[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010223068A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2010223068A
JP2010223068A JP2009070386A JP2009070386A JP2010223068A JP 2010223068 A JP2010223068 A JP 2010223068A JP 2009070386 A JP2009070386 A JP 2009070386A JP 2009070386 A JP2009070386 A JP 2009070386A JP 2010223068 A JP2010223068 A JP 2010223068A
Authority
JP
Japan
Prior art keywords
knocking
closing timing
fuel
ivc
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009070386A
Other languages
English (en)
Inventor
Masayuki Saruwatari
匡行 猿渡
Satoshi Kobayashi
敏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2009070386A priority Critical patent/JP2010223068A/ja
Priority to US12/727,345 priority patent/US20100236523A1/en
Publication of JP2010223068A publication Critical patent/JP2010223068A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/34403Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using helically teethed sleeve or gear moving axially between crankshaft and camshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0021Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio
    • F01L13/0026Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio by means of an eccentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • F02D13/0238Variable control of the intake valves only changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/084Blends of gasoline and alcohols, e.g. E85
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/085Control based on the fuel type or composition
    • F02D19/087Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0623Failure diagnosis or prevention; Safety measures; Testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】低コストかつ高応答でノッキングを回避できる内燃機関の制御装置を提供する。
【解決手段】アルコール混合燃料におけるアルコール濃度が低く、ノッキングが発生し易い場合には、可変バルブタイミング機構を制御して吸気バルブの閉時期IVCを下死点BDC後の領域で遅らせる。吸気バルブの閉時期IVCが遅れると、圧縮行程の途中から圧縮されることになって有効圧縮比が減少し、ノッキングが発生し難くなるため、ノッキングの発生を未然に回避できる。
【選択図】図3

Description

本発明は、吸気バルブの閉時期を可変とする可変動弁機構を備えた内燃機関に適用される制御装置に関する。
特許文献1には、圧縮比可変機構を備えた内燃機関において、ノッキングの発生を検知した場合に、前記圧縮比可変機構によって圧縮比を低下させることが開示されている。
特開2000−073804号公報
ところで、ピストンの上死点位置を変更する圧縮比可変機構は構造が複雑であって高コストであり、また、ノッキング発生に対して高い応答で圧縮比を変更することが難しいという問題があった。
本発明は上記問題点に鑑みなされたものであり、低コストかつ高応答でノッキングを回避できる内燃機関の制御装置を提供することを目的とする。
そのため、本願発明では、吸気バルブの閉時期を可変とする可変動弁機構を備えた内燃機関において、ノッキングの発生に関与する燃料性状、又は、ノッキング発生の検出結果に応じて、吸気バルブの閉時期を変更するようにした。
上記発明によると、可変動弁機構によって吸気バルブの閉時期を可変とすることで、低コストかつ高応答でノッキングを回避できる。
実施形態における可変バルブタイミング機構を備えた車両用内燃機関のシステムを示す図である。 実施形態における可変バルブタイミング機構の断面図である。 実施形態におけるアルコール濃度に応じた閉時期IVCの設定処理を示すフローチャートである。 実施形態における可変バルブタイミング機構の操作量の演算・出力処理を示すフローチャートである。 実施形態におけるアルコール濃度による閉時期IVCの違いを例示する図である。 実施形態におけるオクタン価に応じた閉時期IVCの設定処理を示すフローチャートである。 実施形態におけるアルコール濃度及びオクタン価に応じた閉時期IVCの設定処理を示すフローチャートである。 実施形態におけるノッキングの検出結果に応じた閉時期IVCの設定処理を示すフローチャートである。 実施形態における可変バルブタイミング機構及び可変リフト機構を備えた車両用内燃機関のシステムを示す図である。 実施形態における可変リフト機構を示す斜視図である。 実施形態における可変リフト機構の側面図である。 実施形態における可変バルブタイミング機構及び可変リフト機構の操作量の演算・出力処理を示すフローチャートである。
以下に、本発明の一実施形態を図面に基づいて詳細に説明する。
図1は、本願発明に係る制御装置が適用される車両用内燃機関101の構成図であり、この内燃機関101は、ガソリンの他に、ガソリンとアルコールとの混合燃料を使用できるようになっている。
前記混合燃料は、予め混合燃料として燃料タンクに蓄えるようにできる他、ガソリンとアルコールとを個別に燃料タンクに貯留し、各燃料タンクから送出された燃料を混合させて燃料噴射弁131に供給させることができる。
尚、本実施形態では前記内燃機関101を直列4気筒機関とするが、V型機関や水平対向機関であってもよく、また、気筒数は4気筒以外であってもよい。
内燃機関101の吸気管102には、スロットルモータ103aでスロットルバルブ103bを開閉駆動する電子制御スロットル104が介装される。
そして、前記電子制御スロットル104及び吸気バルブ105を介して、燃焼室106内に空気が吸入される。
各気筒の吸気ポート130には、燃料噴射弁131が設けられる。
尚、燃料噴射弁131が燃焼室106内に直接燃料を噴射する筒内直接噴射式内燃機関であってもよい。
前記燃料噴射弁131は、エンジンコントロールユニット(以下、ECUという。)114からの噴射パルス信号によって開弁駆動され、燃料を噴射する。
前記燃焼室106内に吸引された燃料は、点火プラグ111による火花点火によって着火燃焼する。
前記点火プラグ111には、点火コイル及び該点火コイルへの通電を制御するパワートランジスタを内蔵した点火モジュール112がそれぞれ直付けされている。
燃焼室106内の燃焼排気は、排気バルブ107を介して排気管121に排出され、排気管121に介装されるフロント触媒コンバータ108及びリア触媒コンバータ109を通過して大気中に放出される。
前記フロント触媒コンバータ108及びリア触媒コンバータ109は、三元触媒等の排気浄化触媒を内蔵しており、このフロント触媒コンバータ108及びリア触媒コンバータ109を通過する際に、排気が浄化される。
前記吸気バルブ105及び排気バルブ107は、それぞれ吸気カムシャフト134,排気カムシャフト110に一体的に設けられたカムによって開駆動されるが、吸気カムシャフト134には、可変バルブタイミング機構113が設けられている。
前記可変バルブタイミング機構113は、クランクシャフト120(出力軸)に対する吸気カムシャフト134の回転位相を変化させることで、吸気バルブ105のバルブタイミング(バルブ作動角の中心位相)を変化させる可変動弁機構であり、該可変バルブタイミング機構113によって、吸気バルブ105の開時期IVO及び閉時期IVCが、バルブ作動角を一定に保ったまま変化する。
図2は、前記可変バルブタイミング機構113の構造を示す。
前記可変バルブタイミング機構113は、クランクシャフト120と同期して回転するスプロケット25に固定され、このスプロケット25と一体的に回転する第1回転体21と、ボルト22aにより前記吸気カムシャフト134の一端に固定され、吸気カムシャフト134と一体的に回転する第2回転体22と、ヘリカルスプライン26により第1回転体21の内周面と第2回転体22の外周面とに噛合する筒状の中間ギア23と、を有している。
前記中間ギア23には3条ネジ28を介してドラム27が連結されており、このドラム27と中間ギア23との間にねじりスプリング29が介装されている。
前記中間ギア23は、ねじりスプリング29によって遅角方向(図2の左方向)へ付勢されており、電磁リターダ24に電圧を印加して磁力を発生すると、ドラム27及び3条ネジ28を介して進角方向(図2の右方向)へ動かされる。
この中間ギア23の軸方向位置に応じて、回転体21,22の相対位相が変化して、クランクシャフト120に対する吸気カムシャフト134の位相が変化する。
前記電磁リターダ24は、前記ECU114からの送られる操作量に応じて動作し、吸気カムシャフト134の位相(吸気バルブ105のバルブタイミング)が、前記操作量に応じて変化する。
尚、前記可変バルブタイミング機構113は、図2に示した構造のものに限定されず、クランクシャフトに対するカムシャフトの回転位相を変化させる公知の可変バルブタイミング機構を適宜選択して採用でき、例えば、特開2003−184516号公報に開示される、渦巻き状ガイドに変位可能に案内係合される可動案内部を備えてなる可変バルブタイミング機構や、特開2007−120406号公報に開示される油圧ベーン式の可変バルブタイミング機構などであっても良い。
前記ECU114は、マイクロコンピュータを内蔵し、予め記憶されているプログラムに従って各種センサからの検出信号を演算処理することによって、前記電子制御スロットル104,可変バルブタイミング機構113(可変動弁機構),燃料噴射弁131,点火モジュール112等を制御する。
前記各種センサとしては、アクセルペダル116aの踏み込み量(アクセル開度)ACCを検出するアクセル開度センサ116、機関101の吸入空気量Qを検出するエアフローセンサ115、クランクシャフト120の回転に応じて検出信号POSを出力するクランク角センサ117、スロットルバルブ103bの開度TVOを検出するスロットルセンサ118、機関101の冷却水温度TWを検出する水温センサ119、前記吸気カムシャフト134の回転に応じて検出信号CAMを出力するカムセンサ132、車両の走行速度(車速)VSPを検出する車速センサ123、前記燃料噴射弁131が噴射する燃料(ガソリンとアルコールとの混合燃料)中のアルコール濃度ADを検出するアルコール濃度センサ124(燃料性状検出手段)、内燃機関101のノッキング発生時の振動VIを圧電素子などにより検出するノックセンサ125(ノッキング検出手段)、フロント触媒コンバータ108の上流側の排気管121に設けられ、排気中の酸素濃度に基づいて空燃比AFを検出する空燃比センサ126などが設けられている。
前記アルコール濃度センサ124としては、特開平7−167816号公報に開示されるような静電容量型のアルコール濃度センサを用いることができる。
前記ECU114は、クランク角センサ117から出力される検出信号POSに基づいて機関回転速度NEを演算し、該機関回転速度NEと吸入空気量Qとに基づいて基本燃料噴射量TPを演算する。
また、前記アルコール濃度センサ124で検出されるアルコール濃度ADに応じて第1補正係数を演算し、冷却水温度TWなどに応じて第2補正係数を演算し、更に、空燃比センサ126で検出される空燃比を目標空燃比(例えば理論空燃比)に近づけるための第3補正係数を演算し、前記基本燃料噴射量TPを、前記第1〜第3補正係数などで補正して、最終的な燃料噴射量TIを算出する。
そして、前記燃料噴射量TIに相当するパルス幅の噴射信号を、各気筒の吸気行程にタイミングを合わせて前記燃料噴射弁131に出力して、機関101の各気筒に燃料を供給する。
また、エタノールなどのアルコール系燃料は、ガソリンよりもアンチノック性が高いため、混合燃料のアルコール濃度ADが高くなるほどノッキングが発生し難くなり、逆に、混合燃料のアルコール濃度ADが低くなるほどノッキングが発生し易くなるため、前記ECU114は、ノッキング発生を未然に抑制するために、アルコール濃度ADに応じて可変バルブタイミング機構113を制御する。
