[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010285142A - Collision detection device for vehicle - Google Patents

Collision detection device for vehicle Download PDF

Info

Publication number
JP2010285142A
JP2010285142A JP2010066156A JP2010066156A JP2010285142A JP 2010285142 A JP2010285142 A JP 2010285142A JP 2010066156 A JP2010066156 A JP 2010066156A JP 2010066156 A JP2010066156 A JP 2010066156A JP 2010285142 A JP2010285142 A JP 2010285142A
Authority
JP
Japan
Prior art keywords
absorber
vehicle
collision detection
detection device
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010066156A
Other languages
Japanese (ja)
Other versions
JP5170140B2 (en
Inventor
Daisuke Nakane
大祐 中根
Takatoshi Tanabe
貴敏 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010066156A priority Critical patent/JP5170140B2/en
Priority to DE201010016931 priority patent/DE102010016931A1/en
Publication of JP2010285142A publication Critical patent/JP2010285142A/en
Application granted granted Critical
Publication of JP5170140B2 publication Critical patent/JP5170140B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/48Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0136Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to actual contact with an obstacle, e.g. to vehicle deformation, bumper displacement or bumper velocity relative to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/48Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds
    • B60R19/483Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds with obstacle sensors of electric or electronic type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/003Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks characterised by occupant or pedestian

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Vibration Dampers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a collision detection device for a vehicle capable of constantly detecting a pressure change irrespective of collision places in the vehicle width direction if impact force is constant. <P>SOLUTION: The collision detection device includes an absorber 2 which is disposed at the front side of the vehicle of a bumper reinforcement 1 extended to the width direction of the vehicle, and absorbs the impact force at collision of an object by a compression deformation; a chamber 3 which is located at the front side of the vehicle of the bumper reinforcement 1, is juxtaposed above or below the absorber 2, and has a deformable hollow part in the interior; and a pressure sensor 4 for detecting an air-pressure change in the hollow part. The collision detection device can detect the collision of the object to the vehicle based on the output of the pressure sensor 4. In the absorber 3, the characteristic (displacement-reaction force characteristics) of the displacement amount with respect to the impact force of the object is made approximately constant in a predetermined region in the vehicle width direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、物体の車両への衝突を検知する車両用衝突検知装置に関する。   The present invention relates to a vehicle collision detection device that detects a collision of an object with a vehicle.

近年、歩行者保護の目的で、車両への物体の衝突時に衝突物が歩行者か否かを判定し、歩行者と判定した場合は、歩行者保護装置(例えば、アクティブフードや歩行者保護用エアバッグ)を作動させる技術の実用化が進められている。   In recent years, for the purpose of protecting pedestrians, it is determined whether or not the colliding object is a pedestrian when an object collides with a vehicle. The practical application of a technology for operating an air bag is underway.

例えば特許文献1には、車両への衝突を検知する手段として以下の装置が開示されている。特許文献1の車両用衝突検知装置は、図12、図13に示す様に、車両の車幅方向に延設されるバンパレインフォースメント101の車両前方側に配置されると共に物体の衝突時の衝撃力を圧縮変形によって吸収するアブソーバ102と、前記バンパレインフォースメント101の車両前方側であって前記アブソーバ102の上方又は下方に並設されると共に内部に変形可能な中空部103aを有するチャンバ103と、前記中空部103a内の圧力変化を検出可能な圧力センサ104と、を備える。図13には、更にこれらを覆うバンパカバー105が図示されている。ここで、図13は図12に指示するB´−B´断面を示す断面図である。   For example, Patent Document 1 discloses the following apparatus as means for detecting a collision with a vehicle. As shown in FIGS. 12 and 13, the collision detection device for a vehicle disclosed in Patent Document 1 is disposed on the vehicle front side of a bumper reinforcement 101 extending in the vehicle width direction of the vehicle, and at the time of an object collision. An absorber 102 that absorbs impact force by compressive deformation, and a chamber 103 having a hollow portion 103a that is parallel to the front side of the bumper reinforcement 101 and above or below the absorber 102 and is deformable inside. And a pressure sensor 104 capable of detecting a pressure change in the hollow portion 103a. FIG. 13 further shows a bumper cover 105 covering these. Here, FIG. 13 is a cross-sectional view showing a B′-B ′ cross section indicated in FIG. 12.

この車両用衝突検知装置は、車両へ物体が衝突するとアブソーバ102の圧縮変形に伴ってチャンバ103が変形し、中空部103a内の気圧が変化することを利用して衝突を検知できるものである。特許文献2には、上記に加えて、衝突物を歩行者か否か判定する技術が開示されている。具体的には、圧力センサ103の出力のピークを、車速センサ(図示せず)により検出される車速に応じて設定される閾値と比較し、衝突物の種類を切り分けるというものである。このように、車両への衝突物が歩行者であるか否かを判別できれば、衝突物が例えばゴムパイロンなどの軽量障害物であった場合に無駄に歩行者保護装置を作動させることを防止できる。   This vehicle collision detection device can detect a collision by utilizing the fact that when an object collides with the vehicle, the chamber 103 is deformed with the compression deformation of the absorber 102 and the atmospheric pressure in the hollow portion 103a is changed. In addition to the above, Patent Document 2 discloses a technique for determining whether or not a collision object is a pedestrian. Specifically, the peak of the output of the pressure sensor 103 is compared with a threshold value set according to the vehicle speed detected by a vehicle speed sensor (not shown), and the type of collision object is determined. In this way, if it is possible to determine whether or not the collision object to the vehicle is a pedestrian, it is possible to prevent the pedestrian protection device from being operated in vain when the collision object is a lightweight obstacle such as a rubber pylon. .

特開2007−290689号公報JP 2007-290689 A 特開2006−117157号公報JP 2006-117157 A

ここで、アブソーバ102は図12に示す様に、車幅方向中央にて肉厚であり、車幅方向両側にて肉薄となっている。これは、歩行者との衝突時において歩行者脚部へのダメージが大きいとされるフロントバンパの車幅方向中央の吸収エネルギを大きく確保することで、人体の負傷を最小限に抑制するためである。しかし、アブソーバ102の肉厚部と肉薄部とでは衝撃力に対する変位量の特性、即ち変位―反力特性(F−S特性)が異なるため、衝突の衝撃力が同じであったとしても圧縮変形量が異なる。これに伴ってチャンバ103の中空部103aの変形量も異なるため、フロントバンパへの衝突箇所に依って圧力センサ103の出力が変わってしまう。このため、特許文献2に開示されるような車両用衝突検知装置において閾値を用いた歩行者判別を正確に行えない懸念が生じる。   Here, as shown in FIG. 12, the absorber 102 is thick at the center in the vehicle width direction and thin at both sides in the vehicle width direction. This is to minimize injuries to the human body by ensuring a large amount of absorbed energy at the center of the front bumper in the vehicle width direction, which is considered to cause significant damage to the pedestrian legs during a collision with a pedestrian. is there. However, since the thick portion and the thin portion of the absorber 102 have different displacement characteristics with respect to impact force, that is, displacement-reaction force characteristics (FS characteristics), even if the impact force of the collision is the same, compression deformation The amount is different. Along with this, the deformation amount of the hollow portion 103a of the chamber 103 is also different, so that the output of the pressure sensor 103 changes depending on the location of collision with the front bumper. For this reason, there is a concern that pedestrian discrimination using a threshold value cannot be accurately performed in the vehicle collision detection device disclosed in Patent Document 2.

本発明は、このような事情に鑑みてなされたものであり、一定の衝撃力であれば車幅方向の衝突箇所に依らず圧力変化を略一定に検知できる車両用衝突検知装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a vehicle collision detection device capable of detecting a pressure change substantially constant regardless of the collision location in the vehicle width direction if the impact force is constant. With the goal.

(請求項1の発明)
本発明は、車両の車幅方向に延設されるバンパレインフォースメントの車両前方側に配置されると共に物体の衝突時の衝撃力を圧縮変形によって吸収するアブソーバと、バンパレインフォースメントの車両前方側であってアブソーバに並設されると共に内部に変形可能な中空部を有するチャンバと、中空部内の気圧変化を検出する圧力センサと、を備え、圧力センサの出力に基づき車両への物体の衝突を検知可能にする車両用衝突検知装置において、アブソーバは、車幅方向において物体の衝突の衝撃力に対する変位量の特性(変位−反力特性)が略一定とされていることを特徴とする。
(Invention of Claim 1)
The present invention is arranged on the vehicle front side of a bumper reinforcement extending in the vehicle width direction of the vehicle and absorbs an impact force at the time of collision of an object by compressive deformation, and the vehicle front of the bumper reinforcement And a chamber having a hollow portion that is parallel to the absorber and deformable inside, and a pressure sensor that detects a change in atmospheric pressure in the hollow portion, and an object collides with the vehicle based on the output of the pressure sensor In the vehicular collision detection apparatus, the displacement characteristic (displacement-reaction characteristic) with respect to the impact force of the object collision in the vehicle width direction is substantially constant.

アブソーバは車幅方向において物体の衝突の衝撃力に対する変位量の特性(変位−反力特性)が略一定とされている。即ち、物体の衝突箇所が車幅方向の所定領域内であって一定の衝撃力であれば、アブソーバの圧縮変形に伴って変形するチャンバの変位量は略一定となる。これによって、物体の衝突箇所に依らずチャンバの中空部内の気圧変化を略一定とすることができるので、圧力センサの出力を用いた衝突物の判定を正確に行うことができる。
(請求項2の発明)
請求項1において、アブソーバは、車幅方向の所定領域内において車両前後方向の厚さが異なる肉厚部と肉薄部とを有することを特徴とする。
The absorber has a substantially constant displacement characteristic (displacement-reaction force characteristic) with respect to the impact force of an object collision in the vehicle width direction. In other words, if the collision point of the object is within a predetermined region in the vehicle width direction and has a constant impact force, the amount of displacement of the chamber that is deformed along with the compressive deformation of the absorber is substantially constant. Thereby, the change in atmospheric pressure in the hollow portion of the chamber can be made substantially constant regardless of the collision location of the object, so that the collision object can be accurately determined using the output of the pressure sensor.
(Invention of Claim 2)
According to a first aspect of the present invention, the absorber includes a thick portion and a thin portion having different thicknesses in the vehicle front-rear direction within a predetermined region in the vehicle width direction.

アブソーバを肉厚とすることで衝突時の吸収エネルギを大きく確保することができる。そこで、衝突のダメージが大きいとされる箇所(例えばフロントバンパの車幅方向中央部)のアブソーバを肉厚とすることで人体への負傷を最小限に抑制することができる。
(請求項3の発明)
請求項2において、アブソーバとバンパレインフォースメントとは当接しており、その当接面積は車幅方向で可変であって、肉厚部の当接面積は肉薄部の当接面積よりも大きくされていることを特徴とする。
By making the absorber thick, it is possible to secure a large amount of absorbed energy at the time of collision. In view of this, it is possible to minimize injuries to the human body by increasing the thickness of the absorber at a portion (for example, the central portion in the vehicle width direction of the front bumper) where the damage of the collision is large.
(Invention of Claim 3)
In Claim 2, the absorber and the bumper reinforcement are in contact with each other, the contact area thereof is variable in the vehicle width direction, and the contact area of the thick part is made larger than the contact area of the thin part. It is characterized by.

一般的に、弾性体に印加される圧力(=反力)に対する変位量は、弾性体が肉厚であるほど大きく肉薄であるほど小さく、また、弾性体と剛体との当接面が狭いほど大きく当接面が広いほど小さい。そこで、アブソーバとバンパレインフォースメントとの当接面積を可変とし、アブソーバの肉厚部の当接面積を肉薄部の当接面積よりも大きくすることで、アブソーバの変位−反力特性を略一定とすることができる。
(請求項4の発明)
請求項3において、アブソーバの車両前後方向の厚さは肉厚部から肉薄部にかけて連続的に変化しており、当接面積は、アブソーバの厚さの変化に応じて肉厚部から肉薄部にかけて連続的に変化していることを特徴とする。
Generally, the amount of displacement with respect to the pressure (= reaction force) applied to the elastic body is larger as the elastic body is thicker and thinner, and the smaller the contact surface between the elastic body and the rigid body is, the smaller the amount of displacement is. The larger the contact surface, the smaller. Therefore, by making the contact area between the absorber and the bumper reinforcement variable, and making the contact area of the thick part of the absorber larger than the contact area of the thin part, the displacement-reaction characteristics of the absorber are substantially constant. It can be.
(Invention of Claim 4)
In Claim 3, the thickness of the absorber in the vehicle front-rear direction continuously changes from the thick part to the thin part, and the contact area varies from the thick part to the thin part according to the change in the thickness of the absorber. It is characterized by continuously changing.

アブソーバとバンパレインフォースメントとの当接面積を連続的に変化させることで、連続的に変化するアブソーバの厚さに応じて変位−反力特性を調整することができる。これによって、アブソーバの変位−反力特性をより均一にすることができる。
(請求項5の発明)
請求項3または4において、アブソーバは、バンパレインフォースメントとの当接面側に当接面積を可変にするための空洞部が形成されていることを特徴とする。
By continuously changing the contact area between the absorber and the bumper reinforcement, it is possible to adjust the displacement-reaction force characteristic according to the thickness of the absorber that changes continuously. Thereby, the displacement-reaction force characteristic of the absorber can be made more uniform.
(Invention of Claim 5)
According to a third or fourth aspect of the present invention, the absorber is characterized in that a cavity for varying the contact area is formed on the contact surface side with the bumper reinforcement.

圧縮変形可能な柔軟な部材であるため加工し易いアブソーバに空洞部を形成してバンパレインフォースメントとの当接面積を変化させることで、容易にアブソーバの変位−反力特性を調整することができる。
(請求項6の発明)
請求項2において、アブソーバを構成する材料のヤング率は車幅方向で可変であって、肉厚部のヤング率は肉薄部のヤング率よりも高いことを特徴とする。
Because it is a flexible member that can be compressed and deformed, it is possible to easily adjust the displacement-reaction force characteristics of the absorber by forming a cavity in the easy-to-process absorber and changing the contact area with the bumper reinforcement. it can.
(Invention of Claim 6)
According to a second aspect of the present invention, the Young's modulus of the material constituting the absorber is variable in the vehicle width direction, and the Young's modulus of the thick portion is higher than the Young's modulus of the thin portion.

一般的に、弾性体に印加される圧力(=反力)に対する変位量は、弾性体が肉厚であるほど大きく肉薄であるほど小さく、また、ヤング率が低いほど大きくヤング率が高いほど小さい。そこで、アブソーバのヤング率を可変とし、アブソーバの肉厚部のヤング率を肉薄部のヤング率よりも高くすることで、アブソーバの変位−反力特性を略一定とすることができる。
(請求項7の発明)
請求項6において、アブソーバの車両前後方向の厚さは肉厚部から肉薄部にかけて連続的に変化しており、ヤング率は、アブソーバの厚さの変化に応じて肉厚部から肉薄部にかけて連続的に変化していることを特徴とする。
In general, the amount of displacement with respect to the pressure (= reaction force) applied to the elastic body is larger as the elastic body is thicker and thinner, and is smaller as the Young's modulus is lower and larger as the Young's modulus is higher. . Therefore, by making the Young's modulus of the absorber variable and making the Young's modulus of the thick part of the absorber higher than the Young's modulus of the thin part, the displacement-reaction force characteristic of the absorber can be made substantially constant.
(Invention of Claim 7)
In Claim 6, the thickness of the absorber in the longitudinal direction of the vehicle continuously changes from the thick part to the thin part, and the Young's modulus is continuously changed from the thick part to the thin part according to the change in the thickness of the absorber. It is characterized by changes.

アブソーバのヤング率を連続的に変化させることで、連続的に変化するアブソーバの厚さに応じて変位−反力特性を調整することができる。これによって、アブソーバの変位−反力特性をより均一にすることができる。
(請求項8の発明)
請求項6または7において、アブソーバは樹脂を発泡させて形成される発泡樹脂部材であって、この発泡樹脂部材の発泡率を変化させることでヤング率を変化させていることを特徴とする。
By continuously changing the Young's modulus of the absorber, the displacement-reaction force characteristic can be adjusted according to the thickness of the absorber that continuously changes. Thereby, the displacement-reaction force characteristic of the absorber can be made more uniform.
(Invention of Claim 8)
The absorber according to claim 6 is a foamed resin member formed by foaming a resin, wherein the Young's modulus is changed by changing a foaming rate of the foamed resin member.

アブソーバを構成する発泡樹脂部材の発泡率を変化させることでヤング率を変化させることができるので、アブソーバの変位−反力特性を容易に調整できる。
(請求項9の発明)
請求項2〜8の何れかにおいて、アブソーバは、車両前後方向の厚さが肉薄部よりも更に肉薄である所定領域外において、衝撃力に対する吸収エネルギが肉薄部の吸収エネルギと略同等とされていることを特徴とする。
Since the Young's modulus can be changed by changing the expansion ratio of the foamed resin member constituting the absorber, the displacement-reaction force characteristics of the absorber can be easily adjusted.
(Invention of Claim 9)
The absorber according to any one of claims 2 to 8, wherein the absorbed energy with respect to the impact force is substantially equal to the absorbed energy of the thin portion outside the predetermined region where the thickness in the longitudinal direction of the vehicle is thinner than the thin portion. It is characterized by being.

肉薄部よりも更に肉薄である所定領域外のアブソーバにおいて、衝撃力に対する吸収エネルギを肉薄部と略同等とすることで、アブソーバが弾性限界を超えることを抑制できる。これによって、たとえ所定領域外に物体が衝突したとしてもチャンバの中空部が完全に潰れてしまうことを抑制できるので、圧力センサによる気圧変化の検出をより正確にできる。
(請求項10の発明)
請求項9において、所定領域外におけるアブソーバとバンパレインフォースメントとの当接面積は、肉薄部の当接面積よりも大きくされていることを特徴とする。
In the absorber outside the predetermined region which is thinner than the thin portion, the absorption energy with respect to the impact force is made substantially equal to that of the thin portion, so that the absorber can be prevented from exceeding the elastic limit. Thereby, even if an object collides outside the predetermined region, it is possible to prevent the hollow portion of the chamber from being completely crushed, so that the change in atmospheric pressure by the pressure sensor can be detected more accurately.
(Invention of Claim 10)
According to a ninth aspect of the present invention, the contact area between the absorber and the bumper reinforcement outside the predetermined region is larger than the contact area of the thin portion.

一般的に、弾性体の吸収エネルギは、弾性体が肉厚であるほど大きく肉薄であるほど小さく、また、弾性体と剛体との当接面が狭いほど大きく当接面が広いほど小さい。そこで、アブソーバとバンパレインフォースメントとの当接面積を可変とし、所定領域外のアブソーバの当接面積を肉薄部の当接面積よりも大きくすることで、アブソーバの吸収エネルギを肉薄部と略同等とすることができる。
(請求項11の発明)
請求項10において、アブソーバは、バンパレインフォースメントとの当接面側に当接面積を可変にするための空洞部が形成されていることを特徴とする。
In general, the absorbed energy of an elastic body is smaller as the elastic body is thicker and thinner, and is smaller as the contact surface between the elastic body and the rigid body is narrower and larger as the contact surface is wider. Therefore, by making the contact area between the absorber and the bumper reinforcement variable, and making the contact area of the absorber outside the predetermined area larger than the contact area of the thin part, the absorbed energy of the absorber is substantially equal to the thin part. It can be.
(Invention of Claim 11)
According to a tenth aspect of the present invention, the absorber is characterized in that a cavity for varying the contact area is formed on the contact surface side with the bumper reinforcement.

圧縮変形可能な柔軟な部材であるため加工し易いアブソーバに空洞部を形成することでバンパレインフォースメントとの当接面積を変化させることで、容易にアブソーバの吸収エネルギを調整することができる。
(請求項12の発明)
請求項9において、所定領域外におけるアブソーバのヤング率は、肉薄部のヤング率よりも大きくされていることを特徴とする。
Since it is a flexible member that can be compressed and deformed, the absorbed energy of the absorber can be easily adjusted by changing the contact area with the bumper reinforcement by forming a hollow portion in the absorber that is easy to process.
(Invention of Claim 12)
The ninth aspect of the present invention is characterized in that the Young's modulus of the absorber outside the predetermined region is larger than the Young's modulus of the thin portion.

一般的に、弾性体の吸収エネルギは、弾性体が肉厚であるほど大きく肉薄であるほど小さく、また、ヤング率が低いほど大きくヤング率が高いほど小さい。そこで、アブソーバのヤング率を可変とし、所定領域外のアブソーバのヤング率を肉薄部のヤング率よりも高くすることで、アブソーバの吸収エネルギを肉薄部と略同等とすることができる。
(請求項13の発明)
請求項12において、アブソーバは樹脂を発泡させて形成される発泡樹脂部材であって、この発泡樹脂部材の発泡率を変化させることでヤング率を可変とする。
Generally, the absorbed energy of an elastic body is smaller as the elastic body is thicker and thinner, and is smaller as the Young's modulus is lower and larger as the Young's modulus is higher. Therefore, by making the Young's modulus of the absorber variable and making the Young's modulus of the absorber outside the predetermined region higher than the Young's modulus of the thin portion, the absorbed energy of the absorber can be made substantially equal to that of the thin portion.
(Invention of Claim 13)
According to a twelfth aspect of the present invention, the absorber is a foamed resin member formed by foaming a resin, and the Young's modulus is variable by changing the foaming rate of the foamed resin member.

アブソーバを構成する発泡樹脂部材の発泡率を変化させることでヤング率を変化させることができるので、アブソーバの変位−反力特性を容易に調整することができる。   Since the Young's modulus can be changed by changing the foaming rate of the foamed resin member constituting the absorber, the displacement-reaction force characteristics of the absorber can be easily adjusted.

本発明の実施形態に係る車両用衝突検知装置の構成を示す平面図である。It is a top view which shows the structure of the collision detection apparatus for vehicles which concerns on embodiment of this invention. 図1に示す、(a)平常時、(b)衝突時におけるB−B断面図である。It is BB sectional drawing at the time of (a) normal time and (b) collision shown in FIG. 図1に示す(a)A−A断面、(b)B−B断面、(c)C−C断面の模式図である。It is a schematic diagram of (a) AA cross section, (b) BB cross section, and (c) CC cross section shown in FIG. 図1に示す(a)A−A断面、(b)B−B断面の模式図である(実施形態1)。It is the schematic diagram of (a) AA cross section and (b) BB cross section shown in FIG. 1 (Embodiment 1). アブソーバの変位−反力特性を示す図である。It is a figure which shows the displacement-reaction force characteristic of an absorber. アブソーバのヤング率を示す図である(実施形態2)。It is a figure which shows the Young's modulus of an absorber (Embodiment 2). 図1に示す(b)B−B断面、(c)C−C断面の模式図である(実施形態3)。(B) It is a schematic diagram of a BB section and (c) CC section shown in Drawing 1 (embodiment 3). アブソーバの変位−反力特性を示す図である。It is a figure which shows the displacement-reaction force characteristic of an absorber. アブソーバの変位−反力特性を示す図である(実施形態4)。It is a figure which shows the displacement-reaction force characteristic of an absorber (Embodiment 4). 図1に示す(a)A−A断面、(b)B−B断面の模式図である(変形形態1)。It is the schematic diagram of (a) AA cross section shown in FIG. 1, (b) BB cross section (modification 1). 図1に示す(b)B−B断面、(c)C−C断面の模式図である(変形形態2)。It is a schematic diagram of (b) BB cross section and (c) CC cross section shown in FIG. 1 (modification 2). 従来の車両用衝突検知装置の構成を示す平面図である。It is a top view which shows the structure of the conventional vehicle collision detection apparatus. 図1に示す車両用衝突検知装置のB´−B´断面図である。It is B'-B 'sectional drawing of the collision detection apparatus for vehicles shown in FIG.

以下、本発明の実施形態を、図面を参照して説明する。但し、本明細書中の全図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適時省略する。
(第1実施形態)
図1は、本発明の実施形態に係る車両用衝突検知装置の構成を示す平面図(車両を上方から見下ろす視点であって、ボンネット等は省略している)である。
Embodiments of the present invention will be described below with reference to the drawings. However, parts corresponding to each other in all the drawings in this specification are denoted by the same reference numerals, and description of the overlapping parts will be omitted as appropriate.
(First embodiment)
FIG. 1 is a plan view showing a configuration of a vehicle collision detection apparatus according to an embodiment of the present invention (a viewpoint from which the vehicle is looked down from above, and a bonnet and the like are omitted).

