[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010269200A - Water treatment apparatus and water treatment method - Google Patents

Water treatment apparatus and water treatment method Download PDF

Info

Publication number
JP2010269200A
JP2010269200A JP2007208647A JP2007208647A JP2010269200A JP 2010269200 A JP2010269200 A JP 2010269200A JP 2007208647 A JP2007208647 A JP 2007208647A JP 2007208647 A JP2007208647 A JP 2007208647A JP 2010269200 A JP2010269200 A JP 2010269200A
Authority
JP
Japan
Prior art keywords
water
magnetic
filtration
water treatment
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007208647A
Other languages
Japanese (ja)
Inventor
Kazuya Daimatsu
一也 大松
Toru Morita
徹 森田
Satoshi Konishi
聡士 小西
Chihiro Kawai
千尋 河合
Mikihiro Matsumoto
幹宏 松本
Hideto Mukai
英仁 向井
Kozo Ono
公三 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007208647A priority Critical patent/JP2010269200A/en
Priority to PCT/JP2008/063097 priority patent/WO2009019971A1/en
Publication of JP2010269200A publication Critical patent/JP2010269200A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • B03C1/01Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • B63J4/002Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for for treating ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】大量に高速の水処理を行うと共に、微細な固形物を確実に捕捉して浄化効率を高め、特に、バラスト水処理用として好適に用いられる水処理装置を提供する。
【解決手段】被除去物が含まれる原水に磁性粒子を添加する磁性粒子供給部と、磁気フィルタを備え、前記磁性粒子供給部で添加された磁性粒子が付着して磁性を帯びた被除去物を前記磁気フィルタの空孔通過時に磁着して分離する磁気分離装置と、前記磁気フィルタの空孔よりも小さい空孔を有する多孔質の濾過膜を備え、前記磁気分離装置で除去されなかった原水中の被除去物を前記濾過膜で捕捉する濾過装置とを備えている。
【選択図】図2
The present invention provides a water treatment apparatus that performs high-speed water treatment in large quantities and increases the purification efficiency by reliably capturing fine solids, and is particularly suitable for ballast water treatment.
A magnetic particle supply unit that adds magnetic particles to raw water containing the object to be removed, and a magnetic filter, and the magnetic particle added by the magnetic particle supply unit adheres to the object to be removed. Separation device that is magnetically attached and separated when passing through the pores of the magnetic filter, and a porous filtration membrane having pores smaller than the pores of the magnetic filter, and was not removed by the magnetic separation device And a filtration device that captures an object to be removed in the raw water with the filtration membrane.
[Selection] Figure 2

Description

本発明は、水処理装置及び水処理方法に関し、詳しくは、被除去物が含まれる原水から高速かつ確実に被除去物を除去するものであり、特に、オイルタンカー等の船舶に大量に貯留されるバラスト水の水処理に好適に用いられるものである。   The present invention relates to a water treatment apparatus and a water treatment method, and more particularly, to remove a removal object from raw water containing the removal object at high speed and surely, and in particular, a large amount is stored in a ship such as an oil tanker. It is preferably used for water treatment of ballast water.

近年、工場排水、生活排水等から河川や海洋の汚染が拡大している。
これらの汚染された水に含まれる固形物等を除去処理する場合、水量が大量であるため洗浄処理の高速化が要求される。かつ、汚染の要因となる微生物、プランクトン、菌体を多く含む水処理では、前記の被除去物をミクロン単位の空孔を有する濾過膜で捕捉する必要があり、この場合には濾過膜に通過に時間がかかり、かつ、濾過膜に捕捉粒子が堆積して目詰まりが発生しやすいため、間欠的に洗浄が必要である等の理由から、処理水の高速大量処理が困難である。
In recent years, pollution of rivers and oceans from factory effluent and domestic effluent has increased.
When removing the solids contained in the contaminated water, the amount of water is large, so that the speed of the cleaning process is required. In addition, in water treatment that contains a large amount of microorganisms, plankton, and fungal bodies that cause contamination, it is necessary to capture the above-mentioned removal target with a filtration membrane having micron-scale pores, and in this case, it passes through the filtration membrane. It takes a long time, and trapped particles are likely to be clogged due to accumulation on the filtration membrane, so that high-speed and large-scale treatment of treated water is difficult due to the necessity of intermittent cleaning.

また、近年、船舶に積載するバラスト水の処理が問題となっている。バラスト水は空荷状態でも安全に航行するために積載される海水であり、バラスト水は出港時に付近の海域から取水し、入港時の積荷の積載時に海洋へ排水される。即ち、出港地の海水からなるバラスト水が入港地で排水され、例えば、日本から出港したオイルタンカーがオイル産油国のクエート等の中近東へ航行してオイルを搭載する場合、日本海域の海水がバラスト水として積載され、中近東の海域で洋上に排水されることとなる。
このようにバラスト水が取水した海域と異なる海域に排水されると、海水中の生物が本来の生息地でない海域に移動させられることとなり、海洋の生態系に大きな影響を及ぼすこととなる。
In recent years, the treatment of ballast water loaded on ships has become a problem. Ballast water is seawater that is loaded for safe navigation even in an empty state. Ballast water is taken from the nearby sea area when leaving the port, and drained to the ocean when loading the cargo when entering the port. That is, ballast water consisting of seawater from the port of departure is drained at the port of arrival. For example, when an oil tanker departing from Japan sails to the Middle East, such as Kuwait, an oil-producing country, It is loaded as ballast water and drained offshore in the waters of the Middle East.
When ballast water is discharged into a sea area different from the sea area where water is taken, organisms in the seawater are moved to sea areas that are not originally habitats, which greatly affects the marine ecosystem.

このため、一部の国では既にバラスト水の排出を規制しており、2004年2月には、国際海事機関において、「船舶のバラスト水および沈殿物の規制および管理」のための国際条約が採択され、2009年以降の建造船に対し、基準に適合したバラスト水処理システムの設置が求められ、かつ、条約内容に沿ってバラスト水を浄化処理することが求められている。
しかしながら、バラスト水タンクの容量が1500トン〜100000トンと大型のタンカーで、出港から入港までの航海中に洋上で、バラスト水を処理水に交換処理する場合、非常に高速に大量処理する必要がある。しかも、海水中には藻等のミクロン単位の微生物が含まれため、前記のように高速に大量処理することは困難である。
For this reason, some countries have already regulated the discharge of ballast water. In February 2004, an international convention for “regulation and management of ship ballast water and sediment” was issued by the International Maritime Organization. Adopted, construction ships after 2009 are required to install a ballast water treatment system that complies with the standards, and to purify ballast water in accordance with the contents of the Convention.
However, when a ballast water tank is a large tanker with a capacity of 1500 to 100,000 tons, and when the ballast water is exchanged to treated water on the sea during the voyage from departure to entry, it is necessary to perform mass treatment at a very high speed. is there. In addition, since seawater contains micron-unit microorganisms such as algae, it is difficult to perform mass processing at high speed as described above.

従来、本出願人は、特開2000−254544号公報(特許文献1)において、藻等の植物性微生物からなる被除去物を含む原水を、比較的高速で被除去物を分離除去できる磁気分離装置を提供している。
該磁気分離装置は、原水に鉄酸化物粒子を添加して、被除去物に磁性を付与した後に、磁気フィルタを通過させて、被除去物を磁気フィルタに磁着して分離除去している。このように磁気で被除去物を分離除去しているため、磁気フィルタの水通過用の空孔を広くしても被除去物を分離除去でき、水処理の高速化を図ることができる。
Conventionally, the present applicant has disclosed in Japanese Patent Application Laid-Open No. 2000-254544 (Patent Document 1) a magnetic separation capable of separating and removing a material to be removed at a relatively high speed from raw water containing the material to be removed made of plant microorganisms such as algae. The device is provided.
In the magnetic separation device, iron oxide particles are added to raw water to impart magnetism to the object to be removed, and then passed through a magnetic filter, and the object to be removed is magnetically attached to the magnetic filter and separated and removed. . Since the object to be removed is separated and removed by magnetism as described above, the object to be removed can be separated and removed even if the water passage hole of the magnetic filter is widened, and the water treatment can be speeded up.

特開2000−254544号公報JP 2000-254544 A

前記のように、特許文献1の磁気分離装置では、磁気により磁性を付与した被除去物を捕捉するため、磁気フィルタの空孔を大きくすることができ、よって、膜濾過より目詰まりが極めて生じにくく、大量かつ高速での水処理が可能となるという利点を有する。
しかしながら、磁力を用いる前記装置は、被除去物に磁性粒子が付着せずに磁性が付与されない被除去物を捕捉できず、除去率を確実に高めることは困難であり、この点で改善の余地がある。
As described above, the magnetic separation device of Patent Document 1 captures the object to be removed that has been magnetized by magnetism, so that the pores of the magnetic filter can be enlarged, and thus clogging is extremely caused by membrane filtration. It is difficult, and has the advantage that a large amount of water can be treated at high speed.
However, the apparatus using magnetic force cannot capture the removal object to which the magnetic particles are not attached to the object to be removed, and it is difficult to reliably increase the removal rate, and there is room for improvement in this respect. There is.

一方、前記したように、濾過装置は被除去物を濾過膜の空孔で捕捉するため、空孔よりも大きな被除去物を確実に捕捉して分離除去することができ濾過性能が高い利点を有するが、濾過膜表面又は膜間に被除去物が堆積して目詰まりが発生し易く、有効濾過膜面積が減少して透過流量の低下を招きやすく、高速処理の点で問題がある。   On the other hand, as described above, the filtration device captures the object to be removed by the pores of the filtration membrane, so that the object to be removed that is larger than the pores can be reliably captured and separated and removed, thereby providing an advantage of high filtration performance. However, there is a problem in terms of high-speed processing because the removal object accumulates on the surface of the filtration membrane or between the membranes and clogging is likely to occur, the effective filtration membrane area is reduced and the permeate flow rate is liable to decrease.

特に、バラスト水の処理においては、通常は大型船舶を対象とし、処理量が1日あたり1万トンにも及ぶほど極めて大量となる一方で、前記国際条約の基準を満たす細菌等の分離処理を行うことが要求されている。しかし、既存の設備ではこのように大量かつ性能の高い濾過を行うことは困難である。
このように、磁気分離装置と濾過装置のいずれか一方のみによる水処理では、大量に高度に固形物が除去された処理水を得ることはできない。
In particular, in the treatment of ballast water, it is usually intended for large ships, and the treatment amount is extremely large as much as 10,000 tons per day. Is required to do. However, it is difficult to perform high-volume and high-performance filtration with existing equipment.
Thus, in the water treatment using only one of the magnetic separation device and the filtration device, it is not possible to obtain treated water from which a large amount of solid matter has been removed.

本発明は前記問題に鑑みてなされたものであり、被除去物を含むバラスト水等の原水を大量処理でき、かつ、該微細な被除去物の捕捉性能も高め水処理装置及び水処理方法を提供することを課題としている。   The present invention has been made in view of the above problems, and can treat a large amount of raw water such as ballast water containing an object to be removed, and also improve the capture performance of the minute object to be removed. The issue is to provide.

前記課題を解決するため、本発明は、
被除去物が含まれる原水に磁性粒子を添加する磁性粒子供給部と、
磁気フィルタを備え、前記磁性粒子供給部で添加された磁性粒子が付着して磁性を帯びた被除去物を前記磁気フィルタの空孔通過時に磁着して分離する磁気分離装置と、
前記磁気フィルタの空孔よりも小さい空孔を有する多孔質の濾過膜を備え、前記磁気分離装置で除去されなかった原水中の被除去物を前記濾過膜で捕捉する濾過装置と、
を備えていることを特徴とする水処理装置を提供している。
In order to solve the above problems, the present invention provides:
A magnetic particle supply unit for adding magnetic particles to the raw water containing the object to be removed;
A magnetic separation device comprising a magnetic filter, wherein the magnetic particles added in the magnetic particle supply unit adhere and are magnetically separated to be removed when passing through the holes of the magnetic filter;
A filtration device comprising a porous filtration membrane having pores smaller than the pores of the magnetic filter, and capturing the object to be removed in raw water that has not been removed by the magnetic separation device;
The water treatment apparatus characterized by providing is provided.

本発明の水処理装置は、まず、原水中に磁性粒子を添加し、該磁性粒子を被除去物に付着させて磁性を付与をした後、磁気分離装置で高速に原水中の被除去物を分離除去し、該磁気分離装置で処理された処理水を濾過装置で精密濾過して磁気分離装置で除去できなかった被除去物を確実に除去している。
このように、まず、高速に被除去物を除去できる磁気分離装置で被除去物の90%以上等の大半を除去した後に、濾過装置で濾過しているため、原水中の被除去物は少量となり、濾過膜の目詰まりが発生しにくくなり、よって、濾過膜の透過流量の低下を抑制でき、処理時間を短縮化できる。
このように、磁気分離装置と濾過装置の夫々の利点を生かすと共に欠点を相互に補完することで、大量の原水を高速処理できると共に被除去物の除去率を確実に高めることができる。
The water treatment apparatus of the present invention first adds magnetic particles to raw water, attaches the magnetic particles to the object to be removed, imparts magnetism, and then removes the object to be removed from the raw water at high speed with a magnetic separation device. Separated and removed, the treated water treated by the magnetic separation device is microfiltered by a filtration device to reliably remove an object to be removed that could not be removed by the magnetic separation device.
In this way, first, since most of the objects to be removed, such as 90% or more, are removed by a magnetic separation device that can remove the objects to be removed at high speed, and then filtered by the filtration device, the objects to be removed in the raw water are small. As a result, clogging of the filtration membrane is less likely to occur, so that a decrease in the permeation flow rate of the filtration membrane can be suppressed, and the processing time can be shortened.
In this way, by taking advantage of each of the magnetic separation device and the filtration device and complementing each other's disadvantages, a large amount of raw water can be processed at a high speed and the removal rate of the object to be removed can be reliably increased.

具体的には、前記磁気分離装置は5μm以上の前記被除去物の除去用とし、前記濾過装置は0.1μm以上の前記被除去物の除去用とすることが好ましい。かつ、前記磁気分離装置の時間当たりの処理水量は前記濾過装置の時間当たりの処理水量よりも大としている。   Specifically, it is preferable that the magnetic separation device is for removing the object to be removed having a size of 5 μm or more, and the filtering device is for removing the object to be removed having a size of 0.1 μm or more. And the amount of treated water per hour of the magnetic separation device is larger than the amount of treated water per hour of the filtering device.

前記原水に添加する磁性粒子は、平均粒径は1μm〜50μm、好ましくは1μm〜20μmである。これは、磁性粒子の平均粒径を1μm以上とすることで、磁性粒子を微生物等の被除去物に付着し易くすると共に付着後に遊離させにくくできる。一方、50μmを越えるとバラストタンカーの底に付着したり、処理装置の配管の底に堆積して有効に働かないという問題が生じる。
なお、50μmより大きな被除去物は目のあらいフィルターなどでバラスト水をタンカーに取水する時点で除去することも可能であり、これは船上での装置稼動やメンテナンスが容易となる利点がある。さらに、50μmより大きいプランクトンを取水海域に戻して魚類に必要なプランクトンを維持する観点からも本手法が好ましい場合がある。
磁性粒子の配合量は、原水量を100とすると0.2〜5質量%としていることが好ましい。これは、磁性粒子の配合量を0.2質量%以上としていることで、原水中の被除去物の90%以上に付着させることができる一方、5質量%未満とすることで過剰に添加されて、被除去物に付着されずに原水中に浮遊する磁性粒子を抑制できる。
The magnetic particles added to the raw water have an average particle size of 1 μm to 50 μm, preferably 1 μm to 20 μm. This can make the magnetic particles easy to adhere to an object to be removed such as microorganisms and make it difficult to release them after adhesion by setting the average particle diameter of the magnetic particles to 1 μm or more. On the other hand, when it exceeds 50 μm, there arises a problem that it adheres to the bottom of the ballast tanker or deposits on the bottom of the piping of the processing apparatus and does not work effectively.
It should be noted that an object to be removed larger than 50 μm can be removed at the time when the ballast water is taken into the tanker with a rough filter or the like, which has an advantage that the operation and maintenance of the apparatus on the ship are facilitated. Furthermore, this technique may be preferable from the viewpoint of returning plankton larger than 50 μm to the water area and maintaining the plankton necessary for fish.
The blending amount of the magnetic particles is preferably 0.2 to 5% by mass when the amount of raw water is 100. This is because when the blending amount of the magnetic particles is 0.2% by mass or more, it can be adhered to 90% or more of the object to be removed in the raw water, while it is excessively added by making it less than 5% by mass. Thus, magnetic particles floating in the raw water without being attached to the object to be removed can be suppressed.

添加する磁性粒子は、鉄、ニッケル、コバルト、銀等の磁性金属の単体あるいは合金、これらの酸化物が好適に用いられ、特に、鉄酸化物粒子が好適に用いられる。
該磁性粒子として表面に水酸基を有する鉄酸化物粒子を用いると、該鉄酸化物粒子と同様に、原水中の藻等の植物性微生物が存在すると、これら植物性微生物の表面にも水酸基が存在するため、水素結合が形成され、鉄酸化物粒子により微生物に磁性を付与することができる。
As the magnetic particles to be added, simple substances or alloys of magnetic metals such as iron, nickel, cobalt, and silver, and oxides thereof are preferably used, and iron oxide particles are particularly preferably used.
When iron oxide particles having a hydroxyl group on the surface are used as the magnetic particles, if there are plant microorganisms such as algae in the raw water as in the case of the iron oxide particles, hydroxyl groups are also present on the surface of these plant microorganisms. Therefore, hydrogen bonds are formed and magnetism can be imparted to the microorganisms by the iron oxide particles.

前記磁性粒子供給部は下記の(1)(2)(3)のいずれかの磁性粒子投入口を備え、かつ、原水中に添加された磁性粒子を原水中に混合する撹拌手段を備えていることが好ましい。
(1)前記磁気分離装置に原水供給管を介して接続される原水タンクに設けた磁性粒子投入口;
(2)前記原水タンクから前記磁気分離装置への原水供給管の途中に設けた磁気粒子投入口;
(3)前記原水タンクに原水供給管を介して接続されるとともに、前記磁気分離装置に配管を介して接続される原水一時貯留槽に設けられた磁気粒子投入口:
前記(2)の原水送給管の途中に磁気粒子投入口を設け、該投入口から送給管内を流れる原水中に磁気粒子を投入すると、原水の流れにより磁性粒子が分散されて原水に混合させることができると共に、送給管内に原水の流速により回転する撹拌器を付設すると、撹拌用の駆動源を不要とすることができる。
また、前記(3)の磁気粒子を投入して撹拌する装置を備えた原水貯留槽を設けた場合、該原水貯留槽、磁気分離装置、濾過装置を含む一連の装置を備えた水処理装置として提供でき、既設の設備に原水供給管を接続するだけで良くなる。
さらに、前記(1)の原水タンクに直接的に磁性粒子を供給する場合、該タンクへの原水供給口を磁性粒子の投入口とすることができる。
The magnetic particle supply unit includes a magnetic particle inlet of any one of the following (1), (2), and (3), and further includes a stirring unit that mixes the magnetic particles added to the raw water into the raw water. It is preferable.
(1) A magnetic particle inlet provided in a raw water tank connected to the magnetic separator through a raw water supply pipe;
(2) Magnetic particle inlet provided in the middle of the raw water supply pipe from the raw water tank to the magnetic separation device;
(3) Magnetic particle inlet provided in the raw water temporary storage tank connected to the raw water tank via a raw water supply pipe and connected to the magnetic separator via a pipe:
(2) A magnetic particle inlet is provided in the middle of the raw water feed pipe, and when magnetic particles are put into the raw water flowing through the feed pipe from the inlet, the magnetic particles are dispersed by the raw water flow and mixed with the raw water. In addition, if a stirrer that rotates according to the flow rate of the raw water is provided in the feed pipe, a drive source for stirring can be dispensed with.
Moreover, when the raw water storage tank provided with the apparatus which throws in and stirs the magnetic particle of said (3) is provided, as a water treatment apparatus provided with a series of apparatuses including this raw water storage tank, a magnetic separation apparatus, and a filtration apparatus It can be provided, and it is only necessary to connect the raw water supply pipe to the existing equipment.
Furthermore, when supplying magnetic particles directly to the raw water tank of (1), the raw water supply port to the tank can be used as an inlet for magnetic particles.

前記磁気分離装置は、磁気フィルタを磁化する電磁石を備え、該電磁石は超電導線のコイルを含み、超電導磁石としていることが好ましい。
前記超電導線は、高温超電導線材(Bi−2223系銀シース線材、Re系薄膜線材)を用い、高温超電導コイルとしていることが好ましい。
この高温超電導コイルを用いた磁気分離マグネットシステムは、冷媒を用いない(冷媒フリー)の冷凍機冷却型システムとしても良いし、液体窒素を用いた液体窒素冷却または液体窒素過冷却システムとしても良い。
Preferably, the magnetic separation device includes an electromagnet for magnetizing the magnetic filter, and the electromagnet includes a coil of a superconducting wire and is a superconducting magnet.
The superconducting wire is preferably a high-temperature superconducting coil using a high-temperature superconducting wire (Bi-2223-based silver sheath wire, Re-based thin film wire).
The magnetic separation magnet system using this high-temperature superconducting coil may be a refrigerator-cooled system that does not use a refrigerant (refrigerant-free), or a liquid nitrogen cooling or liquid nitrogen supercooling system that uses liquid nitrogen.

前記のように、超電導磁石を用いて磁気分離を行うと、超電導磁石が発生する強い磁界中に配置するステンレス鋼等の磁性体からなる磁気フィルタの細線の回りに強い磁場を形成できる。この強い磁場を利用して、原水中に分散する前記磁性粒子が付着して磁性が付与された被除去物を細線回りに磁着して分離できる。
また、超電導線材として酸化物超電導線材を用いると、金属系超電導線材と比較して、臨界温度が高いため、温度上昇による臨界電流密度の低下が小さく、クエンチしにくい高い安定性を有し、電磁石の動作が安定する。
また、冷媒として液体窒素を用いることも可能なことから、特にバラスト水の処理装置として用いる場合、船舶に搭載されて用いられても船舶のゆれに対して極めて安定である。かつ、酸化物超電導線材を用いた電磁石は、金属系の超電導線材を用いた電磁石よりも軽量かつコンパクトな構成をすることができ、船舶等の設置面積や重量に制約が大きい場所に設置される場合に有利である。
さらに、酸化物超電導線材コイルの電磁石で磁場を付与した磁気フィルタは、付着した被除去物を取り除く洗浄時に減磁する際に、高速で減磁できると共に、洗浄後の励磁も高速で行える。このように、磁気分離装置における磁界の発生と消去とを短時間で行えるため、磁気フィルタの洗浄に要する時間を短縮でき、分離処理効率を高めることができる。
As described above, when magnetic separation is performed using a superconducting magnet, a strong magnetic field can be formed around a fine wire of a magnetic filter made of a magnetic material such as stainless steel disposed in a strong magnetic field generated by the superconducting magnet. By using this strong magnetic field, the removal object to which the magnetic particles dispersed in the raw water adhere and are magnetized can be separated by being magnetized around the fine line.
In addition, when an oxide superconducting wire is used as a superconducting wire, the critical temperature is higher than that of a metal superconducting wire. Is stable.
Further, since liquid nitrogen can be used as the refrigerant, particularly when used as a ballast water treatment apparatus, even if it is mounted on a ship and used, it is extremely stable against fluctuations of the ship. In addition, an electromagnet using an oxide superconducting wire can be configured to be lighter and more compact than an electromagnet using a metal-based superconducting wire, and is installed in a place where the installation area or weight of a ship or the like is greatly restricted. Is advantageous in some cases.
Furthermore, the magnetic filter to which the magnetic field is applied by the electromagnet of the oxide superconducting wire coil can be demagnetized at a high speed when demagnetized during cleaning to remove the attached object to be removed, and can be excited at a high speed. As described above, since the magnetic field can be generated and erased in the magnetic separation device in a short time, the time required for cleaning the magnetic filter can be shortened, and the separation processing efficiency can be increased.

また、前記磁気フィルタはステンレス鋼、鉄、ニッケル、コバルト、等を主成分とした磁性体からなる細線をメッシュ状に編成して空孔を形成し、該空孔の平均面積は0.5mm〜100mmとしていることが好ましい。
磁気フィルタをステンレス線材で形成すると、錆が発生しにくく、耐久性を有する磁気フィルタとすることができる。
また、ステンレス線等の線材のメッシュで磁気フィルタを形成し、該メッシュにより形成される空孔の平均面積は1mm〜25mmとすると、特に5μm以上の磁性が付与された被除去物を90%以上を分離することができる。
In addition, the magnetic filter forms holes by knitting fine wires made of a magnetic material mainly composed of stainless steel, iron, nickel, cobalt, etc. into a mesh shape, and the average area of the holes is 0.5 mm 2. It is preferable to be set to ˜100 mm 2 .
When the magnetic filter is formed of a stainless steel wire, rust is less likely to occur and a durable magnetic filter can be obtained.
Further, a magnetic filter formed by the mesh of the wire of stainless steel wire or the like, the average area of the holes formed by the mesh and 1 mm 2 25 mm 2, especially-be-removed substance more magnetic 5μm was granted 90 % Or more can be separated.

前記磁気分離装置は、ケース内部に、磁性粒子が添加された原水が流通する大径の処理管を備え、該処理管内に流路に沿って前記磁気フィルタを一定ピッチで並設している。これら磁気フィルタを内部に並設した処理管の外周には、前記超電導線を巻回したコイルを備えた環状の電磁石を外嵌して、磁気フィルタを超電導磁石の磁場中に配置している。   The magnetic separation device includes a large-diameter processing tube through which raw water added with magnetic particles flows inside a case, and the magnetic filters are arranged in parallel along the flow path in the processing tube. An annular electromagnet including a coil around which the superconducting wire is wound is fitted on the outer periphery of a processing tube in which these magnetic filters are arranged in parallel, and the magnetic filter is disposed in the magnetic field of the superconducting magnet.

また、磁気分離装置のケース内部には、圧縮流体を噴射して磁気フィルタに付着した被除去物を吹き飛ばす磁気フィルタ洗浄器を配置し、該磁気フィルタ洗浄器に前記処理管内に並設した磁気フィルタを所定時間間隔で搬送し、洗浄後に原水流路に沿った位置に戻す循環搬送手段を設けている。前記圧縮流体としては、圧縮空気でも良いし、圧縮液でもよい。   In addition, a magnetic filter cleaning device is disposed in the case of the magnetic separation device to spray the compressed fluid and blow off the object to be removed attached to the magnetic filter, and the magnetic filter is disposed in parallel with the magnetic filter cleaning device in the processing tube. Is provided at a predetermined time interval, and a circulation transfer means for returning to a position along the raw water flow path after cleaning is provided. The compressed fluid may be compressed air or a compressed liquid.

具体的には、前記処理管内に並設した磁気フィルタを流出側から流入側に向けて同時に一定ピッチを保持した状態で移動できるようにし、所定時間間隔をあけて流出側から流入側へと間欠的に移動させ、流入端の最も被除去物が付着しやすい磁気フィルタから前記循環搬送手段で前記磁気フィルタ洗浄器へと搬送して洗浄している。
該洗浄時において、磁気フィルタは電磁石の磁場範囲から外れるため減磁されており、磁着した被除去物が離脱しやすくなっていると共に、圧縮流体の吹き付けで磁気フィルタから確実に除去できる。かつ、この除去した被除去物は受け材となる保管に収容し、ケース外部へは飛散させないようにしている。
Specifically, the magnetic filters arranged in parallel in the processing tube can be moved from the outflow side to the inflow side at the same time while maintaining a constant pitch, and intermittently from the outflow side to the inflow side with a predetermined time interval. The magnetic filter is moved to the magnetic filter cleaning device by the circulating transfer means from the magnetic filter to which the object to be removed is most likely to adhere at the inflow end.
At the time of the cleaning, the magnetic filter is demagnetized because it is out of the magnetic field range of the electromagnet, so that the magnetically removed object is easily detached and can be reliably removed from the magnetic filter by spraying a compressed fluid. In addition, the removed object to be removed is stored in a storage serving as a receiving material so that it is not scattered outside the case.

前記濾過装置は、PTFE(ポリテトラフルオロエチレン)多孔質膜を前記濾過膜として備え、前記PTFE(ポリテトラフルオロエチレン)多孔質膜の最大孔径は0.1μm〜10μmとしていることが好ましい。該平均孔径は、PMI社製パームポロメーター 型番 CFP-1200Aにより測定することができる。   The filtration device preferably includes a PTFE (polytetrafluoroethylene) porous membrane as the filtration membrane, and the PTFE (polytetrafluoroethylene) porous membrane preferably has a maximum pore size of 0.1 μm to 10 μm. The average pore diameter can be measured by a palm porometer model number CFP-1200A manufactured by PMI.

前記PTFEは、機械的強度、耐薬品性(耐酸性、耐アルカリ性、耐酸化物性)等の耐久性に極めて優れるため、広範囲の被処理水に対応することができると共に耐久性が優れたものとすることができる。また、PTFEでは、前記最大孔径が0.1μm〜10μmで、厚さ5μm〜500μm程度の薄い多孔質膜としても強度を有する。
前記最大孔径を0.1μm〜10μmとしているのは、各種排水に含有する粒子の大きさが異なり、その性状、目的にあわせて濾過膜の孔径を選定することにより含有する被除去物を確実に捕捉するためである。例えば被処理水中に最小0.2ミクロンの細菌が浮遊する場合、最大孔径0.1ミクロンを選択すればよい。
The PTFE is extremely excellent in durability such as mechanical strength and chemical resistance (acid resistance, alkali resistance, oxide resistance) and the like, and can be used for a wide range of water to be treated and has excellent durability. can do. PTFE has strength even as a thin porous membrane having a maximum pore diameter of 0.1 μm to 10 μm and a thickness of about 5 μm to 500 μm.
The reason why the maximum pore size is 0.1 μm to 10 μm is that the size of the particles contained in various wastewaters is different, and the removal object to be contained is ensured by selecting the pore size of the filtration membrane according to its properties and purpose. To capture. For example, when bacteria having a minimum size of 0.2 microns float in the water to be treated, a maximum pore size of 0.1 microns may be selected.

前記濾過装置は、前記PTFE(ポリテトラフルオロエチレン)製の多孔質膜を有する中空糸を集束した中空糸膜モジュールから形成していることが好ましい。前記PTFE製の多孔質膜を有する中空糸は、該PTFE多孔質膜のみからなる1層でも良いし、複数層を積層したものでもよい。一方、シート状のPTFE多孔質膜を使用してもよいが、その場合は不織布やネット他流路を確保された支持体と併用してシート状や筒状、袋状のユニットとしモジュール化して用いてもよい。
前記中空糸膜もしくはシート状膜はこれを複数個集束して膜モジュールエレメントを製造し、これをいくつかの形態で使用できる。
具体的には
(1)前記膜モジュールエレメントを被処理水で満たされた浸漬槽に複数個浸漬配置し、多孔質膜を通してポンプで吸引して処理水を得る;
(2)前記膜モジュールエレメントを加圧容器の中にシールして配設し、加圧ポンプにて濾過して処理水を得る方法:
前記浸漬槽、加圧容器内に散気管を配置し、膜モジュールの間や、各膜モジュールの密集した膜間にバブリングして濾過膜の表面に付着する被除去物の付着を抑制することが好ましい。
The filtration device is preferably formed from a hollow fiber membrane module in which hollow fibers having a porous membrane made of PTFE (polytetrafluoroethylene) are converged. The hollow fiber having the PTFE porous membrane may be a single layer made of only the PTFE porous membrane or may be a laminate of a plurality of layers. On the other hand, a sheet-like PTFE porous membrane may be used, but in that case, a sheet-like, tubular, or bag-like unit can be modularized in combination with a non-woven fabric or a net that supports other channels. It may be used.
A plurality of the hollow fiber membranes or sheet-like membranes are converged to produce a membrane module element, which can be used in several forms.
Specifically (1) A plurality of the membrane module elements are immersed in a dipping tank filled with the water to be treated, and sucked with a pump through the porous membrane to obtain treated water;
(2) A method in which the membrane module element is sealed and placed in a pressurized container and filtered with a pressure pump to obtain treated water:
A diffuser tube is arranged in the immersion tank and the pressurized container, and the bubbling between the membrane modules or between the dense membranes of each membrane module is performed to suppress the adhesion of the object to be removed that adheres to the surface of the filtration membrane. preferable.

前記濾過膜は最大孔径が0.1〜10μmで、例えば1つの中空糸膜モジュールでは500本〜5000本を集束しているが、前記中空糸膜の直径及び集束本数は処理水の量等に応じて異なり、限定されない。   The filtration membrane has a maximum pore diameter of 0.1 to 10 μm. For example, in one hollow fiber membrane module, 500 to 5000 fibers are converged. The diameter and number of the hollow fiber membranes depend on the amount of treated water, etc. Varies and not limited.

前記濾過装置では、膜面の目詰まりを防止するため、逆洗処理がなされる。
具体的には、濾過装置により生成した処理水を用いて定期的に濾過と逆方向の加圧による逆流を作り膜面に堆積し流量低下をもたらしている付着物質を物理的に除去する。その際、膜モジュール側には濾過されていない多くの微粒子等を含んだ濃縮排水が生成する。これについては、含有微粒子が凝集し、粒径が大きくなるため、再度、前記磁気分離の原水側に戻しこれを前期磁気分離で濾過することができる。
この逆洗排水濃縮液のもう一つの処理方法として、電解装置を併設し、この残存した濃縮液を配管を通して電解装置へと送給し、該電解装置内で各種酸化活性種、水酸基ラジカルや次亜塩素酸イオンなどを発生させるか、あるいはナノバブルを付与して、残存する0.1μm未満の細菌を殺菌し無害化する。
In the filtration device, backwashing is performed to prevent clogging of the membrane surface.
Specifically, the treated water generated by the filtering device is used to periodically remove the adhering substance that is deposited on the film surface and causes a decrease in the flow rate by creating a reverse flow by pressurization in the reverse direction to the filtration. At that time, concentrated drainage containing many fine particles not filtered is generated on the membrane module side. About this, since contained fine particles aggregate and a particle size becomes large, it can return to the raw | natural water side of the said magnetic separation again, and this can be filtered by the previous magnetic separation.
As another treatment method for this backwash wastewater concentrate, an electrolysis apparatus is also provided, and the remaining concentrate is sent to the electrolysis apparatus through a pipe, in which various oxidation active species, hydroxyl radicals and Chlorite ions are generated or nanobubbles are applied to sterilize and detoxify remaining bacteria of less than 0.1 μm.

さらに、前記濾過装置の逆洗濃縮排水の殺菌処理だけでなく、該殺菌機能を有する電解装置を、前記磁気分離装置あるいは/および濾過装置の処理水取出配管に連結して設け、磁気分離装置で処理した処理水や、濾過装置で処理した処理水を電気分解させ目的に応じた酸化活性種を生成させ、これにより殺菌処理してもよい。これにより濾過装置で除去できなかった0.1ミクロン以下の菌体、ウイルスなどの微生物を死活させる、あるいは溶存している有機物等を分解したり、脱臭したりすることができる。
一方、このうち特に濾過装置の処理水の電気分解により生成させた酸化活性種を含む液を前記濾過装置の膜モジュールの洗浄水として供給することが望ましい。これにより一般的に使用される次亜塩素酸ナトリウムなどの膜洗浄用の化学薬品は不要となる。
Further, not only the sterilization treatment of the backwash concentrated waste water of the filtration device but also an electrolysis device having the sterilization function is provided in connection with the magnetic separation device and / or the treated water extraction pipe of the filtration device, The treated treated water or the treated water treated by the filtration device may be electrolyzed to generate an oxidatively active species according to the purpose, and sterilized by this. Thereby, microorganisms such as bacteria and viruses having a size of 0.1 microns or less that could not be removed by the filtration device can be killed, or dissolved organic substances can be decomposed or deodorized.
On the other hand, it is desirable to supply a liquid containing oxidation active species generated by electrolysis of the treated water of the filtration device as washing water for the membrane module of the filtration device. This eliminates the need for commonly used membrane cleaning chemicals such as sodium hypochlorite.

即ち、下記の(1)〜(3)の構成とすることが好ましい。
(1)前記濾過装置は電解装置と配管を介して接続し、濾過されない残存成分を含む処理水を前記電解装置へ送給して電解処理後放流、貯蔵もしくは再利用している。
(2)前記濾過装置は電解装置と配管を介して接続し、該濾過装置の逆洗配水を前記電解装置へ送給して電解処理し、殺菌して系外へ排出する。
(3)前記濾過装置は電解装置と配管を介して接続し、濾過された処理水を前記電解装置へ送給して電解処理し、該電解装置で電解処理した電解液を前記濾過装置の濾過膜の洗浄水として供給する。
That is, the following configurations (1) to (3) are preferable.
(1) The filtration device is connected to an electrolysis device through a pipe, and treated water containing residual components that are not filtered is supplied to the electrolysis device to be discharged, stored, or reused after the electrolysis treatment.
(2) The filtration device is connected to the electrolysis device through a pipe, and backwash water from the filtration device is supplied to the electrolysis device for electrolysis, sterilized and discharged out of the system.
(3) The filtration device is connected to an electrolysis device through a pipe, and the filtered treated water is supplied to the electrolysis device for electrolysis treatment, and the electrolytic solution electrolyzed by the electrolysis device is filtered by the filtration device. Supply as membrane cleaning water.

また、本発明の水処理装置では、前記磁気分離装置と濾過装置との間に一時貯留槽と、該一時貯留槽から前記濾過装置への配管にポンプを介設し、濾過装置への処理水の供給量を制御していることが好ましい。
即ち、磁気分離装置による時間当たりの処理水量は、濾過装置による時間当たりの処理水量よりも多くなるため、磁気分離装置で処理した処理水を前記一時貯留槽に貯留して磁気分離装置と濾過装置での処理時間の調整を図っている。
In the water treatment device of the present invention, a temporary storage tank is provided between the magnetic separation device and the filtration device, and a pump is provided in a pipe from the temporary storage tank to the filtration device, so that the treated water to the filtration device is provided. It is preferable to control the supply amount.
That is, since the amount of treated water per hour by the magnetic separation device is larger than the amount of treated water per hour by the filtration device, the treated water treated by the magnetic separation device is stored in the temporary storage tank, and the magnetic separation device and the filtration device are stored. We are trying to adjust the processing time.

前記磁気分離装置における処理水量を設置体積1m当たり200t以上/時間に設定し、前記濾過装置における処理水量を設置体積1m当たり100t以上/時間〜200t以下/時間に設定していることが好ましい。
前記設定とすると、1500トン〜100000トンの原水を半日〜1週間程度で処理可能となる。
It is preferable that the amount of treated water in the magnetic separation device is set to 200 t / hour or more per 1 m 3 of the installed volume, and the amount of treated water in the filtration device is set to 100 t / hour to 200 t or less / hour of the installed volume of 1 m 3. .
If it is said setting, it will become possible to process raw water of 1500 tons to 100,000 tons in about a half day to a week.

よって、前記した本発明の水処理装置を、船舶に搭載し、前記原水貯留槽に貯留される原水がバラスト水であるバラスト水処理装置として好適に用いられる。
即ち、大量のバラスト水を磁気分離装置で高速に被除去物を除去できる一方、該磁気分離装置により90%以上の被除去物を除去した処理水を濾過装置で濾過膜を通して濾過処理を行うと、濾過膜に被除去物が殆ど付着しないため、濾過膜の空孔が小さくとも透過流量の低減は抑制でき、濾過処理の高速化が図れる。かつ、磁気分離装置で分離できなかった微細な被除去物を濾過装置で除去でき、大量のバラスト水を高速且つ被除去物の除去率が95%以上とすることも可能となる。
Therefore, the above-described water treatment device of the present invention is mounted on a ship and is suitably used as a ballast water treatment device in which the raw water stored in the raw water storage tank is ballast water.
That is, when a large amount of ballast water can be removed with a magnetic separator at high speed, the treated water from which 90% or more of the removed matter has been removed by the magnetic separator is filtered through a filtration membrane with a filtration device. Since the object to be removed hardly adheres to the filtration membrane, even if the pores of the filtration membrane are small, the reduction of the permeate flow rate can be suppressed, and the filtration process can be speeded up. In addition, a fine object to be removed that could not be separated by the magnetic separation device can be removed by the filtration device, and a large amount of ballast water can be removed at a high speed and the removal rate of the object to be removed is 95% or more.

さらに、第2の発明として、
原水に磁性粒子を添加して混合し、該原水中に含まれる被除去物に前記磁性粒子を付着して磁性を付与する磁性付与工程と、
磁気フィルタに磁性が付与された前記被除去物を磁着させ、前記原水から前記被除去物を分離除去する磁気分離工程と、
前記磁気分離工程で処理された処理水を、前記磁気フィルタよりも粒子捕捉用の空孔の面積を小さくした濾過膜により濾過し、残存する被除去物を分離除去する濾過工程と、
を備えていることを特徴とする水処理方法を提供している。
この本発明の水処理方法は、前記した本発明の水処理装置により最も効率的に行うことができる。
Furthermore, as a second invention,
Adding and mixing magnetic particles in raw water, and attaching the magnetic particles to the object to be removed contained in the raw water to impart magnetism; and
A magnetic separation step of magnetizing the object to be removed with magnetism applied to a magnetic filter and separating and removing the object to be removed from the raw water;
The treated water treated in the magnetic separation step is filtered through a filtration membrane having a smaller area for pores for capturing particles than the magnetic filter, and a filtration step for separating and removing remaining objects to be removed;
A water treatment method is provided.
This water treatment method of the present invention can be most efficiently performed by the above-described water treatment apparatus of the present invention.

前記した本発明の水処理方法では、
磁気分離工程で、前記原水中の被除去物の90質量%以上を除去し、前記濾過膜による濾過工程で、前記磁気分離工程で被除去物が分離除去された処理水中の被除去物及び磁性粒子を除去し、
前段の磁気分離工程と後段の濾過工程とで、前記原水中の被除去物の98質量%以上を除去することができる。
In the water treatment method of the present invention described above,
90% by mass or more of the object to be removed in the raw water is removed in the magnetic separation step, and the object to be removed in the treated water and the magnetic material are separated and removed in the magnetic separation step in the filtration step by the filtration membrane. Remove the particles,
98 mass% or more of the to-be-removed thing in the said raw water can be removed by the magnetic separation process of a front | former stage, and the filtration process of a back | latter stage.

本発明の水処理方法は、船舶のバラストタンクに貯留されるバラスト水の処理として最も好適に用いられる。
即ち、前記バラスト水中に浮遊及び沈殿する藻類を含む植物微生物および動物微生物からなる被除去物に前記磁性粒子を付着して磁性を付与し、前記磁気分離工程で分離除去すると共に、該磁気分離工程で除去されなかった被除去物を前記濾過工程で除去し、または必要時にはバラスト水中の細菌を電解処理で殺菌している。
The water treatment method of the present invention is most preferably used as a treatment for ballast water stored in a ballast tank of a ship.
That is, the magnetic particles are attached to the removal object composed of plant microorganisms and animal microorganisms including algae floating and precipitated in the ballast water to give magnetism, and separated and removed in the magnetic separation step, and the magnetic separation step The to-be-removed object that has not been removed in step 1 is removed by the filtration step, or when necessary, bacteria in the ballast water are sterilized by electrolytic treatment.

前記濾過装置による処理後のバラスト水の処理水は、最小サイズ50μm以上の生物の1mあたりの生個体数が10未満、最小サイズ10μm以上50μm未満の生物の1mlあたりの生個体数が10未満とすることができる。 The treated water of the ballast water after the treatment by the filtration device has less than 10 live individuals per 1 m 3 of organisms having a minimum size of 50 μm or more, and less than 10 live individuals per ml of organisms having a minimum size of 10 μm or more and less than 50 μm. It can be.

前記バラスト水の処理は船舶の航行中の海洋上でなされる場合、航行日が半日以上で、バラストの総水量が100000トン以下において、バラスト水の排水時に、該バラスト水の95%以上のほとんどを処理できる設定としている。
該設定としてバラスト水を処理すると、大半の大型船舶において、前記「船舶のバラスト水および沈殿物の規制および管理」のための国際条約が採択された要綱を満たすことができる。
When the ballast water treatment is performed on the ocean where the ship is sailing, the navigation date is not less than half a day, and when the total amount of ballast water is not more than 100,000 tons, most of the ballast water is not less than 95% when draining the ballast water. Can be processed.
When ballast water is treated as the setting, most large vessels can meet the outline adopted by the international convention for “regulation and management of ballast water and sediment of the vessel”.

前述したように、本発明の水処理装置では、磁気分離装置でバラスト水等の大量の原水から高速に固形物を分離除去できると共に、該磁気分離装置で除去できなかった微細な固形物や細菌を確実に除去できる。よって、大量の水を高速処理する必要があるバラスト水の浄化装置として好適に用いることができる。   As described above, in the water treatment device of the present invention, solids can be separated and removed at high speed from a large amount of raw water such as ballast water by the magnetic separation device, and fine solids and bacteria that could not be removed by the magnetic separation device. Can be reliably removed. Therefore, it can be suitably used as a ballast water purification device that needs to process a large amount of water at high speed.

本発明の実施形態を図面を参照して説明する。
図1乃至図5に第一実施形態の水処理装置10を示す。
水処理装置10はオイルタンカー等の大型船舶100に搭載し、積載したバラスト水11に含まれる海性生物等の固形物からなる被除去物の除去処理を航行中に洋上で行うものである。
Embodiments of the present invention will be described with reference to the drawings.
The water treatment apparatus 10 of 1st embodiment is shown in FIG. 1 thru | or FIG.
The water treatment apparatus 10 is mounted on a large vessel 100 such as an oil tanker, and performs removal processing of an object to be removed made of solid matter such as marine organisms contained in the loaded ballast water 11 on the sea during navigation.

図1に示すように、大型船舶100は船底側に複数のバラスト水タンク11を備え、バラスト水の総量は、例えば、1500〜100000トン程度である。航海中にバラスト水を処理する際には前記複数のバラスト水タンク11に貯留されたバラスト水を順次バラスト水処理装置10へ送給して、処理水と交換した後に、空きとなったバラスト水タンク11に再貯留し、バラスト水を全て処理してバラスト水タンク11に戻して貯留している。   As shown in FIG. 1, the large vessel 100 includes a plurality of ballast water tanks 11 on the bottom side, and the total amount of ballast water is, for example, about 1500 to 100,000 tons. When ballast water is processed during voyage, the ballast water stored in the plurality of ballast water tanks 11 is sequentially supplied to the ballast water treatment device 10 and is exchanged with the treated water. It is stored again in the tank 11, all the ballast water is processed and returned to the ballast water tank 11 for storage.

前記水処理装置10は、図2に示すように、バラスト水タンク11から配管104を介して供給されるバラスト水に磁性粒子を添加して混合する原水貯留槽13と、該原水貯留槽13から供給されるバラスト水Q1を処理する2台の磁気分離装置14と、該磁気分離装置14で処理された処理水を一時的に貯留する一時貯留槽15と、該一時貯留槽15から供給される処理水を再処理する2台の濾過装置16と、該濾過装置16と接続した電解装置17を備えている。   As shown in FIG. 2, the water treatment apparatus 10 includes a raw water storage tank 13 that adds and mixes magnetic particles to ballast water supplied from a ballast water tank 11 via a pipe 104, and a raw water storage tank 13. The two magnetic separation devices 14 for processing the supplied ballast water Q1, the temporary storage tank 15 for temporarily storing the treated water processed by the magnetic separation device 14, and the temporary storage tank 15 are supplied. Two filtration devices 16 for reprocessing treated water and an electrolysis device 17 connected to the filtration device 16 are provided.

前記原水貯留槽13と磁気分離装置14との間の配管P1にポンプ18を介設し、該ポンプ18の吐出側で配管P1を2本に分岐し、分岐管を2台の磁気分離装置14A、14Bに接続し、バラスト水を所要の水圧とで磁気分離装置14A、14Bに供給している。この2台の磁気分離装置14A、14Bは配管P2を介して一時貯留槽15に接続し、磁気分離した処理水を一時貯留している。
一時貯留槽15と濾過装置16との配管P3にポンプ19を介設し、ポンプ19の吐出側で2本に分岐し、分岐管を2台の濾過装置16A、16Bに接続している。該濾過装置16A、16Bで濾過処理した処理水は配管P4へ送給し、配管P4を図1に示す配管101を介して空きのバラスト水タンク11へ接続している。前記配管101と前記バラスト水を水処理装置10へ供給する前記配管104に夫々ポンプ102、103を介設している。
また、前記2台の濾過装置16の各濾過槽から濾過されずに残存した濃縮液を取り出す配管P5を介して電解装置17と接続している。電解装置17で電解処理した処理水の一部は配管P6でバラスト水タンク11へと接続すると共に処理水の一部は配管P7で濾過装置16へと戻し、濾過膜の逆洗浄水として用いている。
A pump 18 is provided in a pipe P1 between the raw water storage tank 13 and the magnetic separation device 14, the pipe P1 is branched into two on the discharge side of the pump 18, and the branch pipe is divided into two magnetic separation devices 14A. , 14B, and ballast water is supplied to the magnetic separators 14A, 14B at a required water pressure. The two magnetic separation devices 14A and 14B are connected to the temporary storage tank 15 via the pipe P2, and temporarily store the treated water that has been magnetically separated.
A pump 19 is provided in a pipe P3 between the temporary storage tank 15 and the filtering device 16, and the pump 19 branches into two on the discharge side of the pump 19. The branch pipe is connected to the two filtering devices 16A and 16B. The treated water filtered by the filtration devices 16A and 16B is supplied to the pipe P4, and the pipe P4 is connected to the empty ballast water tank 11 via the pipe 101 shown in FIG. Pumps 102 and 103 are interposed in the pipe 101 and the pipe 104 for supplying the ballast water to the water treatment device 10, respectively.
Moreover, it connects with the electrolysis apparatus 17 via the piping P5 which takes out the concentrate which remained without being filtered from each filtration tank of the said 2 filtration apparatuses 16. FIG. A part of the treated water electrolyzed by the electrolyzer 17 is connected to the ballast water tank 11 by the pipe P6, and a part of the treated water is returned to the filter apparatus 16 by the pipe P7 and used as backwash water for the filtration membrane. Yes.

前記原水貯留槽13には、貯留するバラスト水Q1に粉末状の磁性粒子12を添加する投入口13aを設けている。該磁性粒子12として表面に水酸基を有する鉄酸化物粒子を用いている。該原水貯留槽13の内部にバラスト水Q1と磁性粒子12とを撹拌混合する撹拌手段(不図示)を付設しており、バラスト水に含まれる被除去物に磁性粒子12を付着させて磁性を付与し、担磁バラスト水Q2としている。   The raw water storage tank 13 is provided with an inlet 13a for adding powdered magnetic particles 12 to the stored ballast water Q1. As the magnetic particles 12, iron oxide particles having a hydroxyl group on the surface are used. A stirring means (not shown) for stirring and mixing the ballast water Q1 and the magnetic particles 12 is attached to the inside of the raw water storage tank 13, and the magnetic particles 12 are attached to the object to be removed contained in the ballast water so as to be magnetized. The magnetic bearing ballast water Q2 is provided.

前記原水貯留槽13に添加する磁性粒子12は平均粒径が1μm〜50μmで、バラスト水量を100質量%とすると、磁性粒子12は0.2〜5質量%で添加している。   The magnetic particles 12 added to the raw water storage tank 13 have an average particle diameter of 1 μm to 50 μm, and the amount of ballast water is 100% by mass, the magnetic particles 12 are added at 0.2 to 5% by mass.

前記磁気分離装置14は、図3に示すように、ケース40内を隔壁24により隔てて2台の磁気分離装置14A、14Bとしている。
各磁気分離装置14A,14B内に大径の処理管20を横架し、該処理管20の一端の供給口20aを前記担磁バラスト水Q2を供給する配管P1と接続し、他端の取出口20bを配管P2と接続している。該処理管20は非磁性ステンレス、またはFRPやプラスチックなどからなる透磁性材で形成している。
前記処理管20の内部には円板形状とした磁気フィルタ21を軸線方向と直交方向に一定ピッチをあけて多数(本実施形態では24枚)並設している。かつ、該処理管20内で多数枚の磁気フィルタ21を供給口20a側に向けて取出口20bから一定ピッチを保持した状態で移動可能に配置している。
さらに、前記処理管20には、供給口20aに近接した外周に磁気フィルタ取出口20cを設けると共に、取出口20bに近接した外周に磁気フィルタ入口20dを外周に設け、径方向に出入可能としている。
As shown in FIG. 3, the magnetic separation device 14 is divided into two magnetic separation devices 14 </ b> A and 14 </ b> B by separating the inside of the case 40 by a partition wall 24.
A large-diameter processing tube 20 is installed horizontally in each of the magnetic separation devices 14A and 14B, and a supply port 20a at one end of the processing tube 20 is connected to a pipe P1 for supplying the magnetic ballast water Q2. The outlet 20b is connected to the pipe P2. The processing tube 20 is made of a non-magnetic stainless steel or a magnetically permeable material made of FRP or plastic.
A large number (24 in this embodiment) of magnetic filters 21 each having a disk shape are arranged in parallel in the direction orthogonal to the axial direction inside the processing tube 20. In addition, a large number of magnetic filters 21 are arranged in the processing tube 20 so as to be movable toward the supply port 20a while maintaining a constant pitch from the outlet 20b.
Further, the processing tube 20 is provided with a magnetic filter outlet 20c on the outer periphery in the vicinity of the supply port 20a, and a magnetic filter inlet 20d is provided on the outer periphery in the vicinity of the outlet 20b so that it can enter and exit in the radial direction. .

前記各磁気フィルタ21は磁性体からなる金属線材のメッシュからなる。本実施形態では、ステンレス網から形成し、直径30mm、メッシュで囲まれる空孔21aの1辺の長さを約5mmとし、25mmの空孔とし、5μm以上の固形物を磁着して捕捉できるようにしている。また、該ステンレス網からなる磁気フィルタ21を前記処理管20内に20枚程度を一定ピッチで並設している。 Each of the magnetic filters 21 is made of a metal wire mesh made of a magnetic material. In this embodiment, the hole 21a is formed of a stainless steel mesh and has a diameter of 30 mm and is surrounded by a mesh. The length of one side of the hole 21a is about 5 mm, and the hole is 25 mm 2. I can do it. Further, about 20 magnetic filters 21 made of stainless steel are arranged in parallel in the processing tube 20 at a constant pitch.

前記処理管20の外周面には超電導磁石22を外嵌固定している。該超電導磁石22は酸化物超電導線材が巻回されたコイル22aで形成し、該コイル22aを超電導温度に保持する冷却容器22b内に収容している。
本実施形態では、ビスマス2223系の酸化物超電導体線材のダブルパンケーキを積層させたコイルから構成している。
前記超電導磁石22で発生する磁場内に、前記処理管20内の全ての磁気フィルタ21が位置する設定とし、よって、全ての磁気フィルタ21は超電導磁石により強い磁場を発生させるようにしている。
該コイルは、例えば、室温ボア径30mm、マグネットサイズの内径50mm、外径150mm、高さ200mmとし、液体窒素過冷却(68K)では0.5T(200A通電時)、冷凍機冷却(20K)では4T(200A通電時)の特性を有す。
A superconducting magnet 22 is fitted and fixed to the outer peripheral surface of the processing tube 20. The superconducting magnet 22 is formed of a coil 22a around which an oxide superconducting wire is wound, and is accommodated in a cooling vessel 22b that maintains the coil 22a at a superconducting temperature.
In this embodiment, it is composed of a coil in which double pancakes of bismuth 2223 series oxide superconductor wire are laminated.
All the magnetic filters 21 in the processing tube 20 are set in a magnetic field generated by the superconducting magnet 22, so that all the magnetic filters 21 generate a strong magnetic field by the superconducting magnet.
The coil has, for example, a room temperature bore diameter of 30 mm, a magnet size inner diameter of 50 mm, an outer diameter of 150 mm, and a height of 200 mm. With liquid nitrogen supercooling (68K), 0.5T (at 200A energization), with refrigerator cooling (20K) 4T (200A energized).

前記磁気フィルタ21には除去する固形物が付着するため、定期的に洗浄する必要があるため、各磁気分離装置14A、14B内に夫々圧縮空気を吹き付ける磁気フィルタ洗浄器25を設置し、該磁気フィルタ洗浄器25と前記処理管20の磁気フィルタ出口20cと磁気フィルタ入口20dとを循環搬送管26A、26Bで接続している。
前記磁気フィルタ出口20cから循環搬送路26Aを通して磁気フィルタ洗浄器25に洗浄前の磁気フィルタ21を搬送し、洗浄後の磁気フィルタ21を循環搬送路26Bを通してフィルタ入口20dに搬送している。該搬送は空気圧またはモーターで磁気フィルタ21を搬送している。
前記磁気フィルタ洗浄器25内では、図4に示すように、位置決め保持した磁気フィルタ21の一面側に圧縮空気を吹き付けるノズル27を設けると共に、他方側に除去した固形物を受容する保管28を設けている。
Since the solid matter to be removed adheres to the magnetic filter 21 and needs to be cleaned periodically, a magnetic filter washer 25 for blowing compressed air is installed in each of the magnetic separation devices 14A and 14B. The filter washer 25, the magnetic filter outlet 20c of the processing tube 20 and the magnetic filter inlet 20d are connected by circulation conveying pipes 26A and 26B.
The magnetic filter 21 before cleaning is transported from the magnetic filter outlet 20c to the magnetic filter cleaner 25 through the circulation transport path 26A, and the magnetic filter 21 after cleaning is transported to the filter inlet 20d through the circulation transport path 26B. In this conveyance, the magnetic filter 21 is conveyed by air pressure or a motor.
In the magnetic filter washer 25, as shown in FIG. 4, a nozzle 27 for blowing compressed air is provided on one side of the magnetic filter 21 that is positioned and held, and a storage 28 for receiving the removed solid matter is provided on the other side. ing.

前記濾過装置16(16A、16B)は図5に示すように、各浸漬槽35内にそれぞれ複数の中空糸膜モジュール30を垂直方向に吊下して液中に浸漬する構成からなる。
前記各中空糸膜モジュール30はPTFE(ポリテトラフルオロエチレン)多孔質膜からなる中空糸31を多数本集束し、上下両端を固定部材32(32b、32a)で中空糸31を一体的に集束固定した構成からなる。
As shown in FIG. 5, the filtration device 16 (16 </ b> A, 16 </ b> B) has a configuration in which a plurality of hollow fiber membrane modules 30 are suspended vertically in each immersion tank 35 and immersed in the liquid.
Each of the hollow fiber membrane modules 30 converges a number of hollow fibers 31 made of a PTFE (polytetrafluoroethylene) porous membrane, and the hollow fibers 31 are integrally focused and fixed by fixing members 32 (32b, 32a) at both upper and lower ends. Consisting of

本実施形態では、各中空糸31として最大孔径が0.1〜10μmの中空糸を用い、80〜350本を集束して1つの中空糸膜モジュール30を形成している。これにより前記磁気分離装置14で除去できなかった50μm未満の固形物を捕捉できるようにしている。かつ、該中空糸31では0.1μm以上の固形物や細菌を捕捉できるようにしている。   In this embodiment, a hollow fiber having a maximum pore diameter of 0.1 to 10 μm is used as each hollow fiber 31, and 80 to 350 fibers are converged to form one hollow fiber membrane module 30. This makes it possible to capture solids of less than 50 μm that could not be removed by the magnetic separation device 14. In addition, the hollow fiber 31 can capture solids and bacteria of 0.1 μm or more.

具体的には、中空糸膜モジュール30は、両端開口の中空糸31を多数本集束して、中空糸31の下端開口は樹脂でモールドして下部固定部材32aで封止すると共に、上端開口は上部固定部材32bで保持した状態で集水ヘッダー33の内部に連通させ、該集水ヘッダー33を集水管34と連通している。各中空糸モジュール30の集水管34は1本の共通処理液集水管となる前記配管P4に連結して、濾過膜を透過した濾過処理水をまとめて送給できるようにしている。   Specifically, the hollow fiber membrane module 30 focuses a large number of hollow fibers 31 that are open at both ends, the lower end opening of the hollow fiber 31 is molded with resin and sealed with the lower fixing member 32a, and the upper end opening is The water collecting header 33 is communicated with the water collecting pipe 34 while being communicated with the inside of the water collecting header 33 while being held by the upper fixing member 32 b. The water collection pipe 34 of each hollow fiber module 30 is connected to the pipe P4 that is a single common treatment liquid collection pipe so that the filtered treated water that has passed through the filtration membrane can be fed together.

前記濾過槽35の底壁35aに送給口35gを設け、該送給口35gを一時貯留槽15と配管P3を介して連通し、該配管P3に介設したポンプ19より所要圧力で前記磁気分離装置14で固形物を分離除去した処理水Q3を濾過槽35に流入させ、浸漬吸引濾過型としている。即ち、濾過槽35に供給した処理水Q3は中空糸31に外周面から内周面に流通して濾過され、中空部に濾過済みの処理水Q4が流入させ、該中空部の処理水Q4を前記配管P4に介設したポンプ105で吸引している。   A feed port 35g is provided in the bottom wall 35a of the filtration tank 35, the feed port 35g is communicated with the temporary storage tank 15 via a pipe P3, and the magnetic force is supplied from the pump 19 provided in the pipe P3 at a required pressure. The treated water Q3 from which the solid matter has been separated and removed by the separation device 14 is caused to flow into the filtration tank 35 to form an immersion suction filtration type. That is, the treated water Q3 supplied to the filtration tank 35 flows through the hollow fiber 31 from the outer peripheral surface to the inner peripheral surface and is filtered, and the filtered treated water Q4 flows into the hollow portion, and the treated water Q4 in the hollow portion is supplied. Suction is performed by a pump 105 interposed in the pipe P4.

さらに、濾過装置16において、安定した濾過処理を継続させるため、中空糸モジュール30の下方側に散水用のパイプ33を配管し、該パイプ33に散気用ブロア37から加圧空気を供給している。該パイプ33に供給した加圧空気をパイプ33に設けた気体噴射穴33aより噴射し、処理液Q3中にバブリングを発生させ、中空糸31の表面又は膜間に堆積した固形物を剥離除去できるようにしている。   Furthermore, in order to continue the stable filtration process in the filtration device 16, a water pipe 33 is provided below the hollow fiber module 30, and pressurized air is supplied to the pipe 33 from the air blower 37. Yes. Pressurized air supplied to the pipe 33 is injected from a gas injection hole 33a provided in the pipe 33, and bubbling is generated in the treatment liquid Q3, so that solid matter deposited on the surface of the hollow fiber 31 or between the membranes can be peeled and removed. I am doing so.

前記濾過装置16A、16Bには、各濾過槽35で濾過されずに残存した濃縮液を取り出す配管P5を介して電解装置17と接続している。この濾過槽に残存する濃縮液は、磁気分離工程および濾過工程で処理する原水の1〜5%程度である。
電解装置17は、電解槽に陰極及び陽極となる白金電極を吊り下げて処理液Q3中に浸漬し電気分解を行う構成としている。
前記処理水Q3には海水中に含まれる塩化物イオン(Cl−)が溶解しているので、電極反応により陽極板で塩素イオンを塩素(Cl2)に変換すると共に、陰極板で水酸化物イオン(OH−)を生成し、塩素(Cl2)と水酸化物イオン(OH−)の反応により次亜塩素酸イオン(ClO−)を生成している。
このようにして生成した次亜塩素酸イオン(ClO−)により、前記国際条約に規定された細菌類を基準値以下の濃度まで死滅させることができるようにしている。
The filtration devices 16A and 16B are connected to the electrolysis device 17 via a pipe P5 for taking out the concentrated solution remaining without being filtered in each filtration tank 35. The concentrate remaining in the filtration tank is about 1 to 5% of raw water to be treated in the magnetic separation step and the filtration step.
The electrolyzer 17 has a structure in which a platinum electrode serving as a cathode and an anode is suspended in an electrolytic cell and immersed in the treatment liquid Q3 for electrolysis.
Since chloride ion (Cl-) contained in seawater is dissolved in the treated water Q3, chlorine ions are converted into chlorine (Cl2) by the anode plate by the electrode reaction, and hydroxide ions are obtained by the cathode plate. (OH-) is produced, and hypochlorite ions (ClO-) are produced by the reaction of chlorine (Cl2) and hydroxide ions (OH-).
Hypochlorite ions (ClO-) generated in this way can kill bacteria defined in the international treaty to a concentration below the standard value.

前記電解装置17で電解処理した処理水Q5の一部は、前記のように配管P6を介してバラスト水タンク11へと接続し、処理水Qの残部は定期的に配管P7を通して濾過槽35の中空糸31内に供給し、逆洗浄水として用いている。   A part of the treated water Q5 electrolyzed by the electrolyzer 17 is connected to the ballast water tank 11 via the pipe P6 as described above, and the remainder of the treated water Q is periodically passed through the pipe P7 to the filtration tank 35. It is supplied into the hollow fiber 31 and used as backwash water.

前記水処理装置10において、磁気分離装置14における処理水量は、設置体積1m当たり200t以上/時間に設定している。また、濾過装置16における処理水量は、設置体積1m当たり100t以上/時間〜200t以下/時間に設定している。水処理装置10全体の処理水量は、設置体積1m当たり100t以上/時間としている。 In the water treatment device 10, the amount of treated water in the magnetic separation device 14 is set to 200 t / hour or more per 1 m 3 of the installation volume. Further, the amount of treated water in the filtration device 16 is set to 100 t / hour to 200 t / hour / hour per 1 m 3 of the installation volume. The amount of treated water in the entire water treatment apparatus 10 is set to 100 t / hour per 1 m 3 of the installation volume.

次に、前記水処理装置10で行うバラスト水の処理工程を説明する。
まず、バラスト水Q1を貯留したバラスト水タンク11(11A)に貯留したバラスト水Q1を水処理装置10の原水貯留槽13にバラスト水Q1を供給して貯留する。
次に、原水貯留槽13に貯留されたバラスト水Q1に、磁性粒子12を添加して混合し、該バラスト水Q1中の固形物に磁性粒子12を付着させ、磁性を付与する(磁性付与工程)。
Next, the ballast water treatment process performed by the water treatment apparatus 10 will be described.
First, the ballast water Q1 stored in the ballast water tank 11 (11A) storing the ballast water Q1 is supplied to the raw water storage tank 13 of the water treatment apparatus 10 and stored.
Next, the magnetic particles 12 are added to and mixed with the ballast water Q1 stored in the raw water storage tank 13, and the magnetic particles 12 are attached to the solid matter in the ballast water Q1 to impart magnetism (magnetization step). ).

原水貯留槽13内において、バラスト水Q1中に浮遊及び沈殿する固形物の90%以上に磁性粒子を前記水素結合で付着させ、固形物に磁性を付与でき、原水貯留槽13内のバラスト水を担磁バラスト水Q2とする。なお、添加した磁性粒子12のうち固形物に付着しない磁性粒子12はバラスト水中に分散して浮遊する。   In the raw water storage tank 13, magnetic particles can be attached to 90% or more of the solids floating and precipitated in the ballast water Q <b> 1 by the hydrogen bond, and magnetism can be imparted to the solids, and the ballast water in the raw water storage tank 13 can be The magnetic bearing ballast water Q2. Of the added magnetic particles 12, the magnetic particles 12 that do not adhere to the solid matter are dispersed and floated in the ballast water.

次に、前記磁性が付与された固形物を含む担磁バラスト水Q2を、磁気分離装置14に供給し、該磁気分離装置14内の処理管20内を流通させる。
処理管20内には上流側から下流側にかけて多数枚の磁気フィルタ21を並設しているため、これら磁気フィルタ21の空孔を囲むステンレス線材が超電導磁石22により強磁気を発生するため、該磁気フィルタ21を担磁バラスト水Q2が通過する時、ステンレス線に磁着し、前記担磁バラスト水Q2から固形物を分離除去する(磁気分離工程)。
Next, the magnetic bearing ballast water Q2 containing the solid matter to which the magnetism is imparted is supplied to the magnetic separation device 14 and circulated through the processing tube 20 in the magnetic separation device 14.
Since a large number of magnetic filters 21 are arranged in the processing tube 20 from the upstream side to the downstream side, the stainless wire surrounding the air holes of the magnetic filters 21 generates strong magnetism by the superconducting magnet 22. When the magnetic ballast water Q2 passes through the magnetic filter 21, it is magnetically attached to the stainless steel wire, and solids are separated and removed from the magnetic ballast water Q2 (magnetic separation step).

該磁気分離工程でバラスト水Q1中の5μm以上の被除去物からなる固形物には磁性粒子12が多く付着するため強く磁化され、5μm以上の固形物は殆ど分離でき、バラスト水Q1中の固形物の略90%以上を分離除去できる。
これに対して、5μm未満の固形物には磁性粒子が付着されにくく、かつ、付着しても磁性粒子の個数が少ないため弱く磁化される。よって、5μm未満の固形物は磁気分離工程では分離除去されない場合があり、磁気分離工程で得られた処理水Q3中には5μm未満の超微細な固形物が残存しやすい。また、固形物の付着せずに浮遊する磁性粒子も残存する場合がある。
In the magnetic separation step, the solid material consisting of the object to be removed of 5 μm or more in the ballast water Q1 is strongly magnetized because many magnetic particles 12 adhere thereto, and the solid material of 5 μm or more can be almost separated, and the solid material in the ballast water Q1 can be separated. About 90% or more of objects can be separated and removed.
On the other hand, magnetic particles are difficult to adhere to solids of less than 5 μm, and even if attached, the number of magnetic particles is small, so that they are weakly magnetized. Therefore, solids less than 5 μm may not be separated and removed in the magnetic separation process, and ultrafine solids less than 5 μm are likely to remain in the treated water Q3 obtained in the magnetic separation process. In addition, magnetic particles that float without solid matter remaining may remain.

磁気分離装置14の1時間当たりの処理水量は後段に配設する濾過装置16の1時間当たりの処理水量よりも大きいため、磁気分離装置14で処理した処理水Q3を、一時的に、一時貯留槽15に一旦貯留する。一時貯留槽15内に貯留した処理水Q3はポンプ19で吐出量を調整しながら、濾過装置16に加圧供給する。
しかしながら、装置全体としては、理想的には磁気分離装置14と濾過装置16の処理能力をマッチングさせることが望ましいので、濾過装置の台数を必要に応じて増やすことが好ましい。
Since the amount of treated water per hour of the magnetic separator 14 is larger than the amount of treated water per hour of the filtration device 16 disposed in the subsequent stage, the treated water Q3 treated by the magnetic separator 14 is temporarily stored temporarily. Once stored in the tank 15. The treated water Q3 stored in the temporary storage tank 15 is pressurized and supplied to the filtration device 16 while adjusting the discharge amount by the pump 19.
However, since it is desirable for the entire apparatus to ideally match the processing capabilities of the magnetic separation device 14 and the filtration device 16, it is preferable to increase the number of filtration devices as necessary.

濾過装置16内に加圧供給した処理水Q3を中空糸モジュール31の中空糸30の濾過膜にさせ、外圧濾過により、中空糸30の多孔質膜で処理水Q3中に残存する5μm未満で0.1μm以上の固形物を捕捉して除去する。(濾過工程)
該濾過装置16では0.1μm以上の粒子を捕捉できる設定としているため、バラスト水Q1中に含まれる0.1μm以上の固形物や細菌を除去できる。
かつ、該濾過装置で濾過する処理水Q3は前段の磁気分離工程で処理水中の固形物の90%近くが分離除去されているため、中空糸31の両面に付着する固形物が非常に少なく、よって、処理液が透過する空孔が小さくとも処理流量の低下はすくなく、比較的高速に濾過することができる。
さらに、濾過工程でも除去できずに残存する濃縮液は電解装置17に送給して電解処理することで、濃縮液中に含まれる0.1μm未満の細菌も殺菌できる。
The treated water Q3 pressurized and supplied into the filtration device 16 is made into a filtration membrane of the hollow fiber 30 of the hollow fiber module 31, and is reduced to less than 5 μm remaining in the treated water Q3 by the porous membrane of the hollow fiber 30 by external pressure filtration. .Capturing and removing solids of 1 μm or more. (Filtering process)
Since the filtration device 16 is set to capture particles of 0.1 μm or more, solids and bacteria of 0.1 μm or more contained in the ballast water Q1 can be removed.
In addition, since almost 90% of the solids in the treated water is separated and removed from the treated water Q3 filtered by the filtration device in the preceding magnetic separation step, the solids adhering to both surfaces of the hollow fiber 31 are very little, Therefore, even if the pores through which the treatment liquid permeates are small, the treatment flow rate is not lowered and the filtration can be performed at a relatively high speed.
Further, the concentrated solution remaining without being removed even in the filtration step is fed to the electrolysis device 17 and subjected to electrolytic treatment, so that bacteria of less than 0.1 μm contained in the concentrated solution can be sterilized.

このように、前記水処理装置10では、磁気分離工程と濾過工程により、バラスト水に含まれる0.1μm以上の海洋生物を分離除去でき、バラスト中に含まれる固形物の95%以上を確実に分離することができる。
詳細には、磁気分離工程でバラスト水Q1中の固形物の90質量%以上を除去し、濾過工程で、前記磁気分離工程で固形物が分離除去された処理水中の固形物及び磁性粒子を捕捉し、バラスト水Q1中の固形物の98質量%以上を除去している。
その結果、前記濾過工程を経てえられた処理水は、最小サイズ50μm以上の生物の1mあたりの生個体数が10未満、最小サイズ10μm以上50μm未満の生物の1mlあたりの生個体数が10未満とすることができる。
Thus, in the water treatment apparatus 10, marine organisms of 0.1 μm or more contained in the ballast water can be separated and removed by the magnetic separation step and the filtration step, and more than 95% of the solid matter contained in the ballast can be reliably obtained. Can be separated.
Specifically, 90% by mass or more of the solid matter in the ballast water Q1 is removed in the magnetic separation step, and the solid matter and magnetic particles in the treated water from which the solid matter is separated and removed in the magnetic separation step are captured in the filtration step. And 98 mass% or more of the solid substance in the ballast water Q1 is removed.
As a result, in the treated water obtained through the filtration step, the number of living individuals per 1 m 3 of organisms having a minimum size of 50 μm or more is less than 10, and the number of living individuals per ml of organisms having a minimum size of 10 μm or more and less than 50 μm is 10. Less than.

また、水処理装置10では、固形物を捕捉して分離する磁気分離装置14および濾過装置16を定期的に洗浄して、透過流量を低下させず、処理の効率化を図っている。
即ち、磁気分離装置14では、磁気フィルタ21のステンレス鋼線の周りに固形物が付着し、該ステンレス鋼線で囲まれた空孔面積が減少して処理流量が低下するため、固形物の付着量が多い、供給口側の磁気フィルタ出口20cから磁気フィルタ21を順番に取り出して磁気フィルタ洗浄器25へと搬送している。
この搬送の間に磁気フィルタ21は超電導磁石22の磁場から外れるため減磁され、よって、超電導磁石22自体を減磁する必要はなく、磁気分離装置を連続運転している。
かつ、処理管20から1枚の磁気フィルタ21が取り出されると、再生した磁気フィルタ21を下流端の磁気フィルタ入口22dから処理管20内に挿入するため、常時所要枚数の磁気フィルタ21が処理管20に並設でき、多数枚の磁気フィルタ21を通過させることで磁気分離性能を低下させない。
また、磁気フィルタ洗浄器25内では、圧縮空気により磁気フィルタ21から吹き飛ばした固形物を保管28で収容しているため、バラスト水から分岐除去した固形物を装置外に飛散させない。
Further, in the water treatment device 10, the magnetic separation device 14 and the filtration device 16 that capture and separate solid matter are periodically washed to reduce the permeate flow rate and to improve the processing efficiency.
That is, in the magnetic separation device 14, solid matter adheres around the stainless steel wire of the magnetic filter 21, and the pore area surrounded by the stainless steel wire is reduced to reduce the processing flow rate. The magnetic filter 21 is taken out in order from the magnetic filter outlet 20c on the supply port side, which is large, and is conveyed to the magnetic filter cleaner 25.
During this conveyance, the magnetic filter 21 is demagnetized because it deviates from the magnetic field of the superconducting magnet 22. Therefore, it is not necessary to demagnetize the superconducting magnet 22 itself, and the magnetic separator is continuously operated.
When one magnetic filter 21 is taken out from the processing tube 20, the regenerated magnetic filter 21 is inserted into the processing tube 20 from the magnetic filter inlet 22d at the downstream end, so that the required number of magnetic filters 21 are always in the processing tube. The magnetic separation performance is not deteriorated by allowing a large number of magnetic filters 21 to pass therethrough.
Moreover, in the magnetic filter washer 25, since the solid matter blown off from the magnetic filter 21 by compressed air is stored in the storage 28, the solid matter branched off from the ballast water is not scattered outside the apparatus.

濾過装置16における中空糸31の洗浄は、前記電解装置17で電解処理した処理水Q5の一部を定期的に配管P7を通して中空糸31内に供給し、前記電解水からなる処理水Q5を逆洗浄水として中空糸31の内周側から噴射している。
このように、電解水を逆圧洗浄で噴射することにより、中空糸31の外周側表面に存在する付着異物を分解除去、殺菌することができる。また、濾過槽35に滞留している濾過処理前の濃縮された原水(処理水Q3)は定期的に電解装置17に供給して電解処理して殺菌無害化することができる。
The washing of the hollow fiber 31 in the filtration device 16 is performed by periodically supplying a part of the treated water Q5 electrolyzed by the electrolyzer 17 into the hollow fiber 31 through the pipe P7 and reversing the treated water Q5 made of the electrolyzed water. The washing water is sprayed from the inner peripheral side of the hollow fiber 31.
In this way, by spraying the electrolyzed water by back pressure cleaning, the adhering foreign matter present on the outer peripheral surface of the hollow fiber 31 can be decomposed and removed and sterilized. Further, the concentrated raw water (processed water Q3) that remains in the filter tank 35 before the filtration process can be periodically supplied to the electrolyzer 17 to be electrolyzed to be sterilized and detoxified.

前記のように、本発明の水処理装置は、磁気分離装置で高速に大量のバラスト水から固形物を分離除去できると共に、該磁気分離装置で除去できなかった微細な固形物を確実に除去できるため、バラスト水の浄化装置として好適に用いることができる。   As described above, the water treatment apparatus of the present invention can separate and remove solids from a large amount of ballast water at high speed with a magnetic separator, and can reliably remove fine solids that could not be removed with the magnetic separator. Therefore, it can be suitably used as a ballast water purification device.

図6に第二実施形態を示す。
該第二実施形態では、バラスト水タンク11から止水処理装置10へと供給する供給管104の途中に投入口120を設け、該供給管104の下流端を磁気分離装置13に直接接続し、第一実施形態の磁性粒子を投入する原水貯留槽を不要としている。
前記投入口120から磁性粒子12を投入する最には投入口120に取り付けた蓋121を開いて所定量の磁性粒子12を供給管104を流通するバラスト水Q1中に投入している。また、投入口120より下流の供給管104内に非磁性材で形成した羽根車122を内嵌し、磁性粒子12を添加されたバラスト水Q1の流速により撹拌し、磁性粒子12をバラスト水Q1中に均一に混合している。
該第二実施形態の構成とすると、原水貯留槽を無くすことができ、止水処理装置の小型化を図ることができる。
FIG. 6 shows a second embodiment.
In the second embodiment, the inlet 120 is provided in the middle of the supply pipe 104 supplied from the ballast water tank 11 to the water stop treatment apparatus 10, and the downstream end of the supply pipe 104 is directly connected to the magnetic separation device 13. The raw water storage tank into which the magnetic particles of the first embodiment are charged is unnecessary.
When the magnetic particles 12 are charged from the charging port 120, the lid 121 attached to the charging port 120 is opened, and a predetermined amount of the magnetic particles 12 is charged into the ballast water Q1 flowing through the supply pipe 104. In addition, an impeller 122 formed of a nonmagnetic material is fitted in the supply pipe 104 downstream from the inlet 120, and the magnetic particles 12 are stirred by the flow rate of the ballast water Q1 to which the magnetic particles 12 are added. Evenly mixed inside.
If it is set as this 2nd embodiment, a raw | natural water storage tank can be eliminated and size reduction of a water stop processing apparatus can be achieved.

図7に第三実施形態を示す。
第三実施形態ではバラスト水タンク11の原水投入口11aを磁性粒子12の投入口として用いており、処理する原水を貯留するタンク内に磁性粒子12を直接投入している。該磁性粒子12が投入されたバラストタンク11を配管と接続し、該配管を第二実施形態と同様に磁気分離装置13に接続し、第一実施形態の原水貯留槽を不要としている。
さらに、磁性粒子12をバラスト水タンク11に投入した後、原水投入口11aより撹拌機(図示せず)をバラスト水タンク11内に挿入し、磁性粒子12が投入されたバラスト水Q1を撹拌している。
FIG. 7 shows a third embodiment.
In the third embodiment, the raw water inlet 11a of the ballast water tank 11 is used as the inlet for the magnetic particles 12, and the magnetic particles 12 are directly supplied into the tank for storing the raw water to be processed. The ballast tank 11 charged with the magnetic particles 12 is connected to a pipe, and the pipe is connected to the magnetic separation device 13 as in the second embodiment, so that the raw water storage tank of the first embodiment is unnecessary.
Furthermore, after putting the magnetic particles 12 into the ballast water tank 11, a stirrer (not shown) is inserted into the ballast water tank 11 through the raw water inlet 11a, and the ballast water Q1 into which the magnetic particles 12 have been put is stirred. ing.

本発明は前記実施形態に限定されず、船舶に搭載してバラスト水の処理する以外にも大量の水処理用として好適に用いられる。
また、原水中の細菌を殺菌処理する電解装置を磁気分離装置の処理水取出配管に接続して設け、磁気分離工程後の処理水を電解処理し、その後、濾過装置へ供給してもよい。
The present invention is not limited to the above-described embodiment, and can be suitably used for a large amount of water treatment other than mounting on a ship and treating ballast water.
Further, an electrolytic device for sterilizing bacteria in the raw water may be provided connected to the treated water extraction pipe of the magnetic separation device, and the treated water after the magnetic separation step may be subjected to electrolytic treatment and then supplied to the filtration device.

本発明の水処理装置及び水処理方法は、バラスト水等の処理のみならず、製紙排水の処理、工場排水(半導体、鉄鋼、食品処理等)の処理、病院の排水処理、等の固形物を多く含む工業排水の浄化装置として広く用いることができる。さらには、海水淡水化装置の脱塩工程の前処理装置としても有効である。   The water treatment apparatus and the water treatment method of the present invention not only treats ballast water, but also treats solids such as papermaking wastewater, factory wastewater (semiconductor, steel, food treatment, etc.), hospital wastewater treatment, etc. It can be widely used as a purification device for industrial wastewater containing many. Furthermore, it is also effective as a pretreatment device for a desalination process of a seawater desalination apparatus.

本発明の水処理装置を船舶に搭載している実施形態を示す概略図である。It is the schematic which shows embodiment which mounts the water treatment apparatus of this invention in the ship. 前記水処理装置の構成を示す図面である。It is drawing which shows the structure of the said water treatment apparatus. 前記水処理装置の磁気分離装置を示す構成図である。It is a block diagram which shows the magnetic separation apparatus of the said water treatment apparatus. 図3の要部拡大図である。It is a principal part enlarged view of FIG. 濾過装置を示す概略図である。It is the schematic which shows a filtration apparatus. 第二実施形態を示す図面である。It is drawing which shows 2nd embodiment. 第三実施形態を示す図面である。It is drawing which shows 3rd embodiment.

符号の説明Explanation of symbols

10 水処理装置
11 バラスト水タンク
12 磁性粒子
13 原水貯留槽
14(14A、14B) 磁気分離装置
15 一時貯留槽
16(16A、16B) 濾過装置
17 電解装置
18、19、102、103 ポンプ
20 処理管
21 磁気フィルタ
22 超電導磁石
25 磁気フィルタ洗浄器
30 中空糸膜モジュール
31 中空糸
100 船舶
Q1 バラスト水
Q2〜Q5 処理水
DESCRIPTION OF SYMBOLS 10 Water treatment apparatus 11 Ballast water tank 12 Magnetic particle 13 Raw water storage tank 14 (14A, 14B) Magnetic separation apparatus 15 Temporary storage tank 16 (16A, 16B) Filtration apparatus 17 Electrolysis apparatus 18, 19, 102, 103 Pump 20 Processing pipe 21 Magnetic Filter 22 Superconducting Magnet 25 Magnetic Filter Washer 30 Hollow Fiber Membrane Module 31 Hollow Fiber 100 Ship Q1 Ballast Water Q2-Q5 Treated Water

Claims (16)

被除去物が含まれる原水に磁性粒子を添加する磁性粒子供給部と、
磁気フィルタを備え、前記磁性粒子供給部で添加された磁性粒子が付着して磁性を帯びた被除去物を前記磁気フィルタの空孔通過時に磁着して分離する磁気分離装置と、
前記磁気フィルタの空孔よりも小さい空孔を有する多孔質の濾過膜を備え、前記磁気分離装置で除去されなかった原水中の被除去物を前記濾過膜で捕捉する濾過装置と、
を備えていることを特徴とする水処理装置。
A magnetic particle supply unit for adding magnetic particles to the raw water containing the object to be removed;
A magnetic separation device comprising a magnetic filter, wherein the magnetic particles added in the magnetic particle supply unit adhere and are magnetically separated to be removed when passing through the holes of the magnetic filter;
A filtration device comprising a porous filtration membrane having pores smaller than the pores of the magnetic filter, and capturing the object to be removed in raw water that has not been removed by the magnetic separation device;
A water treatment apparatus comprising:
前記磁気分離装置は5μm以上の前記被除去物の除去用とし、前記濾過装置は0.1μm以上の前記被除去物の除去用とし、かつ、前記磁気分離装置の時間当たりの処理水量は前記濾過装置の時間当たりの処理水量よりも大としている請求項1に記載の水処理装置。   The magnetic separation device is for removing the object to be removed of 5 μm or more, the filtration device is for removing the object to be removed of 0.1 μm or more, and the amount of treated water per hour of the magnetic separation device is the filtration The water treatment apparatus according to claim 1, wherein the water treatment apparatus is larger than the amount of treated water per hour of the apparatus. 前記磁性粒子供給部は下記の(1)(2)(3)のいずれかの磁性粒子投入口を備え、かつ、原水中に添加された磁性粒子を原水中に混合する撹拌手段を備えている請求項1または請求項2に記載の水処理装置。
(1)前記磁気分離装置に原水供給管を介して接続される原水タンクに設けた磁性粒子投入口;
(2)前記原水タンクから前記磁気分離装置への原水供給管の途中に設けた磁気粒子投入口;
(3)前記原水タンクに原水供給管を介して接続されるとともに、前記磁気分離装置に配管を介して接続される原水一時貯留槽に設けられた磁気粒子投入口:
The magnetic particle supply unit includes a magnetic particle inlet of any one of the following (1), (2), and (3), and further includes a stirring unit that mixes the magnetic particles added to the raw water into the raw water. The water treatment apparatus according to claim 1 or claim 2.
(1) A magnetic particle inlet provided in a raw water tank connected to the magnetic separator through a raw water supply pipe;
(2) Magnetic particle inlet provided in the middle of the raw water supply pipe from the raw water tank to the magnetic separation device;
(3) Magnetic particle inlet provided in the raw water temporary storage tank connected to the raw water tank via a raw water supply pipe and connected to the magnetic separator via a pipe:
前記磁気分離装置は、前記磁気フィルタを磁化する電磁石を備え、該電磁石は超電導線のコイルを含んでいる請求項1乃至請求項3のいずれか1項に記載の水処理装置。   The water treatment apparatus according to any one of claims 1 to 3, wherein the magnetic separation device includes an electromagnet that magnetizes the magnetic filter, and the electromagnet includes a coil of a superconducting wire. 前記濾過装置は、PTFE(ポリテトラフルオロエチレン)多孔質膜を前記濾過膜として備え、前記PTFE(ポリテトラフルオロエチレン)多孔質膜の最大孔径は0.1μm〜10μmとしている請求項1乃至請求項4のいずれか1項に記載の水処理装置。   The filtration device includes a PTFE (polytetrafluoroethylene) porous membrane as the filtration membrane, and the PTFE (polytetrafluoroethylene) porous membrane has a maximum pore size of 0.1 µm to 10 µm. The water treatment apparatus according to any one of 4. 前記濾過装置は、前記PTFE(ポリテトラフルオロエチレン)製の多孔質膜を有する中空糸を集束した中空糸膜モジュールからなる請求項5に記載の水処理装置。   6. The water treatment device according to claim 5, wherein the filtration device comprises a hollow fiber membrane module in which hollow fibers having a porous membrane made of PTFE (polytetrafluoroethylene) are converged. 前記濾過装置は電解装置と配管を介して接続し、濾過されない残存成分を含む処理水を前記電解装置へ送給して電解処理後放流、貯蔵もしくは再利用している請求項1乃至請求項6のいずれか1項に記載の水処理装置。   The said filtration apparatus is connected with an electrolysis apparatus through piping, and the treated water containing the residual component which is not filtered is sent to the said electrolysis apparatus, and it discharges | emits, stores or reuses after an electrolysis process. The water treatment apparatus of any one of these. 前記濾過装置は電解装置と配管を介して接続し、該濾過装置の逆洗配水を前記電解装置へ送給して電解処理し、殺菌して系外へ排出する機構を有する請求項1乃至請求項6のいずれか1項に記載の水処理装置。   The filtration device is connected to an electrolysis device through a pipe, and has a mechanism for supplying backwash water from the filtration device to the electrolysis device for electrolytic treatment, sterilizing, and discharging the system out of the system. Item 7. The water treatment device according to any one of items 6. 前記濾過装置は電解装置と配管を介して接続し、濾過された処理水を前記電解装置へ送給して電解処理し、該電解装置で電解処理した電解液を前記濾過装置の濾過膜の洗浄水として供給している請求項1乃至請求項6のいずれか1項に記載の水処理装置。   The filtration device is connected to an electrolytic device via a pipe, and the treated water filtered is supplied to the electrolytic device for electrolytic treatment, and the electrolytic solution electrolytically treated by the electrolytic device is washed in the filtration membrane of the filtration device The water treatment apparatus according to any one of claims 1 to 6, wherein the water treatment apparatus is supplied as water. 前記磁気分離装置と濾過装置との間に一時貯留槽と、該一時貯留槽から前記濾過装置への配管にポンプを介設し、濾過装置への処理水の供給量を制御している請求項1乃至請求項9のいずれか1項に記載の水処理装置。   A temporary storage tank between the magnetic separation device and the filtration device, and a pump is provided in a pipe from the temporary storage tank to the filtration device to control the supply amount of treated water to the filtration device. The water treatment apparatus according to any one of claims 1 to 9. 前記磁気分離装置における処理水量を設置体積1m当たり200t以上/時間に設定し、前記濾過装置における処理水量を設置体積1m当たり100t以上/時間〜200t以下/時間に設定している請求項1乃至請求項10のいずれか1項に記載の水処理装置。 The amount of treated water in the magnetic separation device is set to 200 t / hour or more per installation volume of 1 m 3 , and the amount of treated water in the filtration device is set to from 100 t or more to 200 t or less / hour per installation volume of 1 m 3. The water treatment apparatus according to any one of claims 10 to 10. 請求項1乃至請求項11のいずれか1項に記載の水処理装置が船舶に搭載され、前記原水タンクに貯留されたバラスト水であるバラスト水処理装置。   The ballast water treatment apparatus which is the ballast water which the water treatment apparatus of any one of Claim 1 thru | or 11 was mounted in the ship, and was stored by the said raw | natural water tank. 原水に磁性粒子を添加して混合し、該原水中に含まれる被除去物に前記磁性粒子を付着して磁性を付与する磁性付与工程と、
磁気フィルタに磁性が付与された前記被除去物を磁着させ、前記原水から前記被除去物を分離除去する磁気分離工程と、
前記磁気分離工程で処理された処理水を、前記磁気フィルタよりも粒子捕捉用の空孔の面積を小さくした濾過膜により濾過し、残存する被除去物を分離除去する濾過工程と、
を備えていることを特徴とする水処理方法。
Adding and mixing magnetic particles in raw water, and attaching the magnetic particles to the object to be removed contained in the raw water to impart magnetism; and
A magnetic separation step of magnetizing the object to be removed with magnetism applied to a magnetic filter and separating and removing the object to be removed from the raw water;
The treated water treated in the magnetic separation step is filtered through a filtration membrane having a smaller area for pores for capturing particles than the magnetic filter, and a filtration step for separating and removing remaining objects to be removed;
A water treatment method characterized by comprising:
前記磁気分離工程で、前記原水中の被除去物の90%以上を除去し、前記濾過膜による濾過工程で、前記磁気分離工程で被除去物が分離除去された処理水中の被除去物及び磁性粒子を除去し、
前段の磁気分離工程と後段の濾過工程とで、前記原水中の被除去物の98%以上を除去している請求項13に記載の水処理方法。
90% or more of the object to be removed in the raw water is removed in the magnetic separation step, and the object to be removed and the magnetic substance in the treated water from which the object to be removed is separated and removed in the magnetic separation step in the filtration step by the filtration membrane. Remove the particles,
The water treatment method according to claim 13, wherein 98% or more of the object to be removed in the raw water is removed by the magnetic separation process at the former stage and the filtration process at the latter stage.
前記原水は船舶のバラストタンクに貯留されるバラスト水であり、前記バラスト水中に浮遊及び沈殿する藻類を含む植物微生物もしくは動物微生物からなる被除去物に前記磁性粒子を付着して磁性を付与し、前記磁気分離工程で分離除去すると共に、該磁気分離工程で除去されなかった細菌を含む被除去物を前記濾過工程で除去し、さらに、濾過工程で除去されなかったバラスト水中の0.1μm未満の細菌を電解処理で殺菌している請求項13または請求項14に記載の水処理方法。   The raw water is ballast water stored in a ballast tank of a ship, and attaches the magnetic particles to an object to be removed consisting of plant microorganisms or animal microorganisms including algae floating and settled in the ballast water, and imparts magnetism. In addition to separation and removal in the magnetic separation step, to-be-removed objects including bacteria that have not been removed in the magnetic separation step are removed in the filtration step, and further, less than 0.1 μm in the ballast water not removed in the filtration step. The water treatment method according to claim 13 or 14, wherein bacteria are sterilized by electrolytic treatment. 前記濾過装置による処理後の処理水は、最小サイズ50μm以上の生物の1mあたりの生個体数が10未満、最小サイズ10μm以上50μm未満の生物の1mlあたりの生個体数が10未満である請求項15に記載の水処理方法。 The treated water after the treatment by the filtering device has a living population per 1 m 3 of organisms having a minimum size of 50 μm or more and less than 10 living organisms per ml of organisms having a minimum size of 10 μm or more and less than 50 μm. Item 16. The water treatment method according to Item 15.
JP2007208647A 2007-08-09 2007-08-09 Water treatment apparatus and water treatment method Withdrawn JP2010269200A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007208647A JP2010269200A (en) 2007-08-09 2007-08-09 Water treatment apparatus and water treatment method
PCT/JP2008/063097 WO2009019971A1 (en) 2007-08-09 2008-07-22 Water treatment apparatus and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007208647A JP2010269200A (en) 2007-08-09 2007-08-09 Water treatment apparatus and water treatment method

Publications (1)

Publication Number Publication Date
JP2010269200A true JP2010269200A (en) 2010-12-02

Family

ID=40341207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007208647A Withdrawn JP2010269200A (en) 2007-08-09 2007-08-09 Water treatment apparatus and water treatment method

Country Status (2)

Country Link
JP (1) JP2010269200A (en)
WO (1) WO2009019971A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072873A (en) * 2009-09-29 2011-04-14 Sumitomo Heavy Industries Marine & Engineering Co Ltd Ballast water treatment apparatus
JP2013002971A (en) * 2011-06-16 2013-01-07 Sumitomo Electric Fine Polymer Inc Method of treating radioactive waste water and treating apparatus
JP2013527798A (en) * 2011-03-15 2013-07-04 セバーン トレント デ ノラ,エルエルシー Method and system for ballast water and filtering
JP5540291B1 (en) * 2013-02-27 2014-07-02 仁木工芸株式会社 Magnetic separator and biological material purification system using magnetic separator
KR20180087368A (en) * 2016-03-08 2018-08-01 후지 덴키 가부시키가이샤 Wastewater treatment method and wastewater treatment system
JP2020040021A (en) * 2018-09-11 2020-03-19 株式会社キャタラー Fine bubble manufacturing apparatus and fine bubble manufacturing method
WO2024123124A1 (en) * 2022-12-09 2024-06-13 전남대학교산학협력단 Microbial electrolysis cell and hydrogen generation method using same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011031122A (en) * 2009-07-29 2011-02-17 Sumitomo Electric Ind Ltd Multilayered porous hollow fiber, hollow fiber membrane module, and filtration apparatus
JP2012187083A (en) * 2011-03-14 2012-10-04 Toshiba Corp Apparatus and method for concentrating microorganism
JP5281183B2 (en) * 2012-10-05 2013-09-04 三井造船株式会社 Replacement method of membrane cartridge used in membrane treatment equipment for ballast water treatment
CN103599846A (en) * 2013-10-29 2014-02-26 灌阳县鸿运矿山设备有限公司 Water-jet demineralization device for magnetic separator
CN104667624A (en) * 2013-11-27 2015-06-03 宝维水工国际股份有限公司 High Efficiency Filter
CN104511201B (en) * 2014-12-31 2017-09-22 东莞市谦益宏水处理设备有限公司 The water purifier of integrative-structure
CN110448952A (en) * 2019-09-10 2019-11-15 飞潮(上海)环境技术有限公司 A kind of novel polyether sulfone filter core
WO2022098341A1 (en) * 2020-11-09 2022-05-12 Sf Yüzer Yapilar İnşaat Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ A floating waste water treatment facility for disposal of marine debris at source

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005111424A (en) * 2003-10-10 2005-04-28 Hitachi Ltd Method and apparatus for removing object to be removed from fluid and sludge separation and recovery device
JP4413027B2 (en) * 2004-02-03 2010-02-10 株式会社日立製作所 Shipboard pollution water purification system
EP1796822A4 (en) * 2004-10-06 2008-09-17 Res Foundation Suny FILTRATION MEDIA HIGH FLOW DENSITY AND LOW POLLUTION
JP2006187697A (en) * 2005-01-04 2006-07-20 Hitachi Ltd Filtration purification equipment
JP2006239530A (en) * 2005-03-02 2006-09-14 Japan Organo Co Ltd Manufacturing method and manufacturing apparatus of ballast water for ship
CN101160163A (en) * 2005-04-13 2008-04-09 株式会社日立制作所 Water filtration and purification device and method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072873A (en) * 2009-09-29 2011-04-14 Sumitomo Heavy Industries Marine & Engineering Co Ltd Ballast water treatment apparatus
JP2013527798A (en) * 2011-03-15 2013-07-04 セバーン トレント デ ノラ,エルエルシー Method and system for ballast water and filtering
JP2013002971A (en) * 2011-06-16 2013-01-07 Sumitomo Electric Fine Polymer Inc Method of treating radioactive waste water and treating apparatus
JP5540291B1 (en) * 2013-02-27 2014-07-02 仁木工芸株式会社 Magnetic separator and biological material purification system using magnetic separator
KR20180087368A (en) * 2016-03-08 2018-08-01 후지 덴키 가부시키가이샤 Wastewater treatment method and wastewater treatment system
KR102015090B1 (en) * 2016-03-08 2019-08-27 후지 덴키 가부시키가이샤 Drainage treatment method and drainage treatment system
US10800681B2 (en) 2016-03-08 2020-10-13 Fuji Electric Co., Ltd. Wastewater treatment method and wastewater treatment system
JP2020040021A (en) * 2018-09-11 2020-03-19 株式会社キャタラー Fine bubble manufacturing apparatus and fine bubble manufacturing method
WO2020054680A1 (en) * 2018-09-11 2020-03-19 株式会社キャタラー Fine bubble generation device and method for generating fine bubbles
JP7243972B2 (en) 2018-09-11 2023-03-22 株式会社キャタラー Fine bubble manufacturing device and fine bubble manufacturing method
US11890586B2 (en) 2018-09-11 2024-02-06 Cataler Corporation Fine bubble generation device and method for generating fine bubbles
WO2024123124A1 (en) * 2022-12-09 2024-06-13 전남대학교산학협력단 Microbial electrolysis cell and hydrogen generation method using same

Also Published As

Publication number Publication date
WO2009019971A1 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP2010269200A (en) Water treatment apparatus and water treatment method
KR20070011407A (en) Method for producing marine ballast water, apparatus for producing marine ballast water and uses thereof
KR102439657B1 (en) A scrubber drainage purifying device and method, and a salinity difference power generation system
JP5804228B1 (en) Water treatment method
JP2004025041A (en) Wastewater purification equipment and wastewater purification system
JP5537582B2 (en) Ballast water purification device, ship and ballast water purification method
US20190118142A1 (en) Methods, systems, and compositions for delivery of nanobubbles in water treatment systems
JP2010119999A (en) Apparatus for treating water
JP2014018782A (en) System and method for cleaning filtration film of ballast water treatment
CN102161544A (en) Ballast water processing device
KR20140103609A (en) Apparatus for treating sewage in ship and fish farm
JP2018513018A (en) Ship ballast water treatment system and ship ballast water treatment method capable of online antifouling
JP2009214053A (en) Magnetic separator
JP4992665B2 (en) Ballast water treatment system
JP5793713B2 (en) Ballast water production equipment
JP5250684B2 (en) Seawater desalination method and seawater desalination apparatus
WO2005110928A1 (en) Production method of ballast water for vessel, production system of ballast water for vessel and use
JP4933679B1 (en) Seawater desalination method and seawater desalination apparatus
JPH11207392A (en) Water purifying treatment device
JP2006000729A (en) Ship ballast water production method and apparatus
JP2006239530A (en) Manufacturing method and manufacturing apparatus of ballast water for ship
KR100538126B1 (en) Ds-mt system
JP2009183823A (en) Method for attaching magnetic particles to non-magnetic substance and magnetic separation apparatus for non-magnetic substance
JP2006000728A (en) Ballast water production method and ship-mounted ballast water production apparatus
JP7284545B1 (en) MEMBRANE FILTRATION DEVICE AND WATER PURIFICATION SYSTEM USING THE SAME

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207