即ち、可変バルブタイミング機構113によって吸気バルブ105の閉時期IVCを、下死点BDC後のより遅い時期にすると、圧縮行程の途中から圧縮が始まることになり、実際の圧縮比(有効圧縮比)が抑えられることになり、圧縮比の低下によってノッキング(異常燃焼)が発生し難くなる。
一方、可変バルブタイミング機構113によって吸気バルブ105の閉時期IVCを、下死点BDCに近づけるように進角させると、実際の圧縮比(有効圧縮比)を増大させて燃焼効率を高めることができる。
従って、ノッキングの発生に関与する燃料性状であるアルコール濃度ADに応じて、吸気バルブ105の閉時期IVC(有効圧縮比)を変化させれば、ノッキングの発生を抑制できる高い有効圧縮比に設定でき、ノッキング抑制と高い燃焼効率とを両立させることができる。
上記のように、吸気バルブ105の閉時期IVCを下死点BDCから遅らせることで、有効圧縮比を減少変化させるので、ベース圧縮比(ピストンが下死点にあるときのシリンダの全容積とピストンが上死点にあるときにピストン上に残るシリンダ容積との比)を、12程度の高い値に設定することができる。
これにより、ノッキングが発生し難い燃料が使用され、かつ、ノッキングが発生し難い機関運転領域では、高い圧縮比によって高い燃焼効率を得られる。
図3のフローチャートは、前述のアルコール濃度ADに応じた閉時期IVCの制御、即ち、ECU114の閉時期制御手段としての機能を示す。
図3のフローチャートにおいて、ステップS501では、アルコール濃度センサ124で検出されたアルコール濃度AD、機関トルク(機関負荷)、機関回転速度NEなどを読み込む。
尚、機関トルクは、前記基本燃料噴射量TPで代表させることができる。
また、アルコール濃度センサ124を備えない場合、或いは、アルコール濃度センサ124が故障している場合には、混合燃料のアルコール濃度ADを、前記第3補正係数に基づいて推定することができる。
例えば、ガソリン100%の燃料であると仮定して燃料噴射を行わせた場合、実際の使用燃料が、アルコール混合燃料であったとすると、アルコール濃度ADが高いほど空燃比センサ126で検出される空燃比が理論空燃比よりもリーンになり、第3補正係数は燃料噴射量をより大きく増大補正する値に設定されることになるから、第3補正係数の値が大きいほど使用燃料のアルコール濃度ADが高いと推定できる。
ステップS502では、機関101の運転条件を示す前記機関トルク(機関負荷)と機関回転速度NEとから、基本閉時期IVC角度を算出する。
本実施形態においてIVC角度は、下死点BDCから閉時期IVCまでの遅角角度(degABDC)を示し、基本IVC角度の値が小さいほど閉時期IVCが下死点BDCに近く、基本IVC角度の値が大きいほど閉時期IVCが下死点BDCからより遅角した位置であることを示す。
前記基本IVC角度は、定常走行域(中負荷・中回転域)で最も小さいに値に設定され、前記定常走行域(中負荷(中トルク)・中回転)から外れ、機関加速(高負荷(高トルク)側)または機関減速(低負荷(低トルク)側)するとより大きな値設定されるが、定常走行域(中負荷(中トルク)・中回転)を除く領域では低回転・高負荷(機関急加速や全開加速)になるほど、より小さな値(より下死点BDCに近い角度位置)に設定される。
ステップS503では、アルコール濃度ADに応じて閉時期IVC(基本IVC角度)を遅角補正するためのアルコール補正値AHOSを算出する。
前記アルコール補正値AHOSは、アルコール濃度ADが低いほど、換言すれば、ノッキングが発生し易いほど、大きな値に設定される基本値AHOSB(≧0)に、前記機関トルク(機関負荷)と機関回転速度NEとに応じた補正係数K1を乗算して求められる。
前記補正係数K1は、機関101の運転条件によるノッキングの発生し易さに応じて予め設定されており、機関回転速度NEが低くかつ機関負荷が大きく、ノッキングが発生し易い領域では大きな値に設定され、機関回転速度NEが高く機関負荷が低くノッキングが発生し難い領域では小さい値に設定され、機関回転速度NEと機関負荷とに応じて最小値の0%から最大値の100%までの間で設定される。
ステップS504では、前記ステップS502で求めた基本IVC角度に、前記ステップS503で求めたアルコール補正値AHOSを加算して、最終的なIVC角度(最終的な目標閉時期IVC)を算出する。
従って、アルコール混合燃料のアルコール濃度ADが低く、かつ、機関運転条件がノッキングの発生し易い条件のときに、前記アルコール補正値AHOSは最も大きな値に設定され、閉時期IVCは下死点BDCから最も遅角した角度位置に設定される。
逆に、アルコール混合燃料のアルコール濃度ADが高く、かつ、機関運転条件がノッキングの発生し難い条件のときに、前記アルコール補正値AHOSは最も小さい値に設定され、閉時期IVCは下死点BDCに最も近い角度位置に設定される。
これにより、アルコール混合燃料のアルコール濃度ADが高ければ、高い有効圧縮比に設定して、高い燃焼効率を得られる一方、アルコール混合燃料のアルコール濃度ADが低ければ、有効圧縮比を低くしてノッキングの発生を抑制する。
ここで、前記可変バルブタイミング機構113は、一般的に可変圧縮比機構よりも低コストで、かつ、動作速度が速いから、アルコール濃度ADの違いによるノッキングの発生し易さの違いに対して、ノッキングを回避できる有効圧縮比を、低コストかつ高応答で実現できる。
前記最終的なIVC角度に基づく可変バルブタイミング機構113の制御は、図4のフローチャートに従って行われ、まず、ステップS901では、最終的なIVC角度の最新値を読み込む。
次のステップS902では、前記ステップS901で読み込んだ最終的なIVC角度から、可変バルブタイミング機構113の初期状態でのIVC角度(イニシャルIVC角度:本実施形態では最遅角位置)を減算することで変換目標角度を求める。
次のステップS903では、クランク角センサ117の検出信号及びカムセンサ132の検出信号から実際の変換角度を検出する。
具体的には、クランク角センサ117の検出信号から基準クランク角位置を検出し、該基準クランク角位置から、カムセンサ132で検出される基準カム角位置までの角度を検出することで、クランクシャフト120に対する吸気カムシャフト134の回転位相、即ち、実際の変換角を求める。
ステップS904では、前記変換目標角度と、クランク角センサ117及びカムセンサ132から検出された実際の変換角度とを比較して、実際の変換角度を変換目標角度に近づけるように、電磁リターダ24の操作量を演算して出力するフィードバック制御を行う。
具体的には、前記変換目標角度と実際の変換角度との偏差(制御エラー)に基づく、比例動作・積分動作・微分動作によって操作量(デューティ比)を演算し、該操作量(デューティ比)に従って、電磁リターダ24への電源供給をスイッチングするスイッチング素子を駆動する。
前記変換目標角度は、初期状態でのIVC角度(イニシャルIVC角度)から、最終的なIVC角度までのクランク角度であり、例えば、可変バルブタイミング機構113の初期状態が最遅角位置であるとすると、この最遅角位置からの進角量である。
図5は、ガソリン100%燃料を使用した場合(E0)と、アルコール濃度85%の燃料(E85)を使用した場合とのバルブタイミング(閉時期IVC)の違いを示し、アルコール濃度85%(E85)では、下死点後20deg(ABDC20deg)の位置に閉時期IVCが設定されるのに対し、ガソリン100%燃料(E0)では、下死点後40deg(ABDC40deg)の位置にまで閉時期IVCが遅角される。
吸気バルブ105の閉時期IVCが遅角されるほど有効圧縮比が低下し、ノッキングが発生し難くなるから、アルコール濃度ADが低くノッキングが発生し易いほど、閉時期IVCを遅角させれば、ノッキングの発生を抑制できる範囲内で、極力高い有効圧縮比に設定でき、ノッキング抑制と高い燃焼効率とを両立させることができる。
ところで、上記実施形態では、アルコール濃度が0%のガソリン燃料では、前記基本値AHOSBが一定となり、機関運転条件によるノッキングの発生し易さに応じて閉時期IVCが変更されるが、ノッキングの発生に関与する燃料性状であるオクタン価(アンチノック性)が異なるガソリン燃料(例えばハイオク燃料・レギュラー燃料)が使用される場合がある。
そこで、ガソリン燃料のオクタン価に応じて閉時期IVCを変更させることができ、係る構成とした実施形態を、図6のフローチャートに従って説明する。
尚、ガソリン燃料のオクタン価に応じて閉時期IVCを変更させる場合には、図1に示すように、ガソリン燃料のオクタン価OCを検出するオクタン価センサ127(燃料性状検出手段)を設ける。前記オクタン価センサ127は、例えば燃料の屈折率の違いによってオクタン価に相関する比重を検出するセンサである。
図6のフローチャートにおいて、ステップS601では、オクタン価センサ127で検出されたガソリン燃料のオクタン価OC、機関トルク(機関負荷)、機関回転速度NEなどのデータを読み込む。
尚、機関トルクは、前記基本燃料噴射量TPで代表させることができる。
また、オクタン価センサ127を備えない場合、或いは、オクタン価センサ127が故障している場合には、前記オクタン価OCを、前記ノックセンサ125の検出結果に基づいて推定することができる。
例えば、ガソリン燃料が使用される条件で、初期状態としてオクタン価が最も低いガソリン燃料に適合する遅角側の点火時期に基づいて点火を行わせ、ノックセンサ125でノッキングの発生が検出されるまで、点火時期を徐々に進角し、ノッキングが発生する直前の点火時期を求める。
ここで、ガソリン燃料のオクタン価OCが高いほど、ノッキングが発生し難く、点火時期をより進角できることになるから、イニシャルの点火時期に対してどれだけ進角できたかによって、ガソリン燃料のオクタン価OCを推定することができる。
尚、圧電素子であるノックセンサ125に代えて、音や燃焼室内のイオン電流やクランク角速度の変化などからノッキングの発生を検出することができる。
ステップS602では、前記ステップS502と同様に、機関101の運転条件を示す前記機関トルク(機関負荷)と機関回転速度NEとから、基本IVC角度を算出する。
ステップS603では、ガソリン燃料のオクタン価OCに応じて閉時期IVCを補正するためのオクタン価補正値OCHOSを算出する。
前記オクタン価補正値OCHOSは、オクタン価OCが低いほど、換言すれば、ノッキングが発生し易いほど、大きな値に設定される基本値OCHOSB(≧0)に、前記機関トルク(機関負荷)と機関回転速度NEとに応じた補正係数K1を乗算して求められる。
前記補正係数K1は、前記ステップS503で説明したように、機関101の運転条件によるノッキングの発生し易さに応じて予め設定されている。
また、フローチャート中に示す基本値OCHOSBは、オクタン価OCの減少に対して傾きをもって連続的に増大変化する特性としたが、例えば、オクタン価OCを、ハイオクガソリン相当の高オクタン価と、レギュラーガソリン相当の低オクタン価との2種類に判別させることができ、この場合には、基本値OCHOSBとしては、大小異なる2つの値のうちのいずれか一方を選択することになる。
そして、ガソリン燃料のオクタン価OCが低く、かつ、機関運転条件がノッキングの発生し易い条件のときに、前記オクタン価補正値OCHOSは最も大きな値に設定され、逆に、ガソリン燃料のオクタン価OCが高く、かつ、機関運転条件がノッキングの発生し難い条件のときに、前記オクタン価補正値OCHOSは最も小さい値に設定される。
ステップS604では、前記ステップS602で求めた基本IVC角度に、前記ステップS603で求めたオクタン価補正値OCHOSを加算して、最終的なIVC角度(最終的な目標IVC)を算出する。
前記最終的なIVC角度(最終的な目標IVC)に基づく可変バルブタイミング機構113の制御は、前述の図4のフローチャートに従って行われる。
上記制御により、ガソリン燃料のオクタン価OCが高いほど(ノッキングが発生し難いほど)、閉時期IVCを下死点BDCに近づけ、有効圧縮比がより高くなるようにし、ガソリン燃料のオクタン価OCが低いほど(ノッキングが発生し易いほど)、閉時期IVCを下死点BDC後のより遅れた位置にして、有効圧縮比がより低くなるようにする。
これにより、ガソリン燃料のオクタン価OCが高ければ、高い有効圧縮比に設定して、高い燃焼効率を得られる一方、ガソリン燃料のオクタン価OCが低ければ、有効圧縮比を低くしてノッキングの発生が抑制される。
ここで、前記可変バルブタイミング機構113は、一般的に可変圧縮比機構よりも低コストで、かつ、動作速度が速いから、ガソリン燃料のオクタン価OCの違いによるノッキングの発生し易さの違いに対して、ノッキングを回避できる有効圧縮比を、低コストかつ高応答で実現できる。
ところで、上記では、アルコール濃度ADとガソリン燃料のオクタン価OCとの一方に基づいて、吸気バルブ105の閉時期IVCを設定したが、アルコール混合燃料が使用される場合に、アルコール濃度AD及びガソリン燃料のオクタン価OCに基づいて吸気バルブ105の閉時期IVCを設定させることができ、係る構成とした実施形態を、図7のフローチャートに従って説明する。
図7のフローチャートにおいて、ステップS701では、アルコール濃度センサ124で検出されたアルコール濃度AD、オクタン価センサ127で検出されたガソリン燃料のオクタン価OC、機関トルク(機関負荷)、機関回転速度NEなどのデータを読み込む。
尚、前記オクタン価OCは、前述のように、前記ノックセンサ125の検出結果に基づく点火時期の補正結果から推定でき、また、アルコール濃度ADは、空燃比フィードバック制御の結果から推定できる。
ステップS702では、前記ステップS502と同様に、機関101の運転条件を示す前記機関トルク(機関負荷)と機関回転速度NEとから、基本IVC角度を算出する。
ステップS703では、アルコール濃度AD及びガソリン燃料のオクタン価OCに応じて閉時期IVCを補正するための燃料性状補正値FCHOSを算出する。
前記アルコール補正値AHOSは、アルコール濃度AD及びオクタン価OCに応じて設定される基本値FCHOSB(≧0)に、前記機関トルク(機関負荷)と機関回転速度NEとに応じた補正係数K1を乗算して求められる。
前記基本値FCHOSBは、フローチャート中に示すように、アルコール濃度ADが低くノッキングが発生し易いほど大きな値に設定され、また、ガソリン燃料のオクタン価OCが低くノッキングが発生し易いほど大きな値に設定される。
また、補正係数K1は、前記ステップS503と同様に、機関101の運転条件によるノッキングの発生し易さに応じて予め設定されている。
ステップS704では、前記ステップS702で求めた基本IVC角度に、前記ステップS703で求めた燃料性状補正値FCHOSを加算して、最終的なIVC角度(最終的な目標IVC)を算出する。
前記最終的なIVC角度(最終的な目標IVC)に基づく可変バルブタイミング機構113の制御は、前述の図4のフローチャートに従って行われる。
上記実施形態によると、アルコール濃度ADに応じて異なるノッキングの発生し易さと、ガソリン燃料のオクタン価OCに応じて異なるノッキングの発生し易さとの双方に対応して、吸気バルブ105の閉時期IVC(有効圧縮比)が設定されるので、アルコール濃度ADの変化及びアルコール燃料と混合されるガソリン燃料のオクタン価OCの変化に対して、ノッキングを回避できる最大の有効圧縮比に精度良く制御できる。
上記のように、アルコール濃度AD及び/又はガソリン燃料のオクタン価OCに応じた吸気バルブ105の閉時期IVC(有効圧縮比)に設定した状態で、ノッキングの発生がノックセンサ125で検出された場合には、点火時期の遅角や排気還流量の増大などを行ってノッキングの抑制を図ることができる。
また、ノッキング発生の有無に応じて吸気バルブ105の閉時期IVC(有効圧縮比)を変更することも可能であり、係る構成とした実施形態を、図8のフローチャートに従って説明する。
ステップS801では、ノックセンサ125の信号を読み込み、ステップS802では、前記ノックセンサ125の信号に基づいてノッキングの発生(ノッキングの発生頻度が許容レベルを超えている状態)が検出されたか否かを判断する。
そして、ノッキング発生状態であれば、ステップS803へ進み、吸気バルブ105の目標閉時期IVCの前回値を予め記憶された遅角修正値ΔRTD(deg)だけ遅角補正して今回の目標閉時期IVCとする設定を行う。
換言すれば、ノッキング発生に対して、吸気バルブ105の閉時期IVCを下死点BDC後のより遅い時期に変更して、有効圧縮比を低下させ、ノッキングの抑制を図る。
ここで、可変バルブタイミング機構113は、一般的な可変圧縮比機構に比べてノッキングの抑制動作において高応答であって、ノッキング発生の検出から実際にノッキングを抑制できるようになるまでの応答時間が、可変圧縮比機構に比べて短いので、速やかにノッキング(異常燃焼)を抑制することができる。
一方、ノッキング発生状態でなければ、ステップS804へ進み、吸気バルブ105の目標閉時期IVCの前回値を予め記憶された進角修正値ΔADV(deg)だけ進角補正して今回の目標閉時期IVCとする設定を行う。
換言すれば、ノッキングが発生していない場合、吸気バルブ105の閉時期IVCを下死点BDCに近づける進角補正を行い、有効圧縮比を最大限に大きくして燃焼効率の改善を図る。
前記ノッキング発生の有無に応じて補正される最終的なIVC角度(最終的な目標IVC)に基づく可変バルブタイミング機構113の制御は、前述の図4のフローチャートに従って行われる。
尚、前記遅角修正値ΔRTDを進角修正値ΔADVよりも大きな角度に設定することで、ノッキング発生状態の速やかな解消を図りつつ、ハンチングの発生を抑制することができ、前記遅角修正値ΔRTD及び進角修正値ΔADVは、過剰に閉時期IVCが遅角されることがなく、ノッキング発生直前まで閉時期IVCを進角できるように、予め適合されている。
また、ノッキング発生を回避できる最大進角側の閉時期IVCを、アルコール濃度ADやオクタン価OCや機関運転状態毎に更新記憶させ、該記憶させた閉時期IVCを基本値として、ノッキング発生の有無に応じた補正を加えるようにすることができる。
また、ノッキング発生によって遅角させる閉時期IVCの遅角限界を設定し、該遅角限界まで閉時期IVCを遅角してもノッキングを抑制できない場合には、点火時期の遅角補正や排気還流量の増大補正などを実施させることができる。
ところで、上記実施形態では、可変動弁機構として、吸気バルブ105のバルブ作動角の中心位相を変化させる可変バルブタイミング機構(中心位相可変機構)113を備えたが、可変バルブタイミング113と共に、吸気バルブ105のバルブ作動角をバルブリフト量(最大バルブリフト量)と共に可変とする可変リフト機構112を備える構成においても、前述のように、アルコール濃度,オクタン価などの燃料性状やノッキング発生の有無に応じた閉時期IVCの設定制御を実施することで、同様な効果が得られる。
また、始動時ないし始動後に、図3、図6、図7のいずれかのフローチャートに従って最終的なIVC角度を設定し、その後に、この最終的なIVC角度を図8のフローチャートに示すようにノッキング発生の有無に応じて補正することができる。
図9は、前記可変バルブタイミング113と共に、可変リフト機構112を備える内燃機関101を示すが、図1に示した内燃機関101と同一要素には同一符号を付して詳細な説明は省略する。
図9に示す可変リフト機構112は、吸気バルブ105のバルブ作動角をバルブリフト量と共に連続的に可変とする機構であり、詳細には、図10の斜視図に示すような構造のものである。
図10において、前記吸気バルブ105の上方に、前記クランクシャフト120によって回転駆動される吸気カムシャフト134が気筒列方向に沿って回転可能に支持されている。
前記吸気カムシャフト134には、吸気バルブ105のバルブリフタ105aに当接して吸気バルブ105を開閉駆動する揺動カム4が相対回転可能に外嵌されている。
前記吸気カムシャフト3と揺動カム4との間には、吸気バルブ105のバルブ作動角及びバルブリフト量を連続的に変更するための可変リフト機構112が設けられている。
また、前記吸気カムシャフト134の一端部には、クランクシャフト120に対する前記吸気カムシャフト134の回転位相を変化させることにより、吸気バルブ105のバルブ作動角の中心位相を連続的に変更する前記可変バルブタイミング機構113が配設されている。
前記リフト・作動角可変機構112は、図10及び図11に示すように、吸気カムシャフト134に偏心して固定的に設けられる円形の駆動カム11と、この駆動カム11に相対回転可能に外嵌するリング状リンク12と、吸気カムシャフト134と略平行に気筒列方向へ延びる制御軸13と、この制御軸13に偏心して固定的に設けられた円形の制御カム14と、この制御カム14に相対回転可能に外嵌すると共に、一端がリング状リンク12の先端に連結されたロッカアーム15と、このロッカアーム15の他端と揺動カム4とに連結されたロッド状リンク16と、を有している。
前記制御軸13は、電動モータ17等のアクチュエータによりギヤ列18を介して所定の制御範囲内で回転駆動される。
前記制御軸13を回転駆動するアクチュエータとしては、油圧アクチュエータを用いることができ、また、電動モータ17として、例えばDCモータやブラシレスモータなどを用いることができる。
上記の構成により、クランクシャフト120に連動して吸気カムシャフト134が回転すると、駆動カム11を介してリング状リンク12がほぼ並進移動すると共に、ロッカアーム15が制御カム14の軸心周りに揺動し、ロッド状リンク16を介して揺動カム4が揺動して吸気バルブ105が開駆動される。
また、前記モータ17を駆動制御して制御軸13の回転角度を変化させることにより、ロッカアーム15の揺動中心となる制御カム14の軸心位置が変化して揺動カム4の姿勢が変化する。
これにより、吸気バルブ105のバルブ作動角の中心位相が略一定のままで、吸気バルブ105のバルブ作動角及びバルブリフト量が連続的に変化する。
尚、バルブ作動角及びバルブリフト量が連続的に変化すると同時、バルブ作動角の中心位相が変化するように構成した可変リフト機構112であってもよい。
前記ECU114には、前記制御軸13の回転角を検出する角度センサ135からの検出信号CAが入力され、目標のバルブ作動角・バルブリフト量に対応する目標角度位置に前記制御軸13を回動させるべく、前記角度センサ135の検出結果に基づいて前記モータ17の通電制御デューティをフィードバック制御する。
そして、前記可変リフト機構112を備えた内燃機関101においても、前記図3,6,7,8のフローチャートのいずれかに示すようにして、アルコール濃度,オクタン価などの燃料性状やノッキング発生の有無に応じて最終的な閉時期IVCを算出させる。
そして、前記最終的な閉時期IVCに基づく、可変リフト機構112及び可変バルブタイミング機構113の制御は、図12のフローチャートに示すようにして行う。
ステップS1001では、アルコール濃度,オクタン価などの燃料性状やノッキング発生の有無に応じて設定された最終的な閉時期IVCを読み込む。
ステップS1002では、吸気バルブ105の開時期IVOの基本値を、機関101の運転条件を示す前記機関トルク(機関負荷)と機関回転速度NEとから算出する。
本実施形態において開時期IVOは、上死点TDCからの進角角度(degBTDC)で示し、開時期IVOの角度が小さいほど開時期IVOが上死点TDCに近く、開時期IVOの角度が大きいほど開時期IVOが上死点TDCからより進角した位置であることを示す。
前記基本IVO角度は、定常走行域(中負荷・中回転域)で最も大きな値に設定され、前記定常走行域(中負荷・中回転域)から外れ、機関加速(高負荷側(高トルク側))ないし機関減速(低負荷(低トルク側)すると、より小さい値に設定されるが、定常走行域(中負荷・中回転域)を除く領域では、低回転・高負荷になるほど、また、高回転・高負荷になる程、即ち、高負荷(高トルク)(機関急加速や全開加速)になる程より小さな値(より上死点TDCに近い角度位置)に設定され、前記基本IVO角度の特性は、運転条件毎のバルブオーバーラップ量の要求に対応している。
ステップS1003では、最終的な閉時期IVC及び基本開時期IVOに基づいて、吸気バルブ105の目標バルブリフト量を算出する。
ここで、基本開時期IVOは、上死点TDCから開時期IVOまでの進角角度であり、最終的な閉時期IVCは下死点BDCから閉時期IVCまでの遅角角度であり、上死点TDCから下死点BDCまではクランク角で180degであるから、開時期IVOから閉時期IVCまでのクランク角は、基本開時期IVO+最終的な閉時期IVC+180degで求められ、これは、吸気バルブ105のバルブ作動角である。
そこで、可変リフト機構112におけるバルブ作動角とバルブリフト量との相関から、前記「基本開時期IVO+最終的な閉時期IVC+180deg」に相当するバルブリフト量を目標バルブリフト量(目標最大バルブリフト量)として求める。
前記目標バルブリフト量は、制御軸13の目標角度に変換され、角度センサ135で検出される実角度が前記目標角度に近づくように、可変リフト機構112が制御される。
ステップS1004では、可変バルブタイミング機構113における位相目標を下式に従って算出する。
位相目標=基本IVO−オフセット−(最終IVC+基本IVO+180)/2
上式において、「最終IVC+基本IVO+180」は、前述のように、吸気バルブ105のバルブ作動角であり、また、基本IVOは上死点TDCから開時期IVOまでの進角角度であるから、基本IVOからバルブ作動角の半分の角度を減算した結果は、上死点TDCからバルブ開期間の中心位置までの遅角角度を示すことになる。
そして、前記オフセットは、可変バルブタイミング機構113の初期状態(最遅角位置)における上死点TDCからバルブ開期間の中心位置までの角度であり、位相目標は、可変バルブタイミング機構113の初期状態におけるバルブ開期間の中心位置と、最終IVC及び基本IVOから要求されるバルブ開期間中心位置との角度差を示し、この角度差が、可変バルブタイミング機構113における変換目標角度(位相目標)になる。
従って、機関運転条件から設定される基本IVOを固定とし、ノッキング抑制のための要求に応じて閉時期IVCが可変に設定されることになり、係る構成であれば、機関運転条件によるバルブオーバーラップ量の要求を満たしつつ、ノッキング抑制のための閉時期IVCを実現できる。
ここで、上記実施形態から把握し得る請求項以外の技術的思想について、以下に効果と共に記載する。
(イ)前記可変動弁機構が、前記吸気バルブのバルブ作動角の中心位相を連続的に可変とする可変バルブタイミング機構と、前記吸気バルブのバルブ作動角を連続的に可変とする可変リフト機構とを含み、
前記閉時期制御手段が、機関運転条件から設定した開時期IVOと、前記燃料性状検出手段又はノッキング検出手段の検出結果から設定した閉時期IVCとの双方を満たすように、前記可変バルブタイミング機構及び可変リフト機構を制御する請求項1〜4のいずれか1つに記載の内燃機関の制御装置。
上記発明によると、機関運転条件から設定される開時期IVOを満たすことで、バルブオーバーラップ量の要求を満たすことができ、一方で、ノッキング抑制のための閉時期IVCを実現して、ノッキング発生を回避できる。
(ロ)前記閉時期制御手段が、ノッキングの発生状態では、前記吸気バルブの閉時期IVCを遅角修正値ΔRTD(deg)だけ遅角補正し、ノッキングが発生していない状態では、進角修正値ΔADV(deg)だけ進角補正する請求項2記載の内燃機関の制御装置。
上記発明によると、ノッキング発生に対して閉時期IVCを遅角修正値ΔRTD(deg)だけ遅角補正して、速やかなノッキングの回避を図る一方、ノッキングが発生していない状態では、閉時期IVCを進角修正値ΔADV(deg)だけ進角補正することで、なるべく高い有効圧縮比で運転させることができる。
101…内燃機関、104…電子制御スロットル、105…吸気バルブ、107…排気バルブ、112…可変リフト機構、113…可変バルブタイミング機構、114…エンジンコントロールユニット(ECU)、124…アルコール濃度センサ、125…ノックセンサ、127…オクタン価センサ

Claims (4)

  1. 吸気バルブの閉時期を可変とする可変動弁機構を備えた内燃機関に適用される制御装置であって、
    ノッキングの発生に関与する燃料性状を検出する燃料性状検出手段と、
    前記燃料性状検出手段の検出結果に基づいて前記可変動弁機構を制御して、前記吸気バルブの閉時期を前記燃料性状に応じて変更する閉時期制御手段と、
    を含む内燃機関の制御装置。
  2. 吸気バルブの閉時期を可変とする可変動弁機構を備えた内燃機関に適用される制御装置であって、
    ノッキングの発生を検出するノッキング検出手段と、
    前記ノッキング検出手段の検出結果に前記可変動弁機構を制御して、前記吸気バルブの閉時期をノッキングの発生状態に応じて変更する閉時期制御手段と、
    を含む内燃機関の制御装置。
  3. 前記燃料性状検出手段が、燃料のオクタン価及び/又は燃料のアルコール濃度を、ノッキングの発生に関与する燃料性状として検出し、
    前記閉時期制御手段が、燃料のオクタン価が低いほど、及び/又は、燃料のアルコール濃度が低いほど、前記吸気バルブの閉時期を下死点から遅角させる請求項1記載の内燃機関の制御装置。
  4. 前記閉時期制御手段が、前記燃料性状と機関運転条件とから前記吸気バルブの閉時期の補正量を決定する請求項1又は3記載の内燃機関の制御装置。
JP2009070386A 2009-03-23 2009-03-23 内燃機関の制御装置 Pending JP2010223068A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009070386A JP2010223068A (ja) 2009-03-23 2009-03-23 内燃機関の制御装置
US12/727,345 US20100236523A1 (en) 2009-03-23 2010-03-19 Apparatus for and method of controlling internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009070386A JP2010223068A (ja) 2009-03-23 2009-03-23 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2010223068A true JP2010223068A (ja) 2010-10-07

Family

ID=42736406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009070386A Pending JP2010223068A (ja) 2009-03-23 2009-03-23 内燃機関の制御装置

Country Status (2)

Country Link
US (1) US20100236523A1 (ja)
JP (1) JP2010223068A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153769A1 (ja) * 2012-04-13 2013-10-17 株式会社デンソー エンジン制御装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7925449B2 (en) * 2006-09-18 2011-04-12 Cfph, Llc Products and processes for analyzing octane content
JP2010275912A (ja) * 2009-05-27 2010-12-09 Denso Corp 可変バルブタイミング制御システムの異常診断装置
JP5208154B2 (ja) * 2010-04-20 2013-06-12 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置
US8602002B2 (en) * 2010-08-05 2013-12-10 GM Global Technology Operations LLC System and method for controlling engine knock using electro-hydraulic valve actuation
JP5143877B2 (ja) * 2010-09-21 2013-02-13 日立オートモティブシステムズ株式会社 バルブタイミング可変機構の制御装置
WO2012057761A1 (en) * 2010-10-28 2012-05-03 International Engine Intellectual Property Company, Llc Controlling variable valve actuation system
US20120150756A1 (en) * 2010-12-14 2012-06-14 Elwha LLC, a limited liability corporation of the State of Delaware Ecological impact quantification identifiers
US8893665B2 (en) * 2011-08-17 2014-11-25 Ford Global Technologies, Llc Method and system for compensating for alcohol concentration in fuel
US8781713B2 (en) 2011-09-23 2014-07-15 GM Global Technology Operations LLC System and method for controlling a valve of a cylinder in an engine based on fuel delivery to the cylinder
JP5985319B2 (ja) * 2012-09-12 2016-09-06 日立オートモティブシステムズ株式会社 可変動弁機構の制御装置
GB2519600B (en) * 2013-10-28 2018-09-12 Jaguar Land Rover Ltd Gasoline Engine Knock Control
CN104712445B (zh) * 2013-12-13 2019-09-06 周向进 单燃料压燃与点燃混合的燃烧控制方法及内燃机
JP6866325B2 (ja) * 2018-03-16 2021-04-28 株式会社Ihi原動機 舶用エンジン
US20190376455A1 (en) * 2018-06-11 2019-12-12 GM Global Technology Operations LLC Internal combustion engine control
DE102018212247A1 (de) * 2018-07-24 2020-01-30 Volkswagen Aktiengesellschaft Verfahren zum Steuern und/oder Regeln des Betriebs eines Verbrennungsmotors, insbesondere eines Verbrennungsmotors eines Kraftfahrzeugs, insbesondere zumindest teilweise arbeitend nach dem Miller-Verfahren
US20230050408A1 (en) * 2021-08-12 2023-02-16 Husco Automotive Holdings Llc Cam Phase Actuator Control Systems and Methods
US12098661B2 (en) 2022-11-02 2024-09-24 Husco Automotive Holdings Llc Cam phase actuator control systems and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009925A (ja) * 1999-06-01 2007-01-18 Nissan Motor Co Ltd 内燃機関
JP2008106766A (ja) * 2006-10-24 2008-05-08 Ford Global Technologies Llc 多種燃料エンジンの制御装置及び方法
JP2008111375A (ja) * 2006-10-30 2008-05-15 Nissan Motor Co Ltd エンジンの圧縮比制御装置及び圧縮比制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282841A (en) * 1978-06-27 1981-08-11 Nissan Motor Company, Limited Ignition timing control system for an internal combustion engine
FR2442440A1 (fr) * 1978-11-24 1980-06-20 Sev Marchal Dispositif electronique recevant un signal d'allumage de moteur a combustion interne et fournissant un signal positionne par rapport au point mort haut
US4307602A (en) * 1978-12-29 1981-12-29 Matsushita Electric Industrial Co., Ltd. Knock sensor
JPS55101821A (en) * 1979-01-29 1980-08-04 Toyota Motor Corp Knocking sensor
JPS55177623U (ja) * 1979-06-06 1980-12-19
US4254354A (en) * 1979-07-02 1981-03-03 General Motors Corporation Interactive piezoelectric knock sensor
JP4075550B2 (ja) * 2002-09-24 2008-04-16 トヨタ自動車株式会社 可変動弁機構を有する内燃機関におけるノッキング制御
JP4094936B2 (ja) * 2002-11-15 2008-06-04 ヤマハマリン株式会社 船外機用4サイクルエンジンのノッキング回避制御システム
JP4357284B2 (ja) * 2003-05-15 2009-11-04 トヨタ自動車株式会社 内燃機関の制御装置
JP4953746B2 (ja) * 2006-09-26 2012-06-13 キヤノン株式会社 管理装置及びその制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009925A (ja) * 1999-06-01 2007-01-18 Nissan Motor Co Ltd 内燃機関
JP2008106766A (ja) * 2006-10-24 2008-05-08 Ford Global Technologies Llc 多種燃料エンジンの制御装置及び方法
JP2008111375A (ja) * 2006-10-30 2008-05-15 Nissan Motor Co Ltd エンジンの圧縮比制御装置及び圧縮比制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153769A1 (ja) * 2012-04-13 2013-10-17 株式会社デンソー エンジン制御装置

Also Published As

Publication number Publication date
US20100236523A1 (en) 2010-09-23

Similar Documents

Publication Publication Date Title
JP2010223068A (ja) 内燃機関の制御装置
JPWO2010073411A1 (ja) 内燃機関の制御装置
JP2013144946A (ja) 内燃機関の制御装置
JP4779775B2 (ja) 内燃機関の吸気制御装置
JP2008095593A (ja) 内燃機関の制御装置
JP2015007396A (ja) エンジンの制御装置
JP2014020265A (ja) 内燃機関の制御装置
JP5104421B2 (ja) 内燃機関の制御装置及び制御方法
JP4802717B2 (ja) 内燃機関のバルブ特性制御装置
JP2004052620A (ja) 内燃機関の制御装置
JP5026499B2 (ja) 内燃機関の制御装置
JP4937188B2 (ja) 内燃機関の可変動弁装置
JP5516503B2 (ja) 内燃機関
JP2006266200A (ja) 内燃機関のバルブ特性制御装置
JP2014047737A (ja) 内燃機関の吸気制御装置
JP2014092146A (ja) 内燃機関の制御装置
WO2009096072A1 (ja) 内燃機関の制御装置
JP4941069B2 (ja) 内燃機関の吸気制御装置
JP2010077813A (ja) 内燃機関の制御装置
JP2011202541A (ja) 内燃機関の制御装置
JP6077371B2 (ja) 内燃機関の制御装置
JP4760793B2 (ja) 内燃機関の制御装置
JP4899772B2 (ja) 内燃機関の制御装置
JP2009002165A (ja) 内燃機関の制御装置
JP6094173B2 (ja) 内燃機関の制御装置及び内燃機関の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703