電することができた。比較では、5M H2SO4電解質を使用した同様のセルは、140Vまでしか充電できないことが確認された。表のように、基本配合電解質内のアジピン酸アンモニウムの量を低下させた結果、蓄積されるポテンシャルエネルギーが増加した。さらに、アジピン酸アンモニウム電解質のイオン伝導率は約13.9〜40.3mS/cmであったが、これは5M H2SO4電解質のイオン伝導率(〜1000mS/cm)よりもかなり小さかった。 As a result of testing the ammonium adipate electrolyte, the cell could be charged to 280V. In comparison, it was confirmed that a similar cell using 5MH 2 SO 4 electrolyte could only be charged up to 140V. As shown in the table, as a result of reducing the amount of ammonium adipate in the basic compound electrolyte, the accumulated potential energy increased. Furthermore, the ionic conductivity of the ammonium adipate electrolyte was about 13.9 to 40.3 mS / cm, which was much smaller than the ionic conductivity of the 5 MH 2 SO 4 electrolyte (˜1000 mS / cm).
表2:実施例7〜実施例9の特性
Table 2: Characteristics of Examples 7 to 9
酢酸アンモニウム電解質は、実施例1〜実施例6のアジピン酸アンモニウム電解質と同様の挙動を示した。 The ammonium acetate electrolyte showed the same behavior as the ammonium adipate electrolyte of Examples 1 to 6.
表3:実施例10〜実施例14の特性
Table 3: Characteristics of Examples 10 to 14
酢酸ナトリウム及びリチウム電解質も、実施例1〜実施例6のアジピン酸アンモニウム電解質と同様の挙動を示した。 Sodium acetate and lithium electrolytes also behaved similarly to the ammonium adipate electrolytes of Examples 1-6.
表4:実施例16〜実施例21の特性
Table 4: Characteristics of Example 16 to Example 21
表のように、シュウ酸アンモニウム及び酒石酸アンモニウム電解質は、290V程度にまで容易に充電された。シュウ酸及び酒石酸のアンモニウム塩の溶解限度が低く、従って電解質内における最大濃度が限られているので、このような高電圧が達成されたと考えられる。 As shown in the table, the ammonium oxalate and ammonium tartrate electrolytes were easily charged to about 290V. It is believed that such a high voltage was achieved because of the low solubility limit of oxalic acid and tartaric acid ammonium salts, and thus limited maximum concentration in the electrolyte.
表5:実施例22の特性
Table 5: Properties of Example 22
酒石酸ナトリウム電解質は、実施例19〜実施例21の酒石酸アンモニウム電解質と同様の挙動を示した。 The sodium tartrate electrolyte behaved similarly to the ammonium tartrate electrolytes of Examples 19-21.
当業者であれば、本発明の思想及び範囲から逸脱することなく本発明のこれらの及びその他の修正及び変更を行うことができる。また、様々な実施形態の態様を、全部又は一部の両方の形で置き替えできることを理解されたい。さらに、当業者であれば、上述の説明は例示を目的としたものにすぎず、以下に添付する特許請求の範囲にさらに記載するように本発明を限定することを意図するものではないことが理解できよう。 Those skilled in the art can make these and other modifications and changes to the present invention without departing from the spirit and scope of the present invention. In addition, it should be understood that aspects of the various embodiments may be interchanged both in whole or in part. Further, those skilled in the art will appreciate that the above description is for illustrative purposes only and is not intended to limit the invention as further described in the claims appended hereto. I understand.
Claims (25)
導電性ポリマーで被覆された金属基材を含む陰極と、
前記陰極及び前記陽極に接触して配置された水性電解質と、
を備え、前記電解質が弱有機酸の塩及び水を含み、前記電解質が、25℃の温度で測定したときに、約0.1〜約30ミリシーメンス/センチメートルのイオン伝導率を有し、pHが約4.5〜約7.0である、
ことを特徴とする湿式電解コンデンサ。 A porous anode body including a dielectric layer formed by anodization;
A cathode comprising a metal substrate coated with a conductive polymer;
An aqueous electrolyte disposed in contact with the cathode and the anode;
The electrolyte comprises a salt of a weak organic acid and water, and the electrolyte has an ionic conductivity of about 0.1 to about 30 milliSiemens / centimeter when measured at a temperature of 25 ° C. the pH is from about 4.5 to about 7.0;
A wet electrolytic capacitor characterized by that.
ことを特徴とする請求項1に記載の湿式電解コンデンサ。 The electrolyte has an ionic conductivity of about 0.1 to about 20 milliSiemens / centimeter when measured at a temperature of 25 ° C .;
The wet electrolytic capacitor according to claim 1.
ことを特徴とする請求項1に記載の湿式電解コンデンサ。 The pH is from about 5.0 to about 6.5;
The wet electrolytic capacitor according to claim 1.
ことを特徴とする請求項1に記載の湿式電解コンデンサ。 The salt comprises a monoatomic cation,
The wet electrolytic capacitor according to claim 1.
ことを特徴とする請求項4に記載の湿式電解コンデンサ。 The monoatomic cation is an alkali metal ion,
The wet electrolytic capacitor according to claim 4.
ことを特徴とする請求項1に記載の湿式電解コンデンサ。 The salt comprises a polyatomic cation,
The wet electrolytic capacitor according to claim 1.
ことを特徴とする請求項6に記載の湿式電解コンデンサ。 The polyatomic cation is an ammonium ion;
The wet electrolytic capacitor according to claim 6.
ことを特徴とする請求項1に記載の湿式電解コンデンサ。 The organic acid has a first acid dissociation constant of about 2 to about 10 when measured at a temperature of 25 ° C .;
The wet electrolytic capacitor according to claim 1.
ことを特徴とする請求項1に記載の湿式電解コンデンサ。 The organic acid is a carboxylic acid,
The wet electrolytic capacitor according to claim 1.
ことを特徴とする請求項9に記載の湿式電解コンデンサ。 The carboxylic acid is polybasic,
The wet electrolytic capacitor according to claim 9.
ことを特徴とする請求項10に記載の湿式電解コンデンサ。 The polybasic carboxylic acid is adipic acid, tartaric acid, oxalic acid, citric acid, or a combination thereof;
The wet electrolytic capacitor according to claim 10.
ことを特徴とする請求項1に記載の湿式電解コンデンサ。 Weak organic acid salts comprise from about 0.1 to about 25 weight percent of the electrolyte;
The wet electrolytic capacitor according to claim 1.
ことを特徴とする請求項1に記載の湿式電解コンデンサ。 Weak organic acid salts comprise from about 0.3 to about 15 weight percent of the electrolyte;
The wet electrolytic capacitor according to claim 1.
ことを特徴とする請求項1に記載の湿式電解コンデンサ。 Water constitutes about 20 to about 95 weight percent of the electrolyte;
The wet electrolytic capacitor according to claim 1.
ことを特徴とする請求項1に記載の湿式電解コンデンサ。 The electrolyte further comprises a secondary solvent;
The wet electrolytic capacitor according to claim 1.
ことを特徴とする請求項15に記載の湿式電解コンデンサ。 The secondary solvent comprises ethylene glycol;
The wet electrolytic capacitor according to claim 15.
ことを特徴とする請求項1に記載の湿式電解コンデンサ。 The metal substrate comprises titanium;
The wet electrolytic capacitor according to claim 1.
ことを特徴とする請求項1に記載の湿式電解コンデンサ。 The conductive polymer is polythiophene,
The wet electrolytic capacitor according to claim 1.
ことを特徴とする請求項18に記載の湿式電解コンデンサ。 The polythiophene is poly (3,4-ethylenedioxythiophene) or a derivative thereof;
The wet electrolytic capacitor according to claim 18.
ことを特徴とする請求項1に記載の湿式電解コンデンサ。 The anode body is formed of tantalum or niobium oxide;
The wet electrolytic capacitor according to claim 1.
ことを特徴とする請求項1に記載の湿式電解コンデンサ。 The ratio of the maximum voltage that can charge the capacitor to the voltage at which the dielectric layer is formed is 1.0 to 2.0.
The wet electrolytic capacitor according to claim 1.
ことを特徴とする請求項1に記載の湿式電解コンデンサ。 A maximum voltage capable of charging the capacitor is about 200 to about 350V;
The wet electrolytic capacitor according to claim 1.
ことを特徴とする請求項1に記載の湿式電解コンデンサ。 A maximum voltage capable of charging the capacitor is about 250 to about 300V;
The wet electrolytic capacitor according to claim 1.
ポリ(3,4−エチレンジオキシチオフェン)又はこの誘導体を含む導電性ポリマーで被覆されたチタン基材を含む陰極と、
前記陰極及び前記陽極に接触して配置された水性電解質と、
を備え、前記電解質が弱有機酸の塩及び水を含み、前記電解質が、25℃の温度で測定したときに、約0.5〜約25ミリシーメンス/センチメートルのイオン伝導率を有し、pHが約4.0〜約7.0である、
ことを特徴とする湿式電解コンデンサ。 A porous anode body formed of tantalum or niobium oxide and further comprising a dielectric layer formed by anodization;
A cathode comprising a titanium substrate coated with a conductive polymer comprising poly (3,4-ethylenedioxythiophene) or a derivative thereof;
An aqueous electrolyte disposed in contact with the cathode and the anode;
The electrolyte comprises a salt of a weak organic acid and water, and the electrolyte has an ionic conductivity of from about 0.5 to about 25 milliSiemens / centimeter when measured at a temperature of 25 ° C. the pH is about 4.0 to about 7.0;
A wet electrolytic capacitor characterized by that.
ことを特徴とする請求項24に記載の湿式電解コンデンサ。 The electrolyte has an ionic conductivity of from about 1 to about 20 milliSiemens / centimeter when measured at a temperature of 25 ° C .;
25. The wet electrolytic capacitor according to claim 24.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/408,900 | 2009-03-23 | ||
US12/408,900 US8223473B2 (en) | 2009-03-23 | 2009-03-23 | Electrolytic capacitor containing a liquid electrolyte |
US12/475,743 US8405956B2 (en) | 2009-06-01 | 2009-06-01 | High voltage electrolytic capacitors |
US12/475,743 | 2009-06-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010226113A true JP2010226113A (en) | 2010-10-07 |
JP5801538B2 JP5801538B2 (en) | 2015-10-28 |
Family
ID=41819064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010065796A Active JP5801538B2 (en) | 2009-03-23 | 2010-03-23 | High voltage electrolytic capacitor |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5801538B2 (en) |
KR (1) | KR20100106206A (en) |
CN (1) | CN101847517A (en) |
DE (1) | DE102010012374A1 (en) |
GB (1) | GB2468942B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013131761A (en) * | 2011-12-20 | 2013-07-04 | Avx Corp | Wet electrolytic capacitor comprising improved anode |
JP2015002274A (en) * | 2013-06-17 | 2015-01-05 | テイカ株式会社 | Electrolytic capacitor and method for manufacturing the same |
JP2017038010A (en) * | 2015-08-12 | 2017-02-16 | 日本ケミコン株式会社 | Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor |
JP2022141927A (en) * | 2020-07-22 | 2022-09-29 | 日本ケミコン株式会社 | Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8514547B2 (en) * | 2010-11-01 | 2013-08-20 | Avx Corporation | Volumetrically efficient wet electrolytic capacitor |
US9053861B2 (en) * | 2012-03-16 | 2015-06-09 | Avx Corporation | Wet capacitor cathode containing a conductive coating formed anodic electrochemical polymerization of a colloidal suspension |
KR101484926B1 (en) * | 2012-05-21 | 2015-01-22 | (주) 퓨리켐 | Manufacturing method of supercapacitor electrode |
US11657982B2 (en) * | 2018-09-21 | 2023-05-23 | Nippon Chemi-Con Corporation | Solid electrolytic capacitor |
CN114540911B (en) * | 2020-11-25 | 2023-11-14 | 比亚迪股份有限公司 | Metal part and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000124074A (en) * | 1998-10-21 | 2000-04-28 | Nichicon Corp | Aluminum electrolytic capacitor |
JP2000150316A (en) * | 1998-08-28 | 2000-05-30 | Wilson Greatbatch Ltd | Electrolyte for use in a capacitor |
JP2008010657A (en) * | 2006-06-29 | 2008-01-17 | Sanyo Electric Co Ltd | Electrolytic-capacitor and manufacturing method therefor |
JP2008235895A (en) * | 2007-03-20 | 2008-10-02 | Avx Corp | Neutral electrolyte for wet electrolytic capacitor |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3345545A (en) | 1964-11-27 | 1967-10-03 | Johnson Matthey & Mallory Ltd | Solid electrolytic capacitor having minimum anode impedance |
DE3814730A1 (en) | 1988-04-30 | 1989-11-09 | Bayer Ag | SOLID ELECTROLYTE AND ELECTROLYTE CONDENSERS CONTAINING THEM |
JP2765462B2 (en) | 1993-07-27 | 1998-06-18 | 日本電気株式会社 | Solid electrolytic capacitor and method of manufacturing the same |
JPH07135126A (en) | 1993-11-10 | 1995-05-23 | Nec Corp | Solid electrolytic capacitor and its manufacture |
JP3068430B2 (en) | 1995-04-25 | 2000-07-24 | 富山日本電気株式会社 | Solid electrolytic capacitor and method of manufacturing the same |
US5726118A (en) | 1995-08-08 | 1998-03-10 | Norit Americas, Inc. | Activated carbon for separation of fluids by adsorption and method for its preparation |
US5812367A (en) | 1996-04-04 | 1998-09-22 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative |
US5714000A (en) | 1996-05-06 | 1998-02-03 | Agritec, Inc. | Fine-celled foam composition and method |
JP3863232B2 (en) | 1996-09-27 | 2006-12-27 | ローム株式会社 | Structure of capacitor element used for solid electrolytic capacitor and method of compacting chip body in capacitor element |
GB9700566D0 (en) | 1997-01-13 | 1997-03-05 | Avx Ltd | Binder removal |
US6416730B1 (en) | 1998-09-16 | 2002-07-09 | Cabot Corporation | Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides |
US6322912B1 (en) | 1998-09-16 | 2001-11-27 | Cabot Corporation | Electrolytic capacitor anode of valve metal oxide |
US6391275B1 (en) | 1998-09-16 | 2002-05-21 | Cabot Corporation | Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides |
US6191936B1 (en) | 1999-04-12 | 2001-02-20 | Vishay Sprague, Inc. | Capacitor having textured pellet and method for making same |
US6576099B2 (en) | 2000-03-23 | 2003-06-10 | Cabot Corporation | Oxygen reduced niobium oxides |
ATE339770T1 (en) | 2000-11-06 | 2006-10-15 | Cabot Corp | MODIFIED OXYGEN REDUCED VALVE METAL OXIDES |
US6687117B2 (en) * | 2002-01-31 | 2004-02-03 | Wilson Greatbatch Technologies, Inc. | Electrolytes for capacitors |
DE10237577A1 (en) | 2002-08-16 | 2004-02-26 | H.C. Starck Gmbh | Substituted poly (alkylenedioxythiophenes) as solid electrolytes in electrolytic capacitors |
US6744619B1 (en) * | 2002-12-12 | 2004-06-01 | Pacesetter, Inc. | Conductive electrolyte system with viscosity reducing co-solvents |
DE10331673A1 (en) | 2003-07-14 | 2005-02-10 | H.C. Starck Gmbh | Polythiophene with alkyleneoxythiathiophene units in electrolytic capacitors |
ES2329898T3 (en) | 2003-10-17 | 2009-12-02 | H.C. Starck Gmbh | ELECTROLYTIC CONDENSERS WITH EXTERNAL POLYMER COAT. |
DE102004022110A1 (en) | 2004-05-05 | 2005-12-01 | H.C. Starck Gmbh | Process for the preparation of electrolytic capacitors |
DE102005016727A1 (en) | 2005-04-11 | 2006-10-26 | H.C. Starck Gmbh | Electrolytic capacitors with polymeric outer layer and process for their preparation |
DE102005033839A1 (en) | 2005-07-20 | 2007-01-25 | H.C. Starck Gmbh | Electrolytic capacitors with a polymeric outer layer and process for their preparation |
US7471503B2 (en) | 2006-03-31 | 2008-12-30 | Aculon, Inc. | Solid electrolytic capacitors |
-
2010
- 2010-01-07 GB GB201000235A patent/GB2468942B/en not_active Expired - Fee Related
- 2010-02-09 KR KR1020100011891A patent/KR20100106206A/en not_active Application Discontinuation
- 2010-03-09 CN CN201010142453A patent/CN101847517A/en active Pending
- 2010-03-22 DE DE201010012374 patent/DE102010012374A1/en active Pending
- 2010-03-23 JP JP2010065796A patent/JP5801538B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000150316A (en) * | 1998-08-28 | 2000-05-30 | Wilson Greatbatch Ltd | Electrolyte for use in a capacitor |
JP2000124074A (en) * | 1998-10-21 | 2000-04-28 | Nichicon Corp | Aluminum electrolytic capacitor |
JP2008010657A (en) * | 2006-06-29 | 2008-01-17 | Sanyo Electric Co Ltd | Electrolytic-capacitor and manufacturing method therefor |
JP2008235895A (en) * | 2007-03-20 | 2008-10-02 | Avx Corp | Neutral electrolyte for wet electrolytic capacitor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013131761A (en) * | 2011-12-20 | 2013-07-04 | Avx Corp | Wet electrolytic capacitor comprising improved anode |
JP2017183728A (en) * | 2011-12-20 | 2017-10-05 | エイヴィーエックス コーポレイション | Wet electrolytic capacitor containing improved anode |
JP2015002274A (en) * | 2013-06-17 | 2015-01-05 | テイカ株式会社 | Electrolytic capacitor and method for manufacturing the same |
JP2017038010A (en) * | 2015-08-12 | 2017-02-16 | 日本ケミコン株式会社 | Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor |
JP2022141927A (en) * | 2020-07-22 | 2022-09-29 | 日本ケミコン株式会社 | Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor |
JP7355178B2 (en) | 2020-07-22 | 2023-10-03 | 日本ケミコン株式会社 | Solid electrolytic capacitor and solid electrolytic capacitor manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
GB201000235D0 (en) | 2010-02-24 |
GB2468942A (en) | 2010-09-29 |
KR20100106206A (en) | 2010-10-01 |
DE102010012374A1 (en) | 2010-10-07 |
JP5801538B2 (en) | 2015-10-28 |
GB2468942B (en) | 2014-02-19 |
CN101847517A (en) | 2010-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8405956B2 (en) | High voltage electrolytic capacitors | |
JP5801538B2 (en) | High voltage electrolytic capacitor | |
US8223473B2 (en) | Electrolytic capacitor containing a liquid electrolyte | |
US8514547B2 (en) | Volumetrically efficient wet electrolytic capacitor | |
US8605411B2 (en) | Abrasive blasted conductive polymer cathode for use in a wet electrolytic capacitor | |
US8687347B2 (en) | Planar anode for use in a wet electrolytic capacitor | |
US11282652B2 (en) | Wet electrolytic capacitor for an implantable medical device | |
US9076592B2 (en) | Wet capacitor cathode containing a conductive coating formed anodic electrochemical polymerization of a microemulsion | |
US9275799B2 (en) | Wet electrolytic capacitor containing an improved anode | |
US8477479B2 (en) | Leadwire configuration for a planar anode of a wet electrolytic capacitor | |
US8968423B2 (en) | Technique for forming a cathode of a wet electrolytic capacitor | |
US8451586B2 (en) | Sealing assembly for a wet electrolytic capacitor | |
US9620293B2 (en) | Hermetically sealed capacitor for an implantable medical device | |
JP2010067966A (en) | Substrate for use in wet capacitor | |
US10832871B2 (en) | Wet electrolytic capacitor for an implantable medical device | |
CN104051159A (en) | Wet Electrolytic Capacitor for Use at High Temperatures | |
US9972442B2 (en) | Wet electrolytic capacitor | |
US9870868B1 (en) | Wet electrolytic capacitor for use in a subcutaneous implantable cardioverter-defibrillator | |
US9870869B1 (en) | Wet electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130123 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140127 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20140428 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20140502 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20140527 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20140530 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20140626 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20140701 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140728 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150317 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20150508 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150803 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150827 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5801538 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |