JP2010275597A - Nickel-based alloy for turbine rotor of steam turbine, and the turbine rotor of steam turbine - Google Patents
Nickel-based alloy for turbine rotor of steam turbine, and the turbine rotor of steam turbine Download PDFInfo
- Publication number
- JP2010275597A JP2010275597A JP2009130036A JP2009130036A JP2010275597A JP 2010275597 A JP2010275597 A JP 2010275597A JP 2009130036 A JP2009130036 A JP 2009130036A JP 2009130036 A JP2009130036 A JP 2009130036A JP 2010275597 A JP2010275597 A JP 2010275597A
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- turbine
- mass
- turbine rotor
- steam turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
本発明は、蒸気タービンのタービンロータ用のニッケル基合金及び蒸気タービンのタービンロータに関する。 The present invention relates to a nickel-base alloy for a turbine rotor of a steam turbine and a turbine rotor of a steam turbine.
今日における我が国の総発電量に占める火力発電の割合はおよそ60%であり、化石燃料への依存度は未だ高い。その中でも、石炭は世界中に広く豊富に分布しており、供給の安定性の観点で優位に立っている。そのため、我が国でも原子力と共にベース電源として石炭火力発電システムの開発が進められているが、石炭の単位電力あたりのCO2排出量は他の化石燃料と比較して高いため、石炭火力システムの高効率化が重要な課題とされている。 The proportion of thermal power generation in Japan's total power generation today is approximately 60%, and the dependence on fossil fuels is still high. Among them, coal is widely distributed all over the world and has an advantage in terms of supply stability. Therefore, since high compared but the development of coal-fired power generation system has been promoted as the base power supply with nuclear In Japan, CO 2 emissions per unit power of coal and other fossil fuels, high-efficiency coal-fired system Is an important issue.
蒸気タービンの発電効率の向上を図るためには、タービン蒸気温度を高温化することが有効である。このため、近年の蒸気タービン火力発電プラントでは、その蒸気温度を600℃以上まで上昇させている。将来的には、蒸気タービン火力発電プラントにおける蒸気温度は、650℃、さらに700℃以上の高温とすることが世界的な傾向となっている。 In order to improve the power generation efficiency of the steam turbine, it is effective to raise the turbine steam temperature. For this reason, in the recent steam turbine thermal power plant, the steam temperature is raised to 600 ° C. or higher. In the future, the steam temperature in a steam turbine thermal power plant has become a global trend of 650 ° C., more preferably 700 ° C. or higher.
この高温の蒸気を受け回転する動翼を支持するタービンロータにおいては、タービンロータ周囲にも高温の蒸気が回流するため高温になるとともに、回転により高い応力が発生する。そのためタービンロータは、高温、高応力に耐える必要があり、タービンロータ用の材料としては、室温から高温領域において優れた強度、延性、靭性を有する材料が求められている。 In the turbine rotor that supports the rotating blades that receive the high-temperature steam, the high-temperature steam circulates also around the turbine rotor, so that the temperature becomes high and high stress is generated by the rotation. Therefore, the turbine rotor needs to withstand high temperature and high stress, and a material having excellent strength, ductility, and toughness in a range from room temperature to high temperature is required as a material for the turbine rotor.
蒸気温度が700℃を超えるようになると従来の鉄系材料では高温強度が不足する。高温強度の優れた材料として、従来からニッケル基合金が知られている(例えば、特許文献1、特許文献2、特許文献3参照。)。このため、タービンロータ等にニッケル基合金を適用することが検討されている。 When the steam temperature exceeds 700 ° C., the conventional iron-based material lacks high temperature strength. Conventionally, nickel-based alloys have been known as materials having excellent high-temperature strength (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3). For this reason, it has been studied to apply a nickel base alloy to a turbine rotor or the like.
ニッケル基合金は、大きく分けて析出強化型と固溶強化型に分けられる。前者はニッケルにAl、Ti、Ta、Nbを添加することによってガンマプライム相(γ’相)(Ni3(Al,Ti))、あるいはガンマダブルプライム相(Ni3Nb)と呼ばれる析出相を析出させることによって高温での強度を向上させたものである。代表的な析出強化型ニッケル合金としてインコネル706合金(スペシャルメタル社製)が挙げられる。後者はニッケルにCo,Mo等を添加することによってニッケル母相そのものを強化するものであり、インコネル617合金(スペシャルメタル社製)がそれにあたる。 Nickel-based alloys are roughly classified into a precipitation strengthening type and a solid solution strengthening type. The former precipitates a precipitation phase called gamma prime phase (γ 'phase) (Ni 3 (Al, Ti)) or gamma double prime phase (Ni 3 Nb) by adding Al, Ti, Ta, Nb to nickel. By doing so, the strength at high temperature is improved. A typical precipitation strengthened nickel alloy is Inconel 706 alloy (manufactured by Special Metal). The latter reinforces the nickel matrix itself by adding Co, Mo or the like to nickel, and corresponds to Inconel 617 alloy (made by Special Metal).
上記のように、蒸気温度が700℃を超えるような蒸気タービンでは、鉄系材料では高温強度が不足するためニッケル基合金の適用が検討されている。このため、鍛造性等の加工性を維持しつつ、高温強度を満足し、かつ、高温に長期間曝露された際にも、長期間に亘り材料の健全性と組織安定性を維持することのできるニッケル基合金の開発が求められている。 As described above, in a steam turbine in which the steam temperature exceeds 700 ° C., application of a nickel-base alloy is being studied because the high-temperature strength of iron-based materials is insufficient. For this reason, while maintaining the workability such as forgeability, the high temperature strength is satisfied, and even when exposed to a high temperature for a long period of time, the soundness and structure stability of the material can be maintained over a long period of time. There is a need to develop a nickel-based alloy that can be used.
本発明は、上記従来の事情に対処してなされたもので、鍛造性等の加工性を維持しつつ、高い高温強度を有するとともに、高温環境下においても長期間に亘り健全性と組織安定性を維持することのできる蒸気タービンのタービンロータ用ニッケル基合金及び蒸気タービンのタービンロータを提供しようとするものである。 The present invention has been made in response to the above-described conventional circumstances, has high high-temperature strength while maintaining workability such as forgeability, and also has soundness and structure stability over a long period of time even in a high-temperature environment. It is an object of the present invention to provide a nickel-base alloy for a turbine rotor of a steam turbine and a turbine rotor of a steam turbine capable of maintaining the above.