図1に示す車両用衝突検知装置は、車両の車幅方向に延設されるバンパレインフォースメント1の車両前方側に配置されると共に物体の衝突時の衝撃力を圧縮変形によって吸収するアブソーバ2と、バンパレインフォースメント1の車両前方側であってアブソーバ2の上方又は下方に並設されると共に内部に変形可能な中空部3aを有するチャンバ3と、中空部3a内の気圧変化を検出可能な圧力センサ4と、を備える。図2(a)は、図1に指示されるB−B断面を示す断面図である。   The vehicle collision detection device shown in FIG. 1 is arranged on the vehicle front side of a bumper reinforcement 1 extending in the vehicle width direction of the vehicle and absorbs an impact force at the time of an object collision by compressive deformation. And a chamber 3 having a hollow portion 3a that is parallel to the bumper reinforcement 1 on the front side of the vehicle and above or below the absorber 2 and that can be deformed inside, and a change in pressure in the hollow portion 3a can be detected. Pressure sensor 4. FIG. 2A is a cross-sectional view showing a BB cross section indicated in FIG.

アブソーバ2は、図1に示す様に、車両前後方向に架設されて車両骨格を構成する2本のサイドメンバ6の前端部において、図2(a)に示す様に、車幅方向に延設されるバンパレインフォースメント1の車両前方側の下半部に一端面側が当接して配置されている。ここで、バンパレインフォースメント1は、物体の衝突に対する車両前部の強度を確保するために設けられ、一般的には剛性の高い金属材料よりなる。アブソーバ2を構成する材料は、例えば発泡スチロールなどの弾力性に優れる発泡樹脂であって、車両衝突時には、図2(b)に示す様に、前方の衝突物Oからの衝撃力を圧縮変形によって吸収する働きを有する。アブソーバ2に発泡樹脂を用いた場合、製造過程における炭化水素ガスの発泡率によって弾性(ヤング率など)を調整することができる。   As shown in FIG. 1, the absorber 2 extends in the vehicle width direction as shown in FIG. 2 (a) at the front end portions of the two side members 6 that are installed in the vehicle longitudinal direction and constitute the vehicle skeleton. The bumper reinforcement 1 is arranged such that one end surface abuts against the lower half of the vehicle front side. Here, the bumper reinforcement 1 is provided in order to ensure the strength of the front portion of the vehicle against the collision of an object, and is generally made of a highly rigid metal material. The material constituting the absorber 2 is a foamed resin having excellent elasticity such as, for example, styrene foam, and absorbs the impact force from the front collision object O by compressive deformation as shown in FIG. Has the function of When a foamed resin is used for the absorber 2, the elasticity (such as Young's modulus) can be adjusted by the foaming rate of the hydrocarbon gas in the manufacturing process.

チャンバ3は、図1に示す様に、車幅方向に略弓状を成す箱状の合成樹脂性部材であって、図2(a)に示す様に、バンパレインフォースメント1の車両前方側の上半部に一端面側が当接するようにアブソーバ2に並設されている。アブソーバ2と同様に、車両衝突時には、図2(b)に示す様に、アブソーバ2の圧縮変形に伴って中空部が変形することで中空部3aの容量が減少する。また、チャンバ3は、中空部3aの変形に伴う上下方向の膨らみを許容するためにアブソーバ2と離間して配置されている。   As shown in FIG. 1, the chamber 3 is a box-shaped synthetic resin member having a substantially bow shape in the vehicle width direction, and as shown in FIG. 2A, the front side of the bumper reinforcement 1 on the vehicle side It is arranged in parallel with the absorber 2 so that one end surface side may contact | abut to the upper half part. As in the case of the absorber 2, when the vehicle collides, as shown in FIG. 2B, the capacity of the hollow portion 3a is reduced by the deformation of the hollow portion accompanying the compressive deformation of the absorber 2. Further, the chamber 3 is disposed away from the absorber 2 in order to allow the bulge in the vertical direction accompanying the deformation of the hollow portion 3a.

圧力センサ4は、図2(a)に示す様に、受感部4aがチャンバ3に形成された孔を介して中空部3a内に挿入されるようにブラケット4bを介して取り付けられている。受感部4aはチャンバ3の中空部内の気圧変化を検出し、その気圧変化を電気信号として出力する。出力された信号は、出力線4cを介して図示せぬECU(電子制御ユニット)等へ送信され、図示せぬアクティブフードや歩行者保護用エアバッグの作動制御を行うための情報として用いられる。ここでの制御方法は周知の技術であるため、詳細な説明は割愛する。   As shown in FIG. 2A, the pressure sensor 4 is attached via a bracket 4 b so that the sensitive part 4 a is inserted into the hollow part 3 a through a hole formed in the chamber 3. The sensing unit 4a detects a change in atmospheric pressure in the hollow portion of the chamber 3, and outputs the change in atmospheric pressure as an electrical signal. The output signal is transmitted to an ECU (electronic control unit) (not shown) or the like via an output line 4c, and is used as information for controlling the operation of an active hood or a pedestrian protection airbag (not shown). Since the control method here is a well-known technique, a detailed description is omitted.

上記のアブソーバ2とチャンバ3は、図2(a)に示す様に、それぞれの前端部から所定の空間を隔てて配置されるバンパカバー5によって前方部が覆われている。バンパカバー5は車両前方の意匠を構成するものであるため、比較的強度の低い部材であってもよい。車両へ物体が衝突したとき、バンパカバー5は、図2(b)に示す様に、変形を伴ってアブソーバ2やチャンバ3の前端部に当接すると共に衝突物Oとの間に挟持される。   As shown in FIG. 2A, the absorber 2 and the chamber 3 are covered at the front part by a bumper cover 5 arranged with a predetermined space from each front end part. Since the bumper cover 5 constitutes a design in front of the vehicle, the bumper cover 5 may be a member having relatively low strength. When an object collides with the vehicle, the bumper cover 5 comes into contact with the front end of the absorber 2 and the chamber 3 with deformation as shown in FIG.

次に、本発明に係るアブソーバ2について詳細に説明する。   Next, the absorber 2 according to the present invention will be described in detail.

アブソーバ2は、図1に示す様に、車幅中央から広がる所定領域W1と車幅両端部の所定領域外W2とに分けられる。ここでいう所定領域とは、法規制や安全基準などで定められる歩行者の脚部保護を目的とする領域であって、例えばEEVC(欧州自動車安全改善委員会)のWG17において特に歩行者へのダメージが大きいとされるバンパ領域として定められているものである。具体的には、車両進行方向に延びる線とバンパに接する接線とが成す角度が60度であるときの接点をバンパ角部と定義するとき、車幅両端に位置する2つのバンパ角部間を所定領域W1とし、それより外側を所定領域外W2とする。   As shown in FIG. 1, the absorber 2 is divided into a predetermined area W1 extending from the vehicle width center and a predetermined area W2 outside both ends of the vehicle width. The predetermined area here is an area intended for leg protection of pedestrians defined by laws and regulations, safety standards, and the like. For example, in the WG17 of the EEVC (European Automobile Safety Improvement Committee), particularly for pedestrians. It is defined as a bumper area where damage is assumed to be large. Specifically, when the contact point when the angle formed by the line extending in the vehicle traveling direction and the tangent line in contact with the bumper is 60 degrees is defined as the bumper corner, the distance between the two bumper corners located at both ends of the vehicle width is defined. A predetermined area W1 is set, and an area outside the predetermined area W1 is set as a predetermined area W2.

アブソーバ2の断面図として、図1に指示されるA−A断面を図3(a)に、B−B断面を図3(b)、C−C断面を図3(c)に示す。ここで、破線は平常時におけるアブソーバ2の端面位置、実線は衝突時におけるアブソーバ2の端面位置を示す。図示されているように、アブソーバ2は、車幅方向において車両前後方向の厚さLが異なっており、車幅中央において最も肉厚である肉厚部2a(L1)から所定領域W1の両端側である肉薄部2b(L2)にかけて連続的に厚さLが変化している。そして、所定領域外W2におけるアブソーバ2c(L3)は、所定領域W1における肉薄部2bよりも更に肉薄となっている。   As a cross-sectional view of the absorber 2, an AA cross section indicated in FIG. 1 is shown in FIG. 3A, a BB cross section in FIG. 3B, and a CC cross section in FIG. Here, the broken line indicates the position of the end face of the absorber 2 at normal times, and the solid line indicates the position of the end face of the absorber 2 at the time of collision. As shown in the drawing, the absorber 2 has a different thickness L in the vehicle front-rear direction in the vehicle width direction, and both end sides of the predetermined region W1 from the thickest portion 2a (L1) that is the thickest at the vehicle width center. The thickness L continuously changes over the thin portion 2b (L2). The absorber 2c (L3) outside the predetermined region W2 is thinner than the thin portion 2b in the predetermined region W1.

所定領域W1において、アブソーバ2は、変位−反力特性が車幅方向で略一定とされている。変位−反力特性とは、弾性体の変位量に対する反力の大きさを示すものであって、F−S特性とも呼ばれる。一般的に、変位−反力特性は、変位が大きくなるに従って反力も大きくなる。ここでは、物体の車両への衝撃力に対するアブソーバ2の圧縮変形に伴う変位量(図3におけるΔL1〜ΔL3)の特性を言う。アブソーバ2の変位−反力特性が一定である所定領域W1内であって衝突の衝撃力が一定であれば、アブソーバ2の変位量は略一定であるため、圧力センサが検知するチャンバ3の中空部3a内の圧力変化も略一定となる。   In the predetermined region W1, the absorber 2 has a displacement-reaction force characteristic that is substantially constant in the vehicle width direction. The displacement-reaction force characteristic indicates the magnitude of the reaction force with respect to the amount of displacement of the elastic body, and is also called FS characteristic. Generally, in the displacement-reaction force characteristic, the reaction force increases as the displacement increases. Here, it refers to the characteristics of the displacement amount (ΔL1 to ΔL3 in FIG. 3) accompanying the compression deformation of the absorber 2 with respect to the impact force of the object to the vehicle. If the impact force of the collision is constant within the predetermined region W1 where the displacement-reaction characteristic of the absorber 2 is constant, the displacement amount of the absorber 2 is substantially constant, so that the hollow of the chamber 3 detected by the pressure sensor is detected. The pressure change in the portion 3a is also substantially constant.

具体的には、図4に示す様に、アブソーバ2のバンパレインフォースメント1との当接側に空洞Hを形成することでアブソーバ2の断面をコの字状とし、アブソーバ2とバンパレインフォースメント1との当接面積S1〜S2を可変とする。ここで、当接面積S1〜S2とは、バンパレインフォースメント1の前端面と、アブソーバ2の後端面とが当接する面積であり、複数に分かれて当接箇所がある場合はその合計を言う(便宜上断面図を用いて説明しているが、車両の幅方向に所定の長さ(例えば単位長さ)を想定していることは言うまでもない。以下同様)。一般的に、弾性体(本実施形態のアブソーバに相当)に印加される圧力(本実施形態の衝撃力に相当)に対する変位量は、弾性体が肉厚であるほど大きく肉薄であるほど小さく、また、弾性体と剛体との当接面が広いほど大きく当接面が狭いほど小さい。この関係を用いて、肉厚部2aの当接面積S1を肉薄部2bの当接面積S2よりも大きくなるように設定し、肉厚部2aと肉薄部2bとの間の区間においては当接面積を車幅方向に連続的に変化させる。このようにすれば、肉厚部2aにかかる圧力は小さくなるため変位量ΔL1は小さくなり、肉薄部2bにかかる圧力は大きくなるため変位量ΔL2は大きくなる。アブソーバ2はもともと車両前後方向の厚さが異なるため、結果的には、図5に示す様に、肉厚部2aの変位−反力特性曲線FS1と肉薄部2bの変位−反力特性曲線FS2の弾性領域内における傾きは一致する。即ち、所定領域W1内における一定の衝撃力に対するアブソーバ2の変位量を略一定とすることができる。   Specifically, as shown in FIG. 4, a cavity H is formed on the abutting side of the absorber 2 with the bumper reinforcement 1 so that the cross section of the absorber 2 is U-shaped, so that the absorber 2 and the bumper reinforcement are The contact area S1 to S2 with the ment 1 is variable. Here, the contact areas S1 to S2 are areas where the front end surface of the bumper reinforcement 1 and the rear end surface of the absorber 2 are in contact with each other. (For convenience, it is described using a cross-sectional view, but it goes without saying that a predetermined length (for example, unit length) is assumed in the width direction of the vehicle. The same applies hereinafter). Generally, the amount of displacement with respect to the pressure (corresponding to the impact force of this embodiment) applied to an elastic body (corresponding to the absorber of this embodiment) is larger as the elastic body is thicker and smaller as it is thinner. Further, the wider the contact surface between the elastic body and the rigid body, the smaller the contact surface. Using this relationship, the contact area S1 of the thick part 2a is set to be larger than the contact area S2 of the thin part 2b, and in the section between the thick part 2a and the thin part 2b The area is continuously changed in the vehicle width direction. By doing so, the pressure applied to the thick portion 2a is reduced, so the displacement amount ΔL1 is reduced, and the pressure applied to the thin portion 2b is increased, so the displacement amount ΔL2 is increased. Since the absorber 2 originally has a different thickness in the longitudinal direction of the vehicle, as a result, as shown in FIG. 5, the displacement-reaction characteristic curve FS1 of the thick part 2a and the displacement-reaction characteristic curve FS2 of the thin part 2b are obtained. The inclinations in the elastic region are the same. That is, the amount of displacement of the absorber 2 with respect to a constant impact force within the predetermined area W1 can be made substantially constant.

ここで、図5において、変位−反力特性曲線の積分値(即ち曲線で囲まれる部分の面積)はアブソーバ2が許容する衝撃の吸収エネルギである。肉厚部2aと肉薄部2bとでは車両前後方向の厚さが異なるため、肉厚部の吸収エネルギE1の方が肉薄部の吸収エネルギE2よりも大きくなっている。
(実施形態1の効果)
実施形態1の構成によれば、アブソーバ2は車幅方向の所定領域W1内において物体の衝突の衝撃力に対する変位量の特性(変位−反力特性)が略一定とされている。即ち、物体の衝突箇所が車幅方向の所定領域W1内であって一定の衝撃力であれば、アブソーバ2の圧縮変形に伴って変形するチャンバ3の変位量は略一定となる。これによって、物体の衝突箇所に依らずチャンバ3の中空部3a内の気圧変化を略一定とすることができるので、圧力センサ4の出力を用いた衝突物の判定を正確に行うことができる。
Here, in FIG. 5, the integral value of the displacement-reaction force characteristic curve (that is, the area of the portion surrounded by the curve) is the shock absorption energy allowed by the absorber 2. Since the thickness in the vehicle longitudinal direction differs between the thick part 2a and the thin part 2b, the absorbed energy E1 in the thick part is larger than the absorbed energy E2 in the thin part.
(Effect of Embodiment 1)
According to the configuration of the first embodiment, the absorber 2 has a substantially constant displacement characteristic (displacement-reaction force characteristic) with respect to the impact force of the collision of the object in the predetermined region W1 in the vehicle width direction. That is, if the collision point of the object is within the predetermined region W1 in the vehicle width direction and has a constant impact force, the displacement amount of the chamber 3 that is deformed along with the compressive deformation of the absorber 2 is substantially constant. Thereby, the change in atmospheric pressure in the hollow portion 3a of the chamber 3 can be made substantially constant regardless of the collision location of the object, so that the collision object can be accurately determined using the output of the pressure sensor 4.

逆に言えば、アブソーバ2の車両前後方向の厚さを連続的に変化させても一定の衝撃力に対するチャンバ3の気圧変化を略一定とすることができるので、車両中央においてアブソーバ2を肉厚とすることで衝突時の吸収エネルギを大きく確保することができる。そこで、衝突のダメージが大きいとされる箇所(例えばフロントバンパの車幅方向中央部)のアブソーバ2を肉厚とすることで人体への負傷を最小限に抑制することができる。   In other words, even if the thickness of the absorber 2 in the longitudinal direction of the vehicle is continuously changed, the change in the atmospheric pressure of the chamber 3 with respect to a constant impact force can be made substantially constant. By doing so, it is possible to ensure a large amount of energy absorbed during a collision. In view of this, it is possible to minimize injuries to the human body by increasing the thickness of the absorber 2 at a portion (for example, the central portion of the front bumper in the vehicle width direction) where damage caused by the collision is large.

また、圧縮変形可能な柔軟な部材であるため加工し易いアブソーバ2に空洞部Hを形成してバンパレインフォースメント1との当接面積を変化させることで、容易にアブソーバ2の変位−反力特性を調整することができる。
(実施形態2)
本実施形態2では、実施形態1においてアブソーバ2のバンパレインフォースメント1との当接面積を車幅方向で変化させることに替えて、アブソーバ2のヤング率を車幅方向で変化させることで、アブソーバ2の変位−反力特性を略一定とする。
Further, since it is a flexible member that can be compressed and deformed, the cavity 2 is formed in the absorber 2 that is easy to process and the contact area with the bumper reinforcement 1 is changed, so that the displacement-reaction force of the absorber 2 can be easily achieved. Characteristics can be adjusted.
(Embodiment 2)
In Embodiment 2, instead of changing the contact area of the absorber 2 with the bumper reinforcement 1 in Embodiment 1 in the vehicle width direction, the Young's modulus of the absorber 2 is changed in the vehicle width direction. The displacement-reaction force characteristic of the absorber 2 is made substantially constant.

一般的に、弾性体(本実施形態のアブソーバに相当)に印加される圧力(本実施形態の衝撃力に相当)に対する変位量は、弾性体が肉厚であるほど大きく肉薄であるほど小さく、また、ヤング率が低いほど大きくヤング率が高いほど小さい。この関係を用いて、図6に示す様に、肉厚部2aのヤング率Y1を肉薄部2bのヤング率Y2よりも大きくなるように設定し、肉厚部2aと肉薄部2bとの間の区間においてはヤング率を車幅方向に連続的に変化させる。このようにすれば、肉厚部2aの変位量ΔL1は小さくなり、肉薄部2bの変位量ΔL2は大きくなる。アブソーバ2はもともと車両前後方向の厚さが異なるため、結果的には、図5に示す様に、肉厚部2aの変位−反力特性曲線FS1と肉薄部2bの変位−反力特性曲線FS2の弾性領域内における傾きは一致する。即ち、所定領域W1内における一定の衝撃力に対するアブソーバ2の変位量を略一定とすることができる。ここで、アブソーバ2のヤング率を変化させる手法としては、例えば、アブソーバ2に発泡樹脂を用いる場合には、製造過程において発泡させる炭化水素量を調整し、発泡率を変化させる。   Generally, the amount of displacement with respect to the pressure (corresponding to the impact force of this embodiment) applied to an elastic body (corresponding to the absorber of this embodiment) is larger as the elastic body is thicker and smaller as it is thinner. Also, the lower the Young's modulus, the larger the Young's modulus. Using this relationship, as shown in FIG. 6, the Young's modulus Y1 of the thick part 2a is set to be larger than the Young's modulus Y2 of the thin part 2b, and the thickness between the thick part 2a and the thin part 2b is set. In the section, the Young's modulus is continuously changed in the vehicle width direction. In this way, the displacement amount ΔL1 of the thick portion 2a is reduced, and the displacement amount ΔL2 of the thin portion 2b is increased. Since the absorber 2 originally has a different thickness in the longitudinal direction of the vehicle, as a result, as shown in FIG. 5, the displacement-reaction characteristic curve FS1 of the thick part 2a and the displacement-reaction characteristic curve FS2 of the thin part 2b are obtained. The inclinations in the elastic region are the same. That is, the amount of displacement of the absorber 2 with respect to a constant impact force within the predetermined area W1 can be made substantially constant. Here, as a method of changing the Young's modulus of the absorber 2, for example, when a foamed resin is used for the absorber 2, the amount of hydrocarbon to be foamed in the manufacturing process is adjusted to change the foaming rate.

その他の構成、効果は実施形態1と同様であるため省略する。
(実施形態3)
本実施形態3は、実施形態1、2が所定領域W1に関するものであったのに対し、所定領域外W2に関するものである。前述の通り、所定領域W2におけるアブソーバ2は、所定領域W1の薄肉部よりも更に肉薄である。
Other configurations and effects are the same as those of the first embodiment, and thus are omitted.
(Embodiment 3)
The third embodiment relates to a predetermined area W1 while the first and second embodiments relate to the predetermined area W1. As described above, the absorber 2 in the predetermined region W2 is thinner than the thin portion of the predetermined region W1.

上記の所定領域外W2におけるアブソーバ2は、吸収エネルギが所定領域W1における肉薄部と略同等であって且つ略一定とされている。ここで、吸収エネルギとは、アブソーバ2が許容する衝撃エネルギの吸収量をいう。   The absorber 2 outside the predetermined region W2 has substantially the same absorption energy as the thin portion in the predetermined region W1 and is substantially constant. Here, the absorbed energy refers to the amount of impact energy absorbed by the absorber 2.

具体的には、図7に示す様に、アブソーバ2のバンパレインフォースメント1との当接側に空洞Hを形成することでコの字状とし、アブソーバ2とバンパレインフォースメント1との当接面積S2〜S3を可変とする。一般的に、弾性体(本実施形態のアブソーバに相当)の吸収エネルギは、弾性体が肉厚であるほど大きく肉薄であるほど小さく、また、弾性体と剛体との当接面が広いほど大きく当接面が狭いほど小さい。この関係を用いて、所定領域外W2の当接面積S3を肉薄部2bの当接面積S2よりも大きくなるように設定する。これによって、図8に示す様に、所定領域外W2の変位−反力特性曲線FS3によって囲まれる部分の面積(=吸収エネルギE3)と肉薄部2bの変位−反力特性曲線FS2によって囲まれる部分の面積(=吸収エネルギE2)とを略同等とすることができる。ただし、所定領域外W2に関する本実施形態3では実施形態1、2のように変位−反力特性曲線の傾きは一致しない。
(実施形態3の効果)
所定領域外W2のアブソーバ2の吸収エネルギを所定領域W1の吸収エネルギと略同等とされることによって、アブソーバ2が弾性限界を超えることを抑制できる。これによって、たとえ所定領域外W2に物体が衝突したとしてもチャンバ3の中空部3aが完全に潰れてしまうことを抑制できるので、圧力センサ4による気圧変化の検出をより正確にできる。
(実施形態4)
本実施形態4では、実施形態3においてアブソーバ2のバンパレインフォースメント1との当接面積Sを車幅方向で変化させることに替えて、アブソーバ2のヤング率を車幅方向で変化させることで、アブソーバ2の変位−反力特性を略一定とする。
Specifically, as shown in FIG. 7, a hollow H is formed on the abutting side of the absorber 2 with the bumper reinforcement 1 to form a U-shape, and the contact between the absorber 2 and the bumper reinforcement 1 is made. The contact areas S2 to S3 are variable. In general, the absorbed energy of an elastic body (corresponding to the absorber of the present embodiment) is larger as the elastic body is thicker and smaller as the elastic body is thinner, and larger as the contact surface between the elastic body and the rigid body is wider. The smaller the contact surface, the smaller. Using this relationship, the contact area S3 outside the predetermined region W2 is set to be larger than the contact area S2 of the thin portion 2b. Thus, as shown in FIG. 8, the area (= absorbed energy E3) of the portion surrounded by the displacement-reaction force characteristic curve FS3 outside the predetermined region W2 and the portion surrounded by the displacement-reaction force characteristic curve FS2 of the thin portion 2b. Can be made substantially equal to the area (= absorbed energy E2). However, in the third embodiment related to the outside W2 outside the predetermined region, the slopes of the displacement-reaction force characteristic curves do not match as in the first and second embodiments.
(Effect of Embodiment 3)
By making the absorption energy of the absorber 2 outside the predetermined area W2 substantially equal to the absorption energy of the predetermined area W1, it is possible to suppress the absorber 2 from exceeding the elastic limit. Thereby, even if an object collides with the outside W2 outside the predetermined region, it is possible to prevent the hollow portion 3a of the chamber 3 from being completely crushed, so that the pressure sensor 4 can detect the change in atmospheric pressure more accurately.
(Embodiment 4)
In the fourth embodiment, in place of changing the contact area S of the absorber 2 with the bumper reinforcement 1 in the vehicle width direction in the vehicle width direction in the third embodiment, the Young's modulus of the absorber 2 is changed in the vehicle width direction. The displacement-reaction characteristics of the absorber 2 are made substantially constant.

一般的に、弾性体(本実施形態のアブソーバ2に相当)の吸収エネルギは、弾性体が肉厚であるほど大きく肉薄であるほど小さく、また、ヤング率が低いほど大きくヤング率が高いほど小さい。この関係を用いて、図9に示す様に、所定領域外W2のヤング率Y3を肉薄部のヤング率Y2よりも大きくなるように設定する。これによって、図7に示す様に、所定領域外W2の変位−反力特性曲線FS3によって囲まれる部分の面積(=吸収エネルギE3)と肉薄部の変位−反力特性曲線FS2によって囲まれる部分の面積(=吸収エネルギE2)とを略同等とすることができる。ただし、所定領域外W2に関する本実施形態3では実施形態1、2のように変位−反力特性曲線の傾きは一致しない。ここで、アブソーバ2のヤング率を変化させる手法としては、例えば、アブソーバ2に発泡樹脂を用いる場合には、製造過程において発泡させる炭化水素量を調整し、発泡率を変化させる。   In general, the absorption energy of an elastic body (corresponding to the absorber 2 of the present embodiment) is larger as the elastic body is thicker and thinner, and is smaller as the Young's modulus is lower and larger as the Young's modulus is higher. . Using this relationship, as shown in FIG. 9, the Young's modulus Y3 outside the predetermined region W2 is set to be larger than the Young's modulus Y2 of the thin portion. Accordingly, as shown in FIG. 7, the area (= absorbed energy E3) of the portion surrounded by the displacement-reaction force characteristic curve FS3 outside the predetermined region W2 and the portion surrounded by the displacement-reaction force characteristic curve FS2 of the thin portion. The area (= absorbed energy E2) can be made substantially equal. However, in the third embodiment related to the outside W2 outside the predetermined region, the slopes of the displacement-reaction force characteristic curves do not match as in the first and second embodiments. Here, as a method of changing the Young's modulus of the absorber 2, for example, when a foamed resin is used for the absorber 2, the amount of hydrocarbon to be foamed in the manufacturing process is adjusted to change the foaming rate.

その他の構成、効果は実施形態3と同様であるため省略する。
(変形形態1)
実施形態1の変形形態として、アブソーバ2のバンパレインフォースメント1との当接側に空洞を形成することでコの字状とするのに替えて、図10に示す様に、チャンバ3側に空洞を形成してもよい。
(変形形態2)
実施形態3変形形態として、アブソーバ2のバンパレインフォースメント1との当接側に空洞を形成することでコの字状とするのに替えて、図11示す様に、チャンバ3側に空洞を形成してもよい。
(変形形態3)
実施形態1または2の変形形態として、アブソーバ2は車幅方向の全領域において変位−反力特性が略一定とされていてもよい。
Other configurations and effects are the same as those of the third embodiment, and thus are omitted.
(Modification 1)
As a modification of the first embodiment, instead of using a U-shape by forming a cavity on the contact side of the absorber 2 with the bumper reinforcement 1, as shown in FIG. A cavity may be formed.
(Modification 2)
As a modification of the third embodiment, a cavity is formed on the abutting side of the absorber 2 with the bumper reinforcement 1 so as to be U-shaped. It may be formed.
(Modification 3)
As a modification of the first or second embodiment, the absorber 2 may have a substantially constant displacement-reaction force characteristic in the entire region in the vehicle width direction.

1 バンパレインフォースメント
2 アブソーバ
2a 肉厚部
2b 肉薄部
3 チャンバ
3a 中空部
4 圧力センサ
5 バンパカバー
H 空洞部
O 衝突物
W1 所定領域
W2 所定領域外
DESCRIPTION OF SYMBOLS 1 Bumper reinforcement 2 Absorber 2a Thick part 2b Thin part 3 Chamber 3a Hollow part 4 Pressure sensor 5 Bumper cover H Cavity part O Collision W1 Predetermined area W2 Out of predetermined area

Claims (13)

車両の車幅方向に延設されるバンパレインフォースメントの車両前方側に配置されると共に物体の衝突時の衝撃力を圧縮変形によって吸収するアブソーバと、
前記バンパレインフォースメントの車両前方側であって前記アブソーバに並設されると共に内部に変形可能な中空部を有するチャンバと、
前記中空部内の気圧変化を検出する圧力センサと、を備え、
前記圧力センサの出力に基づき車両への物体の衝突を検知可能にする車両用衝突検知装置において、
前記アブソーバは、車幅方向において物体の衝突の衝撃力に対する変位量の特性(変位−反力特性)が略一定とされていることを特徴とする車両用衝突検知装置。
An absorber that is disposed on the vehicle front side of a bumper reinforcement extending in the vehicle width direction of the vehicle and absorbs an impact force caused by an object collision by compressive deformation;
A chamber on the vehicle front side of the bumper reinforcement and parallel to the absorber and having a hollow portion that can be deformed inside;
A pressure sensor for detecting a change in atmospheric pressure in the hollow portion,
In a vehicle collision detection device that enables detection of a collision of an object with a vehicle based on an output of the pressure sensor,
The vehicle collision detection device according to claim 1, wherein a characteristic of a displacement amount (displacement-reaction characteristic) with respect to an impact force of an object collision in the vehicle width direction is substantially constant.
前記アブソーバは、車幅方向の所定領域内において車両前後方向の厚さが異なる肉厚部と肉薄部とを有することを特徴とする請求項1に記載の車両用衝突検知装置。   2. The vehicle collision detection device according to claim 1, wherein the absorber has a thick portion and a thin portion having different thicknesses in the vehicle front-rear direction within a predetermined region in the vehicle width direction. 前記アブソーバと前記バンパレインフォースメントとは当接しており、その当接面積は車幅方向で可変であって、前記肉厚部の前記当接面積は前記肉薄部の前記当接面積よりも大きくされていることを特徴とする請求項2に記載の車両用衝突検知装置。   The absorber and the bumper reinforcement are in contact with each other, the contact area thereof is variable in the vehicle width direction, and the contact area of the thick part is larger than the contact area of the thin part. The vehicle collision detection device according to claim 2, wherein the vehicle collision detection device is provided. 前記アブソーバの車両前後方向の厚さは前記肉厚部から前記肉薄部にかけて連続的に変化しており、前記当接面積は、前記アブソーバの厚さの変化に応じて前記肉厚部から前記肉薄部にかけて連続的に変化していることを特徴とする請求項3に記載の車両用衝突検知装置。   The thickness of the absorber in the vehicle front-rear direction changes continuously from the thick part to the thin part, and the contact area varies from the thick part to the thin part according to the change in the thickness of the absorber. The vehicular collision detection apparatus according to claim 3, wherein the vehicular collision detection apparatus changes continuously over the part. 前記アブソーバは、前記バンパレインフォースメントとの当接面側に前記当接面積を可変にするための空洞部が形成されていることを特徴とする請求項3または4に記載の車両用衝突検知装置。   5. The vehicle collision detection according to claim 3, wherein the absorber is formed with a cavity for making the contact area variable on a contact surface side with the bumper reinforcement. apparatus. 前記アブソーバを構成する材料のヤング率は車幅方向で可変であって、前記肉厚部の前記ヤング率は前記肉薄部の前記ヤング率よりも高いことを特徴とする請求項2に記載の車両用衝突検知装置。   3. The vehicle according to claim 2, wherein a Young's modulus of a material constituting the absorber is variable in a vehicle width direction, and the Young's modulus of the thick portion is higher than the Young's modulus of the thin portion. Collision detection device. 前記アブソーバの車両前後方向の厚さは前記肉厚部から前記肉薄部にかけて連続的に変化しており、前記ヤング率は、前記アブソーバの厚さの変化に応じて前記肉厚部から前記肉薄部にかけて連続的に変化していることを特徴とする請求項6に記載の車両用衝突検知装置。   The thickness of the absorber in the longitudinal direction of the vehicle continuously changes from the thick part to the thin part, and the Young's modulus is changed from the thick part to the thin part according to the change in the thickness of the absorber. The vehicular collision detection apparatus according to claim 6, wherein the vehicular collision detection apparatus continuously changes over the distance. 前記アブソーバは樹脂を発泡させて形成される発泡樹脂部材であって、この発泡樹脂部材の発泡率を変化させることで前記ヤング率を変化させていることを特徴とする請求項6または7に記載の車両用衝突検知装置。   The said absorber is a foaming resin member formed by foaming resin, The said Young's modulus is changed by changing the foaming rate of this foaming resin member, The Claim 6 or 7 characterized by the above-mentioned. Vehicle collision detection device. 前記アブソーバは、車両前後方向の厚さが前記肉薄部よりも更に肉薄である前記所定領域外において、衝撃力に対する吸収エネルギが前記肉薄部の吸収エネルギと略同等とされていることを特徴とする請求項2〜8の何れかに記載の車両用衝突検知装置。   The absorber is characterized in that the absorbed energy with respect to impact force is substantially equal to the absorbed energy of the thin portion outside the predetermined region where the thickness in the longitudinal direction of the vehicle is further thinner than the thin portion. The collision detection apparatus for vehicles in any one of Claims 2-8. 前記所定領域外における前記アブソーバと前記バンパレインフォースメントとの当接面積は、前記肉薄部の前記当接面積よりも大きくされていることを特徴とする請求項9に記載の車両用衝突検知装置。   The vehicle collision detection device according to claim 9, wherein a contact area between the absorber and the bumper reinforcement outside the predetermined region is larger than the contact area of the thin portion. . 前記アブソーバは、前記バンパレインフォースメントとの当接面側に前記当接面積を可変にするための空洞部が形成されていることを特徴とする請求項10に記載の車両用衝突検知装置。   11. The vehicle collision detection device according to claim 10, wherein the absorber is formed with a cavity for making the contact area variable on the contact surface side with the bumper reinforcement. 前記所定領域外における前記アブソーバのヤング率は、前記肉薄部の前記ヤング率よりも大きくされていることを特徴とする請求項9に記載の車両用衝突検知装置。   The vehicle collision detection device according to claim 9, wherein the Young's modulus of the absorber outside the predetermined region is larger than the Young's modulus of the thin portion. 前記アブソーバは樹脂を発泡させて形成される発泡樹脂部材であって、この発泡樹脂部材の発泡率を変化させることで前記ヤング率を可変とすることを特徴とする請求項12に記載の車両用衝突検知装置。   The vehicle according to claim 12, wherein the absorber is a foamed resin member formed by foaming a resin, and the Young's modulus is variable by changing a foaming rate of the foamed resin member. Collision detection device.
JP2010066156A 2009-05-15 2010-03-23 Vehicle collision detection device Expired - Fee Related JP5170140B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010066156A JP5170140B2 (en) 2009-05-15 2010-03-23 Vehicle collision detection device
DE201010016931 DE102010016931A1 (en) 2009-05-15 2010-05-12 Collision detection device for a vehicle

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009118255 2009-05-15
JP2009118255 2009-05-15
JP2010066156A JP5170140B2 (en) 2009-05-15 2010-03-23 Vehicle collision detection device

Publications (2)

Publication Number Publication Date
JP2010285142A true JP2010285142A (en) 2010-12-24
JP5170140B2 JP5170140B2 (en) 2013-03-27

Family

ID=43402792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010066156A Expired - Fee Related JP5170140B2 (en) 2009-05-15 2010-03-23 Vehicle collision detection device

Country Status (2)

Country Link
JP (1) JP5170140B2 (en)
DE (1) DE102010016931A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110232396A1 (en) * 2008-12-02 2011-09-29 Hiroyuki Takahashi Collision detecting device and collision detecting method
JP2014133448A (en) * 2013-01-09 2014-07-24 Denso Corp Vehicle collision detection device
US20140265445A1 (en) * 2013-03-14 2014-09-18 Autoliv Asp, Inc. Compressive Sensor Packaging Techniques
JP2015030323A (en) * 2013-07-31 2015-02-16 トヨタ自動車株式会社 Vehicular bumper structure including pedestrian collision detection device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011108627A1 (en) * 2011-07-27 2013-01-31 Continental Automotive Gmbh Impact sensor consisting of at least two deformable hollow bodies and at least one pressure sensor
DE102015001914B4 (en) * 2015-02-16 2021-12-30 Audi Ag Absorber element of a bumper device for a motor vehicle
JP6285977B2 (en) * 2016-03-28 2018-02-28 本田技研工業株式会社 Bumper for vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211749U (en) * 1988-07-08 1990-01-25
JPH0275249U (en) * 1988-11-25 1990-06-08
JP2006213105A (en) * 2005-02-02 2006-08-17 Calsonic Kansei Corp Bumper structure for vehicle
JP2007145159A (en) * 2005-11-28 2007-06-14 Hayashi Telempu Co Ltd Bumper absorber
JP2007204016A (en) * 2006-02-06 2007-08-16 Fuji Heavy Ind Ltd Vehicular bumper structure
JP2009001153A (en) * 2007-06-21 2009-01-08 Denso Corp Collision detector for vehicle
JP2009018734A (en) * 2007-07-13 2009-01-29 Denso Corp Vehicular collision detection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539281B2 (en) 2004-10-22 2010-09-08 株式会社デンソー Obstacle discrimination device for vehicle
JP2007290689A (en) 2006-03-29 2007-11-08 Denso Corp Collision detecting means

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211749U (en) * 1988-07-08 1990-01-25
JPH0275249U (en) * 1988-11-25 1990-06-08
JP2006213105A (en) * 2005-02-02 2006-08-17 Calsonic Kansei Corp Bumper structure for vehicle
JP2007145159A (en) * 2005-11-28 2007-06-14 Hayashi Telempu Co Ltd Bumper absorber
JP2007204016A (en) * 2006-02-06 2007-08-16 Fuji Heavy Ind Ltd Vehicular bumper structure
JP2009001153A (en) * 2007-06-21 2009-01-08 Denso Corp Collision detector for vehicle
JP2009018734A (en) * 2007-07-13 2009-01-29 Denso Corp Vehicular collision detection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110232396A1 (en) * 2008-12-02 2011-09-29 Hiroyuki Takahashi Collision detecting device and collision detecting method
US8978486B2 (en) * 2008-12-02 2015-03-17 Toyota Jidosha Kabushiki Kaisha Collision detecting device and collision detecting method
JP2014133448A (en) * 2013-01-09 2014-07-24 Denso Corp Vehicle collision detection device
US20140265445A1 (en) * 2013-03-14 2014-09-18 Autoliv Asp, Inc. Compressive Sensor Packaging Techniques
US9016737B2 (en) * 2013-03-14 2015-04-28 Autoliv Asp, Inc. Compressive sensor packaging techniques
JP2015030323A (en) * 2013-07-31 2015-02-16 トヨタ自動車株式会社 Vehicular bumper structure including pedestrian collision detection device

Also Published As

Publication number Publication date
JP5170140B2 (en) 2013-03-27
DE102010016931A1 (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP5170140B2 (en) Vehicle collision detection device
US7782180B2 (en) Collision-detecting device for automotive vehicle
JP4403518B2 (en) Vehicle collision detection device
US8368523B2 (en) Collision detection sensor for vehicle
KR100959355B1 (en) Front bumper structure for vehicle
JP6162317B2 (en) Compression sensor packaging method
JP2006076561A (en) Airbag device
JP6048361B2 (en) Pedestrian collision detection system
JP2009227069A (en) Rear end collision sensor loading structure for vehicle
JP5392315B2 (en) Vehicle collision detection device
JP5962435B2 (en) Bumper for vehicle equipped with pedestrian collision detection device
JP3100296U (en) Structure for front part of vehicle that can control deformation for pedestrian safety protection
JP2014104805A (en) Vehicle bumper including pedestrian collision detection device
WO2016136165A1 (en) Collision detection device for vehicle
JP2000168473A (en) Air bag device for walker protection
JP2000264142A (en) Vehicle bumper structure
JP2010047110A (en) Collision detection device for vehicle
JP2006044325A (en) Pedestrian protection device to be mounted on vehicle
WO2016075926A1 (en) Vehicular collision sensing device
JP6212368B2 (en) Pedestrian collision detection device
JP2000131157A (en) Pressure sensor
JP2005178416A (en) Bumper structure for vehicle
JP2009214845A (en) Vehicle collision detector
JP4201258B2 (en) Pedestrian protection device
JP5354301B2 (en) Vehicle collision detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R151 Written notification of patent or utility model registration

Ref document number: 5170140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees