JP2010282761A - Lithium secondary battery - Google Patents
Lithium secondary battery Download PDFInfo
- Publication number
- JP2010282761A JP2010282761A JP2009133411A JP2009133411A JP2010282761A JP 2010282761 A JP2010282761 A JP 2010282761A JP 2009133411 A JP2009133411 A JP 2009133411A JP 2009133411 A JP2009133411 A JP 2009133411A JP 2010282761 A JP2010282761 A JP 2010282761A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- less
- electrode active
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウム二次電池に関するものであり、更に詳しくは、特定の成分を含有するリチウム二次電池用非水系電解液と、リチウム遷移金属リン酸化合物系正極活物質を主体とするリチウム二次電池用正極活物質を用いた長寿命のリチウム二次電池に関するものである。 The present invention relates to a lithium secondary battery. More specifically, the present invention relates to a lithium secondary battery mainly containing a non-aqueous electrolyte solution for a lithium secondary battery containing a specific component and a lithium transition metal phosphate compound-based positive electrode active material. The present invention relates to a long-life lithium secondary battery using a positive electrode active material for a secondary battery.
リチウム二次電池用正極活物質としては、リチウムと遷移金属を含む活物質が各種知られているが、中でも遷移金属としてコバルト又はニッケルを主成分とする正極活物質は電池として実用化されることが多かった。この理由は主に、遷移金属としてコバルト又はニッケルを主成分とする正極活物質を用いた電池が、他の正極活物質を用いた電池に比べ寿命が長いためである。また、このような正極活物質を用いた電池を改良し、更に電池寿命を向上させる方法も種々検討されている。 Various active materials containing lithium and a transition metal are known as positive electrode active materials for lithium secondary batteries. Among them, a positive electrode active material mainly composed of cobalt or nickel as a transition metal is to be put into practical use as a battery. There were many. This is mainly because a battery using a positive electrode active material whose main component is cobalt or nickel as a transition metal has a longer life than a battery using another positive electrode active material. Various methods for improving the battery using such a positive electrode active material and further improving the battery life have been studied.
しかし、特にニッケルを多く含有する酸化物系正極は熱安定性が低いため安全性に課題を有していることから、安全性が高く安価なリチウム遷移金属リン酸化合物を主体とする正極活物質、中でもリン酸鉄リチウムについてその改良が種々検討されている。リン酸鉄リチウムにおいても寿命に対する要求が高まっている。例えば、特開2002−117843号公報には、正極活物質層に炭酸リチウムを含有することで、高温使用における充放電サイクル特性を改善することが,又、特開2005−135775号公報には、正極及び負極活物質の充電終止電位をコントロールすることで、充放電サイクル特性を改善することが提案されているが、より一層の改良が求められている。(特許文献1及び2を参照) However, since an oxide-based positive electrode containing a large amount of nickel has a low thermal stability, it has a problem in safety. Therefore, a positive electrode active material mainly composed of a lithium transition metal phosphate compound that is safe and inexpensive. In particular, various improvements of lithium iron phosphate have been studied. There is an increasing demand for life in lithium iron phosphate. For example, Japanese Patent Laid-Open No. 2002-117743 discloses that the positive electrode active material layer contains lithium carbonate to improve the charge / discharge cycle characteristics at high temperature use, and Japanese Patent Laid-Open No. 2005-135775 discloses that Although it has been proposed to improve the charge / discharge cycle characteristics by controlling the end-of-charge potential of the positive electrode and the negative electrode active material, further improvement is required. (See Patent Documents 1 and 2)
本発明は、かかる背景技術に鑑みてなされたものであり、その課題は、より安価・高安全性であるリチウム遷移金属リン酸化合物系正極材料を含有する正極活物質を用いた場合であっても、良好な寿命を有するリチウム二次電池を提供することにある。 The present invention has been made in view of the background art, and the problem is that a positive electrode active material containing a lithium transition metal phosphate compound-based positive electrode material that is cheaper and higher in safety is used. Another object of the present invention is to provide a lithium secondary battery having a good lifetime.
発明者らは、上記課題を解決すべく鋭意研究の結果、リチウム遷移金属リン酸化合物系正極材料を主体とする正極活物質と、特定のフルオロリン酸塩化合物を含有する電解液とを用いることによって、寿命が良好な高出力のリチウム二次電池が得られることを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the inventors use a positive electrode active material mainly composed of a lithium transition metal phosphate compound-based positive electrode material and an electrolytic solution containing a specific fluorophosphate compound. As a result, it was found that a high-power lithium secondary battery having a good lifetime was obtained, and the present invention was completed.
すなわち、本発明は、リチウムを吸蔵・放出可能な正極及び負極、並びに、非水溶媒にリチウム塩を混合してなる非水系電解液を備えたリチウム二次電池であって、該非水系電解液が、モノフルオロリン酸塩、ジフルオロリン酸塩からなる群より選ばれた少なくとも1種以上の化合物を含有するものであり、前記正極が、下記組成式(1)で表わされる組成を有する正極活物質を含むものであることを特徴とするリチウム二次電池を提供するものである。 That is, the present invention is a lithium secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte obtained by mixing a lithium salt with a non-aqueous solvent, wherein the non-aqueous electrolyte is a non-aqueous electrolyte. A positive electrode active material containing at least one compound selected from the group consisting of monofluorophosphate and difluorophosphate, wherein the positive electrode has a composition represented by the following composition formula (1) The present invention provides a lithium secondary battery characterized by comprising:
LiMPO4 (1)
[組成式(1)中、Mは少なくとも1種以上の遷移金属元素を表わす。]
LiMPO 4 (1)
[In composition formula (1), M represents at least one transition metal element. ]
本発明によれば、安価・高安全性で、長寿命が得られるリチウム二次電池を提供でき、更に、例えば自動車用途等の大型電池として、特に適したリチウム二次電池を提供できる。 According to the present invention, it is possible to provide a lithium secondary battery that is inexpensive, highly safe, and has a long life, and further, for example, a lithium secondary battery that is particularly suitable as a large battery for use in automobiles or the like can be provided.
以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの具体的内容には特定されるものではない。
<非水電解液>
[特定のフルオロリン酸塩化合物]
本発明の二次電池における非水系電解液は、モノフルオロリン酸塩及びジフルオロリン酸塩からなる群より選ばれた少なくとも1種の化合物(以下、これらを「特定のフルオロリン酸塩化合物」と略記することがある)を含有すること、又は添加されてなることを特徴とする。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. However, the description of the constituent elements described below is an example (representative example) of an embodiment of the present invention, and the present invention is not limited to the gist of the present invention. The specific contents of are not specified.
<Non-aqueous electrolyte>
[Specific fluorophosphate compounds]
The non-aqueous electrolyte in the secondary battery of the present invention is at least one compound selected from the group consisting of monofluorophosphate and difluorophosphate (hereinafter referred to as “specific fluorophosphate compound”). It may be abbreviated) or added.
モノフルオロリン酸塩及びジフルオロリン酸塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、鉄、銅等の金属元素の他、NR9R10R11R12(式中、R9〜R12は、各々独立に、水素原子又は炭素数1〜12の有機基を表わす。)で表現されるアンモニウムが挙げられる。ここで、R9〜R12の炭素数1〜12の有機基としては、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子で置換されていてもよいシクロアルキル基、ハロゲン原子で置換されていてもよいアリール基、窒素原子含有複素環基等が挙げられる。R9〜R12としては、それぞれ、水素原子、アルキル基、シクロアルキル基、 窒素原子含有複素環基が好ましい。これらのカウンターカチオン中でも、リチウム二次電池に用いたときの電池特性の点から、リチウム、ナトリウム、カリウム等のアルカリ金属、マグネシウム、カルシウム等のアルカリ土類金属又はNR9R10R11R12が好ましく、リチウムが特に好ましい。また、中でもジフルオロリン酸塩が、出力特性向上率やサイクル特性の点で好ましい。また、これらの化合物は非水溶媒中で合成されたものを実質的にそのまま用いてもよく、別途合成して実質的に単離されたものを非水溶媒中に添加してもよい。 The counter cation of monofluorophosphate and difluorophosphate is not particularly limited. In addition to metal elements such as lithium, sodium, potassium, magnesium, calcium, iron, copper, NR 9 R 10 R 11 R 12 ( In the formula, R 9 to R 12 each independently represents a hydrogen atom or an organic group having 1 to 12 carbon atoms). Here, the organic group having 1 to 12 carbon atoms of R 9 to R 12 is an alkyl group which may be substituted with a halogen atom, a cycloalkyl group which may be substituted with a halogen atom, or a halogen atom. An aryl group which may be present, a nitrogen atom-containing heterocyclic group, and the like. R 9 to R 12 are each preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or a nitrogen atom-containing heterocyclic group. Among these counter cations, from the viewpoint of battery characteristics when used for lithium secondary batteries, alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, or NR 9 R 10 R 11 R 12 are used. Lithium is preferred and lithium is particularly preferred. Of these, difluorophosphate is preferable in terms of the output characteristic improvement rate and cycle characteristics. In addition, those compounds synthesized in a non-aqueous solvent may be used substantially as they are, or those synthesized separately and substantially isolated may be added to the non-aqueous solvent.
特定のフルオロリン酸塩化合物、すなわち、モノフルオロリン酸塩及びジフルオロリン酸塩は、1種を単独で用いてもよく、2種類以上の化合物を任意の組み合わせ及び比率で併用してもよい。 Specific fluorophosphate compounds, that is, monofluorophosphate and difluorophosphate may be used alone, or two or more compounds may be used in any combination and ratio.
非水系電解液中のこれら特定化合物の割合は、全非水系電解液に対して、合計で10ppm以上(0.001質量%以上)が好ましく、より好ましくは0.01質量%以上、更に好ましくは0.05質量%以上、特に好ましくは0.1質量%以上である。また、上限は、好ましくは5質量%、より好ましくは4質量%、更に好ましくは3質量%である。特定化合物の濃度が低すぎると電池出力の向上する効果又は電池寿命の向上する効果が得られ難い場合があり、一方、濃度が高すぎると充放電効率の低下を招く場合がある。
特定のフルオロリン酸塩化合物による作用は定かではないが、上記の通りその作用がカウンターカチオンにより制限されないことから、特定のフルオロリン酸塩化合物のカチオン以外の部位が適度に電極活物質に作用することで、上記本発明の効果が得られるものと考えられる。
The ratio of these specific compounds in the non-aqueous electrolyte is preferably 10 ppm or more (0.001% by mass or more) in total with respect to the total non-aqueous electrolyte, more preferably 0.01% by mass or more, and still more preferably. It is 0.05 mass% or more, Most preferably, it is 0.1 mass% or more. Moreover, an upper limit becomes like this. Preferably it is 5 mass%, More preferably, it is 4 mass%, More preferably, it is 3 mass%. If the concentration of the specific compound is too low, the effect of improving battery output or the effect of improving battery life may be difficult to obtain, while if the concentration is too high, the charge / discharge efficiency may be reduced.
Although the action of the specific fluorophosphate compound is not clear, as described above, the action is not limited by the counter cation, so that the site other than the cation of the specific fluorophosphate compound acts on the electrode active material appropriately. Thus, the effect of the present invention is considered to be obtained.
また、これら特定のフルオロリン酸塩化合物は、非水系電解液として実際に二次電池作製に供すると、その電池を解体して再び非水系電解液を取り出しても、その中の含有量が著しく低下している場合が多い。そのため、電池から抜き出した非水系電解液から、少なくとも上記特定化合物が検出できるものは本発明に含まれるとみなされる。 In addition, when these specific fluorophosphate compounds are actually used in the production of secondary batteries as non-aqueous electrolytes, the content in the non-aqueous electrolyte is remarkably increased even if the battery is disassembled and the non-aqueous electrolyte is taken out again. In many cases, it is decreasing. Therefore, what can detect the said specific compound at least from the non-aqueous electrolyte solution extracted from the battery is considered to be included in this invention.
[電解質]
本発明のリチウム二次電池に使用される、特定のフルオロリン酸塩を含有する二次電池用非水系電解液は、常用の非水系電解液と同じく、電解質及びこれを溶解する非水溶媒を含有する。電解質としては、リチウム二次電池用非水系電解液の電解質として用い得ることが知られているリチウム塩であれば特に制限はないが、例えば、次のものが挙げられる。
[Electrolytes]
The non-aqueous electrolyte solution for secondary batteries containing a specific fluorophosphate used in the lithium secondary battery of the present invention includes an electrolyte and a non-aqueous solvent that dissolves the electrolyte, as in the case of ordinary non-aqueous electrolyte solutions. contains. The electrolyte is not particularly limited as long as it is known to be a lithium salt that can be used as an electrolyte for a non-aqueous electrolyte solution for a lithium secondary battery, and examples thereof include the following.
[[リチウム塩]]
無機リチウム塩:LiPF6、LiBF4、LiAsF6、LiSbF6等の無機フッ化物塩;LiClO4、LiBrO4、LiIO4等の過ハロゲン酸塩;LiAlCl4等の無機塩化物塩(但し、モノフルオロリン酸塩およびジフルオロリン酸塩は除く)等。
含フッ素有機リチウム塩:LiCF3SO3等のパーフルオロアルカンスルホン酸塩;LiN(CF3SO2)2、LiN(CF3CF2SO2)2、LiN(CF3SO2)(C4F9SO2)等のパーフルオロアルカンスルホニルイミド塩;LiC(CF3SO2)3等のパーフルオロアルカンスルホニルメチド塩;Li[PF5(CF2CF2CF3)]、Li[PF4(CF2CF2CF3)2]、Li[PF3(CF2CF2CF3)3]、Li[PF5(CF2CF2CF2CF3)]、Li[PF4(CF2CF2CF2CF3)2]、Li[PF3(CF2CF2CF2CF3)3]等のフルオロアルキルフッ化リン酸塩等。
リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等のオキサラトボレート塩。
[[Lithium salt]]
Inorganic lithium salts: inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBrO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 (however, monofluoro Excluding phosphate and difluorophosphate).
Fluorine-containing organic lithium salt: perfluoroalkane sulfonate such as LiCF 3 SO 3 ; LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 Perfluoroalkanesulfonylimide salts such as SO 2 ); Perfluoroalkanesulfonylmethide salts such as LiC (CF 3 SO 2 ) 3 ; Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 ( CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 2 CF 3 ) 3 ] and other fluoroalkyl fluorophosphates.
Oxalatoborate salts such as lithium bis (oxalato) borate and lithium difluorooxalatoborate.
これらは、1種を単独で使用しても、2種以上を任意の組み合わせ及び比率で併用しても良い。これらのなかでも、非水溶媒に対する溶解性、二次電池とした場合の充放電特性、出力特性、サイクル特性等を総合的に判断すると、LiPF6が好ましい。2種以上を 併用する場合の好ましい一例は、LiPF6とLiBF4との併用であり、この場合には、両者の合計に占めるLiBF4の割合は、0.01質量%以上、20質量%以下であるこ とが好ましく、0.1質量%以上、5質量%以下であるのが特に好ましい。 These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios. Among these, LiPF 6 is preferable when comprehensively judging the solubility in a non-aqueous solvent, the charge / discharge characteristics in the case of a secondary battery, the output characteristics, the cycle characteristics, and the like. A preferred example in the case of using two or more types together is a combination use of LiPF 6 and LiBF 4. In this case, the proportion of LiBF 4 in the total of both is 0.01% by mass or more and 20% by mass or less. It is preferable that it is 0.1 mass% or more and 5 mass% or less.
また、他の一例は、無機フッ化物塩とパーフルオロアルカンスルホニルイミド塩との併用であり、この場合には、両者の合計に占める無機フッ化物塩の割合は、70質量%以上、99質量%以下であることが好ましく、80質量%以上、98質量%以下であることがより好ましい。この両者の併用は、高温保存による劣化を抑制する効果がある。 Another example is the combined use of an inorganic fluoride salt and a perfluoroalkanesulfonylimide salt. In this case, the proportion of the inorganic fluoride salt in the total of both is 70% by mass or more and 99% by mass. Or less, more preferably 80% by mass or more and 98% by mass or less. The combined use of both has the effect of suppressing deterioration due to high temperature storage.
非水系電解液中の上記リチウム塩の濃度は、特に制限はないが、通常0.5mol/L以上、好ましくは0.6mol/L以上、より好ましくは0.7mol/L以上である。また、その上限は、通常2mol/L、好ましくは1.8mol/L、より好ましくは1.7mol/Lである。濃度が低すぎると、電解液の電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、リチウム二次電池の性能が低下する場合がある。 The concentration of the lithium salt in the nonaqueous electrolytic solution is not particularly limited, but is usually 0.5 mol / L or more, preferably 0.6 mol / L or more, more preferably 0.7 mol / L or more. Moreover, the upper limit is 2 mol / L normally, Preferably it is 1.8 mol / L, More preferably, it is 1.7 mol / L. If the concentration is too low, the electrical conductivity of the electrolyte solution may be insufficient. On the other hand, if the concentration is too high, the electrical conductivity may decrease due to an increase in viscosity, and the performance of the lithium secondary battery decreases. There is a case.
[非水溶媒]
非水溶媒としても従来から非水系電解液の溶媒として提案されているものの中から、適宜選択して用いることができる。例えば、次のものが挙げられる。
1)環状カーボネート:
環状カーボネートを構成するアルキレン基の炭素数は2〜6が好ましく、特に好ましくは2〜4である。具体的には例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネート、プロピレンカーボネートが好ましい。
2)鎖状カーボネート:
鎖状カーボネートとしては、ジアルキルカーボネートが好ましく、構成するアルキル基の炭素数は、それぞれ、1〜5が好ましく、特に好ましくは1〜4である。具体的には例えば、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート等のジアルキルカーボネートが挙げられる。中でも、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートが好ましい。
3)環状エステル:
具体的には例えば、γ−ブチロラクトン、γ−バレロラクトン等が挙げられる。
4)鎖状エステル:
具体的には例えば、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル等が挙げられる。
5)環状エーテル:
具体的には例えば、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等が挙げられる。
6)鎖状エーテル:
具体的には例えば、ジメトキシエタン、ジメトキシメタン等が挙げられる。
7)含硫黄有機溶媒:
具体的には例えば、スルフォラン、ジエチルスルホン等が挙げられる。
[Nonaqueous solvent]
As the non-aqueous solvent, it can be appropriately selected from those conventionally proposed as solvents for non-aqueous electrolyte solutions. For example, the following are mentioned.
1) Cyclic carbonate:
As for carbon number of the alkylene group which comprises a cyclic carbonate, 2-6 are preferable, Most preferably, it is 2-4. Specific examples include ethylene carbonate, propylene carbonate, butylene carbonate, and the like. Of these, ethylene carbonate and propylene carbonate are preferable.
2) Chain carbonate:
As the chain carbonate, dialkyl carbonate is preferable, and the number of carbon atoms of the alkyl group is preferably 1 to 5, and particularly preferably 1 to 4, respectively. Specific examples include dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, and ethyl-n-propyl carbonate. Of these, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferable.
3) Cyclic ester:
Specific examples include γ-butyrolactone and γ-valerolactone.
4) Chain ester:
Specific examples include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate.
5) Cyclic ether:
Specific examples include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran and the like.
6) Chain ether:
Specific examples include dimethoxyethane and dimethoxymethane.
7) Sulfur-containing organic solvent:
Specific examples include sulfolane and diethylsulfone.
これらは単独で用いても、2種類以上を併用してもよいが、2種以上の化合物を併用するのが好ましい。例えば、環状カーボネート類や環状エステル類等の高誘電率溶媒と、鎖状カーボネート類や鎖状エステル類等の低粘度溶媒とを併用するのが好ましい。 These may be used alone or in combination of two or more, but it is preferable to use in combination of two or more. For example, it is preferable to use a high dielectric constant solvent such as cyclic carbonates and cyclic esters in combination with a low viscosity solvent such as chain carbonates and chain esters.
非水溶媒の好ましい組合せの一つは、環状カーボネート類と鎖状カーボネート類を主体とする組合せである。なかでも、非水溶媒に占める環状カーボネート類と鎖状カーボネート類との合計が、85容量%以上であるのが好ましく、より好ましくは90容量%以上、更に好ましくは95容量%以上である。また、環状カーボネート類と鎖状カーボネート類との合計に対する環状カーボネート類の容量は、通常5%以上、好ましくは10%以上、より好ましくは15%以上であり、通常50%以下、好ましくは35%以下、より好ましくは30%以下のものである。非水溶媒全体に占めるカーボネート類の合計の上記好ましい容量範囲と、環状及び鎖状カーボネート類に対する環状カーボネート類の好ましい上記容量範囲は、組み合わされていることが特に好ましい。 One preferred combination of non-aqueous solvents is a combination mainly composed of cyclic carbonates and chain carbonates. Especially, it is preferable that the sum total of the cyclic carbonate and chain carbonate which occupy in a non-aqueous solvent is 85 volume% or more, More preferably, it is 90 volume% or more, More preferably, it is 95 volume% or more. The capacity of the cyclic carbonates relative to the total of the cyclic carbonates and the chain carbonates is usually 5% or more, preferably 10% or more, more preferably 15% or more, and usually 50% or less, preferably 35%. Below, more preferably 30% or less. It is particularly preferred that the above preferred volume range of the total amount of carbonates occupying the entire non-aqueous solvent is combined with the preferred above volume range of cyclic carbonates relative to cyclic and chain carbonates.
この混合溶媒に、リチウム塩とモノフルオロリン酸塩、ジフルオロリン酸塩からなる群より選ばれた少なくとも1種以上の化合物を含有する非水系電解液は、これを用いて作製された電池のサイクル特性と高温保存特性(特に、高温保存後の残存容量及び高負荷放電容量)及びガス発生抑制のバランスがよくなるので特に好ましい。 A non-aqueous electrolyte containing at least one compound selected from the group consisting of a lithium salt, a monofluorophosphate, and a difluorophosphate in this mixed solvent is a cycle of a battery produced using the nonaqueous electrolyte. This is particularly preferable because the balance between the characteristics and the high temperature storage characteristics (particularly, the remaining capacity and high load discharge capacity after high temperature storage) and the suppression of gas generation are improved.
環状カーボネート類と鎖状カーボネート類の好ましい組み合わせの具体例としては、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネート、エチレンカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。これらのエチレンカーボネートと鎖状カーボネート類との組み合わせに、更にプロピレンカーボネートを加えた組み合わせも、好ましい組み合わせとして挙げられる。プロピレンカーボネートを含有する場合には、エチレンカーボネートとプロピレンカーボネートの容量比は、通常99:1〜40:60、好ましくは95:5〜50:50である。 Specific examples of preferred combinations of cyclic carbonates and chain carbonates include ethylene carbonate and dimethyl carbonate, ethylene carbonate and diethyl carbonate, ethylene carbonate and ethyl methyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate And ethyl methyl carbonate, ethylene carbonate, diethyl carbonate, and ethyl methyl carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. A combination in which propylene carbonate is further added to the combination of these ethylene carbonates and chain carbonates is also a preferable combination. When propylene carbonate is contained, the volume ratio of ethylene carbonate to propylene carbonate is usually 99: 1 to 40:60, preferably 95: 5 to 50:50.
これらの中で、非対称鎖状カーボネート類を含有するものが更に好ましく、特に、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートといったエチレンカーボネートと対称鎖状カーボネート類と非対称鎖状カーボネート類を含有するものが、サイクル特性と大電流放電特性のバランスが良いので好ましい。中でも、非対称鎖状カーボネート類がエチルメチルカーボネートであるものが好ましく、また、ジアルキルカーボネートを構成するアルキル基の炭素数は1〜2が好ましい。 Among these, those containing asymmetric chain carbonates are more preferable, especially ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate, ethylene carbonate, diethyl carbonate and ethyl methyl carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl. Those containing ethylene carbonate such as methyl carbonate, symmetric chain carbonates, and asymmetric chain carbonates are preferred because of a good balance between cycle characteristics and large current discharge characteristics. Among these, those in which the asymmetric chain carbonate is ethyl methyl carbonate are preferable, and the number of carbon atoms of the alkyl group constituting the dialkyl carbonate is preferably 1 or 2.
好ましい非水溶媒の他の例は、鎖状エステルを含有するものである。鎖状エステルとしては、酢酸メチル、酢酸エチル等が特に好ましい。非水溶媒に占める鎖状エステルの容量は、通常5%以上、好ましくは8%以上、より好ましくは15%以上であり、上限は、通常50%以下、好ましくは35%以下、より好ましくは30%以下、更に好ましくは25%以下である。特に、上記、環状カーボネート類と鎖状カーボネート類の混合溶媒に、鎖状エステルを含有するものが、電池の低温特性向上の観点から好ましい。 Other examples of preferred non-aqueous solvents are those containing chain esters. As the chain ester, methyl acetate, ethyl acetate and the like are particularly preferable. The capacity of the chain ester in the non-aqueous solvent is usually 5% or more, preferably 8% or more, more preferably 15% or more, and the upper limit is usually 50% or less, preferably 35% or less, more preferably 30 % Or less, more preferably 25% or less. In particular, those containing a chain ester in the mixed solvent of cyclic carbonates and chain carbonates are preferable from the viewpoint of improving the low-temperature characteristics of the battery.
他の好ましい非水溶媒の例は、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン及びγ−バレロラクトンよりなる群から選ばれた1種又は2種以上の有機溶媒が、全体の60容量%以上を占めるものである。こうした混合溶媒は、引火点が50℃以上であるものが好ましく、中でも70℃以上であるものが特に好ましい。この溶媒を用いた非水系電解液は、高温で使用しても溶媒の蒸発や液漏れが少なくなる。中でも、非水溶媒に占めるγ−ブチロラクトンの量が60容量%以上であるものや、非水溶媒に占めるエチレンカーボネートとγ−ブチロラクトンとの合計が、80容量%以上、好ましくは90容量%以上であり、かつエチレンカーボネートとγ−ブチロラクトンとの容量比が5:95〜45:55であるもの、又は非水溶媒に占めるエチレンカーボネートとプロピレンカーボネートとの合計が、80容量%以上、好ましくは90容量%以上であり、かつエチレンカーボネートとプロピレンカーボネートの容量比が30:70〜60:40であるものを用いると、サイクル特性と大電流放電特性等のバランスがよくなるので好ましい。 Examples of other preferable non-aqueous solvents include one or more organic solvents selected from the group consisting of ethylene carbonate, propylene carbonate, γ-butyrolactone and γ-valerolactone occupying 60% by volume or more of the total. Is. Such a mixed solvent preferably has a flash point of 50 ° C. or higher, and particularly preferably has a flash point of 70 ° C. or higher. A non-aqueous electrolyte using this solvent reduces evaporation of the solvent and leakage even when used at high temperatures. Among them, the amount of γ-butyrolactone in the nonaqueous solvent is 60% by volume or more, and the total of ethylene carbonate and γ-butyrolactone in the nonaqueous solvent is 80% by volume or more, preferably 90% by volume or more. And the volume ratio of ethylene carbonate to γ-butyrolactone is 5:95 to 45:55, or the total of ethylene carbonate and propylene carbonate in the non-aqueous solvent is 80% by volume or more, preferably 90% It is preferable to use an ethylene carbonate / propylene carbonate having a volume ratio of 30:70 to 60:40 because the balance between cycle characteristics and large current discharge characteristics is improved.
本発明のリチウム二次電池に用いられる非水系電解液は、非水溶媒、リチウム塩及び上記特定のフルオロリン酸塩化合物を含有するが、更に必要に応じて他の化合物を含有させることができる。非水系電解液の調製に際して、各原料は予め脱水しておくのが好ましく、水分含有量が通常50ppm以下、好ましくは30ppm以下、特に好ましくは10ppm以下とするのがよい。 The non-aqueous electrolyte used in the lithium secondary battery of the present invention contains a non-aqueous solvent, a lithium salt, and the specific fluorophosphate compound, but may further contain other compounds as necessary. . In preparing the non-aqueous electrolyte, each raw material is preferably dehydrated in advance, and the water content is usually 50 ppm or less, preferably 30 ppm or less, particularly preferably 10 ppm or less.
[他の化合物]
本発明のリチウム二次電池に用いられる非水系電解液は、必要に応じて他の化合物を、本発明の効果を損なわない範囲で、任意の量で含有させることができる。このような他の化合物としては、例えば、
(1)ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、 シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;
(2)2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等の過充電防止剤;
(3)ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物等の負極被膜形成剤;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、プロパンスルトン、ブタンスルトン、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド等の正極保護剤;
等が挙げられる。
[Other compounds]
The non-aqueous electrolyte solution used for the lithium secondary battery of the present invention can contain other compounds in an arbitrary amount as long as it does not impair the effects of the present invention. Examples of such other compounds include:
(1) aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran;
(2) Partially fluorinated products of the aromatic compounds such as 2-fluorobiphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene; 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole And overcharge inhibitors such as fluorine-containing anisole compounds such as 3,5-difluoroanisole;
(3) vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, trifluoropropylene carbonate, succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, etc. Negative electrode film-forming agent: ethylene sulfite, propylene sulfite, dimethyl sulfite, propane sultone, butane sultone, methyl methanesulfonate, busulfan, methyl toluenesulfonate, dimethyl sulfate, ethylene sulfate, sulfolane, dimethyl sulfone, diethyl sulfone, dimethyl sulfoxide, diethyl sulfoxide , Tetramethylene sulfoxide, diphenyl sulfide, thioanisole, diphenyl disulfide, dipyridinium disulfide, etc. Agent;
Etc.
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。これらは2種類以上併用して用いてもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンやターフェニル(又はその部分水素化体)と、t−ブチルベンゼンやt−アミルベンゼンを併用することが好ましい。 As the overcharge inhibitor, aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran are preferable. Two or more of these may be used in combination. When using 2 or more types together, it is particularly preferable to use cyclohexylbenzene or terphenyl (or a partially hydrogenated product thereof) together with t-butylbenzene or t-amylbenzene.
負極被膜形成剤としては、ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート、無水コハク酸、無水マレイン酸が好ましい。これらは2種類以上併用して用いてもよい。2種類以上を併用する場合は、ビニレンカーボネート、及び、ビニルエチレンカーボネート、フルオロエチレンカーボネート、無水コハク酸若しくは無水マレイン酸が好ましい。 As the negative electrode film forming agent, vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, succinic anhydride, and maleic anhydride are preferable. Two or more of these may be used in combination. When using 2 or more types together, vinylene carbonate and vinyl ethylene carbonate, fluoroethylene carbonate, succinic anhydride, or maleic anhydride are preferable.
正極保護剤としては、亜硫酸エチレン、亜硫酸プロピレン、プロパンスルトン、ブタンスルトン、メタンスルホン酸メチル、ブスルファンが好ましい。これらは2種類以上併用して用いてもよい。 As the positive electrode protective agent, ethylene sulfite, propylene sulfite, propane sultone, butane sultone, methyl methanesulfonate, and busulfan are preferable. Two or more of these may be used in combination.
また、負極皮膜形成剤と正極保護剤との併用や、過充電防止剤と負極皮膜形成剤と正極保護剤との併用が特に好ましい。非水系電解液中におけるこれら他の化合物の含有割合は特に限定はないが、非水系電解液全体に対し、それぞれ、0.01質量%以上が好ましく、特に好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、上限は、5質量%以下が好ましく、特に好ましくは3質量%以下、更に好ましくは2質量%以下である。これらの化合物を含有させることにより、過充電による異常時に電池の破裂・発火を抑制したり、高温保存後の容量維持特性やサイクル特性を向上させたりすることができる。 Moreover, the combined use of a negative electrode film forming agent and a positive electrode protective agent, or the combined use of an overcharge inhibitor, a negative electrode film forming agent, and a positive electrode protective agent is particularly preferable. The content ratio of these other compounds in the non-aqueous electrolyte solution is not particularly limited, but is preferably 0.01% by mass or more, particularly preferably 0.1% by mass or more, respectively, based on the whole non-aqueous electrolyte solution. The upper limit is preferably 5% by mass or less, particularly preferably 3% by mass or less, and further preferably 2% by mass or less. By containing these compounds, it is possible to suppress rupture / ignition of the battery at the time of abnormality due to overcharge, or to improve capacity maintenance characteristics and cycle characteristics after high temperature storage.
本発明の二次電池用非水系電解液の調製方法については特に限定はなく、非水溶媒に、常法に従って、リチウム塩、特定のフルオロリン酸塩化合物、必要に応じて他の化合物を溶解させて調製することができる。 There are no particular limitations on the method for preparing the non-aqueous electrolyte solution for secondary batteries of the present invention, and a lithium salt, a specific fluorophosphate compound, and other compounds as required are dissolved in a non-aqueous solvent according to a conventional method. Can be prepared.
<正極>
以下に本発明のリチウム二次電池に使用される正極について説明する。
[正極活物質]
以下に正極に使用される正極活物質について述べる。
[[組成]]
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能な遷移金属を含有する物質で、下記組成式(1)で表わされる組成を有するもの(以下、「組成式(1)の正極活物質」と略記する)が用いられる。
<Positive electrode>
The positive electrode used for the lithium secondary battery of the present invention will be described below.
[Positive electrode active material]
The positive electrode active material used for the positive electrode is described below.
[[composition]]
The positive electrode active material is a substance containing a transition metal that can electrochemically occlude and release lithium ions and has a composition represented by the following composition formula (1) (hereinafter referred to as “positive electrode of composition formula (1)”. Abbreviated as “active material”).
LiMPO4 (1)
[組成式(1)中、Mは少なくとも1種以上の遷移金属元素を表わす。]
LiMPO 4 (1)
[In composition formula (1), M represents at least one transition metal element. ]
なお、組成式(1)中、MはV、Ti、Cr、Mn、Fe、Co、NiおよびCuから選ば れる少なくとも1種を含むものが好ましく、Fe、Mn、Ni、Coを含むものが特に好ましい。また、主とな る遷移金属の他に、Mo、Ta、W、Si、B、Al、S等の元素を少量添加することも可能である。少量添加を行う場合は、0.1mol%以上5mol%以下が好ましく、さらに好ましくは0.2mol%以上2.5mol%以下である。
本発明における正極活物質を用いた場合の作用機構については未だ不明な点が多いが、特定のフルオロリン酸塩の中心金属への作用に加え、アニオン部分への相互作用も推察され、これらの複合作用によって機能が発現し、効果が得られるものと考えられる。
In the composition formula (1), M preferably contains at least one selected from V, Ti, Cr, Mn, Fe, Co, Ni and Cu, and particularly contains M, Fe, Mn, Ni and Co. preferable. In addition to the main transition metals, a small amount of elements such as Mo, Ta, W, Si, B, Al, and S can be added. When a small amount is added, it is preferably 0.1 mol% or more and 5 mol% or less, more preferably 0.2 mol% or more and 2.5 mol% or less.
Although there are still many unclear points regarding the mechanism of action when the positive electrode active material in the present invention is used, in addition to the action of a specific fluorophosphate on the central metal, the interaction with the anion moiety is also inferred. It is considered that the function is exhibited by the combined action and the effect is obtained.
[[表面被覆]]
また、組成式(1)の正極活物質の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
[[Surface coating]]
Moreover, you may use what the substance of the composition different from this adhered to the surface of the positive electrode active material of compositional formula (1). Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate, and carbon.
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて該正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて該正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により該正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることもできる。 For example, these surface adhering substances are dissolved or suspended in a solvent, impregnated and added to the positive electrode active material, and dried. After the surface adhering substance precursor is dissolved or suspended in a solvent and impregnated and added to the positive electrode active material, It can be made to adhere to the surface of the positive electrode active material by a method of reacting by heating or the like, a method of adding to the positive electrode active material precursor and firing simultaneously. In addition, when making carbon adhere, the method of making carbonaceous adhere mechanically later in the form of activated carbon etc. can also be used, for example.
表面付着物質の量としては、該正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、更に好ましくは10ppm以上、上限として、好ましくは20%以下、より好ましくは10%以下、更に好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。 The amount of the surface adhering substance is, by mass, with respect to the positive electrode active material, preferably 0.1 ppm or more, more preferably 1 ppm or more, still more preferably 10 ppm or more, and the upper limit, preferably 20% or less, more preferably as the lower limit. Is used at 10% or less, more preferably 5% or less. The surface adhering substance can suppress the oxidation reaction of the electrolyte solution on the surface of the positive electrode active material and can improve the battery life. However, when the amount of the adhering quantity is too small, the effect is not sufficiently manifested. If it is too high, the resistance may increase in order to inhibit the entry and exit of lithium ions.
本発明においては、組成式(1)の正極活物質の表面に、これとは異なる組成の物質が付着したものをも「正極活物質」という。 In the present invention, a material in which a material having a composition different from that of the positive electrode active material of the composition formula (1) is attached is also referred to as a “positive electrode active material”.
[[形状]]
本発明における前記正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐため好ましい。また、板状等軸配向性の粒子であるよりも球状ないし楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作成する際の導電材との混合においても、均一に混合されやすいため好ましい。
[[shape]]
As the shape of the particles of the positive electrode active material in the present invention, a lump shape, a polyhedron shape, a spherical shape, an elliptical spherical shape, a plate shape, a needle shape, a columnar shape, and the like, which are conventionally used, are used. It is preferably formed by forming secondary particles, and the shape of the secondary particles is spherical or elliptical. In general, an electrochemical element expands and contracts as the active material in the electrode expands and contracts as it is charged and discharged. Therefore, the active material is easily damaged due to the stress or the conductive path is broken. Therefore, it is preferable that the primary particles are aggregated to form secondary particles, rather than a single particle active material having only primary particles, in order to relieve expansion and contraction stress and prevent deterioration. In addition, spherical or oval spherical particles are less oriented during molding of the electrode than plate-like equiaxed particles, so that the expansion and contraction of the electrode during charging and discharging is small, and the electrode is produced. The mixing with the conductive material is also preferable because it is easy to mix uniformly.
[[タップ密度]]
前記正極活物質のタップ密度は、好ましくは0.5g/cm3以上、より好ましくは1.0g/cm3以上、更に好ましくは1.5g/cm3以上、最も好ましくは1.7g/cm3以上である。該正極活物質のタップ密度が上記下限を下回ると正極活物質層形成時に、 必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく、特に上限はないが、大きすぎると、正極活物質層内における電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、上限は、好ましくは2.7g/cm3以下、より好ましくは2.5g/cm3以下である。
[[Tap density]]
The tap density of the positive electrode active material is preferably 0.5 g / cm 3 or more, more preferably 1.0 g / cm 3 or more, still more preferably 1.5 g / cm 3 or more, and most preferably 1.7 g / cm 3. That's it. When the tap density of the positive electrode active material is lower than the lower limit, the amount of the required dispersion medium increases when the positive electrode active material layer is formed, and the required amount of the conductive material and the binder increases. The filling rate of the active material is restricted, and the battery capacity may be restricted. By using a complex oxide powder having a high tap density, a high-density positive electrode active material layer can be formed. In general, the tap density is preferably as large as possible, and there is no particular upper limit, but if it is too large, diffusion of lithium ions using the electrolytic solution in the positive electrode active material layer as a medium is rate-limiting, and load characteristics may be easily reduced. The upper limit is preferably 2.7 g / cm 3 or less, more preferably 2.5 g / cm 3 or less.
なお、本発明では、タップ密度は、正極活物質粉体5〜10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度(タップ密度)g/ccとして求める。 In the present invention, the tap density is defined as the powder packing density (tap density) g / cc when 5 to 10 g of the positive electrode active material powder is put in a 10 ml glass measuring cylinder and tapped 200 times with a stroke of about 20 mm. Ask.
[[メジアン径d50]]
前記正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は好ましくは0.5μm以上、より好ましくは1.2μm以上、更に好ましくは1.5μm以上、最も好ましくは2μm以上であり、上限は、好ましくは20μm以下、より好ましくは18μm以下、更に好ましくは16μm以下、最も好ましくは15μm以下である。上記下限を下回ると、高タップ密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作成、すなわち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ該正極活物質を2種類以上混合することで、正極作成時の充填性を更に向上させることができる。
[[Median diameter d 50 ]]
The median diameter d 50 of the positive electrode active material particles (secondary particle diameter when primary particles are aggregated to form secondary particles) is preferably 0.5 μm or more, more preferably 1.2 μm or more. More preferably, it is 1.5 μm or more, most preferably 2 μm or more, and the upper limit is preferably 20 μm or less, more preferably 18 μm or less, still more preferably 16 μm or less, and most preferably 15 μm or less. If the lower limit is not reached, a high tap density product may not be obtained. If the upper limit is exceeded, it takes time for the diffusion of lithium in the particles. When a conductive material, a binder, or the like is slurried with a solvent and applied as a thin film, problems such as streaking may occur. Here, by mixing two or more kinds of the positive electrode active materials having different median diameters d 50 , the filling property at the time of forming the positive electrode can be further improved.
本発明におけるメジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA−920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。 The median diameter d 50 in the present invention is measured by a known laser diffraction / scattering particle size distribution measuring apparatus. When LA-920 manufactured by HORIBA is used as a particle size distribution meter, a 0.1% by mass sodium hexametaphosphate aqueous solution is used as a dispersion medium for measurement, and a measurement refractive index of 1.24 is set after ultrasonic dispersion for 5 minutes. Measured.
[[平均一次粒子径]]
一次粒子が凝集して二次粒子を形成している場合には、該正極活物質の平均一次粒子径としては、好ましくは0.05μm以上、より好ましくは0.1μm以上、更に好ましくは0.2μm以上であり、上限は、好ましくは2μm以下、より好ましくは1.6μm以下、更に好ましくは1.3μm以下、最も好ましくは1μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
[[Average primary particle size]]
When primary particles are aggregated to form secondary particles, the average primary particle diameter of the positive electrode active material is preferably 0.05 μm or more, more preferably 0.1 μm or more, and still more preferably 0.8. The upper limit is preferably 2 μm or less, more preferably 1.6 μm or less, still more preferably 1.3 μm or less, and most preferably 1 μm or less. If the above upper limit is exceeded, it is difficult to form spherical secondary particles, which adversely affects the powder filling property, or the specific surface area is greatly reduced, so that there is a high possibility that battery performance such as output characteristics will deteriorate. is there. On the other hand, when the value falls below the lower limit, there is a case where problems such as inferior reversibility of charge / discharge are usually caused because crystals are not developed.
一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。 The primary particle diameter is measured by observation using a scanning electron microscope (SEM). Specifically, in a photograph at a magnification of 10000 times, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to the horizontal straight line is obtained for any 50 primary particles and obtained by taking the average value. It is done.
[[BET比表面積]]
本発明の二次電池に供する該正極活物質のBET比表面積は、好ましくは0.4m2/
g以上、より好ましくは0.5m2/g以上、更に好ましくは0.6m2/g以上であり、上限は50m2/g以下、好ましくは40m2/g以下、更に好ましくは30m2/g以 下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極活物質層形成時の塗布性に問題が発生しやすい場合がある。
[[BET specific surface area]]
The BET specific surface area of the positive electrode active material used for the secondary battery of the present invention is preferably 0.4 m 2 /
g or more, more preferably 0.5 m 2 / g or more, further preferably 0.6 m 2 / g or more, and the upper limit is 50 m 2 / g or less, preferably 40 m 2 / g or less, more preferably 30 m 2 / g. It is as follows. If the BET specific surface area is smaller than this range, the battery performance tends to be lowered. If the BET specific surface area is larger, the tap density is difficult to increase, and a problem may occur in applicability when forming the positive electrode active material layer.
BET比表面積は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。 The BET specific surface area is determined by using a surface area meter (for example, a fully automated surface area measuring device manufactured by Okura Riken), preliminarily drying the sample for 30 minutes at 150 ° C. under nitrogen flow, and then measuring the relative pressure of nitrogen relative to atmospheric pressure. It is defined by a value measured by a nitrogen adsorption BET one-point method using a gas flow method using a nitrogen-helium mixed gas that is accurately adjusted to have a value of 0.3.
[[製造法]]
該正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作成するには種々の方法が考えられるが、例えば、リン酸等のリン原料物質と、組成式(1)におけるMの原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、Li2CO3、LiNO3等のLi源を加えて高温で焼成して活物質を得る方法等が挙げられる。
[[Production method]]
As a method for producing the positive electrode active material, a general method is used as a method for producing an inorganic compound. In particular, various methods are conceivable for producing a spherical or elliptical active material. For example, a phosphorus raw material such as phosphoric acid and a raw material M of the composition formula (1) are dissolved in a solvent such as water. Or, pulverize and disperse, adjust the pH while stirring, create and recover a spherical precursor, dry it as necessary, and then add a Li source such as LiOH, Li 2 CO 3 , LiNO 3, etc. Examples thereof include a method of obtaining an active material by baking at a high temperature.
本発明における正極の製造のためには、組成式(1)の正極活物質及び/又は前記表面付着物質で被覆された組成式(1)の正極活物質を単独で用いても良く、異なる組成の1種以上とを、任意の組み合わせ又は比率で併用しても良い。この場合の好ましい組み合わせとしては、LiMn2O4若しくはこのMnの一部を他の遷移金属等で置換したものとの組み合わせ、あるいは、LiCoO2若しくはこのCoの一部を他の遷移金属等で置換したものとの組み合わせが挙げられる。ここで、組成式(1)の正極活物質及び/又は前記表面付着物質で被覆された組成式(1)の正極活物質は、正極活物質全体の30質量%以上であることが好ましく、50質量%以上であることがより好ましい。組成式(1)の正極活物質及び/又は前記表面付着物質で被覆された組成式(1)の正極活物質の使用割合が少なくなると、電池容量が小さくなる場合がある。なお、「組成式(1)の正極活物質及び/又は前記表面付着物質で被覆された組成式(1)の正極活物質」と「組成式(1)の正極活物質及び/又は前記表面付着物質で被覆された組成式(1)の正極活物質以外の正極活物質」を総称して「正極活物質」という。 For the production of the positive electrode in the present invention, the positive electrode active material of the composition formula (1) and / or the positive electrode active material of the composition formula (1) coated with the surface adhering material may be used alone or in different compositions. These may be used in any combination or ratio. As a preferable combination in this case, LiMn 2 O 4 or a combination with a part of this Mn substituted with another transition metal or the like, or LiCoO 2 or a part of this Co with another transition metal or the like is substituted. The combination with what was done is mentioned. Here, the positive electrode active material of the composition formula (1) and / or the positive electrode active material of the composition formula (1) coated with the surface adhesion material is preferably 30% by mass or more of the whole positive electrode active material, More preferably, it is at least mass%. When the usage rate of the positive electrode active material of the composition formula (1) and / or the positive electrode active material of the composition formula (1) coated with the surface adhering material decreases, the battery capacity may be reduced. The “positive electrode active material of composition formula (1) and / or the positive electrode active material of composition formula (1) coated with the surface adhering material” and “the positive electrode active material of composition formula (1) and / or the surface adhering”. The “positive electrode active material other than the positive electrode active material of the composition formula (1) coated with the material” is collectively referred to as “positive electrode active material”.
[正極の構成]
以下に、本発明に使用される正極の構成について述べる。
[[電極構造と作製法]]
本発明のリチウム二次電池用の正極は、正極活物質と結着剤とを含有する正極活物質層を、集電体上に形成して作製される。すなわち、本発明のリチウム二次電池用の正極は、前記正極活物質と結着剤とを含有する正極活物質層を、集電体上に形成して作製される。正極活物質を用いる正極の製造は、常法により行うことができる。即ち、正極活物質と結着剤、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成させることにより正極を得ることができる。
[Configuration of positive electrode]
Below, the structure of the positive electrode used for this invention is described.
[[Electrode structure and fabrication method]]
The positive electrode for a lithium secondary battery of the present invention is produced by forming a positive electrode active material layer containing a positive electrode active material and a binder on a current collector. That is, the positive electrode for a lithium secondary battery of the present invention is produced by forming a positive electrode active material layer containing the positive electrode active material and a binder on a current collector. Manufacture of the positive electrode using a positive electrode active material can be performed by a conventional method. That is, a positive electrode active material and a binder, and if necessary, a conductive material and a thickener mixed in a dry form into a sheet form are pressure-bonded to the positive electrode current collector, or these materials are liquid media A positive electrode can be obtained by forming a positive electrode active material layer on the current collector by applying it to a positive electrode current collector and drying it as a slurry by dissolving or dispersing in a slurry.
本発明のリチウム二次電池の正極に用いられる正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは95質量%以下、より好ましくは93質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。 The content of the positive electrode active material used in the positive electrode of the lithium secondary battery of the present invention in the positive electrode active material layer is preferably 80% by mass or more, more preferably 82% by mass or more, and particularly preferably 84% by mass or more. is there. Moreover, an upper limit becomes like this. Preferably it is 95 mass% or less, More preferably, it is 93 mass% or less. If the content of the positive electrode active material in the positive electrode active material layer is low, the electric capacity may be insufficient. Conversely, if the content is too high, the strength of the positive electrode may be insufficient.
塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、下限として好ましくは1.5g/cm3以上、より好ましくは2g/cm3、更に好ましくは2.2g/cm3以上であり、上限としては、好ましくは3.5g/cm3以下、より好ましくは3g/cm3以下、更に好ましくは2.8g/cm3以下の範囲である。この範囲を上回ると集電体/活物質界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。 The positive electrode active material layer obtained by coating and drying is preferably consolidated by a hand press, a roller press or the like in order to increase the packing density of the positive electrode active material. Density of the positive electrode active material layer is preferably 1.5 g / cm 3 or more as a lower limit, more preferably 2 g / cm 3, and even more preferably at 2.2 g / cm 3 or more, the upper limit, preferably 3.5g / Cm 3 or less, more preferably 3 g / cm 3 or less, and even more preferably 2.8 g / cm 3 or less. If it exceeds this range, the permeability of the electrolyte solution to the vicinity of the current collector / active material interface decreases, and the charge / discharge characteristics particularly at a high current density decrease, and a high output may not be obtained. On the other hand, if it is lower, the conductivity between the active materials is lowered, the battery resistance is increased, and a high output may not be obtained.
[[[導電材]]]
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また上限は、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
[[[Conductive material]]]
A known conductive material can be arbitrarily used as the conductive material. Specific examples include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite (graphite); carbon black such as acetylene black; and carbon materials such as amorphous carbon such as needle coke. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio. The conductive material is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 1% by mass or more in the positive electrode active material layer, and the upper limit is usually 50% by mass or less, preferably It is used so as to contain 30% by mass or less, more preferably 15% by mass or less. If the content is lower than this range, the conductivity may be insufficient. Conversely, if the content is higher than this range, the battery capacity may decrease.
[[[結着剤]]]
正極活物質層の製造に用いる結着剤としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であれば良いが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
[[[Binder]]]
The binder used in the production of the positive electrode active material layer is not particularly limited, and in the case of a coating method, any material that can be dissolved or dispersed in the liquid medium used in electrode production may be used. , Polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, nitrocellulose, and other resin polymers; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluororubber, isoprene rubber , Rubber polymers such as butadiene rubber and ethylene-propylene rubber; styrene / butadiene / styrene block copolymer or hydrogenated product thereof, EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / butadiene / Ethylene copolymer, styrene Thermoplastic elastomeric polymer such as isoprene / styrene block copolymer or hydrogenated product thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer Soft resinous polymers such as polymers; Fluoropolymers such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymers; alkali metal ions (especially lithium ions) And a polymer composition having ion conductivity. In addition, these substances may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
正極活物質層中の結着剤の割合は、通常0.1質量%以上、好ましくは1質量%以上、更に好ましくは3質量%以上であり、上限は、通常80質量%以下、好ましくは60質量%以下、更に好ましくは40質量%以下、最も好ましくは10質量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。 The ratio of the binder in the positive electrode active material layer is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 3% by mass or more, and the upper limit is usually 80% by mass or less, preferably 60%. It is not more than mass%, more preferably not more than 40 mass%, most preferably not more than 10 mass%. When the ratio of the binder is too low, the positive electrode active material cannot be sufficiently retained and the positive electrode has insufficient mechanical strength, which may deteriorate battery performance such as cycle characteristics. On the other hand, if it is too high, battery capacity and conductivity may be reduced.
[[[液体媒体]]]
スラリーを形成するための液体媒体としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いても良い。水系媒体としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系媒体としては、例えば、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、プロピレンオキシド、テトラヒドロフラン(THF)等のエーテル類;N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルホキシド等の非プロトン性極性溶媒等を挙げることができる。
[[[Liquid medium]]]
The liquid medium for forming the slurry may be any type of solvent that can dissolve or disperse the positive electrode active material, the conductive material, the binder, and the thickener used as necessary. There is no particular limitation, and either an aqueous solvent or an organic solvent may be used. Examples of the aqueous medium include water, a mixed medium of alcohol and water, and the like. Examples of the organic medium include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene, and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; ketones such as acetone, methyl ethyl ketone, and cyclohexanone. Esters such as methyl acetate and methyl acrylate; amines such as diethylenetriamine and N, N-dimethylaminopropylamine; ethers such as diethyl ether, propylene oxide and tetrahydrofuran (THF); N-methylpyrrolidone (NMP) Amides such as dimethylformamide and dimethylacetamide; aprotic polar solvents such as hexamethylphosphalamide and dimethylsulfoxide.
特に水系媒体を用いる場合、増粘剤と、スチレン−ブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。更に増粘剤を添加する場合には、活物質に対する増粘剤の割合は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、また、上限としては5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。 In particular, when an aqueous medium is used, it is preferable to make a slurry using a thickener and a latex such as styrene-butadiene rubber (SBR). A thickener is usually used to adjust the viscosity of the slurry. The thickener is not particularly limited, and specific examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio. When a thickener is further added, the ratio of the thickener to the active material is 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more. The upper limit is 5% by mass or less, preferably 3% by mass or less, more preferably 2% by mass or less. Below this range, applicability may be significantly reduced. If it exceeds, the ratio of the active material in the positive electrode active material layer may decrease, and there may be a problem that the capacity of the battery decreases and a problem that the resistance between the positive electrode active materials increases.
[[[集電体]]]
正極集電体の材質としては特に制限は無く、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
[[[Current collector]]]
There is no restriction | limiting in particular as a material of a positive electrode electrical power collector, A well-known thing can be used arbitrarily. Specific examples include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum; and carbon materials such as carbon cloth and carbon paper. Of these, metal materials, particularly aluminum, are preferred.
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また上限は、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、薄膜がこの範囲よりも厚い と取り扱い性が損なわれる場合がある。 Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal in the case of a metal material. A thin film, a carbon cylinder, etc. are mentioned. Of these, metal thin films are preferred. In addition, you may form a thin film suitably in mesh shape. Although the thickness of the thin film is arbitrary, it is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and the upper limit is usually 1 mm or less, preferably 100 μm or less, more preferably 50 μm or less. If the thin film is thinner than this range, the strength required for the current collector may be insufficient. Conversely, if the thin film is thicker than this range, the handleability may be impaired.
集電体と正極活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の正極活物質層の厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、下限は、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。 The ratio of the thickness of the current collector to the positive electrode active material layer is not particularly limited, but the value of (thickness of the positive electrode active material layer on one side immediately before electrolyte injection) / (thickness of the current collector) is 20 The lower limit is preferably 15 or less, most preferably 10 or less, and the lower limit is preferably 0.5 or more, more preferably 0.8 or more, and most preferably 1 or more. Above this range, the current collector may generate heat due to Joule heat during high current density charge / discharge. Below this range, the volume ratio of the current collector to the positive electrode active material increases and the battery capacity may decrease.
[[[電極面積]]]
本発明の非水系電解液を用いる場合、高出力かつ高温時の安定性を高める観点から、正極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、二次電池の外装の表面積に対する前記正極の電極面積の総和が面積比で15倍以上とすることが好ましく、更に40倍以上とすることがより好ましい。外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極面積の総和とは、負極活物質を含む合材層に対向する正極合材層の幾何表面積であり、集電体箔を介して両面に正極合材層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
[[[Electrode area]]]
When using the non-aqueous electrolyte of the present invention, it is preferable that the area of the positive electrode active material layer is larger than the outer surface area of the battery outer case from the viewpoint of increasing the stability at high output and high temperature. Specifically, the sum of the electrode areas of the positive electrode with respect to the surface area of the exterior of the secondary battery is preferably 15 times or more, and more preferably 40 times or more. The outer surface area of the outer case is the total area obtained by calculation from the vertical, horizontal, and thickness dimensions of the case part filled with the power generation element excluding the protruding part of the terminal in the case of a bottomed square shape. . In the case of a bottomed cylindrical shape, the geometric surface area approximates the case portion filled with the power generation element excluding the protruding portion of the terminal as a cylinder. The total electrode area of the positive electrode is the geometric surface area of the positive electrode mixture layer facing the mixture layer containing the negative electrode active material, and in the structure in which the positive electrode mixture layer is formed on both sides via the current collector foil. , The sum of the areas where each surface is calculated separately.
[[[放電容量]]]
本発明の二次電池用非水系電解液を用いる場合、二次電池の1個の電池外装に収納される電池要素のもつ電気容量(電池を満充電状態から放電状態まで放電したときの電気容量)が、3アンペアーアワー(Ah)以上であると、出力特性の向上効果が大きくなるため好ましい。そのため、正極板は、放電容量が満充電で、3アンペアアワー(Ah)以上20Ah以下になるように設計することが好ましく、更に4Ah以上10Ah以下がより好ましい。3Ah未満では、大電流の取り出し時に電極反応抵抗による電圧低下が大きくなり電力効率が悪くなる場合がある。20Ahを超えると、電極反応抵抗が小さくなり電力効率は良くなるが、パルス充放電時の電池内部発熱による温度分布が大きく、充放電繰り返しの耐久性が劣り、また、過充電や内部短絡等の異常時の急激な発熱に対して放熱効率も悪くなり、内圧が上昇してガス放出弁が作動する現象(弁作動)、電池内容物が外に激しく噴出する現象(破裂)に至る確率が上がる場合がある。
[[[Discharge capacity]]]
When the non-aqueous electrolyte for secondary battery of the present invention is used, the electric capacity of the battery element housed in one battery case of the secondary battery (electric capacity when the battery is discharged from the fully charged state to the discharged state) ) Is 3 ampere hours (Ah) or more, since the effect of improving output characteristics is increased. Therefore, the positive electrode plate is preferably designed so that the discharge capacity is fully charged and is 3 ampere hours (Ah) or more and 20 Ah or less, and more preferably 4 Ah or more and 10 Ah or less. If it is less than 3 Ah, the voltage drop due to the electrode reaction resistance becomes large when taking out a large current, and the power efficiency may deteriorate. If it exceeds 20 Ah, the electrode reaction resistance is reduced and the power efficiency is improved, but the temperature distribution due to the internal heat generation of the battery during pulse charge / discharge is large, the durability of repeated charge / discharge is inferior, and overcharge, internal short circuit, etc. The heat dissipation efficiency deteriorates due to sudden heat generation at the time of abnormality, and the probability that the internal pressure rises and the gas release valve operates (valve operation), and the battery contents erupt violently (explosion) increases. There is a case.
[[[正極板の厚さ]]]
正極板の厚さは特に限定されるものではないが、高容量かつ高出力の観点から、芯材の金属箔厚さを差し引いた合材層の厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、上限としては、好ましくは200μm以下、より好ましくは100μm以下である。
[[[Positive electrode plate thickness]]]
The thickness of the positive electrode plate is not particularly limited, but from the viewpoint of high capacity and high output, the thickness of the composite layer obtained by subtracting the metal foil thickness of the core material is relative to one side of the current collector. The lower limit is preferably 10 μm or more, more preferably 20 μm or more, and the upper limit is preferably 200 μm or less, more preferably 100 μm or less.
<リチウム二次電池>
以下に、本発明のリチウム二次電池について詳細に記す。
<Lithium secondary battery>
The lithium secondary battery of the present invention will be described in detail below.
[電池形状]
電池形状は特に限定されるものではないが、有底筒型形状、有底角型形状、薄型形状、シート形状、ペーパー形状が挙げられる。システムや機器に組み込まれる際に、容積効率を高めて収納性を上げるために、電池周辺に配置される周辺システムへの収まりを考慮した馬蹄形、櫛型形状等の異型のものであってもよい。電池内部の熱を効率よく外部に放出する観点から、比較的平らで大面積の面を少なくとも一つを有する角型形状が好ましい。有底筒型形状の電池では、充填される発電素子に対する外表面積が小さくなるので、充電や放電時に内部抵抗による発生するジュール発熱を効率よく外部に逃げる設計にすることが好ましい。また、熱伝導性の高い物質の充填比率を高め、内部での温度分布が小さくなるように設計することが好ましい。有底角型形状では、一番大きい面の面積S(端子部を除く外形寸法の幅と高さとの積、単位cm2)の2倍と電池外形の厚さT(単位cm)との比率2S/Tの値が100以上であることが好ましく、200以上であることが更に好適である。最大面を大きくすることにより高出力かつ大容量の電池であってもサイクル性や高温保存等の特性を向上させると共に、異常発熱時の放熱効率を上げることができ、後述する「弁作動」や「破裂」という危険な状態になることを抑制することができる。
[Battery shape]
The battery shape is not particularly limited, and examples thereof include a bottomed cylindrical shape, a bottomed square shape, a thin shape, a sheet shape, and a paper shape. When incorporating into a system or device, in order to increase the volumetric efficiency and improve the storage capacity, it may be of a different shape such as a horseshoe shape or a comb shape considering the fit in the peripheral system arranged around the battery. . From the viewpoint of efficiently releasing the heat inside the battery to the outside, a rectangular shape having at least one surface that is relatively flat and has a large area is preferable. In a battery having a bottomed cylindrical shape, since the outer surface area with respect to the power generating element to be filled becomes small, it is preferable to design so that Joule heat generated by the internal resistance at the time of charging and discharging efficiently escapes to the outside. Moreover, it is preferable to design so that the filling ratio of the substance having high thermal conductivity is increased and the temperature distribution inside is reduced. In the bottomed square shape, the ratio between the area S of the largest surface (the product of the width and height of the outer dimensions excluding the terminal portion, unit cm 2 ) and the thickness T (unit cm) of the battery outer shape The 2S / T value is preferably 100 or more, and more preferably 200 or more. By increasing the maximum surface, it is possible to improve characteristics such as cycleability and high-temperature storage even for high-power and large-capacity batteries, and increase the heat dissipation efficiency during abnormal heat generation. It is possible to suppress a dangerous state of “rupture”.
[電池構成]
本発明の充放電可能なリチウム二次電池は、リチウムイオンを吸蔵放出可能な前述の正極及び負極、前述の非水系電解液、正極と負極の間に配設されるセパレータ、集電端子、及び外装ケース等によって少なくとも構成される。要すれば、電池の内部及び/又は電池の外部に保護素子を装着してもよい。
[Battery configuration]
The rechargeable lithium secondary battery of the present invention includes the above-described positive electrode and negative electrode capable of occluding and releasing lithium ions, the above-described non-aqueous electrolyte, a separator disposed between the positive electrode and the negative electrode, a current collecting terminal, and It is comprised at least by an exterior case etc. If necessary, a protective element may be mounted inside the battery and / or outside the battery.
[負極]
以下に本発明のリチウム二次電池に使用される負極について説明する。
[[負極活物質]]
以下に負極に使用される負極活物質について述べる。
[[[組成]]]
負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。なかでも炭素質材料又はリチウム複合酸化物が安全性の点から好ましく用いられる。金属複合酸化物としては、リチウムを吸蔵、放出可能であれば特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
[Negative electrode]
Below, the negative electrode used for the lithium secondary battery of this invention is demonstrated.
[[Negative electrode active material]]
The negative electrode active material used for the negative electrode is described below.
[[[composition]]]
The negative electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. Carbonaceous materials, metal oxides such as tin oxide and silicon oxide, metal composite oxides, lithium simple substance And lithium alloys such as lithium aluminum alloy and metals that can form alloys with lithium such as Sn and Si. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio. Of these, carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of safety. The metal composite oxide is not particularly limited as long as it can occlude and release lithium, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質;炭素質物質(例えば天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ、或いはこれらピッチ)を酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素材料、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物(例えば、軟ピッチから硬ピッチまでのコールタールピッチ、或いは乾留液化油等の石炭系重質油、常圧残油、減圧残油の直流系重質油、原油、ナフサ等の熱分解時に副生するエチレンタール等分解系石油重質油、更に、アセナフチレン、デカシクレン、アントラセン、フェナントレン等の芳香族炭化水素、フェナジンやアクリジン等のN環化合物、チオフェン、ビチオフェン等のS環化合物、ビフェニル、テルフェニル等のポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、これらのものの不溶化処理品、含窒素性のポリアクリロニトリル、ポリピロール等の有機高分子、含硫黄性のポリチオフェン、ポリスチレン等の有機高分子、セルロース、リグニン、マンナン、ポリガラクトウロン酸、キトサン、サッカロースに代表される多糖類等の天然高分子、ポリフェニレンサルファイド、ポリフェニレンオキシド等の熱可塑性樹脂、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂等の熱硬化性樹脂)及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n−へキサン等の低分子有機溶媒に溶解させた溶液及びこれらの炭化物]を400から3200℃の範囲で一回以上熱処理された炭素材料、
(3)負極活物質層が少なくとも2種類以上の異なる結晶性を有する炭素質から成り立ちかつ/又はその異なる結晶性の炭素質が接する界面を有している炭素材料、
(4)負極活物質層が少なくとも2種類以上の異なる配向性を有する炭素質から成り立ちかつ/又はその異なる配向性の炭素質が接する界面を有している炭素材料、
から選ばれるものが初期不可逆容量、高電流密度充放電特性のバランスが良く好ましい。
As a carbonaceous material,
(1) natural graphite,
(2) artificial carbonaceous material and artificial graphite material; carbonaceous material (for example, natural graphite, coal-based coke, petroleum-based coke, coal-based pitch, petroleum-based pitch, or these pitches) oxidized, needle coke, Pitch coke and carbon materials partially graphitized from these, pyrolysis products of organic materials such as furnace black, acetylene black, pitch-based carbon fiber, carbonizable organic materials (for example, coal tar pitch from soft pitch to hard pitch, or Coal heavy oil such as dry distillation liquefied oil, normal pressure residual oil, direct current heavy oil of reduced pressure residual oil, crude oil, cracked petroleum heavy oil such as ethylene tar produced during thermal decomposition of naphtha, etc., and acenaphthylene , Aromatic hydrocarbons such as decacyclene, anthracene, phenanthrene, N-ring compounds such as phenazine and acridine, thiophene, bithioff S-ring compounds such as polyphenyl, polyphenylene such as biphenyl and terphenyl, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, insolubilized products of these, organic polymers such as nitrogen-containing polyacrylonitrile and polypyrrole, sulfur-containing Organic polymers such as polythiophene and polystyrene, natural polymers such as polysaccharides such as cellulose, lignin, mannan, polygalacturonic acid, chitosan and saccharose, thermoplastic resins such as polyphenylene sulfide and polyphenylene oxide, and furfuryl alcohol resins And thermosetting resins such as phenol-formaldehyde resins and imide resins) and their carbides or carbonizable organic substances in a low molecular organic solvent such as benzene, toluene, xylene, quinoline, n-hexane, and This Carbon material is heat treated one or more times et carbide] is in the range of 400 to 3200 ° C.,
(3) a carbon material in which the negative electrode active material layer is composed of at least two types of carbonaceous materials having different crystallinity and / or has an interface in contact with the different crystalline carbonaceous materials,
(4) A carbon material in which the negative electrode active material layer is composed of at least two kinds of carbonaceous materials having different orientations and / or has an interface in contact with the carbonaceous materials having different orientations,
Is preferably a good balance between initial irreversible capacity and high current density charge / discharge characteristics.
[[負極の構成、物性、調製方法]]
炭素質材料についての性質や炭素質材料を含有する負極電極及び電極化手法、集電体、リチウムイオン二次電池については、次に示す(1)〜(19)の何れか1項又は複数項を同時に満たしていることが望ましい。
[[Negative electrode configuration, physical properties, preparation method]]
Regarding the properties of the carbonaceous material, the negative electrode containing the carbonaceous material, the electrodeification method, the current collector, and the lithium ion secondary battery, any one or more of (1) to (19) shown below It is desirable to satisfy
(1)X線パラメータ
炭素質材料は、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、0.335nm以上であることが好ましく、上限は、通常0.36nm以下、好ましくは0.35nm以下、更に好ましくは0.345nm以下であることが望まれる。また、学振法によるX線回折で求めた炭素質材料の結晶子サイズ(Lc)は、1nm以上であることが好ましく、中でも1.5nm以上であることが更に好ましい。
(1) X-ray parameters For carbonaceous materials, the d value (interlayer distance) of the lattice plane (002 plane) determined by X-ray diffraction by the Gakushin method is preferably 0.335 nm or more, and the upper limit is usually It is desired that the thickness is 0.36 nm or less, preferably 0.35 nm or less, and more preferably 0.345 nm or less. The crystallite size (Lc) of the carbonaceous material determined by X-ray diffraction by the Gakushin method is preferably 1 nm or more, and more preferably 1.5 nm or more.
(2)灰分
炭素質材料中に含まれる灰分は、炭素質材料の全質量に対して、1質量%以下、中でも0.5質量%以下、特に0.1質量%以下、下限としては1ppm以上であることが好ましい。上記の範囲を上回ると充放電時の電解液との反応による電池性能の劣化が無視できなくなる場合がある。この範囲を下回ると、製造に多大な時間とエネルギーと汚染防止のための設備とを必要とし、コストが上昇する場合がある。
(2) Ash content The ash content in the carbonaceous material is 1% by mass or less, particularly 0.5% by mass or less, especially 0.1% by mass or less, and the lower limit is 1 ppm or more with respect to the total mass of the carbonaceous material. It is preferable that When the above range is exceeded, deterioration of the battery performance due to the reaction with the electrolyte during charging / discharging may not be negligible. Below this range, the manufacturing process requires a lot of time, energy and equipment for preventing contamination, which may increase costs.
(3)体積基準平均粒径
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)が、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、更に好ましくは7μm以上である。また、上限は、通常100μm以下、好ましくは50μm以下、より好ましくは40μm以下、更に好ましくは30μm以下、特に好ましくは25μm以下である。上記範囲を下回ると、不可逆容量が増大して、初期の電池容量の損失を招くことになる場合がある。また上記範囲を上回ると、塗布により電極を作製する際に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
(3) Volume-based average particle diameter The volume-based average particle diameter of the carbonaceous material is usually 1 μm or more, preferably 3 μm or more, more preferably a volume-based average particle diameter (median diameter) determined by a laser diffraction / scattering method. Is 5 μm or more, more preferably 7 μm or more. Moreover, an upper limit is 100 micrometers or less normally, Preferably it is 50 micrometers or less, More preferably, it is 40 micrometers or less, More preferably, it is 30 micrometers or less, Most preferably, it is 25 micrometers or less. If it falls below the above range, the irreversible capacity may increase, leading to loss of the initial battery capacity. On the other hand, when the above range is exceeded, when an electrode is produced by coating, a non-uniform coating surface tends to be formed, which may be undesirable in the battery production process.
本発明において体積基準平均粒径は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(例えば、堀場製作所社製LA−700)を用いて測定したメジアン径で定義する。 In the present invention, the volume-based average particle size is determined by dispersing carbon powder in a 0.2% by mass aqueous solution (about 10 mL) of polyoxyethylene (20) sorbitan monolaurate, which is a surfactant, and laser diffraction / scattering type particle size. It is defined by the median diameter measured using a distribution meter (for example, LA-700 manufactured by Horiba, Ltd.).
(4)ラマンR値、ラマン半値幅
アルゴンイオンレーザーラマンスペクトル法を用いて測定した炭素質材料のラマンR値は、通常0.01以上、好ましくは0.03以上、より好ましくは0.1以上、上限としては1.5以下、好ましくは1.2以下、より好ましくは1.0以下、更に好ましくは0.5以下の範囲である。ラマンR値がこの範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。即ち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、この範囲を上回ると、粒子表面の結晶性が低下し、電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
(4) Raman R value, Raman half-value width The Raman R value of the carbonaceous material measured using the argon ion laser Raman spectrum method is usually 0.01 or more, preferably 0.03 or more, more preferably 0.1 or more. The upper limit is 1.5 or less, preferably 1.2 or less, more preferably 1.0 or less, and still more preferably 0.5 or less. When the Raman R value is below this range, the crystallinity of the particle surface becomes too high, and there are cases where the number of sites where Li enters between layers decreases with charge / discharge. That is, charge acceptance may be reduced. In addition, when the negative electrode is densified by applying it to the current collector and then pressing it, the crystals are likely to be oriented in a direction parallel to the electrode plate, which may lead to a decrease in load characteristics. On the other hand, if it exceeds this range, the crystallinity of the particle surface will decrease, the reactivity with the electrolyte will increase, and the efficiency may decrease and the generation of gas may increase.
また、本発明の炭素質材料の1580cm-1付近のラマン半値幅は特に制限されないが、通常10cm-1以上、好ましくは15cm-1以上であり、また上限として、通常100cm-1以下、好ましくは80cm-1以下、より好ましくは60cm-1以下、更に好ましくは40cm-1以下の範囲である。ラマン半値幅がこの範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。即ち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、この範囲を上回ると、粒子表面の結晶性が低下し、電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。 Further, the Raman half-width in the vicinity of 1580 cm −1 of the carbonaceous material of the present invention is not particularly limited, but is usually 10 cm −1 or more, preferably 15 cm −1 or more, and the upper limit is usually 100 cm −1 or less, preferably The range is 80 cm −1 or less, more preferably 60 cm −1 or less, and still more preferably 40 cm −1 or less. When the Raman half width is less than this range, the crystallinity of the particle surface becomes too high, and there are cases where the number of sites where Li enters between layers decreases with charge and discharge. That is, charge acceptance may be reduced. In addition, when the negative electrode is densified by applying it to the current collector and then pressing it, the crystals are likely to be oriented in a direction parallel to the electrode plate, which may lead to a decrease in load characteristics. On the other hand, if it exceeds this range, the crystallinity of the particle surface will decrease, the reactivity with the electrolyte will increase, and the efficiency may decrease and the generation of gas may increase.
ラマンスペクトルの測定は、ラマン分光器(例えば、日本分光社製ラマン分光器)を用い、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られたラマンスペクトルについて、1580cm-1付近のピークPAの強度IAと、1360cm-1付近のピークPBの強度IBとを測定し、その強度比R(R=IB/IA)を算出して、これを炭素質材料のラマンR値と定義する。また、得られたラマンスペクトルの1580cm-1付近のピークPAの半値幅を測定し、これを炭素質材料のラマン半値幅と定義する。 The Raman spectrum is measured using a Raman spectrometer (for example, a Raman spectrometer manufactured by JASCO Corporation), the sample is naturally dropped into the measurement cell and filled, and the sample surface in the cell is irradiated with an argon ion laser beam. The cell is rotated in a plane perpendicular to the laser beam. The obtained Raman spectrum, the intensity I A of the peak P A in the vicinity of 1580 cm -1, and measuring the intensity I B of a peak P B in the vicinity of 1360 cm -1, the intensity ratio R (R = I B / I A ) Is calculated and defined as the Raman R value of the carbonaceous material. Further, the half width of the peak P A near 1580 cm −1 of the obtained Raman spectrum is measured, and this is defined as the Raman half width of the carbonaceous material.
なお、ここでのラマン測定条件は、次の通りである。
・アルゴンイオンレーザー波長:514.5nm
・試料上のレーザーパワー :15〜25mW
・分解能 :10〜20cm-1
・測定範囲 :1100cm-1〜1730cm-1
・ラマンR値、半値幅解析 :バックグラウンド処理
・スムージング処理 :単純平均、コンボリューション5ポイント
The Raman measurement conditions here are as follows.
Argon ion laser wavelength: 514.5nm
・ Laser power on the sample: 15-25mW
・ Resolution: 10-20cm -1
Measurement range: 1100 cm −1 to 1730 cm −1
・ Raman R value, half width analysis: Background processing ・ Smoothing processing: Simple average, 5 points of convolution
(5)BET比表面積
BET法を用いて測定した本発明の炭素質材料の比表面積は、通常0.1m2/g以上、好ましくは0.7m2/g以上、より好ましくは1.0m2/g以上、更に好ましくは1.5m2/g以上である。上限は、通常100m2/g以下、好ましくは25m2/g以下 、より好ましくは15m2/g以下、更に好ましくは10m2/g以下である。比表面積の値がこの範囲を下回ると、負極材料として用いた場合の充電時にリチウムの受け入れ性が悪くなりやすく、リチウムが電極表面で析出しやすくなる場合がある。一方、この範囲を上回ると、負極材料として用いた時に電解液との反応性が増加し、ガス発生が多くなりやすく、好ましい電池が得られにくい場合がある。
(5) BET specific surface area The specific surface area of the carbonaceous material of the present invention measured using the BET method is usually 0.1 m 2 / g or more, preferably 0.7 m 2 / g or more, more preferably 1.0 m 2. / G or more, more preferably 1.5 m 2 / g or more. The upper limit is usually 100 m 2 / g or less, preferably 25 m 2 / g or less, more preferably 15 m 2 / g or less, and still more preferably 10 m 2 / g or less. When the value of the specific surface area is less than this range, the acceptability of lithium is likely to deteriorate during charging when used as a negative electrode material, and lithium may easily precipitate on the electrode surface. On the other hand, when it exceeds this range, when used as a negative electrode material, the reactivity with the electrolyte increases, gas generation tends to increase, and a preferable battery may be difficult to obtain.
BET法による比表面積は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用い、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値を用いる。 The specific surface area according to the BET method is determined by using a surface area meter (for example, a fully automatic surface area measuring device manufactured by Riken Okura), preliminarily drying the sample at 350 ° C. for 15 minutes under a nitrogen flow, and then comparing the nitrogen relative to the atmospheric pressure. A value measured by a nitrogen adsorption BET one-point method using a gas flow method is used, using a nitrogen helium mixed gas accurately adjusted so that the pressure value becomes 0.3.
(6)細孔径分布
本発明に用いられる炭素質材料の細孔径分布は、Hgポロシメトリー(水銀圧入法)により求められる、細孔の直径が0.01μm以上、1μm以下に相当する粒子内の空隙、粒子表面のステップによる凹凸、粒子間の接触面等の量が、0.01mL/g以上、好ましくは0.05mL/g以上、より好ましくは0.1mL/g以上、上限として0.6mL/g以下、好ましくは0.4mL/g以下、より好ましくは0.3mL/g以下の範囲である。この範囲を上回ると、極板化時にバインダーを多量に必要となる場合がある。下回ると、高電流密度充放電特性が低下し、かつ充放電時の電極の膨張収縮の緩和効果が得られない場合がある。
(6) Pore size distribution The pore size distribution of the carbonaceous material used in the present invention is determined by Hg porosimetry (mercury intrusion method), and the pore diameter is 0.01 μm to 1 μm. The amount of voids, irregularities due to particle surface steps, contact surfaces between particles, etc. is 0.01 mL / g or more, preferably 0.05 mL / g or more, more preferably 0.1 mL / g or more, and the upper limit is 0.6 mL. / G or less, preferably 0.4 mL / g or less, more preferably 0.3 mL / g or less. If it exceeds this range, a large amount of binder may be required when forming an electrode plate. If it is less than the range, the high current density charge / discharge characteristics may be deteriorated, and the effect of mitigating the expansion / contraction of the electrode during charge / discharge may not be obtained.
また、0.01μm〜100μmの範囲の細孔径に相当する全細孔容積が、好ましくは0.1mL/g以上、より好ましくは0.25mL/g以上、更に好ましくは0.4mL/g以上、上限として10mL/g以下、好ましくは5mL/g以下、より好ましくは2mL/g以下の範囲である。この範囲を上回ると極板化時にバインダーを多量に必要となる場合がある。下回ると極板化時に増粘剤や結着剤の分散効果が得られない場合がある。また、平均細孔径が、好ましくは0.05μm以上、より好ましくは0.1μm以上、更に好ましくは0.5μm以上、上限として50μm以下、好ましくは20μm以下、より好ましくは10μm以下の範囲である。この範囲を上回ると、バインダーを多量に必要となる場合がある。下回ると高電流密度充放電特性が低下する場合がある。 Further, the total pore volume corresponding to the pore diameter in the range of 0.01 μm to 100 μm is preferably 0.1 mL / g or more, more preferably 0.25 mL / g or more, still more preferably 0.4 mL / g or more, The upper limit is 10 mL / g or less, preferably 5 mL / g or less, more preferably 2 mL / g or less. If this range is exceeded, a large amount of binder may be required during electrode plate formation. If it is less than that, it may not be possible to obtain the effect of dispersing the thickener or the binder during the electrode plate formation. The average pore diameter is preferably 0.05 μm or more, more preferably 0.1 μm or more, further preferably 0.5 μm or more, and the upper limit is 50 μm or less, preferably 20 μm or less, more preferably 10 μm or less. Beyond this range, a large amount of binder may be required. If it is less, the high current density charge / discharge characteristics may deteriorate.
Hgポロシメトリー用の装置として、水銀ポロシメータ(オートポア9520:マイクロメリテックス社製)を用いた。試料約0.2gを、パウダー用セルに封入し、室温、真空下(50μmHg以下)にて10分間脱気して前処理を実施した。引き続き、4psia(約28kPa)に減圧し水銀を導入し、4psia(約28kPa)から40000psia(約280MPa)までステップ状に昇圧させた後、25psia(約170kPa)まで降圧させた。昇圧時のステップ数は80点以上とし、各ステップでは10秒の平衡時間の後、水銀圧入量を測定した。こうして得られた水銀圧入曲線からWashburnの式を用い、細孔径分布を算出した。なお、水銀の表面張力(γ)は485dyne/cm、接触角(ψ)は140°とした。平均細孔径には累積細孔体積が50%となるときの細孔径を用いた。 As an apparatus for Hg porosimetry, a mercury porosimeter (Autopore 9520: manufactured by Micromeritex Corporation) was used. About 0.2 g of a sample was sealed in a powder cell and pretreated by degassing for 10 minutes at room temperature under vacuum (50 μmHg or less). Subsequently, the pressure was reduced to 4 psia (about 28 kPa), mercury was introduced, the pressure was increased stepwise from 4 psia (about 28 kPa) to 40000 psia (about 280 MPa), and then the pressure was reduced to 25 psia (about 170 kPa). The number of steps at the time of pressure increase was 80 points or more, and the mercury intrusion amount was measured after an equilibration time of 10 seconds in each step. The pore size distribution was calculated from the mercury intrusion curve thus obtained using the Washburn equation. The surface tension (γ) of mercury was 485 dyne / cm, and the contact angle (ψ) was 140 °. As the average pore diameter, the pore diameter when the cumulative pore volume was 50% was used.
(7)円形度
炭素質材料の球形の程度として円形度を用い、その粒径が3〜40μmの範囲にある粒子の円形度が0.1以上が好ましく、特に好ましくは0.5以上、より好ましくは0.8以上、更に好ましくは0.85以上、最も好ましくは0.9以上である。円形度が大きいと高電流密度充放電特性が向上するため好ましい。
円形度は以下の式で定義され、円形度が1のときに理論的真球となる。
円形度
=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)
(7) Circularity Using circularity as the degree of sphericity of the carbonaceous material, the circularity of particles having a particle size in the range of 3 to 40 μm is preferably 0.1 or more, particularly preferably 0.5 or more. Preferably it is 0.8 or more, more preferably 0.85 or more, and most preferably 0.9 or more. High circularity is preferable because high current density charge / discharge characteristics are improved.
The circularity is defined by the following formula. When the circularity is 1, a theoretical sphere is obtained.
Circularity = (perimeter of equivalent circle having the same area as the particle projection shape) / (actual circumference of particle projection shape)
円形度の値としては、例えば、フロー式粒子像分析装置(例えば、シスメックスインダストリアル社製FPIA)を用い、試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定した値を用いる。 As the value of the circularity, for example, a flow type particle image analyzer (for example, FPIA manufactured by Sysmex Industrial Co., Ltd.) is used, and about 0.2 g of a sample is mixed with polyoxyethylene (20) sorbitan monolaurate as a surfactant. Particles having a detection range of 0.6 to 400 μm and a particle size in the range of 3 to 40 μm after being dispersed in a 0.2 mass% aqueous solution (about 50 mL) and irradiated with an ultrasonic wave of 28 kHz for 1 minute at an output of 60 W Use the value measured for.
円形度を向上させる方法は、特に限定されないが、球形化処理を施して球形にしたものが、電極体にしたときの粒子間空隙の形状が整うので好ましい。球形化処理の例としては、せん断力、圧縮力を与えることによって機械的に球形に近づける方法、複数の微粒子をバインダー若しくは、粒子自身の有する付着力によって造粒する機械的・物理的処理方法等が挙げられる。 The method for improving the degree of circularity is not particularly limited, but a spheroidized sphere is preferable because the shape of the interparticle void when the electrode body is formed is preferable. Examples of spheroidizing treatment include a method of mechanically approximating a sphere by applying a shearing force and a compressive force, a mechanical / physical processing method of granulating a plurality of fine particles by an adhesive force possessed by a binder or particles, etc. Is mentioned.
(8)真密度
炭素質材料の真密度は、通常1.4g/cm3以上、好ましくは1.6g/cm3以上、より好ましくは1.8g/cm3以上、更に好ましくは2.0g/cm3以上であり、上限としては2.26g/cm3以下である。上限は黒鉛の理論値である。この範囲を下回ると炭素の結晶性が低すぎて初期不可逆容量が増大する場合がある。本発明においては、真密度は、ブタノールを使用した液相置換法(ピクノメータ法)によって測定したもので定義する。
(8) True density The true density of the carbonaceous material is usually 1.4 g / cm 3 or more, preferably 1.6 g / cm 3 or more, more preferably 1.8 g / cm 3 or more, and still more preferably 2.0 g / cm. cm 3 and the upper limit is 2.26 g / cm 3 or less. The upper limit is the theoretical value of graphite. Below this range, the crystallinity of the carbon is too low and the initial irreversible capacity may increase. In the present invention, the true density is defined by a value measured by a liquid phase substitution method (pycnometer method) using butanol.
(9)タップ密度
炭素質材料のタップ密度は、通常0.1g/cm3以上、好ましくは0.5g/cm3以上、更に好ましくは0.7g/cm3以上、特に好ましくは1.0g/cm3以上であることが望まれる。また、上限は、好ましくは2g/cm3以下、更に好ましくは1.8g/cm3以下、特に好ましくは1.6g/cm3以下である。タップ密度がこの範囲を下回ると、負極として用いた場合に充填密度が上がり難く、高容量の電池を得ることができない場合がある。一方、この範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい場合がある。タップ密度は、正極の箇所で述べた方法と同様な方法で測定され、それによって定義される。
(9) Tap density The tap density of the carbonaceous material is usually 0.1 g / cm 3 or more, preferably 0.5 g / cm 3 or more, more preferably 0.7 g / cm 3 or more, particularly preferably 1.0 g / cm. It is desired to be cm 3 or more. The upper limit is preferably 2 g / cm 3 or less, more preferably 1.8 g / cm 3 or less, and particularly preferably 1.6 g / cm 3 or less. When the tap density is below this range, the packing density is difficult to increase when used as a negative electrode, and a high-capacity battery may not be obtained. On the other hand, if it exceeds this range, there are too few voids between the particles in the electrode, it becomes difficult to ensure conductivity between the particles, and it may be difficult to obtain preferable battery characteristics. The tap density is measured by a method similar to the method described in the section of the positive electrode and is defined thereby.
(10)配向比
炭素質材料の配向比は、通常0.005以上、好ましくは0.01以上、より好ましくは0.015以上、上限は、理論上0.67以下の範囲である。この範囲を下回ると、高密度充放電特性が低下する場合がある。
(10) Orientation ratio The orientation ratio of the carbonaceous material is usually 0.005 or more, preferably 0.01 or more, more preferably 0.015 or more, and the upper limit is theoretically 0.67 or less. Below this range, the high-density charge / discharge characteristics may deteriorate.
配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径17mmの成型機に充填し600kgf/cm2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出し、活物質の配向比と定義する。 The orientation ratio is measured by X-ray diffraction after pressure-molding the sample. X-ray diffraction is performed by setting a molded body obtained by filling 0.47 g of a sample into a molding machine having a diameter of 17 mm and compressing it at 600 kgf / cm 2 so that it is flush with the surface of the sample holder for measurement. Measure. A ratio represented by (110) diffraction peak intensity / (004) diffraction peak intensity is calculated from the (110) diffraction and (004) diffraction peak intensities of the obtained carbon, and defined as the orientation ratio of the active material.
ここでのX線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :
発散スリット=0.5度、受光スリット=0.15mm、散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
The X-ray diffraction measurement conditions here are as follows. “2θ” indicates a diffraction angle.
・ Target: Cu (Kα ray) graphite monochromator ・ Slit:
Divergence slit = 0.5 degree, light receiving slit = 0.15 mm, scattering slit = 0.5 degree. Measurement range and step angle / measurement time:
(110) plane: 75 degrees ≦ 2θ ≦ 80 degrees 1 degree / 60 seconds (004) plane: 52 degrees ≦ 2θ ≦ 57 degrees 1 degree / 60 seconds
(11)アスペクト比(粉)
アスペクト比は理論上1以上であり、上限として10以下、好ましくは8以下、更に好ましくは5以下である。上限を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。
(11) Aspect ratio (powder)
The aspect ratio is theoretically 1 or more, and the upper limit is 10 or less, preferably 8 or less, more preferably 5 or less. If the upper limit is exceeded, streaking or a uniform coated surface may not be obtained during electrode plate formation, and the high current density charge / discharge characteristics may deteriorate.
なお、アスペクト比は、3次元的に観察した時の炭素質材料粒子の最長となる径A、それと直交する最短となる径Bとしたとき、A/Bであらわされる。炭素粒子の観察は、拡大観察ができる走査型電子顕微鏡で行う。厚さ50μm以下の金属板の端面に固定した任意の50個の黒鉛粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、A、Bを測定し、A/Bの平均値を求める。 The aspect ratio is expressed as A / B when the longest diameter A of the carbonaceous material particles when observed three-dimensionally and the shortest diameter B orthogonal to the carbonaceous material particles. The carbon particles are observed with a scanning electron microscope capable of magnifying observation. Arbitrary 50 graphite particles fixed on the end face of a metal plate having a thickness of 50 μm or less are selected, and the stage on which the sample is fixed is rotated and tilted, and A and B are measured. Find the average value.
(12)副材混合
「副材混合」とは、負極電極中及び/又は負極活物質中に性質の異なる炭素質材料を2種以上含有していることである。ここで述べた性質とは、X線回折パラメータ、メジアン径、アスペクト比、BET比表面積、配向比、ラマンR値、タップ密度、真密度、細孔分布、円形度、灰分量の一つ以上の特性を示す。
(12) Sub-material mixing “Sub-material mixing” means that two or more carbonaceous materials having different properties are contained in the negative electrode and / or the negative electrode active material. The properties described here include one or more of X-ray diffraction parameters, median diameter, aspect ratio, BET specific surface area, orientation ratio, Raman R value, tap density, true density, pore distribution, circularity, and ash content. Show the characteristics.
特に好ましい実施の形態としては、体積基準粒度分布がメジアン径を中心としたときに左右対称とならないことや、ラマンR値が異なる炭素質材料を2種以上含有していること、X線パラメータが異なること等が挙げられる。その効果の一例としては、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素質材料が導電材として含有されることにより電気抵抗を低減させること等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。導電材として添加する場合には0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限としては45質量%以下、好ましくは40質量%の範囲である。この範囲を下回ると、導電性向上の効果が得にくい場合がある。上回ると、初期不可逆容量の増大を招く場合がある。 Particularly preferred embodiments include that the volume-based particle size distribution is not symmetrical when the median diameter is centered, that two or more carbonaceous materials having different Raman R values are contained, and the X-ray parameters are It is different. As an example of the effect, carbonaceous material such as natural graphite, graphite such as artificial graphite, carbon black such as acetylene black, amorphous carbon such as needle coke, etc. is contained as a conductive material, so that electric resistance is increased. It can be reduced. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio. When added as a conductive material, it is 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and the upper limit is 45% by mass or less, preferably 40% by mass. It is a range. Below this range, the effect of improving conductivity may be difficult to obtain. If it exceeds, the initial irreversible capacity may increase.
(13)電極作製
電極の製造は、常法によればよい。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。電池の電解液注液工程直前の段階での片面あたりの負極活物質層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上であり、上限は150μm以下、好ましくは120μm以下、より好ましくは100μm以下である。この範囲を上回ると、電解液が集電体界面付近まで浸透しにくいため、高電流密度充放電特性が低下する場合がある。またこの範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。また、負極活物質をロール成形してシート電極としたり、圧縮成形によりペレット電極としても良い。
(13) Electrode production The electrode may be produced by a conventional method. For example, it is formed by adding a binder, a solvent, and, if necessary, a thickener, a conductive material, a filler, etc. to a negative electrode active material to form a slurry, which is applied to a current collector, dried and then pressed. Can do. The thickness of the negative electrode active material layer per side in the stage immediately before the electrolytic solution pouring step of the battery is usually 15 μm or more, preferably 20 μm or more, more preferably 30 μm or more, and the upper limit is 150 μm or less, preferably 120 μm or less, More preferably, it is 100 μm or less. If it exceeds this range, the electrolyte solution hardly penetrates to the vicinity of the current collector interface, and thus the high current density charge / discharge characteristics may be deteriorated. On the other hand, below this range, the volume ratio of the current collector to the negative electrode active material increases, and the battery capacity may decrease. Further, the negative electrode active material may be roll-formed to form a sheet electrode, or may be formed into a pellet electrode by compression molding.
(14)集電体
集電体としては、公知のものを任意に用いることができる。負極の集電体としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられ、中でも加工し易さとコストの点から特に銅が好ましい。集電体の形状は、集電体が金属材料の場合は、例えば金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも好ましくは金属薄膜、より好ましくは銅箔であり、更に好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。銅箔の厚さが25μmよりも薄い場合、純銅よりも強度の高い銅合金(リン青銅、チタン銅、コルソン合金、Cu−Cr−Zr合金等)を用いることができる。
(14) Current collector Any known current collector can be used. Examples of the current collector for the negative electrode include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Of these, copper is particularly preferable from the viewpoint of ease of processing and cost. When the current collector is a metal material, examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal. Among them, a metal thin film is preferable, a copper foil is more preferable, and a rolled copper foil by a rolling method and an electrolytic copper foil by an electrolytic method are more preferable, and both can be used as a current collector. When the thickness of the copper foil is less than 25 μm, a copper alloy (phosphor bronze, titanium copper, Corson alloy, Cu—Cr—Zr alloy, etc.) having higher strength than pure copper can be used.
圧延法により作製した銅箔からなる集電体は、銅結晶が圧延方向に並んでいるため、負極を密に丸めても、鋭角に丸めても割れにくく、小型の円筒状電池に好適に用いることができる。電解銅箔は、例えば、銅イオンが溶解された電解液中に金属製のドラムを浸漬し、これを回転させながら電流を流すことにより、ドラムの表面に銅を析出させ、これを剥離して得られるものである。上記の圧延銅箔の表面に、電解法により銅を析出させていても良い。銅箔の片面又は両面には、粗面化処理や表面処理(例えば、厚さが数nm〜1μm程度までのクロメート処理、Ti等の下地処理等)がなされていても良い。 A current collector made of a copper foil produced by a rolling method is suitable for use in a small cylindrical battery because the copper crystals are arranged in the rolling direction so that the negative electrode is hard to crack even if it is rounded sharply or rounded at an acute angle. be able to. For example, an electrolytic copper foil is prepared by immersing a metal drum in an electrolytic solution in which copper ions are dissolved, and flowing current while rotating the copper drum, thereby depositing copper on the surface of the drum and peeling it off. It is obtained. Copper may be deposited on the surface of the rolled copper foil by an electrolytic method. One side or both sides of the copper foil may be subjected to a roughening treatment or a surface treatment (for example, a chromate treatment having a thickness of about several nm to 1 μm, a base treatment such as Ti).
集電体基板には、更に次のような物性が望まれる。
(a)平均表面粗さ(Ra)
JISB0601−1994に記載の方法で規定される集電体基板の活物質薄膜形成面の平均表面粗さ(Ra)は、特に制限されないが、通常0.05μm以上、好ましくは0.1μm以上、特に好ましくは0.15μm以上であり、上限は、通常1.5μm以下、好ましくは1.3μm以下、特に好ましくは1.0μm以下である。集電体基板の平均表面粗さ(Ra)を上記した下限と上限の間の範囲内とすることにより、良好な充放電サイクル特性が期待できる。上記下限値以上とすることにより、活物質薄膜との界面の面積が大きくなり、活物質薄膜との密着性が向上する。平均表面粗さ(Ra)の上限値は特に制限されるものではないが、平均表面粗さ(Ra)が1.5μmを超えるものは電池として実用的な厚みの箔としては一般に入手しにくいため、1.5μm以下のものが好ましい。
The following physical properties are desired for the current collector substrate.
(a) Average surface roughness (Ra)
The average surface roughness (Ra) of the active material thin film forming surface of the current collector substrate defined by the method described in JIS B0601-1994 is not particularly limited, but is usually 0.05 μm or more, preferably 0.1 μm or more, particularly The upper limit is usually 1.5 μm or less, preferably 1.3 μm or less, particularly preferably 1.0 μm or less. By setting the average surface roughness (Ra) of the current collector substrate within the range between the lower limit and the upper limit described above, good charge / discharge cycle characteristics can be expected. By setting it to the above lower limit or more, the area of the interface with the active material thin film is increased, and the adhesion with the active material thin film is improved. The upper limit of the average surface roughness (Ra) is not particularly limited, but those having an average surface roughness (Ra) exceeding 1.5 μm are generally difficult to obtain as foils having a practical thickness as a battery. 1.5 μm or less is preferable.
(b)引張強度
集電体基板の引張強度は、特に制限されないが、通常100N/mm2以上、好ましくは250N/mm2以上、更に好ましくは400N/mm2以上、特に好ましくは500N/mm2以上である。引張強度とは、試験片が破断に至るまでに要した最大引張力を、試験片の断面積で割ったものである。本発明における引張強度は、伸び率と同様な装置及び方法で測定される。引張強度が高い集電体基板であれば、充電・放電に伴う活物質薄膜の膨張・収縮による集電体基板の亀裂を抑制することができ、良好なサイクル特性を得ることができる。
(b) Tensile strength The tensile strength of the current collector substrate is not particularly limited, but is usually 100 N / mm 2 or more, preferably 250 N / mm 2 or more, more preferably 400 N / mm 2 or more, and particularly preferably 500 N / mm 2. That's it. The tensile strength is obtained by dividing the maximum tensile force required until the test piece breaks by the cross-sectional area of the test piece. The tensile strength in the present invention is measured by the same apparatus and method as the elongation rate. If the current collector substrate has a high tensile strength, cracking of the current collector substrate due to expansion / contraction of the active material thin film accompanying charging / discharging can be suppressed, and good cycle characteristics can be obtained.
(c)0.2%耐力
集電体基板の0.2%耐力は、特に制限されないが、通常30N/mm2以上、好ましくは150N/mm2以上、特に好ましくは300N/mm2以上である。0.2%耐力とは、0.2%の塑性(永久)歪みを与えるに必要な負荷の大きさであり、この大きさの負荷を加えた後に除荷しても0.2%変形している事を意味している。本発明における0.2%耐力は、伸び率と同様な装置及び方法で測定される。0.2%耐力が高い集電体基板であれば、充電・放電に伴う活物質薄膜の膨張・収縮による集電体基板の塑性変形を抑制することができ、良好なサイクル特性を得ることができる。金属薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上である。また、上限は、通常1mm以下、好ましくは100μm以下、より好ましくは30μm以下である。1μmより薄くなると強度が低下するため塗布が困難となる場合がある。また100μmより厚くなると捲回等で所望の電極の形を変形させる場合がある。また、金属薄膜は、メッシュ状でもよい。
(c) 0.2% proof stress of 0.2% proof stress current collector substrate is not particularly limited, normally 30 N / mm 2 or more, preferably 150 N / mm 2 or more, particularly preferably 300N / mm 2 or more . The 0.2% proof stress is the magnitude of the load necessary to give a plastic (permanent) strain of 0.2%. It means that The 0.2% proof stress in the present invention is measured by the same apparatus and method as the elongation rate. If the current collector substrate has a high 0.2% proof stress, plastic deformation of the current collector substrate due to expansion / contraction of the active material thin film accompanying charging / discharging can be suppressed, and good cycle characteristics can be obtained. it can. Although the thickness of a metal thin film is arbitrary, it is 1 micrometer or more normally, Preferably it is 3 micrometers or more, More preferably, it is 5 micrometers or more. Moreover, an upper limit is 1 mm or less normally, Preferably it is 100 micrometers or less, More preferably, it is 30 micrometers or less. If the thickness is less than 1 μm, the strength may be reduced, and application may be difficult. On the other hand, if the thickness exceeds 100 μm, the shape of the desired electrode may be deformed by winding or the like. The metal thin film may be mesh.
(15)集電体と活物質層の厚さの比
集電体と活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の活物質層厚さ)/(集電体の厚さ)が150以下であることが好ましく、特に好ましくは20以下、より好ましくは10以下であり、下限は0.1以上が好ましく、特に好ましくは0.4以上、より好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
(15) Ratio of current collector and active material layer thickness The ratio of current collector and active material layer thickness is not particularly limited, but (active material layer thickness on one side immediately before electrolyte injection) / The (current collector thickness) is preferably 150 or less, particularly preferably 20 or less, more preferably 10 or less, and the lower limit is preferably 0.1 or more, particularly preferably 0.4 or more, more preferably. Is a range of 1 or more. Above this range, the current collector may generate heat due to Joule heat during high current density charge / discharge. Below this range, the volume ratio of the current collector to the negative electrode active material increases and the battery capacity may decrease.
(16)電極密度
負極活物質を電極化した際の電極構造は特には限定されないが、集電体上に存在している活物質の密度は、好ましくは1.0g/cm3以上、より好ましくは1.2g/cm3、更に好ましくは1.3g/cm3以上であり、上限として2.0g/cm3以下、好ましくは1.9g/cm3以下、より好ましくは1.8g/cm3以下、更に好ましくは1.7g/cm3以下の範囲である。この範囲を上回ると活物質粒子が破壊され、初期不可逆容量の増加や、集電体/活物質界面付近への電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
(16) Electrode density The electrode structure when the negative electrode active material is made into an electrode is not particularly limited, but the density of the active material present on the current collector is preferably 1.0 g / cm 3 or more, more preferably. Is 1.2 g / cm 3 , more preferably 1.3 g / cm 3 or more, and the upper limit is 2.0 g / cm 3 or less, preferably 1.9 g / cm 3 or less, more preferably 1.8 g / cm 3. Hereinafter, the range is more preferably 1.7 g / cm 3 or less. If it exceeds this range, the active material particles are destroyed, which may lead to an increase in initial irreversible capacity and deterioration of high current density charge / discharge characteristics due to a decrease in the permeability of the electrolyte solution near the current collector / active material interface. On the other hand, if it is lower, the conductivity between the active materials is lowered, the battery resistance is increased, and the capacity per unit volume may be lowered.
(17)バインダー
活物質を結着するバインダーとしては、電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。具体的には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル−ブタジエンゴム)、エチレン−プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共 重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。
(17) Binder The binder for binding the active material is not particularly limited as long as it is a material that is stable with respect to the electrolyte and the solvent used during electrode production. Specifically, resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose, nitrocellulose; SBR (styrene-butadiene rubber), isoprene rubber, butadiene rubber, fluorine rubber, NBR ( Acrylonitrile-butadiene rubber), rubber-like polymers such as ethylene-propylene rubber; styrene / butadiene / styrene block copolymer or hydrogenated product thereof; EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / Thermoplastic elastomeric polymer such as butadiene / styrene copolymer, styrene / isoprene / styrene block copolymer or hydrogenated product thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinegar Soft resinous polymers such as vinyl acid copolymers and propylene / α-olefin copolymers; Fluorine-based polymers such as polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, and polytetrafluoroethylene / ethylene copolymers Polymers: Polymer compositions having ionic conductivity of alkali metal ions (particularly lithium ions), and the like. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio.
スラリーを形成するための溶媒としては、活物質、バインダー、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いても良い。水系溶媒の例としては水、アルコールと水との混合溶媒等が挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、プロピレンオキシド、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、上述の増粘剤に併せて分散剤等を加え、SBR等のラテックスを用いてスラリー化する。なお、これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。 The solvent for forming the slurry is not particularly limited as long as it is a solvent that can dissolve or disperse the active material, the binder, and the thickener and conductive material used as necessary. Either an aqueous solvent or an organic solvent may be used. Examples of the aqueous solvent include water, a mixed solvent of alcohol and water, and examples of the organic solvent include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, acrylic acid. Methyl, diethyltriamine, N, N-dimethylaminopropylamine, propylene oxide, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine , Methyl naphthalene, hexane and the like. In particular, when an aqueous solvent is used, a dispersant or the like is added in addition to the above-described thickener, and a slurry is formed using a latex such as SBR. In addition, these may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio.
活物質に対するバインダーの割合は、0.1質量%以上が好ましく、特に好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限としては20質量%以下、好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下の範囲である。この範囲を上回るとバインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量の低下を招く場合がある。また下回ると、負極電極の強度低下を招く場合がある。特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、活物質に対するバインダーの割合は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限としては5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には活物質に対する割合は、1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上であり、上限としては15質量%以下、好ましくは10質量%以下、より好ましくは8質量%以下の範囲である。 The ratio of the binder to the active material is preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and the upper limit is 20% by mass or less, preferably 15%. It is in the range of not more than mass%, more preferably not more than 10 mass%, still more preferably not more than 8 mass%. If it exceeds this range, the binder ratio in which the binder amount does not contribute to the battery capacity increases, and the battery capacity may be reduced. On the other hand, if it is lower, the strength of the negative electrode may be reduced. In particular, when the main component contains a rubbery polymer typified by SBR, the ratio of the binder to the active material is 0.1% by mass or more, preferably 0.5% by mass or more, and more preferably 0.8%. The upper limit is 5% by mass or less, preferably 3% by mass or less, and more preferably 2% by mass or less. Further, when the main component contains a fluorine-based polymer typified by polyvinylidene fluoride, the ratio to the active material is 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more. As an upper limit, it is 15 mass% or less, Preferably it is 10 mass% or less, More preferably, it is the range of 8 mass% or less.
増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。更に増粘剤を添加する場合には、活物質に対する増粘剤の割合は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限としては5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、負極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する問題が生じる場合がある。 A thickener is usually used to adjust the viscosity of the slurry. The thickener is not particularly limited, and specific examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio. When a thickener is further added, the ratio of the thickener to the active material is 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more. Is 5% by mass or less, preferably 3% by mass or less, more preferably 2% by mass or less. Below this range, applicability may be significantly reduced. If it exceeds the upper limit, the ratio of the active material in the negative electrode active material layer may be reduced, resulting in a problem that the capacity of the battery is reduced and a problem that the resistance between the negative electrode active materials is increased.
(18)極板配向比
極板配向比は、0.001以上が好ましく、特に好ましくは0.005以上、より好ましくは0.01以上、上限は理論値である0.67以下である。この範囲を下回ると、高密度充放電特性が低下する場合がある。
(18) Electrode orientation ratio The electrode orientation ratio is preferably 0.001 or more, particularly preferably 0.005 or more, more preferably 0.01 or more, and the upper limit is 0.67 or less, which is a theoretical value. Below this range, the high-density charge / discharge characteristics may deteriorate.
極板配向比の測定は次のとおりである。目的密度にプレス後の負極電極について、X線回折により電極の活物質配向比を測定する。具体的手法は特に制限されないが、標準的な方法としては、X線回折により炭素の(110)回折と(004)回折のピークを、プロファイル関数として非対称ピアソンVIIを用いてフィッティングすることによりピーク分離を行ない、(110)回折と(004)回折のピークの積分強度を各々算出する。得られた積分強度から、(110)回折積分強度/(004)回折積分強度で表わされる比を算出する。該測定で算出される電極の活物質配向比を極板配向比と定義する。 The measurement of the electrode plate orientation ratio is as follows. About the negative electrode after pressing to the target density, the active material orientation ratio of the electrode is measured by X-ray diffraction. The specific method is not particularly limited. As a standard method, peak separation is performed by fitting peaks of carbon (110) diffraction and (004) diffraction by X-ray diffraction using asymmetric Pearson VII as a profile function. The integrated intensities of the peaks of (110) diffraction and (004) diffraction are calculated. From the obtained integrated intensity, a ratio represented by (110) diffraction integrated intensity / (004) diffraction integrated intensity is calculated. The electrode active material orientation ratio calculated by this measurement is defined as the electrode plate orientation ratio.
ここでのX線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :発散スリット=1度、受光スリット=0.1mm、散乱スリット=1度
・測定範囲、及び、ステップ角度/計測時間:
(110)面:76.5度≦2θ≦78.5度 0.01度/3秒
(004)面:53.5度≦2θ≦56.0度 0.01度/3秒
・試料調整 :硝子板に0.1mm厚さの両面テープで電極を固定
The X-ray diffraction measurement conditions here are as follows. “2θ” indicates a diffraction angle.
-Target: Cu (Kα ray) graphite monochromator-Slit: Divergence slit = 1 degree, Receiving slit = 0.1 mm, Scattering slit = 1 degree-Measurement range and step angle / measurement time:
(110) plane: 76.5 degrees ≦ 2θ ≦ 78.5 degrees 0.01 degrees / 3 seconds (004) plane: 53.5 degrees ≦ 2θ ≦ 56.0 degrees 0.01 degrees / 3 seconds Sample preparation: Fix the electrode to the glass plate with double-sided tape with a thickness of 0.1 mm
(19)インピーダンス
放電状態から公称容量の60%まで充電した時の負極の抵抗は、100Ω以下が好ましく、特に好ましくは50Ω以下、より好ましくは20Ω以下、及び/又は、二重層容量は、1×10-6F以上が好ましく、特に好ましくは1×10-5F、より好ましくは1×10-4Fである。この範囲であると出力特性が良く好ましい。
(19) Impedance The resistance of the negative electrode when charged to 60% of the nominal capacity from the discharged state is preferably 100Ω or less, particularly preferably 50Ω or less, more preferably 20Ω or less, and / or the double layer capacity is 1 ×. 10 −6 F or more is preferable, particularly preferably 1 × 10 −5 F, and more preferably 1 × 10 −4 F. Within this range, the output characteristics are good and preferable.
負極の抵抗及び二重層容量は、次の手順で測定する。測定するリチウムイオン二次電池は、公称容量を5時間で充電できる電流値にて充電した後に、20分間充放電をしない状態を維持し、次に公称容量を1時間で放電できる電流値で放電したときの容量が公称容量の80%以上あるものを用いる。前述の放電状態のリチウムイオン二次電池について公称容量を5時間で充電できる電流値にて公称容量の60%まで充電し、直ちにリチウムイオン二次電池をアルゴンガス雰囲気下のグローブボックス内に移す。ここで該リチウムイオン二次電池を負極が放電又はショートしない状態ですばやく解体して取り出し、両面塗布電極であれば、片面の電極活物質を他面の電極活物質を傷つけずに剥離し、負極電極を12.5mmφに2枚打ち抜き、セパレータを介して活物質面がずれないよう対向させる。電池に使用されていた電解液60μLをセパレータと両負極間に滴下して密着し、外気と触れない状態を保持して、両負極の集電体に導電をとり、交流インピーダンス法を実施する。測定は温度25℃で、10-2〜105Hzの周波数帯で複素インピーダンス測定を行 ない、求められたコール・コール・プロットの負極抵抗成分の円弧を半円で近似して表面抵抗(R)と、二重層容量(Cdl)を求める。 The resistance and double layer capacity of the negative electrode are measured by the following procedure. The lithium-ion secondary battery to be measured is charged at a current value that can be charged for 5 hours in a nominal capacity, then maintained in a state where it is not charged / discharged for 20 minutes, and then discharged at a current value that can be discharged in 1 hour for a nominal capacity. The capacity when the capacity is 80% or more of the nominal capacity is used. About the lithium ion secondary battery of the above-mentioned discharge state, it charges to 60% of a nominal capacity with the electric current value which can charge a nominal capacity in 5 hours, Immediately transfers a lithium ion secondary battery in the glove box under argon gas atmosphere. Here, the lithium ion secondary battery is quickly disassembled and taken out in a state where the negative electrode is not discharged or short-circuited, and if it is a double-sided coated electrode, the electrode active material on one side is peeled off without damaging the electrode active material on the other side. Two electrodes are punched to 12.5 mmφ, and are opposed to each other so that the active material surface does not shift through a separator. 60 μL of the electrolytic solution used in the battery is dropped and adhered between the separator and both negative electrodes, and kept in a state where it is not in contact with the outside air, the current collectors of both negative electrodes are made conductive, and the AC impedance method is performed. The measurement was performed at a temperature of 25 ° C. and a complex impedance measurement was performed in a frequency band of 10 −2 to 10 5 Hz, and the surface resistance (R) was obtained by approximating the arc of the negative resistance component of the obtained Cole-Cole plot with a semicircle. ) And double layer capacity (Cdl).
負極板の面積は特に限定されるものではないが、対向する正極板よりもわずかに大きくして正極板が負極板から外にはみ出すことがないように設計する。充放電を繰り返したサイクルの寿命や高温保存による劣化を抑制する観点から、できる限り正極に等しい面積に近づけることが、より均一かつ有効に働く電極割合を高めて特性が向上するので好ましい。特に、大電流で使用される場合には、この電極面積の設計が重要である。負極板の厚さは用いられる正極板に合わせて設計されるものであり、特に限定されるものではないが、芯材の金属箔厚さを差し引いた合材層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上であり、上限は150μm以下、好ましくは120μm以下、より好ましくは100μm以下である。 The area of the negative electrode plate is not particularly limited, but is designed to be slightly larger than the opposing positive electrode plate so that the positive electrode plate does not protrude from the negative electrode plate. From the viewpoint of suppressing the life of a cycle in which charge and discharge are repeated and deterioration due to high temperature storage, it is preferable that the area be as close to the positive electrode as possible, since the ratio of electrodes that work more uniformly and effectively is increased and the characteristics are improved. In particular, when the electrode is used at a large current, the design of the electrode area is important. The thickness of the negative electrode plate is designed according to the positive electrode plate to be used and is not particularly limited, but the thickness of the composite layer obtained by subtracting the thickness of the metal foil of the core is usually 15 μm or more, Preferably it is 20 micrometers or more, More preferably, it is 30 micrometers or more, and an upper limit is 150 micrometers or less, Preferably it is 120 micrometers or less, More preferably, it is 100 micrometers or less.
[セパレータ]
本発明で用いられるセパレータは、両極間を電子的に絶縁する所定の機械的強度を有し、イオン透過度が大きく、かつ、正極と接する側における酸化性と負極側における還元性への耐性を兼ね備えるものであれば特に限定されるものではない。このような要求特性を有するセパレータの材質として、樹脂、無機物、ガラス繊維等が用いられる。前記樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が用いられる。具体的には、電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等を用いるのが好ましい。
[Separator]
The separator used in the present invention has a predetermined mechanical strength that electrically insulates both electrodes, has a high ion permeability, and has resistance to oxidation on the side in contact with the positive electrode and reduction on the negative electrode side. There is no particular limitation as long as it has both. As a material for the separator having such required characteristics, a resin, an inorganic material, glass fiber, or the like is used. As the resin, olefin polymer, fluorine polymer, cellulose polymer, polyimide, nylon and the like are used. Specifically, it is preferable to select from materials that are stable with respect to the electrolytic solution and have excellent liquid retention properties, and it is preferable to use a porous sheet or nonwoven fabric made of a polyolefin such as polyethylene or polypropylene.
前記無機物としては、アルミナや二酸化珪素等の酸化物類、窒化アルミニウムや窒化珪素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状若しくは繊維形状のものが用いられる。形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。前記の独立した薄膜形状以外に、樹脂製の結着剤を用いて前記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm以下のアルミナ粒子をフッ素樹脂を結着剤として多孔層を形成させることが挙げられる。 As the inorganic substance, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used, and those having a particle shape or fiber shape are used. As the form, a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used. In the thin film shape, those having a pore diameter of 0.01 to 1 μm and a thickness of 5 to 50 μm are preferably used. In addition to the independent thin film shape, a separator formed by forming a composite porous layer containing the inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used. For example, a porous layer may be formed on both surfaces of the positive electrode using alumina particles having a 90% particle size of 1 μm or less as a binder.
[電極群]
電極群は、前述の正極板と負極板とを前述のセパレータを介してなる積層構造のもの、及び前述の正極板と負極板とを前述のセパレータを介して渦巻き状に捲回した構造のものの何れでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、40%〜90%にすることが好ましく、50%〜80%にすることが更に好ましい。前記の電極群占有率が40%未満では、電池容量が小さくなり、また、90%を超えると、空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、更には、内部圧力を外に逃がすガス放出弁が作動する場合がある。
[Electrode group]
The electrode group has a laminated structure in which the positive electrode plate and the negative electrode plate are interposed via the separator, and a structure in which the positive electrode plate and the negative electrode plate are wound in a spiral shape via the separator. Either may be used. The ratio of the volume of the electrode group to the battery internal volume (hereinafter referred to as electrode group occupancy) is preferably 40% to 90%, and more preferably 50% to 80%. When the electrode group occupancy is less than 40%, the battery capacity becomes small, and when it exceeds 90%, the void space is small, the battery becomes hot, the member expands, or the vapor pressure of the liquid component of the electrolyte In some cases, the internal pressure rises due to an increase in the pressure, which deteriorates various characteristics such as charge / discharge repetition performance as a battery and high-temperature storage, and further, a gas release valve that releases the internal pressure to the outside may operate.
[集電構造]
集電構造は特に限定されるものではないが、本発明の非水系電解液による出力特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にする必要がある。こうした内部抵抗が小さい場合、本発明の非水系電解液を使用した効果は特に良好に発揮される。
[Current collection structure]
The current collecting structure is not particularly limited, but in order to more effectively realize the output characteristics improvement by the non-aqueous electrolyte solution of the present invention, it is necessary to make the structure to reduce the resistance of the wiring part and the joint part. is there. When such an internal resistance is small, the effect of using the nonaqueous electrolytic solution of the present invention is exhibited particularly well.
電極群が前述の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。一枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が前述の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。 In the case where the electrode group has the laminated structure described above, a structure formed by bundling the metal core portions of the electrode layers and welding them to the terminals is preferably used. When the area of one electrode increases, the internal resistance increases. Therefore, it is also preferable to provide a plurality of terminals in the electrode to reduce the resistance. When the electrode group has the winding structure described above, the internal resistance can be lowered by providing a plurality of lead structures for the positive electrode and the negative electrode, respectively, and bundling the terminals.
前述の構造を最適化することにより、内部抵抗をできるだけ小さくすることができる。大電流で用いられる電池では、10kHz交流法で測定されるインピーダンス(以下、「直流抵抗成分」と略記する)を10ミリオーム(mΩ)以下にすることが好ましく、直流抵抗成分を5ミリオーム(mΩ)以下にすることがより好ましい。直流抵抗成分を0.1ミリオーム以下にすると出力特性が向上するが、用いられる集電構造材の占める比率が増え、電池容量が減少する場合がある。 By optimizing the above structure, the internal resistance can be made as small as possible. In a battery used at a large current, the impedance measured by the 10 kHz AC method (hereinafter abbreviated as “DC resistance component”) is preferably 10 milliohms (mΩ) or less, and the DC resistance component is 5 milliohms (mΩ). It is more preferable to make it below. When the direct current resistance component is 0.1 milliohm or less, the output characteristics are improved, but the ratio of the current collecting structure used increases, and the battery capacity may decrease.
本発明の二次電池に用いられる非水電解液は、電極活物質に対するリチウムの脱挿入に係わる反応抵抗の低減に効果があり、それが良好な出力特性を実現できる要因になっていると考えられる。しかし、通常の直流抵抗が大きな電池では、直流抵抗に阻害されて反応抵抗低減の効果を出力特性に100%反映できないことがわかった。直流抵抗成分の小さな電池を用いることでこれを改善し、本発明の非水系電解液の効果を充分に発揮できるようになる。また、非水系電解液の効果を引き出し、高い出力特性をもつ電池を作製するという観点からは、この要件と前述した二次電池の1個の電池外装に収納される電池要素のもつ電気容量(電池を満充電状態から放電状態まで放電したときの電気容量)が、3アンペアーアワー(Ah)以上である、という要件を同時に満たすことが特に好ましい。 The non-aqueous electrolyte used in the secondary battery of the present invention is effective in reducing reaction resistance related to lithium insertion / extraction with respect to the electrode active material, which is considered to be a factor that can realize good output characteristics. It is done. However, it was found that a battery having a large direct current resistance is inhibited by the direct current resistance, and the effect of reducing the reaction resistance cannot be reflected 100% on the output characteristics. This can be improved by using a battery having a small DC resistance component, and the effect of the non-aqueous electrolyte solution of the present invention can be sufficiently exhibited. From the viewpoint of drawing out the effect of the non-aqueous electrolyte and producing a battery having high output characteristics, this requirement and the electric capacity of the battery element housed in one battery exterior of the secondary battery described above ( It is particularly preferable to satisfy the requirement that the electric capacity when the battery is discharged from the fully charged state to the discharged state is 3 ampere hours (Ah) or more at the same time.
[外装ケース]
外装ケースの材質は用いられる非水系電解質に対して安定な物質であれば特に限定されるものではない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。前記金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して前記金属類を用いてかしめ構造とするものが挙げられる。前記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、前記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
[Exterior case]
The material of the outer case is not particularly limited as long as it is a substance that is stable with respect to the non-aqueous electrolyte used. Specifically, a nickel-plated steel plate, stainless steel, aluminum, an aluminum alloy, a metal such as a magnesium alloy, or a laminated film (laminate film) of a resin and an aluminum foil is used. From the viewpoint of weight reduction, an aluminum or aluminum alloy metal or a laminate film is preferably used. In the exterior case using the above metals, a laser-sealed, resistance-welded, ultrasonic welding is used to weld the metals together to form a sealed sealed structure, or a caulking structure using the above-mentioned metals via a resin gasket To do. Examples of the outer case using the laminate film include those having a sealed and sealed structure by heat-sealing resin layers. In order to improve the sealing performance, a resin different from the resin used for the laminate film may be interposed between the resin layers. In particular, when a resin layer is heat-sealed through a current collecting terminal to form a sealed structure, a metal and a resin are joined, so that a resin having a polar group or a modified group having a polar group introduced as an intervening resin is used. Resins are preferably used.
[保護素子]
前述の保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等が挙げられる。前記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、高出力の観点から、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
[Protective element]
PTC (Positive Temperature Coefficient), thermal fuse, thermistor, which increases resistance when abnormal heat is generated or excessive current flows, the current flowing through the circuit due to a sudden rise in battery internal pressure or internal temperature during abnormal heat generation For example, a valve (current cutoff valve) that shuts off the current can be used. It is preferable to select a protective element that does not operate under normal use at a high current. From the viewpoint of high output, it is more preferable to design the protective element so as not to cause abnormal heat generation or thermal runaway even without the protective element.
上述した非水系電解液と正極を用いることにより寿命と出力が向上する機構は明確ではないが、正極活物質表面に電解液中の添加剤が吸着することにより、正極活物質と電解液との好ましくない副反応、特に組成式(1)のMと電解液との副反応を抑制することができるため、正極表面の抵抗が小さくなり出力が向上し、寿命が向上すると考えられる。また上述した電池においては、電池の抵抗に対して、正極表面の抵抗の占める割合が大きいため、このように正極表面の抵抗を小さくすることが電池の出力向上に対して効果が大きく好ましいものと考えられる。 Although the mechanism for improving the life and output by using the non-aqueous electrolyte solution and the positive electrode described above is not clear, the adsorbent of the additive in the electrolyte solution on the surface of the positive electrode active material causes the positive electrode active material and the electrolyte solution to adhere to each other. Since undesirable side reactions, particularly side reactions between M in the compositional formula (1) and the electrolyte solution can be suppressed, it is considered that the resistance of the positive electrode surface is reduced, the output is improved, and the life is improved. Further, in the battery described above, since the ratio of the resistance on the positive electrode surface is large with respect to the resistance of the battery, it is preferable that reducing the resistance on the positive electrode surface in this way has a great effect on improving the output of the battery. Conceivable.
以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited to these Examples, unless the summary is exceeded.
(実施例1)
[正極の作製]
正極活物質としてLiFePO4を75質量%と、アセチレンブラック20質量%、ポリテトラフルオロエチレンパウダー5質量%の割合で秤量したものを乳鉢で十分混合し、薄くシート状にしたものを9mmφ及び12mmφのポンチを用いて打ち抜いた。この際、全体重量は各々約7.5mg(9mmφ)及び約17.5mg(12mmφ)になるように調整した。これをアルミニウムメッシュに圧着して、9mmφ及び12mmφの正極とした。
Example 1
[Production of positive electrode]
As a positive electrode active material, 75% by mass of LiFePO 4 , 20% by mass of acetylene black, and 5% by mass of polytetrafluoroethylene powder were thoroughly mixed in a mortar and thinned into 9 mmφ and 12 mmφ. Punched with a punch. At this time, the total weight was adjusted to about 7.5 mg (9 mmφ) and about 17.5 mg (12 mmφ), respectively. This was pressure-bonded to an aluminum mesh to obtain 9 mmφ and 12 mmφ positive electrodes.
9mmφの正極を試験極とし、リチウム金属板を対極とし、EC(エチレンカーボネート):DMC(ジメチルカーボネート):EMC(エチルメチルカーボネート)=3:3:4(容量比)の溶媒にLiPF6を1mol/Lで溶解した電解液を用い、厚さ25μmの多孔性ポリエチレンフィルムをセパレータとしてコイン型セルを組み立てた。 Using a 9 mmφ positive electrode as a test electrode and a lithium metal plate as a counter electrode, 1 mol of LiPF 6 in a solvent of EC (ethylene carbonate): DMC (dimethyl carbonate): EMC (ethyl methyl carbonate) = 3: 3: 4 (volume ratio) A coin-type cell was assembled using a 25 μm-thick porous polyethylene film as a separator using an electrolytic solution dissolved at / L.
得られたコイン型セルについて、0.2mA/cm2の定電流定電圧充電、即ち正極からリチウムイオンを放出させる反応を上限4.2Vで行った。次いで0.2mA/cm2の定電流放電、即ち正極にリチウムイオンを吸蔵させる反応を下限3.0Vで行った。この際の、正極活物質単位重量当たりの初期充電容量をQs(C)[mAh/g]、初期放電容量をQs(D)[mAh/g]とした。 The obtained coin-type cell was subjected to a constant current / constant voltage charge of 0.2 mA / cm 2 , that is, a reaction for releasing lithium ions from the positive electrode at an upper limit of 4.2 V. Next, a constant current discharge of 0.2 mA / cm 2 , that is, a reaction for occluding lithium ions in the positive electrode was performed at a lower limit of 3.0V. In this case, the initial charge capacity per unit weight of the positive electrode active material was Qs (C) [mAh / g], and the initial discharge capacity was Qs (D) [mAh / g].
[負極の作製]
負極活物質として平均粒子径8〜10μmの黒鉛粉末(d002=3.35Å)、バインダーとしてポリフッ化ビニリデンをそれぞれ用い、これらを重量比で92.5:7.5の割合で秤量し、これをN−メチルピロリドン溶液中で混合し、負極合剤スラリーとした。このスラリーを20μmの厚さの銅箔の片面に塗布し、乾燥して溶媒を蒸発させた後、12mmφに打ち抜き、0.5ton/cm2でプレス処理をしたものを負極とした。この時、電極上の負極活物質の量は約6〜8mgになるように調節した。
なお、この負極を試験極とし、リチウム金属を対極として電池セルを組み、0.2mA/cm2−3mVの定電流−定電圧法(カット電流0.05mA)で負極にリチウムイオンを吸蔵させる試験を下限0Vで行った際の、負極活物質単位重量当たりの初期吸蔵容量をQf[mAh/g]とした。
[Production of negative electrode]
Graphite powder (d 002 = 3.35 Å) having an average particle diameter of 8 to 10 μm was used as the negative electrode active material, and polyvinylidene fluoride was used as the binder, and these were weighed at a weight ratio of 92.5: 7.5. Were mixed in an N-methylpyrrolidone solution to obtain a negative electrode mixture slurry. The slurry was applied to one side of a 20 μm thick copper foil, dried to evaporate the solvent, punched to 12 mmφ, and pressed at 0.5 ton / cm 2 to form a negative electrode. At this time, the amount of the negative electrode active material on the electrode was adjusted to be about 6 to 8 mg.
A test in which a negative electrode is used as a test electrode, a battery cell is assembled using lithium metal as a counter electrode, and lithium ions are occluded in the negative electrode by a constant current-constant voltage method (cut current 0.05 mA) of 0.2 mA / cm 2 -3 mV. The initial occlusion capacity per unit weight of the negative electrode active material at a lower limit of 0 V was defined as Qf [mAh / g].
[非水系電解液の作製]
乾燥アルゴン雰囲気下で、精製したエチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)の体積比3:3:4の混合溶媒に、1mol/Lの濃度で、充分に乾燥したヘキサフルオロリン酸リチウム(LiPF6)を溶解させた。更に、ジフルオロリン酸リチウムを1.0質量%となるように含有させた。
[Preparation of non-aqueous electrolyte]
Under a dry argon atmosphere, it was sufficiently dried at a concentration of 1 mol / L in a mixed solvent of purified ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 3: 4. Lithium hexafluorophosphate (LiPF 6 ) was dissolved. Furthermore, lithium difluorophosphate was contained so that it might become 1.0 mass%.
[性能試験用電池の作製]
上記正極、負極を組み合わせ、コインセルを使用して試験用電池を組み立て、その電池性能を評価した。即ち、コインセルの正極缶の上に、作製した上述の正極を置き、その上にセパレータとして厚さ25μmの多孔性ポリエチレンフィルムを置き、ポリプロピレン製ガスケットで押さえた後、上記で作製した非水系電解液を缶内に加えてセパレータに十分染浸み込ませた後、上述の負極を置き、負極缶を載せて封口し、コイン型のリチウム二次電池を作製した。なお、この時、正極活物質の重量と負極活物質重量のバランスは、ほぼ以下の式を満たすように設定した。
(負極活物質重量[g]×Qf[mAh/g])/(正極活物質重量[g]×Qs(C)[mAh/g])=1.2
[Production of battery for performance test]
The positive electrode and the negative electrode were combined, a test battery was assembled using a coin cell, and the battery performance was evaluated. That is, the above-mentioned positive electrode prepared is placed on the positive electrode can of the coin cell, a porous polyethylene film having a thickness of 25 μm is placed thereon as a separator, pressed with a polypropylene gasket, and then the non-aqueous electrolyte prepared above. Was added to the inside of the can and sufficiently infiltrated into the separator, and then the above-described negative electrode was placed, the negative electrode can was placed and sealed, and a coin-type lithium secondary battery was produced. At this time, the balance between the weight of the positive electrode active material and the weight of the negative electrode active material was set so as to satisfy the following expression.
(Negative electrode active material weight [g] × Qf [mAh / g]) / (Positive electrode active material weight [g] × Qs (C) [mAh / g]) = 1.2
[電池特性試験]
まず、室温で定電流0.2Cでの充放電2サイクル及び定電流1Cでの充放電1サイクルを行った。次に、60℃において、初回に0.2Cの定電流充放電を行った後、1Cで定電流充放電を100サイクル行い、サイクル前後容量維持率=(100サイクル目放電容量)/(1サイクル目放電容量)を求め、サイクル特性を評価した。なお、いずれも充電上限は4.1V、下限電圧は3.0Vとした。
[Battery characteristics test]
First, 2 cycles of charge / discharge at a constant current of 0.2 C and 1 cycle of charge / discharge at a constant current of 1 C were performed at room temperature. Next, after constant charge / discharge of 0.2 C for the first time at 60 ° C., constant current charge / discharge is performed for 100 cycles at 1 C, and the capacity retention ratio before and after the cycle = (discharge capacity at the 100th cycle) / (1 cycle) (Eye discharge capacity) was obtained and the cycle characteristics were evaluated. In both cases, the upper limit of charging was 4.1 V, and the lower limit voltage was 3.0 V.
(比較例1)
電解液に、ジフルオロリン酸リチウムを含まないものを用いた以外は実施例1と同様に実施した。実施例1及び比較例1の電池評価の結果を表1に示す。
(Comparative Example 1)
The same operation as in Example 1 was carried out except that the electrolyte did not contain lithium difluorophosphate. Table 1 shows the results of the battery evaluation of Example 1 and Comparative Example 1.
表1の結果から、電解液への特定化合物の含有により容量維持率が向上し、サイクル試験後でも、電池容量が十分に維持されていることがわかった。 From the results of Table 1, it was found that the capacity retention rate was improved by the inclusion of the specific compound in the electrolytic solution, and the battery capacity was sufficiently maintained even after the cycle test.
本発明のリチウム二次電池の用途は特に限定されず、公知の各種の用途に用いることが可能である。具体例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ等に広く利用されるものである。 The use of the lithium secondary battery of the present invention is not particularly limited, and can be used for various known uses. Specific examples include notebook computers, pen input computers, mobile computers, electronic book players, mobile phones, mobile faxes, mobile copy, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, minidiscs, and transceivers. Widely used in electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, motors, automobiles, motorbikes, motorbikes, bicycles, lighting equipment, toys, game equipment, watches, power tools, strobes, cameras, etc. It is what is done.
Claims (4)
LiMPO4 (1)
[組成式(1)中、Mは少なくとも1種の遷移金属元素を表わす。] A lithium secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte obtained by mixing a lithium salt with a non-aqueous solvent, wherein the non-aqueous electrolyte is a monofluorophosphate And at least one compound selected from the group consisting of difluorophosphates, wherein the positive electrode includes a positive electrode active material having a composition represented by the following composition formula (1). Rechargeable lithium battery.
LiMPO 4 (1)
[In composition formula (1), M represents at least one transition metal element. ]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009133411A JP2010282761A (en) | 2009-06-02 | 2009-06-02 | Lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009133411A JP2010282761A (en) | 2009-06-02 | 2009-06-02 | Lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010282761A true JP2010282761A (en) | 2010-12-16 |
Family
ID=43539348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009133411A Pending JP2010282761A (en) | 2009-06-02 | 2009-06-02 | Lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010282761A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012182114A (en) * | 2011-02-08 | 2012-09-20 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery containing the same |
WO2012176871A1 (en) * | 2011-06-24 | 2012-12-27 | セントラル硝子株式会社 | Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery |
WO2013047432A1 (en) * | 2011-09-27 | 2013-04-04 | 三洋電機株式会社 | Lithium secondary battery |
JP2015522209A (en) * | 2013-02-20 | 2015-08-03 | エルジー・ケム・リミテッド | Electrolytic solution additive for lithium secondary battery, non-aqueous electrolytic solution containing the electrolytic solution additive, and lithium secondary battery |
US9590273B2 (en) | 2013-02-20 | 2017-03-07 | Lg Chem, Ltd. | Non-aqueous electrolyte solution and lithium secondary battery including the same |
US9806375B2 (en) | 2011-01-31 | 2017-10-31 | Mitsubishi Chemical Corporation | Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same |
CN111066192A (en) * | 2017-08-10 | 2020-04-24 | 三菱化学株式会社 | Nonaqueous electrolyte secondary battery |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1167270A (en) * | 1997-08-21 | 1999-03-09 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JP2007141830A (en) * | 2005-10-20 | 2007-06-07 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte solution for secondary battery and secondary battery using same |
JP2007165292A (en) * | 2005-11-16 | 2007-06-28 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte for secondary battery, and secondary battery using it |
JP2007173180A (en) * | 2005-12-26 | 2007-07-05 | Central Glass Co Ltd | Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery |
JP2008277002A (en) * | 2007-04-26 | 2008-11-13 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery using it |
JP2008277000A (en) * | 2007-04-26 | 2008-11-13 | Mitsubishi Chemicals Corp | Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolytic solution secondary battery using the same |
JP2009099487A (en) * | 2007-10-19 | 2009-05-07 | Mitsubishi Chemicals Corp | Non-aqueous electrolytic solution and non-aqueous electrolytic solution secondary battery using the solution |
-
2009
- 2009-06-02 JP JP2009133411A patent/JP2010282761A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1167270A (en) * | 1997-08-21 | 1999-03-09 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JP2007141830A (en) * | 2005-10-20 | 2007-06-07 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte solution for secondary battery and secondary battery using same |
JP2007165292A (en) * | 2005-11-16 | 2007-06-28 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte for secondary battery, and secondary battery using it |
JP2007173180A (en) * | 2005-12-26 | 2007-07-05 | Central Glass Co Ltd | Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery |
JP2008277002A (en) * | 2007-04-26 | 2008-11-13 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery using it |
JP2008277000A (en) * | 2007-04-26 | 2008-11-13 | Mitsubishi Chemicals Corp | Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolytic solution secondary battery using the same |
JP2009099487A (en) * | 2007-10-19 | 2009-05-07 | Mitsubishi Chemicals Corp | Non-aqueous electrolytic solution and non-aqueous electrolytic solution secondary battery using the solution |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9806375B2 (en) | 2011-01-31 | 2017-10-31 | Mitsubishi Chemical Corporation | Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same |
US11688881B2 (en) | 2011-01-31 | 2023-06-27 | Mitsubishi Chemical Corporation | Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same |
JP2012182114A (en) * | 2011-02-08 | 2012-09-20 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery containing the same |
WO2012176871A1 (en) * | 2011-06-24 | 2012-12-27 | セントラル硝子株式会社 | Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery |
WO2013047432A1 (en) * | 2011-09-27 | 2013-04-04 | 三洋電機株式会社 | Lithium secondary battery |
JPWO2013047432A1 (en) * | 2011-09-27 | 2015-03-26 | 三洋電機株式会社 | Lithium secondary battery |
JP2015522209A (en) * | 2013-02-20 | 2015-08-03 | エルジー・ケム・リミテッド | Electrolytic solution additive for lithium secondary battery, non-aqueous electrolytic solution containing the electrolytic solution additive, and lithium secondary battery |
US9590273B2 (en) | 2013-02-20 | 2017-03-07 | Lg Chem, Ltd. | Non-aqueous electrolyte solution and lithium secondary battery including the same |
US9608290B2 (en) | 2013-02-20 | 2017-03-28 | Lg Chem, Ltd. | Electrolyte solution additive for lithium secondary battery, and non-aqueous electrolyte solution and lithium secondary battery including the additive |
CN111066192A (en) * | 2017-08-10 | 2020-04-24 | 三菱化学株式会社 | Nonaqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4952186B2 (en) | Non-aqueous electrolyte for secondary battery and secondary battery using the same | |
JP5003095B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP5636622B2 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery using the same | |
JP5671771B2 (en) | Lithium secondary battery | |
JP5671775B2 (en) | Lithium ion secondary battery | |
JP5671772B2 (en) | Lithium ion secondary battery | |
JP5671770B2 (en) | Lithium secondary battery | |
JP5514394B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP5402974B2 (en) | Non-aqueous electrolyte for secondary battery and secondary battery using the same | |
JP2008258013A (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same | |
JP6627904B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP5916268B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP2007194209A (en) | Lithium secondary cell, and battery pack formed by connecting the plurality of it | |
JP5503098B2 (en) | Non-aqueous electrolyte for secondary battery and secondary battery using the same | |
JP2007220670A (en) | Lithium-ion secondary battery | |
JP2007194208A (en) | Lithium secondary cell, and battery pack formed by connecting the plurality of it | |
JP5740802B2 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery using the same | |
JP2007165292A (en) | Nonaqueous electrolyte for secondary battery, and secondary battery using it | |
JP2010282761A (en) | Lithium secondary battery | |
JP5299164B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery | |
JP5636623B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP2007165298A (en) | Lithium secondary battery | |
JP2007165299A (en) | Lithium secondary battery | |
JP2007165301A (en) | Lithium secondary battery | |
JP2013145762A (en) | Nonaqueous electrolyte for secondary battery and secondary battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130417 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130423 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130827 |