本発明の一態様の蒸気タービンのタービンロータ用ニッケル基合金は、質量%で、C:0.01〜0.15、Cr:18〜28、Co:10〜15、Mo:4〜7、Al:0.3〜2.0、Ti:0.3〜3.0、B:0.001〜0.035を含み、残部はNiおよび不可避的不純物からなることを特徴とする。 The nickel-base alloy for the turbine rotor of the steam turbine of one aspect of the present invention is in mass%, C: 0.01 to 0.15, Cr: 18 to 28, Co: 10 to 15, Mo: 4 to 7, Al : 0.3 to 2.0, Ti: 0.3 to 3.0, B: 0.001 to 0.035, and the balance is made of Ni and inevitable impurities.
本発明によれば、鍛造性等の加工性を維持しつつ、高い高温強度を有するとともに、高温環境下においても長期間に亘り健全性と組織安定性を維持することのできるニッケル基合金及び蒸気タービンのタービンロータを提供することができる。 According to the present invention, a nickel-base alloy and steam that maintain high workability such as forgeability, have high high-temperature strength, and can maintain soundness and structural stability over a long period of time even in a high-temperature environment. A turbine rotor for a turbine may be provided.
以下、本発明の実施形態を、図面を参照して説明する。本実施形態に係る蒸気タービンのタービンロータ用ニッケル基合金は、組成成分範囲を細かく調整することにより、従来のニッケル基合金の鍛造性等の加工性を維持しつつ、高温における機械的強度の向上と、長期間に渡る材料の健全性の維持を図れるようにしたものである。これによって、高温蒸気が導入される蒸気タービンのタービンロータ材として、高温環境下において数万時間に及ぶ長い期間においても高い信頼性を維持することができ、700℃以上の蒸気温度の蒸気タービンの実現を可能とする。 Embodiments of the present invention will be described below with reference to the drawings. The nickel-base alloy for the turbine rotor of the steam turbine according to the present embodiment is improved in mechanical strength at high temperatures while maintaining the workability such as forgeability of the conventional nickel-base alloy by finely adjusting the composition component range. And maintaining the soundness of the material over a long period of time. As a result, as a turbine rotor material for a steam turbine into which high-temperature steam is introduced, high reliability can be maintained over a long period of tens of thousands of hours in a high-temperature environment. Realization is possible.
前述したように、インコネル706、インコネル617等のニッケル基合は、タービンロータ材として極めて有用な材料ではあるが、蒸気タービン発電設備のさらなる高効率化には、ニッケル基合金の鍛造性等の加工性、高温強度を満足しつつ、かつ長期間に及ぶ信頼性を確保できる組成改良が必要とされていた。 As described above, nickel bases such as Inconel 706 and Inconel 617 are extremely useful materials as a turbine rotor material. However, in order to further improve the efficiency of steam turbine power generation equipment, processing such as forgeability of a nickel base alloy is required. Therefore, there has been a need for an improved composition that can ensure long-term reliability while satisfying the properties and high-temperature strength.
例えば、インコネル617はCo、Moを添加することにより、Ni基の母相を固溶強化して高温強度向上を図った合金であり、Al、Ti、Ta及びNbの添加によるγ’相析出によって高温強度をさらに高めることが可能である。しかしながら、添加成分の過剰な添加は、有害相と呼ばれる弱化を引き起こす相の析出によって、逆に強度の低下を引き起こす可能性がある。本実施形態に係る蒸気タービンのタービンロータ用ニッケル基合金は、固溶強化およびγ’相析出強化を利用しつつも、弱化を引き起こす有害相の析出の抑制を図ったものである。 For example, Inconel 617 is an alloy that improves the high-temperature strength by solid solution strengthening of the Ni-based matrix by adding Co and Mo, and by γ ′ phase precipitation by adding Al, Ti, Ta, and Nb. It is possible to further increase the high temperature strength. However, excessive addition of the additive component may cause a decrease in strength due to precipitation of a phase that causes weakening called a harmful phase. The nickel-base alloy for the turbine rotor of the steam turbine according to the present embodiment is intended to suppress precipitation of harmful phases that cause weakening while utilizing solid solution strengthening and γ ′ phase precipitation strengthening.
以下、その詳細を説明する。従来のインコネル617にAl、Tiを複合添加すると、析出するγ’相の量は増加し、クリープ強度は向上するが、図4に示すように過剰な合金元素の添加によって板状あるいは針状のσ相の析出が促進される。なお、図4に示す合金は、C:0.1質量%、Cr:23質量%、Co:12質量%、Mo:10質量%、Al:3.0質量%、Ti:0.3質量%を含み、残部はNiおよび不可避的不純物からなる。 Details will be described below. Addition of Al and Ti to conventional Inconel 617 increases the amount of precipitated γ 'phase and improves the creep strength. However, as shown in FIG. Precipitation of σ phase is promoted. In addition, the alloy shown in FIG. 4 is C: 0.1 mass%, Cr: 23 mass%, Co: 12 mass%, Mo: 10 mass%, Al: 3.0 mass%, Ti: 0.3 mass%. The balance is made of Ni and inevitable impurities.
このような硬く、脆いσ相のTCP(Topological Closed Packed)相の析出は、衝撃値、クリープ特性、低サイクル疲労寿命などの機械的特性の低下を引き起こすと言われている。これは、き裂がこのような板状あるいは針状の析出物に沿って進展しやすく、また、このような析出物が生じることによって母相に含まれる強化元素が消費されることによると考えられている。 Precipitation of such a hard and brittle σ phase TCP (Topological Closed Packed) phase is said to cause a decrease in mechanical properties such as impact value, creep properties, and low cycle fatigue life. This is thought to be due to the fact that cracks are likely to propagate along such plate-like or needle-like precipitates, and that the strengthening elements contained in the parent phase are consumed by the formation of such precipitates. It has been.
縦軸を各相のモル分率、横軸をMo濃度(質量%)とした図1に示すインコネル617の平衡計算結果によると、σ相の析出量はMo量に大きく依存し、σ相析出を抑制するためにはMo濃度を略7質量%以下にする必要がある。そこで、本実施形態では、Mo量を4〜7質量%とし、さらに必要に応じてTa,Nbを添加し、γ’相を安定的に析出させると共に,γ’相自身の安定性を向上させることで、結果的に、ニッケル基合金の高強度化を達成した。 According to the equilibrium calculation result of Inconel 617 shown in FIG. 1 with the vertical axis representing the mole fraction of each phase and the horizontal axis representing the Mo concentration (mass%), the amount of precipitation of the σ phase greatly depends on the amount of Mo, and the σ phase precipitation In order to suppress this, the Mo concentration needs to be about 7% by mass or less. Therefore, in the present embodiment, the Mo amount is 4 to 7% by mass, and Ta and Nb are further added as necessary to stably precipitate the γ ′ phase and improve the stability of the γ ′ phase itself. As a result, high strength of the nickel-base alloy was achieved.
本実施形態に係る蒸気タービンのタービンロータ用ニッケル基合金は、以下に示す組成範囲で構成される。なお、以下の説明において、合金組成成分を表す%は、特に明記しない限り質量%である。 The nickel-base alloy for the turbine rotor of the steam turbine according to the present embodiment is configured in the composition range shown below. In the following description, “%” representing an alloy composition component is “% by mass” unless otherwise specified.
(合金1)
C:0.01〜0.15質量%、Cr:18〜28質量%、Co:10〜15質量%、Mo:4〜7質量%、Al:0.3〜2.0質量%、Ti:0.3〜3.0質量%、B:0.001〜0.035質量%を含み、残部はNiおよび不可避的不純物からなる蒸気タービンのタービンロータ用ニッケル基合金。
(Alloy 1)
C: 0.01-0.15 mass%, Cr: 18-28 mass%, Co: 10-15 mass%, Mo: 4-7 mass%, Al: 0.3-2.0 mass%, Ti: A nickel-base alloy for a turbine rotor of a steam turbine comprising 0.3 to 3.0% by mass, B: 0.001 to 0.035% by mass, the balance being Ni and inevitable impurities.
(合金2)
C:0.01〜0.15質量%、Cr:18〜28質量%、Co:10〜15質量%、Mo:4〜7質量%、Al:0.3〜2.0質量%、Ti:0.3〜3.0質量%、B:0.001〜0.035質量%、Ta:0.1〜0.7質量%を含み、残部はNiおよび不可避的不純物からなる蒸気タービンのタービンロータ用ニッケル基合金。
(Alloy 2)
C: 0.01-0.15 mass%, Cr: 18-28 mass%, Co: 10-15 mass%, Mo: 4-7 mass%, Al: 0.3-2.0 mass%, Ti: A turbine rotor of a steam turbine comprising 0.3 to 3.0% by mass, B: 0.001 to 0.035% by mass, Ta: 0.1 to 0.7% by mass, the balance being made of Ni and inevitable impurities Nickel base alloy.
(合金3)
C:0.01〜0.15質量%、Cr:18〜28質量%、Co:10〜15質量%、Mo:4〜7質量%、Al:0.3〜2.0質量%、Ti:0.3〜3.0質量%、B:0.001〜0.035質量%、Nb:0.1〜0.4質量%を含み、残部はNiおよび不可避的不純物からなる蒸気タービンのタービンロータ用ニッケル基合金。
(Alloy 3)
C: 0.01-0.15 mass%, Cr: 18-28 mass%, Co: 10-15 mass%, Mo: 4-7 mass%, Al: 0.3-2.0 mass%, Ti: A turbine rotor of a steam turbine comprising 0.3 to 3.0% by mass, B: 0.001 to 0.035% by mass, Nb: 0.1 to 0.4% by mass, the balance being Ni and inevitable impurities Nickel base alloy.
(合金4)
C:0.01〜0.15質量%、Cr:18〜28質量%、Co:10〜15質量%、Mo:4〜7質量%、Al:0.3〜2.0質量%、Ti:0.3〜3.0質量%、B:0.001〜0.035質量%、Ta:0.1〜0.7質量%、Nb:0.1〜0.4質量%を含み、残部はNiおよび不可避的不純物からなる蒸気タービンのタービンロータ用ニッケル基合金。
(Alloy 4)
C: 0.01-0.15 mass%, Cr: 18-28 mass%, Co: 10-15 mass%, Mo: 4-7 mass%, Al: 0.3-2.0 mass%, Ti: 0.3-3.0% by mass, B: 0.001-0.035% by mass, Ta: 0.1-0.7% by mass, Nb: 0.1-0.4% by mass, the balance being A nickel-base alloy for a turbine rotor of a steam turbine comprising Ni and inevitable impurities.
(合金5)
C:0.01〜0.15質量%、Cr:18〜28質量%、Co:10〜15質量%、Mo:4〜7質量%、Al:0.3〜2.0質量%、Ti:0.3〜3.0質量%、B:0.001〜0.035質量%、Ta+2Nb=0.1〜0.7質量%を含み、残部はNiおよび不可避的不純物からなる蒸気タービンのタービンロータ用ニッケル基合金。
(Alloy 5)
C: 0.01-0.15 mass%, Cr: 18-28 mass%, Co: 10-15 mass%, Mo: 4-7 mass%, Al: 0.3-2.0 mass%, Ti: A turbine rotor of a steam turbine including 0.3 to 3.0% by mass, B: 0.001 to 0.035% by mass, Ta + 2Nb = 0.1 to 0.7% by mass, the balance being Ni and inevitable impurities Nickel base alloy.
ここで、上記(合金1)〜(合金5)の蒸気タービンのタービンロータ用ニッケル基合金における不可避的不純物において、その不可避的不純物のうち、少なくともSi含有率を0.1%以下、Mn含有率を0.1%以下に低減していることが望ましい。また、不可避的不純物には、Fe、Cuが含まれる。 Here, in the inevitable impurities in the nickel base alloy for the turbine rotor of the steam turbine of the above (Alloy 1) to (Alloy 5), among the inevitable impurities, at least the Si content is 0.1% or less, and the Mn content is Is preferably reduced to 0.1% or less. Inevitable impurities include Fe and Cu.
これらの蒸気タービンのタービンロータ用ニッケル基合金によれば、上記した組成成分範囲で構成されることで、従来のニッケル基合金の鍛造性等の加工性を維持しつつ、高温における機械的強度および長時間におよぶ材料の健全性が向上する。また、高温蒸気が導入される蒸気タービンに貫設されるタービンロータの少なくとも所定部位を上記したいずれか1つの蒸気タービンのタービンロータ用ニッケル基合金で構成することができる。このタービンロータによれば、高温強度を向上させることができ、高温環境下においても高い信頼性を有する。 According to the nickel-base alloy for the turbine rotor of these steam turbines, the mechanical strength at high temperature and the workability such as forgeability of the conventional nickel-base alloy are maintained by being configured in the above-described composition component range. The soundness of the material over a long time is improved. In addition, at least a predetermined portion of the turbine rotor penetrating the steam turbine into which the high-temperature steam is introduced can be constituted by any one of the above-described nickel-base alloys for the turbine rotor of the steam turbine. According to this turbine rotor, the high-temperature strength can be improved, and it has high reliability even in a high-temperature environment.
次に、上記した実施形態に係る蒸気タービンのタービンロータ用ニッケル基合金における各組成成分範囲の限定理由について説明する。 Next, the reason for limitation of each composition component range in the nickel base alloy for turbine rotors of the steam turbine according to the above-described embodiment will be described.
C(炭素)
Cは、強化相であるM23C6型炭化物の構成元素として有用であり、特に650℃以上の高温環境下では、タービンの運転中にM23C6型炭化物を析出させることが合金のクリープ強度を維持させる要因の一つである。また、鋳造時の溶湯の流動性を確保する効果も併せ持つ。Cの含有率が0.01%未満の場合、炭化物の十分な析出量を確保できないため強度が低下するとともに鋳造時の溶湯の流動性が著しく低下する。一方、Cの含有率が0.15%を超えると大型鋳塊製作時の成分偏析傾向が増加するとともに脆化相であるM6C型炭化物の生成を促進し、強度は向上するが、鍛造性は低下する。このため、Cの含有率を0.01〜0.15%とした。
C (carbon)
C is useful as a constituent element of M 23 C 6 type carbide, which is a strengthening phase. Particularly in a high temperature environment of 650 ° C. or higher, precipitation of M 23 C 6 type carbide during turbine operation causes creep of the alloy. This is one of the factors that maintain strength. It also has the effect of ensuring the fluidity of the molten metal during casting. When the C content is less than 0.01%, a sufficient precipitation amount of carbide cannot be secured, so that the strength is lowered and the fluidity of the molten metal during casting is significantly lowered. On the other hand, if the C content exceeds 0.15%, the tendency of component segregation during the production of large ingots increases and the formation of M 6 C type carbides, which are embrittled phases, is promoted and the strength is improved. Sex declines. For this reason, the C content is determined to be 0.01 to 0.15%.
Cr(クロム)
Crは、ニッケル基合金の耐酸化性、耐食性、強度を高めるのに不可欠な元素である。さらにM23C6型炭化物の構成元素として不可欠であり、特に650℃以上の高温環境下では、タービンの運転中にM23C6型炭化物を析出させることで、合金のクリープ強度が維持される。また、Crは高温蒸気環境下における耐酸化性を高める。Crの含有率が18%未満の場合耐酸化性が低下し、Crの含有率が28%を超えるとM23C6型炭化物の析出を著しく促進することによって粗大化傾向を高める。このため、Crの含有率を18〜28%とした。
Cr (chrome)
Cr is an essential element for enhancing the oxidation resistance, corrosion resistance, and strength of the nickel-base alloy. Further, it is indispensable as a constituent element of M 23 C 6 type carbide, and particularly in a high temperature environment of 650 ° C. or higher, the creep strength of the alloy is maintained by precipitating M 23 C 6 type carbide during turbine operation. . Moreover, Cr improves the oxidation resistance in a high temperature steam environment. When the Cr content is less than 18%, the oxidation resistance decreases, and when the Cr content exceeds 28%, precipitation of M 23 C 6 type carbides is remarkably promoted to increase the coarsening tendency. For this reason, the Cr content is determined to be 18 to 28%.
Co(コバルト)
Coは、ニッケル基合金において、母相内に固溶し、母相の強化作用を持つ。Coの含有率が10%未満では、強度が低下し、Coの含有率が15%を超えると有害な金属間化合物相を生成し、鍛造性が低下する。このため、Coの含有率を10〜15%とした。
Co (Cobalt)
Co is a solid solution in the parent phase in a nickel-based alloy and has a strengthening action on the parent phase. If the Co content is less than 10%, the strength decreases, and if the Co content exceeds 15%, a harmful intermetallic compound phase is generated, and the forgeability decreases. For this reason, the Co content is determined to be 10 to 15%.
Mo(モリブデン)
Moは、ニッケル母相中に固溶して母相の強度を高める効果を有し、また、M23C6型炭化物中に一部が置換することによって炭化物の安定性を高める。しかしながら、前述したとおり、Moの含有率が7%を超えると上記強化と共に有害相であるσ相の析出が促進され、結果として衝撃値、クリープ特性、低サイクル疲労寿命などの機械的特性の低下を引き起こす。Moの含有率が4%未満の場合、σ相の析出は抑制されるが、上記強化の効果が得られなくなる。このため、Moの含有率を4〜7%とした。
Mo (molybdenum)
Mo has an effect of increasing the strength of the matrix phase by dissolving in the nickel matrix phase, and also increasing the stability of the carbide by partially replacing the M 23 C 6 type carbide. However, as described above, when the Mo content exceeds 7%, precipitation of the σ phase, which is a harmful phase, is promoted together with the above strengthening, and as a result, mechanical properties such as impact value, creep characteristics, and low cycle fatigue life are reduced. cause. When the Mo content is less than 4%, precipitation of the σ phase is suppressed, but the strengthening effect cannot be obtained. For this reason, the Mo content is determined to be 4 to 7%.
Al(アルミニウム)
Alは、ニッケルとともにγ’相(Ni3(Al,Ti))を生成し、析出によりニッケル基合金を強化する。Alの含有率が0.3%未満の場合強度が低下する。Alの含有率が3.0を超えると、その他の添加成分濃度に関わらずσ相析出が引き起こされる。このため、Alの含有率を0.3〜3.0%とした。
Al (aluminum)
Al forms a γ ′ phase (Ni 3 (Al, Ti)) together with nickel, and strengthens the nickel-base alloy by precipitation. If the Al content is less than 0.3%, the strength decreases. When the Al content exceeds 3.0, σ phase precipitation is caused regardless of the concentration of other additive components. Therefore, the Al content is determined to be 0.3 to 3.0%.
Ti(チタン)
Tiは、アルミニウムと同様、ニッケルとともにγ’相(Ni3(Al,Ti))を生成し、ニッケル基合金を強化する。Tiの含有率が0.3%未満の場合強度は従来材と同等となり、Tiの含有率が3%を超えると熱間加工性が低下し、鍛造性が低下したり、σ相析出が引き起こされたりする。このため、Tiの含有率を0.3〜3.0%とした。
Ti (titanium)
Ti, like aluminum, produces a γ ′ phase (Ni 3 (Al, Ti)) together with nickel and strengthens the nickel-based alloy. When the Ti content is less than 0.3%, the strength is the same as that of the conventional material. When the Ti content exceeds 3%, the hot workability is lowered, the forgeability is lowered, and σ phase precipitation is caused. Or For this reason, the Ti content is determined to be 0.3 to 3.0%.
B(ホウ素)
Bは、粒界に偏析して高温特性を向上させる。この効果は、Bの含有率が0.001%以上で発現する。したがって、Bの含有率は0.001%以上とする必要がある。しかしながら、Bの含有率が過剰となり、Bの含有率が0.035%を超えると粒界脆化を招く恐れがある。このため、Bの含有率を0.001〜0.035%とした。
B (boron)
B segregates at the grain boundaries and improves the high temperature characteristics. This effect is manifested when the B content is 0.001% or more. Therefore, the B content needs to be 0.001% or more. However, if the B content is excessive and the B content exceeds 0.035%, grain boundary embrittlement may occur. Therefore, the B content is determined to be 0.001 to 0.035%.
Ta(タンタル)
Taはγ’相に固溶し、析出強化相を安定化させる効果を有するので、必要に応じて含有させる。Taの含有率が0.1%未満の場合は上記した効果が発揮されず、Taの含有率が0.7%を超えると強度は向上するが鍛造性が低下する。このため、Taの含有率は0.1〜0.7%とした。
Ta (tantalum)
Ta dissolves in the γ 'phase and has the effect of stabilizing the precipitation strengthening phase, so it is contained as necessary. When the Ta content is less than 0.1%, the above effects are not exhibited. When the Ta content exceeds 0.7%, the strength is improved, but the forgeability is lowered. For this reason, the content rate of Ta was made into 0.1 to 0.7%.
Nb(ニオブ)
Nbは、Taと同様にγ’相に固溶し強度を高め、析出強化相を安定化させる効果を有する。Nbの含有率が0.1%未満では上記した効果が発揮されず、Nbの含有率が0.4%を超えると強度は向上するが鍛造性が低下する。このため、Nb含有率は、0.1〜0.4%とした。
Nb (Niobium)
Nb, like Ta, has the effect of forming a solid solution in the γ ′ phase, increasing the strength, and stabilizing the precipitation strengthening phase. When the Nb content is less than 0.1%, the above-described effects are not exhibited. When the Nb content exceeds 0.4%, the strength is improved but the forgeability is lowered. For this reason, the Nb content is determined to be 0.1 to 0.4%.
Mn(マンガン)
普通鋼の場合、脆性に起因するS(イオウ)を、Mnを添加することでMnSとして、脆性を防止する。しかし、ニッケル基合金のS含有量は極めて少なく、Mnを添加する必要はない。このため、Mnを極力除去することが好ましく、Mnの含有率を0.1%以下とした。
Mn (manganese)
In the case of plain steel, brittleness is prevented by adding Mn to S (sulfur) resulting from brittleness. However, the nickel content of the nickel-based alloy is extremely small, and it is not necessary to add Mn. For this reason, it is preferable to remove Mn as much as possible, and the Mn content is set to 0.1% or less.
Si(ケイ素)
普通鋼の場合、耐食性を補うためSiを添加するが、ニッケル基合金の場合、Cr含有率が多く十分に耐食性を確保できる。このため、Siを極力除去することが好ましく、Siの含有率を0.1%以下とした。
Si (silicon)
In the case of ordinary steel, Si is added to supplement the corrosion resistance. However, in the case of a nickel-base alloy, the Cr content is high and sufficient corrosion resistance can be secured. For this reason, it is preferable to remove Si as much as possible, and the Si content is set to 0.1% or less.
図2(a)に従来のインコネル617の電子顕微鏡組織写真、図2(b)に本実施形態に係る蒸気タービンのタービンロータ用ニッケル基合金の電子顕微鏡組織写真を示す。図2(b)に示されるとおり、本実施形態に係る蒸気タービンのタービンロータ用ニッケル基合金では、上記合金組成範囲とすることにより、σ相の析出を抑制しつつγ母相中に微細なγ’相を安定的に析出させることが可能となり、インコネル617と比べた場合においても、より良好な組織の状態とすることができた。 FIG. 2A shows an electron micrograph of a conventional Inconel 617, and FIG. 2B shows an electron micrograph of a nickel-based alloy for a turbine rotor of a steam turbine according to this embodiment. As shown in FIG. 2 (b), in the nickel-base alloy for the turbine rotor of the steam turbine according to the present embodiment, by setting the alloy composition range as described above, the γ phase is finely suppressed while suppressing the precipitation of the σ phase. It was possible to stably precipitate the γ ′ phase, and even when compared with Inconel 617, it was possible to obtain a better structure state.
次に、本実施形態に係る蒸気タービンのタービンロータ用ニッケル基合金の好ましい製造方法について説明する。まず、上記のように成分調整された合金を、常法により溶製し鋳造する。その後、当該鋼塊に、安定化処理、通常の熱間鍛造、溶体化処理を施す。熱間鍛造後の溶体化処理では、γ’相の溶解温度以上でかつ局部溶融開始温度以下とすることが望ましい。 Next, the preferable manufacturing method of the nickel base alloy for turbine rotors of the steam turbine which concerns on this embodiment is demonstrated. First, the alloy whose components are adjusted as described above is melted and cast by a conventional method. Thereafter, the steel ingot is subjected to stabilization treatment, normal hot forging, and solution treatment. In the solution treatment after hot forging, it is desirable that the temperature be higher than the melting temperature of the γ ′ phase and lower than the local melting start temperature.
上記安定化処理および溶体化処理は、合金組成と処理物のサイズによって条件が異なるが、安定化処理の場合、例えば1000℃〜1250℃、3〜72時間の加熱により行うことができ、溶体化処理の場合、例えば1000℃〜1200℃、3〜24時間の加熱とその後の急冷により行うことができる。これらの処理は、多段に行うものであってもよい。さらに必要に応じ、700℃〜800℃、3〜24時間の時効処理を行うことにより、γ’相の早期析出を達成することもできる。これらの処理は、多段に行うものであってもよい。 The conditions for the stabilization treatment and the solution treatment differ depending on the alloy composition and the size of the processed material. In the case of the stabilization treatment, for example, the treatment can be performed by heating at 1000 ° C. to 1250 ° C. for 3 to 72 hours. In the case of a process, it can carry out by 1000 to 1200 degreeC, the heating for 3 to 24 hours, and subsequent rapid cooling, for example. These processes may be performed in multiple stages. Furthermore, early precipitation of the γ ′ phase can be achieved by performing an aging treatment at 700 ° C. to 800 ° C. for 3 to 24 hours as necessary. These processes may be performed in multiple stages.
本発明の実施例の蒸気タービンのタービンロータ用ニッケル基合金及び比較例のニッケル基合金の合金組成、高温強度特性および加工性を調査した結果を説明する。これらの実施例の蒸気タービンのタービンロータ用ニッケル基合金及び比較例のニッケル基合金の合金組成を表1に示す。 The results of investigating the alloy composition, high temperature strength characteristics and workability of the nickel base alloy for the turbine rotor of the steam turbine of the example of the present invention and the nickel base alloy of the comparative example will be described. Table 1 shows the alloy compositions of the nickel-base alloy for the turbine rotor of the steam turbine of these examples and the nickel-base alloy of the comparative example.
表1に示す化学成分を有するニッケル基合金20kgを真空誘導溶解炉にて溶解し、38種類の鋳塊から鍛造材を得た。18種類の比較例1〜18は、実施例における各元素の含有率の範囲を評価するため、含有率を範囲外に調整したものである。比較例1は、従来材であるインコネル617相当の化学成分を有する。比較例2,3は、Cの含有率が本発明の範囲外となっている。比較例4,5は、Crの含有率が本発明の範囲外となっている。比較例6,7は、Coの含有率が本発明の範囲外となっている。比較例8,9は、Moの含有率が本発明の範囲外となっている。比較例10,11は、Alの含有率が本発明の範囲外となっている。比較例12,13は、Tiの含有率が本発明の範囲外となっている。比較例14は、Bの含有率が本発明の範囲外となっている。比較例15,16は、Taの含有率が本発明の範囲外となっている。比較例17,18は、Nbの含有率が本発明の範囲外となっている。 20 kg of nickel-base alloy having chemical components shown in Table 1 was melted in a vacuum induction melting furnace, and forgings were obtained from 38 types of ingots. 18 types of comparative examples 1-18 adjust the content rate out of the range in order to evaluate the content range of each element in the examples. Comparative Example 1 has a chemical component equivalent to Inconel 617, which is a conventional material. In Comparative Examples 2 and 3, the C content is outside the scope of the present invention. In Comparative Examples 4 and 5, the Cr content is outside the scope of the present invention. In Comparative Examples 6 and 7, the Co content is outside the scope of the present invention. In Comparative Examples 8 and 9, the Mo content is outside the scope of the present invention. In Comparative Examples 10 and 11, the Al content is outside the scope of the present invention. In Comparative Examples 12 and 13, the Ti content is outside the scope of the present invention. In Comparative Example 14, the B content is outside the scope of the present invention. In Comparative Examples 15 and 16, the Ta content is outside the scope of the present invention. In Comparative Examples 17 and 18, the Nb content is outside the scope of the present invention.
残りの20種類の実施例1〜20のうち、実施例1〜4は、前記した合金1に相当するものであり、実施例5〜8は、前記した合金2に相当するものであり、実施例9〜12は、前記した合金3に相当するものであり、実施例13〜16は、前記した合金4に相当するものであり、実施例17〜20は、前記した合金5に相当するものである。なお、表1中、Fe,Cuは不可避的に混入したものである。 Of the remaining 20 types of Examples 1 to 20, Examples 1 to 4 correspond to the alloy 1 described above, and Examples 5 to 8 correspond to the alloy 2 described above. Examples 9 to 12 correspond to the alloy 3 described above, Examples 13 to 16 correspond to the alloy 4 described above, and Examples 17 to 20 correspond to the alloy 5 described above. It is. In Table 1, Fe and Cu are inevitably mixed.
上記38種類の鍛造材は、いずれも直径約125mm長さ約210mmの中実円筒状の鋳塊に対し、表面の黒皮組織を切削除去して得た。黒皮除去後の鍛造材は直径約120mm、長さ約200mmとなった。これらの鍛造材を1180℃で6時間の安定化処理を施した後、直ちに熱間鍛造を実施した。鍛造比が3となるまで、熱間鍛造を実施したが、その際鍛造材の温度を計測し、鍛造材温度が1000℃まで低下すると一旦鍛造作業を中断し、1180℃での再加熱を実施した。鍛造比が3となった時点、すなわち、鍛造品の全長が600mmとなった時点で、鍛造を終了し放冷した。この時点で鍛造品の直径は約63mmとなっていた。冷却後、鍛造品の表面を観察し、鍛造割れの有無を調査した。 The 38 types of forged materials were obtained by cutting and removing the black skin structure of a solid cylindrical ingot having a diameter of about 125 mm and a length of about 210 mm. The forged material after removal of the black skin was about 120 mm in diameter and about 200 mm in length. These forgings were subjected to stabilization treatment at 1180 ° C. for 6 hours, and immediately thereafter hot forging was performed. Hot forging was carried out until the forging ratio reached 3, but at that time the temperature of the forging material was measured, and once the forging material temperature dropped to 1000 ° C, the forging operation was interrupted and reheating was performed at 1180 ° C. did. When the forging ratio reached 3, that is, when the total length of the forged product reached 600 mm, the forging was finished and allowed to cool. At this time, the diameter of the forged product was about 63 mm. After cooling, the surface of the forged product was observed to check for forging cracks.
次に、鍛造品それぞれを1170℃で4時間加熱した後強制空冷する溶体化処理を実施した。溶体化処理後の鍛造品に対し、750℃、10時間の時効処理を実施した。時効処理後の鍛造品より、適宜試験片を採取して各種試験に供した。 Next, each of the forged products was heated at 1170 ° C. for 4 hours and then subjected to a solution treatment for forced air cooling. The forged product after the solution treatment was subjected to an aging treatment at 750 ° C. for 10 hours. Test pieces were appropriately collected from the forged product after the aging treatment and used for various tests.
溶体化処理および時効処理後の比較例1〜18および実施例1〜20について、クリープ試験結果から得た700℃・10万時間クリープ破断強度(MPa)、および鍛造状況を表2に示す。なお、クリープ試験はJIS Z 2271に従って実施した。 Table 2 shows the 700 ° C./100,000 hour creep rupture strength (MPa) obtained from the creep test results and the forging status of Comparative Examples 1 to 18 and Examples 1 to 20 after solution treatment and aging treatment. The creep test was performed according to JIS Z 2271.
表2に示されるように、従来材であるインコネル617相当の化学成分を有する比較例1の700℃・10万時間クリープ破断強度が112(MPa)であったのに対して、本実施例1〜20の700℃・10万時間クリープ破断強度は190〜214(MPa)であり、析出/固溶強化により高温強度が向上していることが分かった。また、実施例1〜20では、リヒート回数10(鍛造比=3)で鍛造割れも無く、比較例1(従来材:インコネル617相当)と同等の鍛造性を有していることが分かった。なお、比較例3,7,16,18では、700℃・10万時間クリープ破断強度は各実施例と同等程度となったが、リヒート回数の増加、鍛造割れの発生等が生じ、鍛造性の低下が見られた。 As shown in Table 2, the creep rupture strength of Comparative Example 1 having a chemical component corresponding to Inconel 617, which is a conventional material, was 700 ° C. and 100,000 hours creep rupture strength was 112 (MPa), whereas Example 1 The creep rupture strength at 700 ° C. and 100,000 hours of ˜20 was 190 to 214 (MPa), and it was found that the high temperature strength was improved by precipitation / solid solution strengthening. Moreover, in Examples 1-20, it turned out that it has the forgeability equivalent to the comparative example 1 (conventional material: Inconel 617 equivalent) without the forging crack by the reheat frequency 10 (forging ratio = 3). In Comparative Examples 3, 7, 16, and 18, the creep rupture strength at 700 ° C./100,000 hours was about the same as in each example, but the number of reheats increased, forging cracks occurred, and the forgeability was increased. A decrease was seen.
表3に比較例1(従来材:インコネル617相当)と実施例1,5,9,13,17の5種について熱間加工性を評価したグリーブル試験の結果を示す。グリーブル試験は、900℃、1000℃、1100℃、1200℃および1300℃にて引張速度10%歪/秒で行った。図3は、上記のグリーブル試験結果をグラフに示すものであり、縦軸は断面減少率(絞り値)(%)、横軸は試験温度(℃)を示している。 Table 3 shows the results of a greeble test in which hot workability was evaluated for five types of Comparative Example 1 (conventional material: equivalent to Inconel 617) and Examples 1, 5, 9, 13, and 17. The greeble test was conducted at 900 ° C., 1000 ° C., 1100 ° C., 1200 ° C. and 1300 ° C. with a tensile rate of 10% strain / second. FIG. 3 is a graph showing the above greeble test results, where the vertical axis represents the cross-sectional reduction rate (drawing value) (%), and the horizontal axis represents the test temperature (° C.).
表3及び図3に示されるように、グリーブル試験の結果、実施例1,5,9,13,17は、鍛造温度範囲である900〜1200℃において絞り値50%以上を確保しており、比較例1(従来材:インコネル617相当)と同等の熱間加工性を有していることが分かった。したがって、製造上の問題はない。 As shown in Table 3 and FIG. 3, as a result of the greeble test, Examples 1, 5, 9, 13, and 17 ensure a drawing value of 50% or more at 900 to 1200 ° C. that is a forging temperature range. It turned out that it has the hot workability equivalent to the comparative example 1 (conventional material: Inconel 617 equivalency). Therefore, there are no manufacturing problems.
以上のように、上記実施形態に係る蒸気タービンのタービンロータ用ニッケル基合金は、鍛造性等の加工性を維持しつつ、高い高温強度を有するとともに、高温環境下においても長期間に亘り健全性と組織安定性を維持することができる。したがって、蒸気が導入される蒸気タービンに貫設されるタービンロータの全部または少なくとも所定部位を、上記実施形態に係るニッケル基合金のいずれか1つによって構成することにより、タービンロータの高温強度を高めることができるとともに、高温環境下においても長期間に亘り健全性と組織安定性を維持することが可能となり、700℃以上の蒸気温度の蒸気タービンを実現することができる。 As described above, the nickel-base alloy for the turbine rotor of the steam turbine according to the above embodiment has high high-temperature strength while maintaining workability such as forgeability, and is sound for a long time even in a high-temperature environment. And maintain tissue stability. Therefore, the high temperature strength of the turbine rotor is increased by configuring all or at least a predetermined portion of the turbine rotor penetrating the steam turbine into which the steam is introduced with any one of the nickel-based alloys according to the above embodiment. In addition, it is possible to maintain soundness and tissue stability over a long period of time even in a high temperature environment, and a steam turbine having a steam temperature of 700 ° C. or higher can be realized.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009130036A JP5395516B2 (en) | 2009-05-29 | 2009-05-29 | Nickel-based alloy for steam turbine turbine rotor and steam turbine turbine rotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009130036A JP5395516B2 (en) | 2009-05-29 | 2009-05-29 | Nickel-based alloy for steam turbine turbine rotor and steam turbine turbine rotor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010275597A true JP2010275597A (en) | 2010-12-09 |
JP5395516B2 JP5395516B2 (en) | 2014-01-22 |
Family
ID=43422830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009130036A Active JP5395516B2 (en) | 2009-05-29 | 2009-05-29 | Nickel-based alloy for steam turbine turbine rotor and steam turbine turbine rotor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5395516B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013095949A (en) * | 2011-10-31 | 2013-05-20 | Nippon Steel & Sumitomo Metal Corp | Austenitic heat resistant alloy |
WO2013162670A2 (en) * | 2012-02-09 | 2013-10-31 | United Technologies Corporation | Method of manufacturing an airfoil |
JP2014019924A (en) * | 2012-07-20 | 2014-02-03 | Toshiba Corp | Ni-BASED ALLOY FOR CASTING AND CASTING COMPONENT |
JP2014019916A (en) * | 2012-07-19 | 2014-02-03 | Toshiba Corp | Ni-BASED ALLOY FOR CASTING AND TURBINE CASTING COMPONENT |
JP2015030916A (en) * | 2013-08-07 | 2015-02-16 | 株式会社東芝 | Ni-BASED ALLOY FOR FORGING, METHOD OF PRODUCING THE SAME AND TURBINE COMPONENT |
JP2017190493A (en) * | 2016-04-13 | 2017-10-19 | 株式会社日本製鋼所 | Ni-BASED SUPER ALLOY AND MANUFACTURING METHOD OF Ni-BASED SUPER ALLOY |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105499477B (en) * | 2016-03-04 | 2017-10-24 | 大连大高阀门股份有限公司 | Core one-level explosive valve shears cap forging technology |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09227975A (en) * | 1996-02-16 | 1997-09-02 | Ebara Corp | High temperature sulfidation corrosion resistant nickel base alloy |
JP2001295012A (en) * | 2000-04-11 | 2001-10-26 | Hitachi Metals Ltd | METHOD FOR PRODUCING Ni BASE ALLOY EXCELLENT IN HIGH TEMPERATURE SULFIDATION CORROSION RESISTANCE |
JP2002088455A (en) * | 2000-09-13 | 2002-03-27 | Hitachi Metals Ltd | METHOD FOR MANUFACTURING Ni-BASE ALLOY HAVING EXCELLENT HIGH TEMPERATURE SULFIDATION CORROSION RESISTANCE |
JP2003113434A (en) * | 2001-10-04 | 2003-04-18 | Hitachi Metals Ltd | Superalloy excellent in high-temperature sulfur corrosion resistance and manufacturing method therefor |
-
2009
- 2009-05-29 JP JP2009130036A patent/JP5395516B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09227975A (en) * | 1996-02-16 | 1997-09-02 | Ebara Corp | High temperature sulfidation corrosion resistant nickel base alloy |
JP2001295012A (en) * | 2000-04-11 | 2001-10-26 | Hitachi Metals Ltd | METHOD FOR PRODUCING Ni BASE ALLOY EXCELLENT IN HIGH TEMPERATURE SULFIDATION CORROSION RESISTANCE |
JP2002088455A (en) * | 2000-09-13 | 2002-03-27 | Hitachi Metals Ltd | METHOD FOR MANUFACTURING Ni-BASE ALLOY HAVING EXCELLENT HIGH TEMPERATURE SULFIDATION CORROSION RESISTANCE |
JP2003113434A (en) * | 2001-10-04 | 2003-04-18 | Hitachi Metals Ltd | Superalloy excellent in high-temperature sulfur corrosion resistance and manufacturing method therefor |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013095949A (en) * | 2011-10-31 | 2013-05-20 | Nippon Steel & Sumitomo Metal Corp | Austenitic heat resistant alloy |
WO2013162670A2 (en) * | 2012-02-09 | 2013-10-31 | United Technologies Corporation | Method of manufacturing an airfoil |
WO2013162670A3 (en) * | 2012-02-09 | 2013-11-21 | United Technologies Corporation | Method of manufacturing an airfoil |
JP2014019916A (en) * | 2012-07-19 | 2014-02-03 | Toshiba Corp | Ni-BASED ALLOY FOR CASTING AND TURBINE CASTING COMPONENT |
JP2014019924A (en) * | 2012-07-20 | 2014-02-03 | Toshiba Corp | Ni-BASED ALLOY FOR CASTING AND CASTING COMPONENT |
JP2015030916A (en) * | 2013-08-07 | 2015-02-16 | 株式会社東芝 | Ni-BASED ALLOY FOR FORGING, METHOD OF PRODUCING THE SAME AND TURBINE COMPONENT |
JP2017190493A (en) * | 2016-04-13 | 2017-10-19 | 株式会社日本製鋼所 | Ni-BASED SUPER ALLOY AND MANUFACTURING METHOD OF Ni-BASED SUPER ALLOY |
Also Published As
Publication number | Publication date |
---|---|
JP5395516B2 (en) | 2014-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5127749B2 (en) | Ni-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine using the same | |
JP5278936B2 (en) | Heat resistant superalloy | |
JP5478601B2 (en) | Ni-based forged alloy and gas turbine using the same | |
JP4261562B2 (en) | Ni-Fe based forged superalloy excellent in high temperature strength and high temperature ductility, its manufacturing method, and steam turbine rotor | |
JP2009084684A (en) | Nickel-based alloy for turbine rotor of steam turbine, and turbine rotor of steam turbine | |
US8685316B2 (en) | Ni-based heat resistant alloy, gas turbine component and gas turbine | |
WO2013089218A1 (en) | Heat-resistant nickel-based superalloy | |
JP5395516B2 (en) | Nickel-based alloy for steam turbine turbine rotor and steam turbine turbine rotor | |
JP2015030916A (en) | Ni-BASED ALLOY FOR FORGING, METHOD OF PRODUCING THE SAME AND TURBINE COMPONENT | |
JP5323162B2 (en) | Polycrystalline nickel-based superalloy with excellent mechanical properties at high temperatures | |
JP2014070230A (en) | METHOD FOR PRODUCING Ni-BASED SUPERALLOY | |
JP4982539B2 (en) | Ni-base alloy, Ni-base casting alloy, high-temperature components for steam turbine, and steam turbine casing | |
JP2012255424A (en) | Ni-BASED ALLOY FOR CASTING USED FOR STEAM TURBINE AND CASTING COMPONENT OF STEAM TURBINE | |
JP5981250B2 (en) | Ni-base alloy for casting, method for producing Ni-base alloy for casting, and turbine cast component | |
JP5578916B2 (en) | Ni-based alloy for cast components of steam turbine and cast components of steam turbine | |
JP5932622B2 (en) | Austenitic heat resistant steel and turbine parts | |
JP4805803B2 (en) | Ni-based alloy and turbine rotor | |
JP4635065B2 (en) | Ni-based alloy for steam turbine turbine rotor and steam turbine turbine rotor | |
JP4387331B2 (en) | Ni-Fe base alloy and method for producing Ni-Fe base alloy material | |
JP2004256840A (en) | COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR | |
JP5550298B2 (en) | Ni-based alloy for forged parts of steam turbine, turbine rotor of steam turbine, moving blade of steam turbine, stationary blade of steam turbine, screwed member for steam turbine, and piping for steam turbine | |
JP6173822B2 (en) | Austenitic heat resistant steel and turbine parts | |
JP2014005528A (en) | Ni-BASED HEAT-RESISTANT ALLOY AND TURBINE COMPONENT | |
JP2015086432A (en) | Austenitic heat resistant steel and turbine component | |
JP6173956B2 (en) | Austenitic heat resistant steel and turbine parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110812 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120614 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130402 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130924 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131018 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5395516 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |