JP2010225296A - Inductively coupled antenna unit and plasma processing device - Google Patents
Inductively coupled antenna unit and plasma processing device Download PDFInfo
- Publication number
- JP2010225296A JP2010225296A JP2009068029A JP2009068029A JP2010225296A JP 2010225296 A JP2010225296 A JP 2010225296A JP 2009068029 A JP2009068029 A JP 2009068029A JP 2009068029 A JP2009068029 A JP 2009068029A JP 2010225296 A JP2010225296 A JP 2010225296A
- Authority
- JP
- Japan
- Prior art keywords
- inductively coupled
- coupled antenna
- antenna unit
- antenna conductor
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Plasma Technology (AREA)
- Chemical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
本発明は、誘導結合型高周波アンテナ及び該高周波アンテナを用いたプラズマ処理装置に関する。 The present invention relates to an inductively coupled high-frequency antenna and a plasma processing apparatus using the high-frequency antenna.
近年、液晶ディスプレイやアモルファス太陽電池などが著しく大型化するのに伴い、これらのデバイスに用いられるガラス基板サイズも非常に大きくなり、基板表面を処理するプラズマ処理装置も大型化してきた。放電プラズマを用いて基板表面に所望の薄膜を形成する、或いは基板表面をエッチング処理する等のプラズマ処理装置として複数の小型アンテナを真空容器周辺に分散して配置し、各小型アンテナに高周波電流を流して発生する電磁界を用いて放電プラズマを発生させる誘導結合プラズマ(ICP:Inductively Coupled Plasma)方式が開発されている。 In recent years, as liquid crystal displays, amorphous solar cells, and the like have become significantly larger in size, the glass substrate size used in these devices has become very large, and plasma processing apparatuses that process the substrate surface have also increased in size. A plurality of small antennas are distributed around the vacuum vessel as a plasma processing device for forming a desired thin film on the substrate surface using discharge plasma or etching the substrate surface, and a high frequency current is applied to each small antenna. An inductively coupled plasma (ICP) system that generates discharge plasma using an electromagnetic field generated by flowing has been developed.
一般的に、ICP は容量結合プラズマ(CCP:Capacitive Coupled Plasma) に較べて低ガス圧力下でも高密度で、電子温度が低く、イオンエネルギーの小さいプラズマが得られる技術として知られている。複数の小型アンテナを分散して配置したICP方式のプラズマ生成装置が特許文献1に開示されている。このプラズマ生成装置は、真空容器の壁面に設けられた開口部にコの字形又はU字形の誘導結合型アンテナを配置するものである。
In general, ICP is known as a technique capable of obtaining a plasma having a high density, a low electron temperature, and a low ion energy even under a low gas pressure as compared with a capacitively coupled plasma (CCP).
真空容器内部にアンテナ導体を導入する内部アンテナ方式のプラズマ処理装置では、アンテナ導体と放電プラズマとの間に静電界が発生する。一般に、内部アンテナ方式ではプラズマに対してアンテナ自体に負の直流自己バイアス電圧が発生する。このバイアス電圧によってプラズマ中のイオンが加速されてアンテナ導体に入射し、アンテナ導体自身がスパッターされる。 In an internal antenna type plasma processing apparatus in which an antenna conductor is introduced into a vacuum vessel, an electrostatic field is generated between the antenna conductor and discharge plasma. In general, in the internal antenna system, a negative DC self-bias voltage is generated in the antenna itself with respect to plasma. By this bias voltage, ions in the plasma are accelerated and incident on the antenna conductor, and the antenna conductor itself is sputtered.
例えば、アンテナ導体が銅であれば、スパッターされた銅原子や銅イオンが放電プラズマ中に混入して、真空容器の内壁や被処理基板表面に付着し、堆積する。薄膜を形成する場合であれば、薄膜中に不純物として混入する等の課題がある。この不純物の混入を防止するため、アンテナ導体の外周を石英等の誘電体パイプで覆うことが一般に行われている。例えば、特許文献2では、直径6mmの銅パイプアンテナ導体の外周に内径15mmの石英パイプで絶縁被覆を施した技術が開示されている。
For example, if the antenna conductor is copper, sputtered copper atoms and copper ions are mixed in the discharge plasma and adhere to and deposit on the inner wall of the vacuum vessel and the surface of the substrate to be processed. In the case of forming a thin film, there are problems such as contamination as impurities in the thin film. In order to prevent the contamination of impurities, it is common practice to cover the outer periphery of the antenna conductor with a dielectric pipe such as quartz. For example,
しかし、真空容器内にアンテナ導体を導入する前記方式では、高周波電流によるアンテナ導体及び前記誘電体パイプの温度上昇が激しく、アンテナ導体及び誘電体パイプの温度上昇を抑制するため、冷却する必要があった。アンテナ導体をパイプ状として冷却水を循環する方法が採用されているが、誘電体パイプの冷却は行われていないため、高周波電力を大きくすると、前記誘電体パイプは600℃以上に加熱される等の課題があった。 However, in the above-described method in which the antenna conductor is introduced into the vacuum vessel, the temperature of the antenna conductor and the dielectric pipe due to the high-frequency current is so high that it is necessary to cool the antenna conductor and the dielectric pipe in order to suppress the temperature rise. It was. Although a method of circulating the cooling water using the antenna conductor as a pipe shape is adopted, the dielectric pipe is not cooled, so when the high frequency power is increased, the dielectric pipe is heated to 600 ° C. or more. There was a problem.
また、前記アンテナ導体パイプの導入端部は真空シールしながら給排水管との接続、高周波電力給電端子、或いは接地端子との電気的な接続などを合わせ持つため、構成が複雑となるのみならず、アンテナの脱着、保守点検等に時間を要するなどの課題があった。更に、コの字形又はU字形のアンテナ導体に合わせてアンテナ導体の外周を石英等の絶縁材料パイプで覆う加工は煩雑で、高価であるという課題があった。前記構造では、機械的衝撃或いは熱的応力により絶縁材料パイプが破損し易い等の課題があった。 In addition, since the introduction end of the antenna conductor pipe has a vacuum seal while being connected to a water supply / drain pipe, a high frequency power feeding terminal, or an electrical connection to a ground terminal, the configuration is not only complicated, There were problems such as time required for attaching and detaching antennas and maintenance and inspection. Furthermore, the process of covering the outer periphery of the antenna conductor with an insulating material pipe such as quartz in accordance with the U-shaped or U-shaped antenna conductor is complicated and expensive. In the above structure, there is a problem that the insulating material pipe is easily damaged due to mechanical shock or thermal stress.
本発明は上記困難な課題に鑑み、真空容器壁に穿孔された開口部に容易に脱着でき、保守点検が容易にできる誘導結合型アンテナユニット(以下、ICPアンテナユニットと略記する)を安価に提供することを目的としている。また、高密度の放電プラズマを効率よく、安定に発生させることを目的としている。更に、当該ICPアンテナユニットを複数個用いることによって、任意の大きさの放電プラズマ処理装置を提供することを目的としている。 In view of the above-mentioned difficult problems, the present invention provides an inductively coupled antenna unit (hereinafter abbreviated as an ICP antenna unit) that can be easily attached to and detached from an opening formed in a vacuum vessel wall and that can be easily maintained and inspected. The purpose is to do. Another object of the present invention is to generate high-density discharge plasma efficiently and stably. It is another object of the present invention to provide a discharge plasma processing apparatus of an arbitrary size by using a plurality of the ICP antenna units.
本発明は高周波放電プラズマ処理装置に使用される誘導結合型高周波アンテナを開発する過程で発明されたもので、前記困難な課題を解決できたものである。本発明は、誘電体筐体と、コの字形又はU字形等の誘導結合型アンテナ導体(以下、ICPアンテナ導体と略記する)と、該ICPアンテナ導体を取り付けた蓋体とが一体化されたICPアンテナユニットであることを特徴とする。前記ICPアンテナ導体の給電側導入部及び接地側導入部は前記蓋体に貫通装着、又はフィードスルーを介して装着され、ICPアンテナ導体のコの字形部分又はU字形部分が前記誘電体筐体内に収容されていることを特徴とする。本発明によるICPアンテナユニットは高周波プラズマ処理装置等の真空容器壁に穿孔された開口部に着脱できる構成とする。 The present invention was invented in the course of developing an inductively coupled high-frequency antenna for use in a high-frequency discharge plasma processing apparatus, and was able to solve the difficult problems. In the present invention, a dielectric casing, an inductive coupling antenna conductor such as a U-shape or a U-shape (hereinafter abbreviated as an ICP antenna conductor), and a lid attached with the ICP antenna conductor are integrated. It is an ICP antenna unit. The feeding side introduction portion and the ground side introduction portion of the ICP antenna conductor are attached to the lid through through or through feedthrough, and the U-shaped portion or U-shaped portion of the ICP antenna conductor is in the dielectric casing. It is housed. The ICP antenna unit according to the present invention is configured to be detachable from an opening formed in a vacuum vessel wall of a high frequency plasma processing apparatus or the like.
前記ICPアンテナ導体の給電側導入部を前記蓋体の長手方向の一方の端部に、接地側導入部を他方の端部に配置し、前記ICPアンテナ導体のコの字形部分又はU字形部分が前記誘電体筐体内の底板にほぼ平行に設置する。 The feeding side introduction portion of the ICP antenna conductor is disposed at one end portion in the longitudinal direction of the lid, and the ground side introduction portion is disposed at the other end portion, and the U-shaped portion or U-shaped portion of the ICP antenna conductor is It is installed almost parallel to the bottom plate in the dielectric casing.
本発明によれば、前記ICPアンテナのアンテナ導体部分の形状はコの字形、U字形、N字形又はM字形とすることができ、その形状が作る平面が前記誘電体筐体内の底板又は側板にほぼ平行に配置されていることを特徴とする。前記形状のICPアンテナ導体の全長は給電する高周波の4分の1波長以下であることが望ましい。また、前記誘導結合型アンテナ導体のコの字形又はU字形部分が作る長方形の長辺に対する短辺(アンテナ導体の平行部分の間隔)の比が0.05乃至0.5であることが好ましい。 According to the present invention, the shape of the antenna conductor portion of the ICP antenna can be U-shaped, U-shaped, N-shaped or M-shaped, and a plane formed by the shape is formed on a bottom plate or a side plate in the dielectric casing. It is characterized by being arranged substantially in parallel. It is desirable that the total length of the ICP antenna conductor having the shape is equal to or less than a quarter wavelength of a high frequency to be fed. The ratio of the short side (interval between the parallel portions of the antenna conductor) to the long side of the rectangle formed by the U-shaped or U-shaped portion of the inductively coupled antenna conductor is preferably 0.05 to 0.5.
前記誘電体筐体は金属酸化物、窒化物、炭化物、又はフッ化物等、高周波電界に対して誘電体損失の小さい誘電体材料で構成されることが望ましい。好適な誘電体材料としては石英、アルミナ、ジルコニア、窒化珪素又は炭化硅素などである。また、前記誘電体筐体は、その開口部周辺に鍔部を設け、該鍔部と前記蓋体とがシール部材を挟持して固定され、一体化された構成とする。 The dielectric casing is preferably made of a dielectric material having a small dielectric loss with respect to a high-frequency electric field, such as metal oxide, nitride, carbide, or fluoride. Suitable dielectric materials are quartz, alumina, zirconia, silicon nitride, silicon carbide, and the like. In addition, the dielectric casing is provided with a flange around the opening, and the flange and the lid are fixed with a seal member interposed therebetween to be integrated.
前記高周波アンテナ導体を金属パイプ、例えば銅パイプとし、前記誘電体筐体内に収容されている部分に多数個の細孔を設け、該細孔から誘電体筐体内に冷却ガスを噴出させてICPアンテナ導体及び誘電体筐体を冷却する構造とする。ICPアンテナ導体パイプに設けた前記細孔は前記誘電体筐体内壁面に冷却ガスをほぼ均一に吹き付けるように細孔の位置、方向を決めることが望ましい。前記アンテナ導体は電気伝導率及び熱伝導率の高い金属導電体が好ましく、銅パイプやアルミニウムパイプを使用することができる。 The high frequency antenna conductor is a metal pipe, for example, a copper pipe, and a plurality of pores are provided in a portion accommodated in the dielectric casing, and a cooling gas is ejected from the pores into the dielectric casing to thereby generate an ICP antenna. The conductor and the dielectric casing are cooled. It is desirable to determine the position and direction of the pores provided in the ICP antenna conductor pipe so that cooling gas is blown almost uniformly onto the inner wall surface of the dielectric casing. The antenna conductor is preferably a metal conductor having high electrical conductivity and thermal conductivity, and a copper pipe or an aluminum pipe can be used.
前記蓋体には排気口を設け、該排気口と前記アンテナ導体パイプとを熱交換器及びポンプを介してフレキシブルチューブで連結する。冷却ガスを循環させすることよって、ICP
アンテナ導体及び前記誘電体筐体を冷却する。冷却ガスは空気でもよいが、アルゴンガス、窒素ガス等の不活性ガスであることが望ましい。
The lid is provided with an exhaust port, and the exhaust port and the antenna conductor pipe are connected by a flexible tube via a heat exchanger and a pump. ICP by circulating cooling gas
The antenna conductor and the dielectric casing are cooled. The cooling gas may be air, but is preferably an inert gas such as argon gas or nitrogen gas.
更に、本発明によるICPアンテナユニットをプラズマ処理装置の真空容器壁に設けた開口部に真空シール部材を挟持して装着することによって、真空容器内を所定の真空度に維持することができ、ICPアンテナユニットの脱着及び保守点検等が容易なプラズマ処理装置を提供することができる。 Further, the ICP antenna unit according to the present invention can be attached to an opening provided on the vacuum vessel wall of the plasma processing apparatus by sandwiching a vacuum seal member so that the inside of the vacuum vessel can be maintained at a predetermined degree of vacuum. It is possible to provide a plasma processing apparatus in which the antenna unit can be easily attached / detached, maintained, and inspected.
前記ICPアンテナ導体の一端は整合器を介して高周波電源に接続し、他端は接地する。必要に応じて、コンデンサを介して接地することができる。ICPアンテナ導体の一端に高周波電力を給電してICPアンテナ導体に高周波電流を流すことによって、真空容器内に原料ガスの放電プラズマを発生させることができる。高周波電力としては、13.56MHzの高周波電力を給電することができるが、この周波数に限定されるものではない。 One end of the ICP antenna conductor is connected to a high frequency power source through a matching unit, and the other end is grounded. If necessary, it can be grounded via a capacitor. By supplying high-frequency power to one end of the ICP antenna conductor and causing a high-frequency current to flow through the ICP antenna conductor, discharge plasma of a raw material gas can be generated in the vacuum vessel. As the high-frequency power, 13.56 MHz high-frequency power can be supplied, but it is not limited to this frequency.
更に、本発明によれば、前記真空容器壁の一部、例えば、天板に一定間隔で複数の開口部を設け、各開口部に前記ICPアンテナユニットを装着して各ICPアンテナ導体に高周波電力を給電すれば、真空容器内の大面積にわたって均一な放電プラズマを発生させることができる。また、各ICPアンテナユニットに給電する高周波電力を制御することによって放電プラズマの密度分布を調整、均一化するこができる。 Further, according to the present invention, a part of the vacuum vessel wall, for example, a top plate, is provided with a plurality of openings at regular intervals, and the ICP antenna unit is attached to each opening so that high frequency power is supplied to each ICP antenna conductor. Is supplied, it is possible to generate a uniform discharge plasma over a large area in the vacuum vessel. Further, the density distribution of the discharge plasma can be adjusted and made uniform by controlling the high frequency power supplied to each ICP antenna unit.
本発明によれば、プラズマ処理装置に着脱が容易で、保守点検が容易なICPアンテナユニットを安価に提供することができる。また、高密度の放電プラズマを効率よく、安定に発生させることができる。更に、複数個のICPアンテナユニットを用いることによって、任意の大きさのプラズマ処理装置を安価に提供することができる。 According to the present invention, it is possible to provide an ICP antenna unit that can be easily attached to and detached from the plasma processing apparatus and that is easy to perform maintenance and inspection at low cost. In addition, high-density discharge plasma can be generated efficiently and stably. Furthermore, by using a plurality of ICP antenna units, a plasma processing apparatus of any size can be provided at a low cost.
本発明によるICPアンテナユニットの好適な形態は、誘電体製の筐体と、該筐体の蓋体と、該蓋体に取り付けたコの字形又はU字形等のICPアンテナ導体とからなり、該アンテナ導体のコの字形部分又はU字形部分が前記筐体内に収容された構造とする。前記ICPアンテナ導体は前記蓋体に貫通して装着するか、又はフィードスルーを介して装着する。ICPアンテナ導体として、例えば銅パイプを採用し、そのコの字形部分又はU字形部分に細孔を設け、前記筐体内に冷却ガスを噴射させ、ICPアンテナ導体及び誘電体筐体を冷却できる構造とする。 A preferred form of the ICP antenna unit according to the present invention comprises a dielectric housing, a lid of the housing, and a U-shaped or U-shaped ICP antenna conductor attached to the lid, The U-shaped portion or U-shaped portion of the antenna conductor is housed in the housing. The ICP antenna conductor is attached through the lid or through a feedthrough. For example, a copper pipe is used as the ICP antenna conductor, and a U-shaped portion or U-shaped portion is provided with pores, and a cooling gas is injected into the housing to cool the ICP antenna conductor and the dielectric housing. To do.
本発明によるICPアンテナユニットはプラズマ処理装置等の真空容器壁に穿孔された開口部に真空シール部材を挟持して装着して使用する。前記ICPアンテナ導体の一方の給電端子は高周波電源に接続し、他方の端子は直接又はコンデンサを介して接地する。更に,前記高周波プラズマ処理装置等の真空容器壁に複数の開口部を設け、各開口部に真空シール部材を挟持して本発明によるICPアンテナユニットを装着することによって任意の面積の放電プラズマを発生させることができる。 The ICP antenna unit according to the present invention is used with a vacuum seal member sandwiched between openings formed in a vacuum vessel wall of a plasma processing apparatus or the like. One feeding terminal of the ICP antenna conductor is connected to a high frequency power source, and the other terminal is grounded directly or via a capacitor. Furthermore, a plurality of openings are formed in the vacuum vessel wall of the high-frequency plasma processing apparatus, etc., and a discharge seal of an arbitrary area is generated by mounting the ICP antenna unit according to the present invention with a vacuum seal member interposed between the openings. Can be made.
以下、添付図面を参照して、本発明の実施の形態を詳細に説明する。
1237178928734_0
は、本発明を実施するために好適に利用可能なICPアンテナユニットを示す概略断面図である。このICPアンテナユニットは、誘電体筐体11と蓋体12及び該蓋体に取り付けたコの字形のICPアンテナ導体14で構成した。アンテナ導体14には外径6.4mmの銅パイプを採用し、フィードスルー16を介して前記蓋体12に取り付けた。蓋体とフィードスルー16及びフィードスルーとICPアンテナ導体14は真空シール部材21を介して装着し、ガス漏れが起こらないように構成した。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
1237178928734_0
These are the schematic sectional drawings which show the ICP antenna unit which can be utilized suitably in order to implement this invention. This ICP antenna unit is composed of a
前記誘電体筐体は直方体形状で、その内法寸法は、短辺1.8cm、長辺13cm、深さ5cmとした。前記ICPアンテナ導体14の平坦部14aの長さは10cmとし、アンテナ導体と誘電体筐体内底板(誘電体窓部17)との間隔は0.6cmとなるように調整した。
The dielectric casing has a rectangular parallelepiped shape, and its internal dimensions are a short side of 1.8 cm, a long side of 13 cm, and a depth of 5 cm. The length of the
ICPアンテナ導体14の前記誘電体筐体内に存在するコの字形部分には多数の細孔15を設けた。該細孔は前記誘電体筐体の内壁面に冷却ガスをほぼ均一に噴射するように開けた。前記蓋体には排気口18を設け、該排気口とICPアンテナ導体パイプとの間は熱交換器(図示せず)とポンプ(図示せず)をフレキシブルチューブ22で連結した。前記冷却ガスはアンテナ導体パイプの両端から導入し、前記蓋体に設けた排気口から回収した。
A large number of
本実施例で開示した上記ICPアンテナユニットを真空容器の天板23の開口部24に真空シール部材21を介挿して装着し、ICPアンテナ導体14の一方の給電端子19は整合器(図示せず)を介して高周波電源20に接続し、もう一方の給電端子は接地した。真空容器内にガス圧力1パスカルのアルゴンと水素の混合ガスを導入し、周波数13.56MHz、出力1kWの高周波電力を供給して真空容器内に放電プラズマを発生させた。
The ICP antenna unit disclosed in the present embodiment is mounted on the
放電プラズマは真空容器内に充満し、誘電体筐体11の窓部17面から10cm離れた真空容器内のプラズマ密度は1.2×1011/cm3であった。図2に示すように、プラズマ密度は高周波電力にほぼ比例して増加する。また、ICPアンテナ導体面からの距離にほぼ反比例して減少することが明らかになった。
The discharge plasma was filled in the vacuum vessel, and the plasma density in the vacuum vessel 10 cm away from the
本実施例では、前記冷却ガスとして窒素ガスを循環させることによって、ICPアンテナ導体及び誘電体筐体の温度を80℃以下に保持することができた。冷却ガスとしては大気を循環することも可能であり、大気を循環する場合は、熱交換器は不要で前記ICPアンテナ導体パイプから導入して前記蓋体に設けた排気口18から排気することによって冷却することができる。
In this example, the temperature of the ICP antenna conductor and the dielectric casing could be kept at 80 ° C. or lower by circulating nitrogen gas as the cooling gas. As the cooling gas, it is possible to circulate the atmosphere. When the atmosphere is circulated, a heat exchanger is not necessary, and it is introduced from the ICP antenna conductor pipe and exhausted from the
本発明に係る第2実施例で用いたICPアンテナユニットのICPアンテナ導体の概略平面図を図3に示す。図3(a)に示すICPアンテナ導体は実施例1で採用したものであり、実施例2で採用したICPアンテナ導体は図3(b)に示す形状のものである。ICPアンテナ導体の給電側導入部27と接地側導入部28を蓋体12の一方の端部に取り付け、前記ICPアンテナ導体のU字形部分は導入部分に対してほぼ直角に折り曲げられ、該U字形部分の囲む面が前記誘電体筐体内部13の底板(誘電体窓部17)にほぼ平行になるように構成した。前記アンテナ導体14のU字形部分の長さは10cm、その間隔は3cmとした。
FIG. 3 shows a schematic plan view of the ICP antenna conductor of the ICP antenna unit used in the second embodiment according to the present invention. The ICP antenna conductor shown in FIG. 3A is used in Example 1, and the ICP antenna conductor used in Example 2 has the shape shown in FIG. An ICP antenna conductor feeding
本実施例で用いたU字形アンテナ導体の場合、アンテナ導体の平行な部分は高周波電流が相互に逆方向に流れるため、発生する磁力線はアンテナ導体の平行部分で囲まれる面に垂
直に発生し、その磁界強度は実施例1の場合の約2倍になる。従って、比較的小さな高周波電力で放電プラズマを発生させることができ、また、放電が起こり難い低いガス圧領域、例えば0.5パスカル以下でも放電プラズマを安定に発生させることができる効果がある。
In the case of the U-shaped antenna conductor used in this example, high-frequency currents flow in opposite directions in parallel portions of the antenna conductor, so that the generated magnetic lines of force are generated perpendicular to the plane surrounded by the parallel portion of the antenna conductor, The magnetic field strength is about twice that of the first embodiment. Therefore, discharge plasma can be generated with a relatively small high-frequency power, and discharge plasma can be stably generated even in a low gas pressure region where discharge is difficult to occur, for example, 0.5 Pascal or less.
図3(b)に示す形状のICPアンテナ導体を用いた前記ICPアンテナユニットを前記真空容器の天板23の開口部24に真空シール部材21を挟持して装着し、ICPアンテナ導体14の一方の給電端子19に整合器(図示せず)を介して高周波電源20を接続し、もう一方の給電端子は接地した。実施例1と同条件で放電プラズマを発生させた。誘電体筐体11の窓部17面から10cm離れた真空容器内のプラズマ密度は1.8×1011/cm3であった。
The ICP antenna unit using the ICP antenna conductor having the shape shown in FIG. 3B is mounted with the
本発明によれば、ICPアンテナ導体はコの字形とU字形に限られるものではなく、図3(c)に示すように、N字形やS字形等とすることができる。一般に、円形のICPアンテナ導体が用いられる。円形アンテナの場合、半径をr、電流をIとするとき、中心部に発生する磁界の強さHoは次式で表される。
Ho=I/2r
一方、本発明によるU字形ICPアンテナ導体の平行部分の間隔をdとすると、中心部の磁界の強さH11は次式、
H11=2I/πd
で表される。U字形アンテナにすると、磁界の強さは円形アンテナの(4r/πd)倍になる。アンテナ導体の平行部分の間隔に反比例するため、間隔を狭くすることによって誘導磁界の強さを大きくすることができる。本実施例では、同じ長さのアンテナ導体を用いた場合、円形アンテナの約1.7倍の磁界強度が得られた。なお、前記ICPアンテナ導体のU字形部分が囲む長方形の長辺の長さLに対する平行部分の間隔dの比d/Lは特に限定されるものではないが、0.05乃至0.5であることが望ましい。
According to the present invention, the ICP antenna conductor is not limited to the U-shape and U-shape, and may be N-shaped, S-shaped, or the like as shown in FIG. In general, a circular ICP antenna conductor is used. In the case of a circular antenna, when the radius is r and the current is I, the strength H o of the magnetic field generated at the center is expressed by the following equation.
H o = I / 2r
On the other hand, when the distance between the parallel portions of the U-shaped ICP antenna conductor according to the present invention is d, the magnetic field strength H 11 at the center is expressed by the following equation:
H 11 = 2I / πd
It is represented by When a U-shaped antenna is used, the strength of the magnetic field is (4r / πd) times that of a circular antenna. Since it is inversely proportional to the interval between the parallel portions of the antenna conductor, the strength of the induced magnetic field can be increased by reducing the interval. In this example, when the antenna conductor having the same length was used, a magnetic field strength about 1.7 times that of the circular antenna was obtained. The ratio d / L of the distance d between the parallel portions to the length L of the long side of the rectangle surrounded by the U-shaped portion of the ICP antenna conductor is not particularly limited, but is 0.05 to 0.5. It is desirable.
第3の実施例で採用したICPアンテナユニットの主要部断面概略図を図4に示す。ICPアンテナ導体14は、外径6.4mmの銅パイプを図4に示すような形状に整形加工したものを用いた。該ICPアンテナ導体の給電側導入部27と接地側導入部28を前記蓋体12のほぼ中央部に設け、前記ICPアンテナ導体のU字形部分の囲む面が誘電体筐体11の長辺側板とほぼ平行になるように装着した。ICPアンテナ導体14と誘電体筐体11の側板との間隔は5mmとした。
FIG. 4 shows a schematic cross-sectional view of the main part of the ICP antenna unit employed in the third embodiment. As the
本実施例では、蓋体12を絶縁体材料で作製し、フィードスルーを省略した。ICPアンテナ導体14は蓋体12にガスシール部材21を介して直接取り付けた。前記ICPアンテナ導体のU字形部分の周辺に多数の細孔を設け、冷却ガスを噴出させてアンテナ導体及び誘電体筐体を冷却した。冷却ガスは蓋体12に設けた排気口18から回収した。
In this embodiment, the
前記実施例1と同様にICPアンテナユニットを真空容器23の開口部24に装着した。アンテナ導体のU字形部分が真空容器の内壁面より内側に突出するように装着した。一方の給電端子19に整合器(図示せず)を介して高周波電源20を接続し、他方の給電端子は接地した。真空容器内にガス圧力0.5パスカルのアルゴンと水素の混合ガスを導入し、周波数13.56MHz、出力1kWの高周波電力を供給して真空容器内に放電プラズマを発生させた。
The ICP antenna unit was attached to the
放電プラズマは真空容器内に充満し、誘電体筐体11の窓部17面から10cm離れた真空容器内のプラズマ密度は2.2×1011/cm3であった。実施例2の場合は、ICPアンテナ導体のU字形部分が囲む面が真空容器の内壁面に平行であるため、発生する電
磁界の片面の電力しか活用できなかったが、本実施例では、ICPアンテナ導体が囲む面の両側の誘導電磁界を活用することができる。また、アンテナ導体が発生する磁力線は真空容器の内壁面にほぼ平行に発生する。従って、プラズマ中の電子は当該磁力線に束縛されて真空容器表面への散逸が抑制されるため、真空容器内に高密度の安定した放電プラズマを発生させることができる。
The discharge plasma was filled in the vacuum chamber, and the plasma density in the vacuum chamber 10 cm away from the
複数個のICPアンテナユニットを使用した実施例について説明する。真空容器の一部である天板に2個の前記ICPアンテナユニットを装着した実施例について、ICPアンテナ導体の配置平面図を図5に示す。本実施例では、1組2個のICPアンテナユニットで構成し、両アンテナユニットは所定間隔で配置してある。両方のICPアンテナ導体14の給電端子は給電バー25で連結し、該給電バー25の中心部に高周波電力給電点を設けた。また、接地側給電端子も同様に連結し、その中心部に給電点を設けて接地した。
An embodiment using a plurality of ICP antenna units will be described. FIG. 5 shows an arrangement plan view of ICP antenna conductors for an example in which two ICP antenna units are mounted on a top plate which is a part of a vacuum vessel. In this embodiment, one set of two ICP antenna units is formed, and both antenna units are arranged at a predetermined interval. The feeding terminals of both
給電点と両アンテナの給電端子までの距離はほぼ同一とし、給電点から見た高周波電力に対する両ICPアンテナユニットのインピーダンスが等価になるように給電点の位置を調整した。真空容器内にガス圧力0.5パスカルのアルゴンと水素の混合ガスを導入し、周波数13.56MHz、出力1kWの高周波電力を前記給電点に給電して真空容器内に放電プラズマを励起した。 The distance between the feed point and the feed terminals of both antennas was substantially the same, and the position of the feed point was adjusted so that the impedances of both ICP antenna units with respect to the high frequency power viewed from the feed point were equivalent. A mixed gas of argon and hydrogen having a gas pressure of 0.5 Pascal was introduced into the vacuum vessel, and high frequency power with a frequency of 13.56 MHz and an output of 1 kW was supplied to the feeding point to excite discharge plasma in the vacuum vessel.
本実施例では、2個の各ICPアンテナユニットとも真空容器内にほぼ同様な放電プラズマを発生させることができた。天板面からある距離におけるプラズマ密度分布は各アンテナユニットの間隔、放電ガス圧力、高周波電力等によって変化するが、一様なプラズマ密度分布を得る条件は設計事項であって、任意の面積の放電プラズマを発生させることが可能である。 In this example, almost the same discharge plasma could be generated in the vacuum vessel with each of the two ICP antenna units. The plasma density distribution at a certain distance from the top plate surface varies depending on the spacing of each antenna unit, discharge gas pressure, high-frequency power, etc., but the condition for obtaining a uniform plasma density distribution is a matter of design, and discharge of any area is possible. Plasma can be generated.
上記実施例では、1組2個のICPアンテナユニットについて説明したが、2個に限定されるものではなく、3個、4個でもよい。更に、複数個のICPアンテナユニットからなる複数組を配置することによって、大面積の放電プラズマを発生させることができ、量産性に優れたプラズマ処理装置を提供することができる。 In the above embodiment, one set of two ICP antenna units has been described. However, the number of ICP antenna units is not limited to two, and may be three or four. Furthermore, by disposing a plurality of sets of a plurality of ICP antenna units, a large area discharge plasma can be generated, and a plasma processing apparatus excellent in mass productivity can be provided.
11・・誘電体筐体、12・・蓋体、13・・筐体内部、14・・アンテナ導体、15・・ガス噴出口、16・・フィードスルー、17・・誘電体窓部、18・・排気口、19・・給電端子、20・・高周波電源、21・・真空シール部材、22・・ガスチューブ、23・・真空容器、24・・開口部、25・・給電バー、26・・鍔部 11 .. Dielectric housing, 12 .. Lid, 13 .. Inside housing, 14 .. Antenna conductor, 15 .. Gas outlet, 16 .. Feedthrough, 17 .. Dielectric window, 18. · Exhaust port, 19 ·· Feeding terminal, 20 · · High frequency power supply, 21 · · Vacuum seal member, 22 · · Gas tube, 23 · · Vacuum container, 24 · · Opening portion · · · Feed bar, 26 · · · Buttock
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009068029A JP2010225296A (en) | 2009-03-19 | 2009-03-19 | Inductively coupled antenna unit and plasma processing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009068029A JP2010225296A (en) | 2009-03-19 | 2009-03-19 | Inductively coupled antenna unit and plasma processing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010225296A true JP2010225296A (en) | 2010-10-07 |
Family
ID=43042297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009068029A Pending JP2010225296A (en) | 2009-03-19 | 2009-03-19 | Inductively coupled antenna unit and plasma processing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010225296A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4844697B1 (en) * | 2011-06-24 | 2011-12-28 | 日新電機株式会社 | Plasma processing equipment |
WO2013099366A1 (en) * | 2011-12-26 | 2013-07-04 | 日新電機株式会社 | Plasma processing device |
JP2013214445A (en) * | 2012-04-03 | 2013-10-17 | Ihi Corp | Plasma processing apparatus |
JP5377749B2 (en) * | 2010-02-25 | 2013-12-25 | シャープ株式会社 | Plasma generator |
JP2018101463A (en) * | 2016-12-19 | 2018-06-28 | 株式会社プラズマイオンアシスト | Inductively-coupled antenna unit and plasma processing device |
JP2018145301A (en) * | 2017-03-06 | 2018-09-20 | 三洋化成工業株式会社 | Dispersant for deodorant inorganic filler |
JP2018145300A (en) * | 2017-03-06 | 2018-09-20 | 三洋化成工業株式会社 | Dispersant for inorganic coloring material |
JP2018143963A (en) * | 2017-03-06 | 2018-09-20 | 三洋化成工業株式会社 | Dispersion agent for inorganic filler |
WO2023048896A1 (en) * | 2021-09-27 | 2023-03-30 | Applied Materials, Inc. | Active temperature control for rf window in immersed antenna source |
WO2023047497A1 (en) * | 2021-09-22 | 2023-03-30 | 株式会社Kokusai Electric | Substrate processing device, plasma generation device, method for manufacturing semiconductor device, and program |
-
2009
- 2009-03-19 JP JP2009068029A patent/JP2010225296A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5377749B2 (en) * | 2010-02-25 | 2013-12-25 | シャープ株式会社 | Plasma generator |
CN102647847A (en) * | 2011-06-24 | 2012-08-22 | 日新电机株式会社 | Plasma processing device |
TWI382791B (en) * | 2011-06-24 | 2013-01-11 | Nissin Electric Co Ltd | Plasma treatment apparatus |
US8372239B2 (en) | 2011-06-24 | 2013-02-12 | Nissin Electric Co., Ltd. | Plasma processing apparatus |
JP4844697B1 (en) * | 2011-06-24 | 2011-12-28 | 日新電機株式会社 | Plasma processing equipment |
WO2013099366A1 (en) * | 2011-12-26 | 2013-07-04 | 日新電機株式会社 | Plasma processing device |
JP2013134835A (en) * | 2011-12-26 | 2013-07-08 | Nissin Electric Co Ltd | Plasma processing apparatus |
JP2013214445A (en) * | 2012-04-03 | 2013-10-17 | Ihi Corp | Plasma processing apparatus |
JP2018101463A (en) * | 2016-12-19 | 2018-06-28 | 株式会社プラズマイオンアシスト | Inductively-coupled antenna unit and plasma processing device |
JP2018145301A (en) * | 2017-03-06 | 2018-09-20 | 三洋化成工業株式会社 | Dispersant for deodorant inorganic filler |
JP2018145300A (en) * | 2017-03-06 | 2018-09-20 | 三洋化成工業株式会社 | Dispersant for inorganic coloring material |
JP2018143963A (en) * | 2017-03-06 | 2018-09-20 | 三洋化成工業株式会社 | Dispersion agent for inorganic filler |
WO2023047497A1 (en) * | 2021-09-22 | 2023-03-30 | 株式会社Kokusai Electric | Substrate processing device, plasma generation device, method for manufacturing semiconductor device, and program |
WO2023048896A1 (en) * | 2021-09-27 | 2023-03-30 | Applied Materials, Inc. | Active temperature control for rf window in immersed antenna source |
US12014898B2 (en) | 2021-09-27 | 2024-06-18 | Applied Materials, Inc. | Active temperature control for RF window in immersed antenna source |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5747231B2 (en) | Plasma generating apparatus and plasma processing apparatus | |
JP2010225296A (en) | Inductively coupled antenna unit and plasma processing device | |
KR100812746B1 (en) | Plasma producing method and apparatus as well as plasma processing apparatus | |
US20080303744A1 (en) | Plasma processing system, antenna, and use of plasma processing system | |
WO2010104122A1 (en) | Plasma processing apparatus | |
JP5462368B2 (en) | Plasma processing equipment | |
US20080302761A1 (en) | Plasma processing system and use thereof | |
JP2009021220A (en) | Plasma processing device, antenna, and usage method for plasma processing device | |
JP2007149638A (en) | Plasma generation method and device and plasma treatment device | |
US20120325404A1 (en) | Plasma processing apparatus | |
KR100798352B1 (en) | Plasma reactor with multi-arrayed discharging chamber and plasma processing system using the same | |
JP6468521B2 (en) | Inductively coupled antenna unit and plasma processing apparatus | |
TWI770144B (en) | Plasma processing device | |
WO2011058608A1 (en) | Plasma processing apparatus | |
JP2018101463A5 (en) | ||
JP5329796B2 (en) | Plasma processing equipment | |
WO2016129437A1 (en) | Plasma processing device | |
KR100798351B1 (en) | Plasma processing chamber having multi remote plasma generator | |
JP2017228422A (en) | Plasma generating device | |
JP2024062955A (en) | Inductively coupled antenna unit and plasma processing device | |
JP2011071123A (en) | Plasma processing device | |
KR20080069755A (en) | Inductively coupled plasma reactor capable | |
WO2012176242A1 (en) | Plasma processing device | |
JP2013004356A (en) | Plasma device | |
KR20110055306A (en) | Capacitively coupled plasma reactor for lowering power feed loss |