[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010267708A - Device and method for vacuum processing - Google Patents

Device and method for vacuum processing Download PDF

Info

Publication number
JP2010267708A
JP2010267708A JP2009116518A JP2009116518A JP2010267708A JP 2010267708 A JP2010267708 A JP 2010267708A JP 2009116518 A JP2009116518 A JP 2009116518A JP 2009116518 A JP2009116518 A JP 2009116518A JP 2010267708 A JP2010267708 A JP 2010267708A
Authority
JP
Japan
Prior art keywords
sample
heat transfer
transfer gas
push
vacuum processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009116518A
Other languages
Japanese (ja)
Inventor
Yosuke Sakai
洋輔 酒井
Hiroo Kitada
裕穂 北田
Kazunori Nakamoto
和則 中本
Tsunehiko Tsubone
恒彦 坪根
Ryoji Hamazaki
良二 濱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009116518A priority Critical patent/JP2010267708A/en
Publication of JP2010267708A publication Critical patent/JP2010267708A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and method for vacuum processing, capable of uniforming temperature of a sample within a surface of the sample. <P>SOLUTION: In the device and method for vacuum processing wherein a sample is sucked and held within a vacuum processing chamber and processed by controlling temperature of the sample, projecting parts for supporting a sample 1 are separately disposed in an outer periphery and inside of the periphery on a sample mounting surface, push-up pin holes 206 are disposed within the surface of one of the projecting parts, a heat transfer gas supply hole 205 is disposed in a portion excluding the projecting parts, and the sample 1 is processed while a heat transfer gas having a pressure higher than that of the heat transfer gas supplied to the portion excluding the projecting parts is supplied to the push-up pin holes. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は真空処理装置および真空処理方法に係り、特に吸着により試料を試料台に保持しての処理に好適な真空処理装置および真空処理方法に関する。   The present invention relates to a vacuum processing apparatus and a vacuum processing method, and more particularly to a vacuum processing apparatus and a vacuum processing method suitable for processing by holding a sample on a sample stage by adsorption.

近年の半導体デバイス製造工程においては、スループットの向上を目的として、フォトレジスト層、反射防止膜層、ハードマスク層、ポリシリコン層、メタル層といった異膜種のエッチングを連続して処理することが求められている。この複数ステップ連続処理において、加工後の最終的な膜形状には、従来の非連続処理時と同等あるいはそれ以上の加工精度が求められる。そのため、連続処理における各膜の加工精度は従来方法よりも厳しい値とする必要があり、すなわち加工精度と密接な関係にある半導体基板等の試料温度においては、試料面内で均一温度にする技術が必要である。従来の真空処理装置や真空処理方法に関する文献としては、例えば特許文献1〜特許文献4がある。   In recent semiconductor device manufacturing processes, for the purpose of improving throughput, it is required to continuously process etching of different kinds of films such as a photoresist layer, an antireflection film layer, a hard mask layer, a polysilicon layer, and a metal layer. It has been. In this multi-step continuous processing, the final film shape after processing is required to have processing accuracy equal to or higher than that in the conventional non-continuous processing. For this reason, the processing accuracy of each film in continuous processing needs to be stricter than the conventional method, that is, a technology that makes the sample surface a uniform temperature within the sample surface, such as a semiconductor substrate that is closely related to the processing accuracy. is required. As literature regarding conventional vacuum processing apparatuses and vacuum processing methods, there are, for example, Patent Documents 1 to 4.

特開2001−160586号公報JP 2001-160586 A 特開平7−321185号公報JP 7-32185 A 特開平11−330215号公報JP-A-11-330215 特開平8−274153号公報JP-A-8-274153

試料温度の制御に関し、特許文献1には、静電チャックにより保持される半導体基板などの試料と静電チャックとの間に伝熱ガスを供給する伝熱ガス供給手段を具備する真空処理装置において、静電チャックの試料載置面に試料を支持する凸部が外周部とその内側に離間して設け、この試料支持部に試料を搬送するための押上げピンを設けた技術が開示されている。   Regarding the control of the sample temperature, Patent Document 1 discloses a vacuum processing apparatus including a heat transfer gas supply means for supplying a heat transfer gas between a sample such as a semiconductor substrate held by the electrostatic chuck and the electrostatic chuck. A technique is disclosed in which a convex portion for supporting a sample is provided on the sample mounting surface of the electrostatic chuck so as to be spaced apart from the outer peripheral portion and the inside thereof, and a push-up pin for conveying the sample is provided on the sample supporting portion. Yes.

また、特許文献2には、静電チャックにより保持される試料などの試料と静電チャックとの間に伝熱ガスを供給する伝熱ガス供給手段を具備する真空処理装置において、静電チャックにはガス供給穴を設け、さらに静電チャックには試料押上げ用のピンを格納するための押上げピン穴を設け、伝熱ガスの供給はこのガス供給穴、および押上げピン穴から行う技術が開示されている。   Patent Document 2 discloses a vacuum processing apparatus including a heat transfer gas supply unit that supplies a heat transfer gas between a sample such as a sample held by the electrostatic chuck and the electrostatic chuck. Has a gas supply hole, and the electrostatic chuck is provided with a push-up pin hole for storing a sample push-up pin. Heat transfer gas is supplied from this gas supply hole and the push-up pin hole. Is disclosed.

また、特許文献3には、静電チャックにより保持される半導体基板などの試料と静電チャックとの間に伝熱ガスを供給する伝熱ガス供給手段を具備する真空処理装置において、静電チャックにはガス供給穴を設け、伝熱ガスの供給はこのガス供給穴から行う技術が開示されている。   Patent Document 3 discloses a vacuum processing apparatus including a heat transfer gas supply unit that supplies a heat transfer gas between a sample such as a semiconductor substrate held by an electrostatic chuck and the electrostatic chuck. Discloses a technique in which a gas supply hole is provided and the heat transfer gas is supplied from the gas supply hole.

また、特許文献4には、静電チャックにより保持される半導体基板などの試料と静電チャックとの間に伝熱ガスを供給する伝熱ガス供給手段を具備する真空処理装置において、静電チャックには試料押上げ用のピンを格納するための押上げピン穴を設け、伝熱ガスの供給はこの押上げピン穴から行う技術が開示されている。   Patent Document 4 discloses a vacuum processing apparatus including a heat transfer gas supply unit that supplies a heat transfer gas between a sample such as a semiconductor substrate held by an electrostatic chuck and the electrostatic chuck. Discloses a technique for providing a push-up pin hole for storing a sample push-up pin, and supplying heat transfer gas from the push-up pin hole.

しかしながら、上記の技術は、試料温度の面内均一性について十分に配慮がなされていなかった。すなわち、静電チャックには試料を搬送および載置するための搬送機構としての押上げピンを備える必要があり、そのため静電チャックの試料載置面には貫通穴を設けて、貫通穴の内部に試料の押上げピンを配置する必要がある。この静電チャックに設けた貫通穴直上に位置する試料から試料台への伝熱性能は、貫通穴周囲に位置する試料から試料台への伝熱性能よりも低いために、試料を静電チャックに載置してプラズマ等で加工処理すると、試料温度は貫通穴付近で周囲よりも上昇し試料面内で不均一となる。この試料温度の面内不均一が原因となり、最終的に得られる試料の加工形状が試料面内で不均一となる問題があった。   However, in the above technique, sufficient consideration has not been given to the in-plane uniformity of the sample temperature. That is, the electrostatic chuck needs to be provided with a push-up pin as a transport mechanism for transporting and placing the sample. For this reason, a through hole is provided on the sample placement surface of the electrostatic chuck, and the inside of the through hole is provided. It is necessary to dispose the sample push-up pin. The heat transfer performance from the sample located directly above the through hole provided in this electrostatic chuck to the sample stage is lower than the heat transfer performance from the sample located around the through hole to the sample stage. When the sample is placed on and processed by plasma or the like, the sample temperature rises from the vicinity in the vicinity of the through hole and becomes non-uniform in the sample surface. Due to the in-plane non-uniformity of the sample temperature, there is a problem that the processed shape of the finally obtained sample is non-uniform within the sample surface.

本発明の目的は、試料温度を面内で均一にすることのできる真空処理装置および真空処理方法を提供することにある。   An object of the present invention is to provide a vacuum processing apparatus and a vacuum processing method capable of making a sample temperature uniform in a plane.

上記目的を達成するための一態様として、所定の圧力に減圧排気される処理室と、前記処理室内に設けられ試料が配置される静電チャックを有する試料台と、前記静電チャックの温度を可変する温度可変手段と、前記静電チャックにより保持される試料と前記静電チャックの試料配置面との間に伝熱ガスを供給する伝熱ガス供給手段とを具備する真空処理装置において、前記静電チャックの試料載置面に貫通させて伝熱ガス供給穴と試料の押上げピンを配置する押上げピン穴とを設け、前記静電チャックの試料載置面には前記試料を支持する凸部が外周部とその内側に離間して設けられ、押上げピン穴を前記凸部の面内に設け、前記伝熱ガス供給穴を前記凸部以外に設けて、前記押上げピン穴部の伝熱ガス圧力を前記凸部以外の伝熱ガス圧力よりも高く制御する制御手段を設けることを特徴とする真空処理装置とする。   As an aspect for achieving the above object, a processing chamber that is evacuated to a predetermined pressure, a sample stage that is provided in the processing chamber and has an electrostatic chuck, and a temperature of the electrostatic chuck are set. In a vacuum processing apparatus comprising: a variable temperature varying means; and a heat transfer gas supply means for supplying a heat transfer gas between a sample held by the electrostatic chuck and a sample arrangement surface of the electrostatic chuck. A heat transfer gas supply hole and a push-up pin hole for placing a push-up pin for the sample are provided through the sample placement surface of the electrostatic chuck, and the sample is supported on the sample placement surface of the electrostatic chuck. A convex part is provided apart from the outer peripheral part and the inside thereof, a push-up pin hole is provided in the surface of the convex part, and the heat transfer gas supply hole is provided other than the convex part, and the push-up pin hole part The heat transfer gas pressure of the heat transfer gas pressure other than the convex part The vacuum processing apparatus and providing a control means for remote high control.

また、真空処理室内に配置され、静電チャックの試料載置面に試料を支持する凸部が外周部とその内側に離間して設けられ、押上げピン穴が前記凸部の面内に設けられ、伝熱ガス供給穴が前記凸部以外に設けられた試料台上に試料を静電吸着保持するとともに試料温度を制御して試料を処理する真空処理方法において、前記押上げピン穴部に前記凸部以外に供給される伝熱ガス圧力よりも高い圧力の伝熱ガスを供給して前記試料を処理することを特徴とする真空処理方法とする。   In addition, a convex portion that is arranged in the vacuum processing chamber and that supports the sample is provided on the sample mounting surface of the electrostatic chuck so as to be spaced apart from the outer peripheral portion and the inside thereof, and a push-up pin hole is provided in the surface of the convex portion. In the vacuum processing method in which the sample is processed by controlling the sample temperature while holding the sample electrostatically on a sample stage provided with a heat transfer gas supply hole other than the convex part, A vacuum processing method is characterized in that a heat transfer gas having a pressure higher than the heat transfer gas pressure supplied to other than the convex portions is supplied to process the sample.

また、試料を吸着する機構を備えた試料台と、前記試料台が配置される処理室と、前記処理室を排気する排気手段とを有する真空処理装置において、前記試料台は、リング状凸部領域と、前記リング状凸部領域内に設けられた押し上げピン用穴と、前記リング凸部領域の内側に設けられた凹部領域と、前記凹部領域に設けられた伝熱ガス供給穴とを有し、前記押し上げピン用穴へ供給される伝熱ガスの圧力は、前記伝熱ガス供給穴へ供給される伝熱ガスの圧力を超えた値に設定されるものであることを特徴とする真空処理装置とする。   Further, in a vacuum processing apparatus having a sample stage provided with a mechanism for adsorbing a sample, a processing chamber in which the sample stage is arranged, and an exhaust means for exhausting the processing chamber, the sample stage has a ring-shaped convex portion. Region, a push-up pin hole provided in the ring-shaped convex region, a concave region provided inside the ring convex region, and a heat transfer gas supply hole provided in the concave region. The pressure of the heat transfer gas supplied to the push pin hole is set to a value exceeding the pressure of the heat transfer gas supplied to the heat transfer gas supply hole. A processing device is used.

押上げピン穴部の伝熱ガス圧力を凸部以外に供給される伝熱ガス圧力よりも高く制御することのより、試料温度を面内で均一にすることのできる真空処理装置および真空処理方法を提供することができる。   Vacuum processing apparatus and vacuum processing method capable of making the sample temperature uniform in the surface by controlling the heat transfer gas pressure in the push-up pin hole higher than the heat transfer gas pressure supplied to other than the convex portion Can be provided.

第一の実施例に係る真空処理装置の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the vacuum processing apparatus which concerns on a 1st Example. 第一の実施例に係る試料台の詳細を示す縦断面図である。It is a longitudinal cross-sectional view which shows the detail of the sample stand which concerns on a 1st Example. 第一の実施例に係る試料台の詳細を示す横断面図である。It is a cross-sectional view showing details of the sample stage according to the first embodiment. 第一の実施例に係る試料台における試料保持時の試料裏面の伝熱ガス圧力を示す図である。It is a figure which shows the heat transfer gas pressure of the sample back surface at the time of the sample holding | maintenance in the sample stand which concerns on a 1st Example. 第一実施例に係る新処理装置を用いた真空処理方法を示すタイムチャート図である。It is a time chart which shows the vacuum processing method using the new processing apparatus which concerns on a 1st Example. 第二の実施例に係る試料台の詳細を示す縦断面図である。It is a longitudinal cross-sectional view which shows the detail of the sample stand which concerns on a 2nd Example.

以下、実施例により詳細に説明する。   Hereinafter, the embodiment will be described in detail.

以下、本発明の第一の実施例について、図1乃至図5により説明する。   A first embodiment of the present invention will be described below with reference to FIGS.

図1はプラズマ真空処理装置の概略図であり、本実施例では、プラズマエッチング装置を示す。処理室3は、真空チャンバ102の上部に石英製のシャワープレート103と石英製の蓋101を設置し、真空チャンバの下面にはバルブ104を介して真空ポンプ105を接続して構成する。処理室3を構成する前記部材間の隙間は図示しないOリング等の適切なシール手段によって気密されており、処理室内の圧力は10000分の1Paといった高真空に維持することができる。   FIG. 1 is a schematic view of a plasma vacuum processing apparatus. In this embodiment, a plasma etching apparatus is shown. The processing chamber 3 is configured by installing a quartz shower plate 103 and a quartz lid 101 on an upper part of a vacuum chamber 102 and connecting a vacuum pump 105 to a lower surface of the vacuum chamber via a valve 104. The gap between the members constituting the processing chamber 3 is hermetically sealed by an appropriate sealing means such as an O-ring (not shown), and the pressure in the processing chamber can be maintained at a high vacuum of 1 / 10,000 Pa.

処理室3の上部の空間は、シャワープレート103と蓋101とチャンバ102とガス導入穴107で構成したガスだまり109である。ガスだまり109の構成部材間の隙間は図示しないOリング等のシール手段によって気密に接続されている。処理ガスは、処理ガス供給装置108からまずガスだまり109に導入され、次いでシャワープレート103に設けた多数の貫通穴110を通り、処理室3内にシャワー状に導入される。   The upper space of the processing chamber 3 is a gas reservoir 109 constituted by the shower plate 103, the lid 101, the chamber 102, and the gas introduction hole 107. The gaps between the constituent members of the gas reservoir 109 are hermetically connected by a sealing means such as an O-ring (not shown). The processing gas is first introduced into the gas reservoir 109 from the processing gas supply device 108, and then introduced into the processing chamber 3 in a shower shape through a large number of through holes 110 provided in the shower plate 103.

処理ガスとしては、プロセス毎に単一の物質ガス、あるいは複数の物質を所定の比量で最適な流量比で混合したガスを用いる。たとえば、被エッチング材料がSi系の材料であれば、HBr/Cl/Oのガス系もしくは、左記に組み合わせてSF、CF、CHF等のフッ素系ガスが好適に使用できる。 As the processing gas, a single substance gas or a gas in which a plurality of substances are mixed at a predetermined ratio and at an optimum flow rate ratio is used for each process. For example, if the material to be etched is a Si-based material, an HBr / Cl 2 / O 2 gas system or a fluorine-based gas such as SF 6 , CF 4 , or CHF 3 in combination with the left can be used.

処理室3の上方には、円盤状のアンテナ111を設置する。アンテナ111にはマイクロ波発振器112を接続しており、アンテナ111に高周波電圧を印加して電磁波を生成することができる。処理室3に導入された電磁波と、真空チャンバの周囲を取り巻いて設置したコイル113によって生じる磁場との相互作用により、処理室内には高密度なプラズマを生成することができる。   A disk-shaped antenna 111 is installed above the processing chamber 3. A microwave oscillator 112 is connected to the antenna 111, and an electromagnetic wave can be generated by applying a high frequency voltage to the antenna 111. Due to the interaction between the electromagnetic wave introduced into the processing chamber 3 and the magnetic field generated by the coil 113 installed around the vacuum chamber, high-density plasma can be generated in the processing chamber.

処理室3の下方には、半導体基板等の試料1を配置する試料台2が設けられており、試料1が載置される面には静電チャック14が取り付けられている。なお、試料台2には静電チャック14によって保持する試料1にバイアス電圧を印加する高周波電源114と、試料1を吸着・保持するために静電吸着電源115と、試料と静電チャックの間に伝熱ガスを供給するための伝熱ガス供給装置116が接続されている。尚、符号106はフォーカスリング、符号117は制御装置である。   A sample stage 2 on which a sample 1 such as a semiconductor substrate is arranged is provided below the processing chamber 3, and an electrostatic chuck 14 is attached to the surface on which the sample 1 is placed. The sample stage 2 has a high frequency power source 114 for applying a bias voltage to the sample 1 held by the electrostatic chuck 14, an electrostatic attraction power source 115 for sucking and holding the sample 1, and a gap between the sample and the electrostatic chuck. A heat transfer gas supply device 116 for supplying a heat transfer gas is connected. Reference numeral 106 denotes a focus ring, and reference numeral 117 denotes a control device.

図2に試料台の詳細を示す。試料台2上部の静電チャック14は、この場合、電気絶縁膜200と静電吸着電極201と誘電体膜202を積層してなる。吸着電極201は2枚とし、外電極201aと内電極201bを備えたダイポール型とし、それぞれの電極は静電吸着電源115に接続する。尚、押し上げピン206を挟んで内電極201bと反対側に記載されている電極は内電極201bと一体物である。すなわち、押し上げピン206は内電極201bを貫通して設けられた開口部内を上下に動く。   FIG. 2 shows details of the sample stage. In this case, the electrostatic chuck 14 on the top of the sample stage 2 is formed by laminating an electric insulating film 200, an electrostatic adsorption electrode 201, and a dielectric film 202. The attracting electrode 201 is a dipole type having two outer electrodes 201a and an inner electrode 201b, and each electrode is connected to the electrostatic attracting power source 115. In addition, the electrode described on the opposite side to the inner electrode 201b across the push-up pin 206 is integral with the inner electrode 201b. That is, the push-up pin 206 moves up and down in an opening provided through the inner electrode 201b.

試料1の載置面の最外周部とそれから内側に離間した位置にリング状の凸部203、204が形成されている。試料裏面への伝熱ガスの供給は、凸部領域以外の凹部領域に設けられたガス供給穴205および凸部領域に設けられた押上げピン穴206を介して行う。   Ring-shaped convex portions 203 and 204 are formed at the outermost peripheral portion of the mounting surface of the sample 1 and at a position spaced inwardly therefrom. The heat transfer gas is supplied to the back surface of the sample through a gas supply hole 205 provided in a concave region other than the convex region and a push-up pin hole 206 provided in the convex region.

ガス供給穴205への伝熱ガス供給ラインにはバルブ208を備え、押上げピン穴206への伝熱ガス供給ラインにはバルブ207を備えている。バルブ207、208の開度はそれぞれ独立に調整することができ、伝熱ガス供給量およびガス圧力はそれぞれのラインで独立して調節することができる。なお、リング状の凸部203,204の間の空間には伝熱ガス供給穴205からの伝熱ガスが供給される。   The heat transfer gas supply line to the gas supply hole 205 is provided with a valve 208, and the heat transfer gas supply line to the push-up pin hole 206 is provided with a valve 207. The opening degree of the valves 207 and 208 can be adjusted independently, and the heat transfer gas supply amount and gas pressure can be adjusted independently in each line. The heat transfer gas from the heat transfer gas supply hole 205 is supplied to the space between the ring-shaped convex portions 203 and 204.

また、試料台2は図示しない放熱手段および温度可変手段を備えている。符号209はシール、符号210は押し上げピン、符号211は押し上げピン駆動装置を示す。図3に、図2の試料台の吸着電極201を含む横断面図を示す。   Further, the sample stage 2 includes a heat radiating means and a temperature varying means (not shown). Reference numeral 209 denotes a seal, reference numeral 210 denotes a push-up pin, and reference numeral 211 denotes a push-up pin driving device. FIG. 3 is a cross-sectional view including the adsorption electrode 201 of the sample stage in FIG.

なお、試料台2の材質としては、適度な強度があればどのような金属でも使用でき、たとえばステンレス、アルミニウム、アルミニウム合金、チタンなどが好適に使用できる。または金属でなくとも構わない。   In addition, as a material of the sample stand 2, any metal can be used as long as it has an appropriate strength. For example, stainless steel, aluminum, aluminum alloy, titanium, and the like can be preferably used. Or it may not be a metal.

また、電気絶縁膜200および誘電体膜202の材質は、絶縁性を維持することができ、かつプラズマ耐性があればどのような材質であっても構わないが、例えばアルミナ(酸化アルミニウム、Al)やイットリア(酸化イットリウム、Y)が好適に使用される。また、吸着電極201の材質としては、どのような金属でも構わないが、例えばタングステンやニッケルなどが好適に使用される。 The material of the electrical insulating film 200 and the dielectric film 202 may be any material as long as it can maintain insulation and has plasma resistance. For example, alumina (aluminum oxide, Al 2). O 3 ) and yttria (yttrium oxide, Y 2 O 3 ) are preferably used. The material of the adsorption electrode 201 may be any metal, but for example, tungsten or nickel is preferably used.

なお、本実施例において吸着電極201は外電極201aと内電極201bの2枚を備えたダイポール型としたが、必ずしもダイポール型である必要はなく、モノポール型であっても構わない。また、静電吸着以外による吸着方法であってもよい。   In the present embodiment, the adsorption electrode 201 is a dipole type having two outer electrodes 201a and 201b, but it is not necessarily a dipole type and may be a monopole type. Further, an adsorption method other than electrostatic adsorption may be used.

図2に示した本実施例としての試料台を用いて、静電チャック4によって試料1を静電吸着し、ガス供給穴205及び押上げピン穴206を介して試料裏面に伝熱ガスを供給したときの、試料裏面上における伝熱ガス圧力の分布を図4に示す。バルブ207およびバルブ208を調節しながら伝熱ガスを供給することで、押上げピン穴部に対して凸部以外に供給される伝熱ガス圧力よりも高い圧力の伝熱ガスを供給することができる。なお、押上げピン穴部への伝熱ガス供給ラインにコンプレッサ等の圧縮手段を取り付けることにより、広範囲の圧力制御が可能となる。また、伝熱ガスは処理室3へ放出するため、反応に影響しないように、反応ガスに比べ数桁少ない流量としている。   2, the sample 1 is electrostatically adsorbed by the electrostatic chuck 4 and the heat transfer gas is supplied to the back surface of the sample through the gas supply hole 205 and the push-up pin hole 206. FIG. 4 shows the distribution of the heat transfer gas pressure on the back surface of the sample. By supplying the heat transfer gas while adjusting the valve 207 and the valve 208, it is possible to supply a heat transfer gas having a pressure higher than the heat transfer gas pressure supplied to the push-up pin hole other than the convex portion. it can. A wide range of pressure control is possible by attaching a compression means such as a compressor to the heat transfer gas supply line to the push-up pin hole. Further, since the heat transfer gas is discharged to the processing chamber 3, the flow rate is several orders of magnitude less than the reaction gas so as not to affect the reaction.

押上げピン穴内206内に供給した伝熱ガスによって、伝熱ガスを介した熱移動が生じ、すなわち試料裏面−押上げピン穴の側壁面、試料裏面−押上げピン間、および押上げピン穴の側壁面−押上げピン間で熱移動が生じる。これらの伝熱ガスを介した熱移動によって、試料へのプラズマ等の入熱は試料裏面から伝熱ガスに伝わり、一部で押上げピン内を経由する熱があるものの最終的にはピン穴の側壁面に伝わり、試料台内部の図示しない放熱手段へと伝わる。   The heat transfer gas supplied into the inside of the push-up pin hole 206 causes heat transfer via the heat transfer gas, that is, the sample back surface—the side wall surface of the push-up pin hole, between the sample back surface and the push-up pin, and the lift pin hole. The heat transfer occurs between the side wall surface and the push-up pin. By heat transfer through these heat transfer gases, heat input such as plasma to the sample is transferred from the back of the sample to the heat transfer gas, and there is some heat that passes through the inside of the push-up pin, but eventually the pin hole To the side surface of the sample and to the heat dissipating means (not shown) inside the sample stage.

押上げピン穴直上部の試料の入熱が試料台に伝わる経路は、2種類に大別できる。1つ目は、前述のような押上げピン穴内部の伝熱ガスを経る伝熱経路であり、すなわち押上げピン直上の試料裏面から押上げピン内の伝熱ガス、ピン穴の側壁面、そして試料内部の図示しない冷却手段の順に熱が伝わる経路である。2つ目は、押上げピン穴内部の伝熱ガスを通らないものであり、すなわち押上げピン穴直上の試料上面への入熱はまず試料内部を水平方向に伝導伝熱で押上げピン穴以外の部分へ伝わり、ここで試料裏面から試料台凸部の静電チャックとの接触面あるいは押上げピン穴部以外の伝熱ガスを介して静電チャックに伝わり、さらに試料台表面へ伝わり、試料台内部の伝導伝熱によって図示しない放熱手段へ伝わる経路である。   There are two types of paths through which the heat input of the sample directly above the push-up pin hole is transmitted to the sample stage. The first is a heat transfer path through the heat transfer gas inside the push-up pin hole as described above, that is, the heat transfer gas in the push-up pin from the back of the sample directly above the push-up pin, the side wall surface of the pin hole, This is a path through which heat is transferred in the order of cooling means (not shown) inside the sample. The second is that the heat transfer gas inside the push-up pin hole does not pass through, that is, heat input to the upper surface of the sample immediately above the push-up pin hole is first conducted by conducting heat transfer in the horizontal direction inside the push-up pin hole. To the electrostatic chuck via the heat transfer gas other than the contact surface with the electrostatic chuck on the convex part of the sample stage or the push pin hole, and further to the surface of the sample stage. This is a path that is transmitted to heat radiating means (not shown) by conductive heat transfer inside the sample stage.

前記に示したような2種類の伝熱経路のうち、押上げピン穴内部の伝熱ガスを通らない伝熱経路は、試料内部において水平方向の伝導伝熱を伴うために、試料面内で温度分布を生じさせてしまう。したがって、試料面内における温度を均一化するためには、押上げピン穴直上部の試料の入熱が押上げピン穴内部の伝熱ガスを介して試料台に伝わるようにする必要がある。   Of the two types of heat transfer paths as described above, the heat transfer path that does not pass through the heat transfer gas inside the push-up pin hole is accompanied by horizontal conduction heat transfer inside the sample. This will cause a temperature distribution. Therefore, in order to make the temperature in the sample surface uniform, it is necessary to transfer the heat input of the sample immediately above the push-up pin hole to the sample stage via the heat transfer gas inside the push-up pin hole.

押上げピン穴直上部の試料の入熱が試料台に伝わるときの、前記に示したような2つの伝熱経路に対する伝熱量の配分は、図2に示した試料台において押上げピン穴内部の伝熱ガス圧力で調整することができる。押上げピン穴部において伝熱ガス圧力を増すとともに、伝熱ガス気体分子の密度が増して押上げピン穴部の伝熱ガスを介した伝熱性能が向上するので、前記の伝熱経路のうち押上げピン穴部の伝熱ガスを介する経路において伝熱量が増加する。これと相対的に、押上げピン穴部の伝熱ガスを通らない伝熱経路における伝熱量は減少する。   When the heat input of the sample immediately above the push-up pin hole is transferred to the sample stage, the distribution of the heat transfer amount to the two heat transfer paths as described above is performed inside the push-up pin hole in the sample stage shown in FIG. The heat transfer gas pressure can be adjusted. While increasing the heat transfer gas pressure in the push-up pin hole, and increasing the density of the heat transfer gas gas molecules, the heat transfer performance through the heat transfer gas in the push-up pin hole is improved. Among them, the amount of heat transfer increases in the path through the heat transfer gas in the push-up pin hole. In contrast, the amount of heat transfer in the heat transfer path that does not pass through the heat transfer gas in the push-up pin hole is reduced.

図4に、本実施例における試料処理時の伝熱ガス分布を示す。本実施例における伝熱ガス分布は、押上げピン穴部の伝熱ガス圧力を押上げピン穴周縁の凸部以外の伝熱ガス圧力よりも高く制御している。また、図4には、比較例としての試料処理時の伝熱ガス分布をあわせて示す。比較例の伝熱ガス分布おいて、本実施例と比較して異なる点は、押上げピン穴内部の伝熱ガス圧力分布を押上げピン穴周縁の凸部以外の伝熱ガス圧力と略同一としていることである。   FIG. 4 shows the heat transfer gas distribution during sample processing in this example. The heat transfer gas distribution in the present embodiment controls the heat transfer gas pressure at the push-up pin hole to be higher than the heat transfer gas pressure other than the convex part at the periphery of the push-up pin hole. FIG. 4 also shows the heat transfer gas distribution during sample processing as a comparative example. In the heat transfer gas distribution of the comparative example, the difference from the present embodiment is that the heat transfer gas pressure distribution inside the push-up pin hole is substantially the same as the heat transfer gas pressure other than the convex portion at the periphery of the push-up pin hole. It is that.

以下、図4に示す実施例と比較例を用いて、伝熱ガス圧力を押上げピン内部において凸部以外よりも高く制御することで試料面内の温度が均一化することを説明する。   Hereinafter, it will be described with reference to the embodiment shown in FIG. 4 and the comparative example that the temperature in the sample surface is made uniform by controlling the heat transfer gas pressure higher in the push-up pins than in the convex portions.

まず、図4に示す比較例において、プラズマ等の試料上方から試料に対する入熱があって、この入熱が試料裏面から試料台あるいは静電チャックまで伝わるとき、試料裏面で伝熱ガス圧力は一定であるから、試料面内の伝熱性能の分布は伝熱距離の違いで決まってくる。   First, in the comparative example shown in FIG. 4, when there is heat input to the sample from above the sample such as plasma, and this heat transfer is transmitted from the back of the sample to the sample stage or the electrostatic chuck, the heat transfer gas pressure is constant on the back of the sample. Therefore, the distribution of heat transfer performance in the sample surface is determined by the difference in heat transfer distance.

押上げピン穴の直径は数mmオーダであり、試料裏面と静電チャック上面との間の距離はこれよりも1オーダ以上小さいので、伝熱距離は押上げピン穴の直上でその他の部分よりも長い。すなわち伝熱性能は押上げピン穴部で他の部分よりも低下する。したがって押上げピン穴直上部の試料への入熱があると、押上げピン穴部の伝熱ガスを介した伝熱量は低下し、伝熱性能が相対的に高い押上げピン穴部以外を介した伝熱量が増加する。すなわち試料内部において押上げピン穴部からそれ以外の部分に向かう水平方向の伝導伝熱が生じ、押上げピン穴直上における試料温度で周囲よりも高くなる。したがって、図4に示す比較例のように試料裏面で伝熱ガスを一定とした場合は、押上げピン穴直上における試料温度で周囲よりも高くなるために試料温度が面内で不均一となる。   The diameter of the push-up pin hole is on the order of several millimeters, and the distance between the back surface of the sample and the upper surface of the electrostatic chuck is one order or more smaller than this, so the heat transfer distance is just above the push-up pin hole and other parts. Too long. That is, the heat transfer performance is lower in the push-up pin hole than in other portions. Therefore, if there is heat input to the sample immediately above the push-up pin hole, the amount of heat transfer through the heat transfer gas in the push-up pin hole will decrease, and the heat transfer performance will be limited to those other than the push-up pin hole with relatively high heat transfer performance. The amount of heat transferred through increases. That is, conduction heat transfer is generated in the horizontal direction from the push-up pin hole portion to other portions inside the sample, and the sample temperature immediately above the push-up pin hole becomes higher than the surroundings. Therefore, when the heat transfer gas is constant on the back surface of the sample as in the comparative example shown in FIG. 4, the sample temperature is higher in the sample temperature immediately above the push-up pin hole and therefore the sample temperature becomes non-uniform in the surface. .

一方で、図4に示す実施例においては、押上げピン穴部の伝熱ガス圧力Aを押上げピン穴以外の伝熱ガス圧力Bよりも高く制御することで、試料上方から試料に対する入熱があって試料台あるいは静電チャックへ伝わる場合に、押上げピン穴部における伝熱性能が向上し、押上げピン穴内の伝熱ガスへの伝熱量が増すために、相対的に押上げピン穴直上の試料内部で水平方向への熱移動が解消し、試料温度は面内で均一となる。   On the other hand, in the embodiment shown in FIG. 4, the heat transfer gas pressure A in the push-up pin hole is controlled to be higher than the heat transfer gas pressure B other than the push-up pin hole, so that the heat input to the sample from above the sample. When the heat is transferred to the sample stage or electrostatic chuck, the heat transfer performance in the push-up pin hole is improved and the amount of heat transfer to the heat transfer gas in the push-up pin hole is increased. The heat transfer in the horizontal direction is eliminated inside the sample immediately above the hole, and the sample temperature becomes uniform in the plane.

次に、上記のように構成されたプラズマエッチング装置を用いた真空処理方法の実施例を図5により説明する。試料は、図示を省略したロック室および真空搬送室を介して真空容器内に搬入し、試料台に載置する。その後、静電吸着用電源をオンにして試料と試料台とを静電チャックを介して静電吸着に保持するとともに、伝熱ガスの供給を開始する(図5の時間a1)。以降、伝熱ガス圧は、押上げピン穴部で周囲よりも高くなるように、すなわちA>Bとする(本実施例では、A=1.5B)。   Next, an embodiment of a vacuum processing method using the plasma etching apparatus configured as described above will be described with reference to FIG. The sample is carried into the vacuum container via a lock chamber and a vacuum transfer chamber (not shown) and placed on the sample stage. Thereafter, the electrostatic chucking power source is turned on to hold the sample and the sample table in electrostatic chucking via the electrostatic chuck, and supply of heat transfer gas is started (time a1 in FIG. 5). Thereafter, the heat transfer gas pressure is set to be higher than the surroundings at the push-up pin hole, that is, A> B (in this embodiment, A = 1.5B).

その後、エッチングガスを導入開始するとともにマイクロ波を導入し、バイアス電源をオンにすることで、プラズマを発生させて処理を開始する(図2の時間a2)。試料を処理している間、伝熱ガス圧はA>Bとしているので、試料温度は面内で均一とすることができる。本圧力に関し、好ましくは、5B>A>Bであり、実用上は3B≧A≧1.5Bが好適である。また、押し上げピン穴206へ供給する伝熱ガスと伝熱ガス供給穴205へ供給される伝熱ガスは同じである必要はないが、同じとすることにより、構成を簡略化できる。本実施例では処理を終了するときは、後から供給されたものを先に停止する。例えば、エッチングガスを停止後、伝熱ガス供給を停止する。伝熱ガスの残圧があるために、ウエハは弱い押し上げピン圧で取り外すことがきる。このように実行される真空処理方法によれば、試料の処理中にプラズマ等の入熱がある場合において、試料温度は面内で均一とすることができる。   Thereafter, introduction of an etching gas is started, microwaves are introduced, and a bias power source is turned on to generate plasma and start processing (time a2 in FIG. 2). Since the heat transfer gas pressure is A> B while the sample is processed, the sample temperature can be made uniform in the plane. Regarding this pressure, preferably 5B> A> B, and 3B ≧ A ≧ 1.5B is suitable for practical use. The heat transfer gas supplied to the push-up pin hole 206 and the heat transfer gas supplied to the heat transfer gas supply hole 205 are not necessarily the same, but the configuration can be simplified by making them the same. In this embodiment, when the process is terminated, the one supplied later is stopped first. For example, after the etching gas is stopped, the heat transfer gas supply is stopped. Because of the residual pressure of the heat transfer gas, the wafer can be removed with a weak push-up pin pressure. According to the vacuum processing method executed in this way, the sample temperature can be made uniform in the plane when there is heat input such as plasma during the processing of the sample.

以上示したように、本実施例によれば、押上げピン穴部の伝熱ガス圧力を押上げピン穴以外の伝熱ガス圧力よりも高く制御することで試料温度を面内で均一にすることのできる真空処理装置および真空処理方法を提供することができる。   As described above, according to this embodiment, the sample temperature is made uniform in the surface by controlling the heat transfer gas pressure in the push-up pin hole higher than the heat transfer gas pressure other than the push-up pin hole. A vacuum processing apparatus and a vacuum processing method can be provided.

以下、本発明の第二の実施例について、図6により説明する。なお、実施例1に記載され、本実施例に未記載の事項は実施例1と同様である。   A second embodiment of the present invention will be described below with reference to FIG. The matters described in the first embodiment and not described in the present embodiment are the same as those in the first embodiment.

図6に、第二の実施例としての試料台の詳細を示す。第二の実施例は、静電チャックの構造で第一の実施例と異なっている。第二の実施例においては、静電チャックの誘電体膜を電気絶縁層上面の全体に備え、誘電体膜の上面に凹凸を形成し、この凹部に伝熱ガスを供給する。本実施例の試料台を図1に示したプラズマ真空処理装置内に設置し、伝熱ガス分布は図4に示すように押上げピン穴内部において押上げピン穴の外部よりも高い圧力に制御し(本実施例ではA=2B)、図5に示すような真空処理方法を実施すれば、試料の処理中にプラズマ等の入熱がある場合において、試料温度は面内で均一とすることができる。   FIG. 6 shows details of the sample stage as the second embodiment. The second embodiment is different from the first embodiment in the structure of the electrostatic chuck. In the second embodiment, the dielectric film of the electrostatic chuck is provided on the entire upper surface of the electric insulating layer, and irregularities are formed on the upper surface of the dielectric film, and a heat transfer gas is supplied to the concave portion. The sample stage of this embodiment is installed in the plasma vacuum processing apparatus shown in FIG. 1, and the heat transfer gas distribution is controlled to a higher pressure inside the push-up pin hole than outside the push-up pin hole as shown in FIG. (A = 2B in this embodiment) If the vacuum processing method as shown in FIG. 5 is performed, the sample temperature should be uniform in the surface when there is heat input such as plasma during the sample processing. Can do.

以上示したように、本実施例によれば、押上げピン穴部の伝熱ガス圧力を押上げピン穴以外の伝熱ガス圧力よりも高く制御することで試料温度を面内で均一にすることのできる真空処理装置および真空処理方法を提供することができる。さらに、本実施例によれば、静電チャック領域を広く確保することができ、局所的な静電吸着ではなく、試料を広い領域で均等に吸着することができる。   As described above, according to this embodiment, the sample temperature is made uniform in the surface by controlling the heat transfer gas pressure in the push-up pin hole higher than the heat transfer gas pressure other than the push-up pin hole. A vacuum processing apparatus and a vacuum processing method can be provided. Furthermore, according to the present embodiment, it is possible to secure a wide electrostatic chuck region, and it is possible to attract the sample evenly over a wide region instead of local electrostatic adsorption.

本発明は静電チャックにより試料を保持するとともに試料の温度を制御して真空処理する装置に適用できる。   The present invention can be applied to an apparatus that holds a sample by an electrostatic chuck and performs vacuum processing by controlling the temperature of the sample.

1:試料、2:試料台、3:処理室、4:静電チャック、101:蓋、102:真空チャンバ、103:シャワープレート、104:バルブ、105:真空ポンプ、106:フォーカスリング、107:ガス導入穴、108:処理ガス供給装置、109:ガスだまり、110:シャワープレート貫通穴、111:アンテナ、112:マイクロ波発振器、113:コイル、114:高周波電源、115:静電吸着電源、116:伝熱ガス供給装置、117:制御装置、200:電気絶縁膜、201:静電吸着電極、202:誘電体膜、203:最外周凸部、204:リング状凸部、205:ガス供給穴、206:押上げピン穴、207:バルブ、208:バルブ、209:シール、210:押上げピン、211:押上げピン駆動装置。 1: sample, 2: sample stage, 3: processing chamber, 4: electrostatic chuck, 101: lid, 102: vacuum chamber, 103: shower plate, 104: valve, 105: vacuum pump, 106: focus ring, 107: Gas introduction hole, 108: processing gas supply device, 109: gas pool, 110: shower plate through hole, 111: antenna, 112: microwave oscillator, 113: coil, 114: high frequency power supply, 115: electrostatic adsorption power supply, 116 : Heat transfer gas supply device, 117: Control device, 200: Electrical insulating film, 201: Electrostatic adsorption electrode, 202: Dielectric film, 203: Outermost convex portion, 204: Ring-shaped convex portion, 205: Gas supply hole 206: Push-up pin hole, 207: Valve, 208: Valve, 209: Seal, 210: Push-up pin, 211: Push-up pin driving device.

Claims (9)

所定の圧力に減圧排気される処理室と、前記処理室内に設けられ試料が配置される静電チャックを有する試料台と、前記静電チャックの温度を可変する温度可変手段と、前記静電チャックにより保持される試料と前記静電チャックの試料配置面との間に伝熱ガスを供給する伝熱ガス供給手段とを具備する真空処理装置において、
前記静電チャックの試料載置面に貫通させて伝熱ガス供給穴と試料の押上げピンを配置する押上げピン穴とを設け、前記静電チャックの試料載置面には前記試料を支持する凸部が外周部とその内側に離間して設けられ、前記押上げピン穴を前記凸部の面内に設け、前記伝熱ガス供給穴を前記凸部以外に設けて、前記押上げピン穴部の伝熱ガス圧力を前記凸部以外の伝熱ガス圧力よりも高く制御する制御手段を設けたことを特徴とする真空処理装置。
A processing chamber that is evacuated to a predetermined pressure; a sample stage that is provided in the processing chamber and has an electrostatic chuck on which a sample is placed; temperature variable means for changing the temperature of the electrostatic chuck; and the electrostatic chuck In a vacuum processing apparatus comprising a heat transfer gas supply means for supplying a heat transfer gas between a sample held by a sample placement surface of the electrostatic chuck,
A heat transfer gas supply hole and a push-up pin hole for placing a push-up pin for the sample are provided so as to penetrate the sample placement surface of the electrostatic chuck, and the sample is supported on the sample placement surface of the electrostatic chuck. A convex portion that is spaced apart from the outer peripheral portion and the inside thereof, the push-up pin hole is provided in a plane of the convex portion, and the heat transfer gas supply hole is provided in addition to the convex portion, and the push-up pin A vacuum processing apparatus comprising a control means for controlling the heat transfer gas pressure in the hole portion to be higher than the heat transfer gas pressure other than the convex portion.
真空処理室内に配置され、静電チャックの試料載置面に試料を支持する凸部が外周部とその内側に離間して設けられ、押上げピン穴が前記凸部の面内に設けられ、伝熱ガス供給穴が前記凸部以外に設けられた試料台上に試料を静電吸着保持するとともに試料温度を制御して試料を処理する真空処理方法において、
前記押上げピン穴部に前記凸部以外に供給される伝熱ガス圧力よりも高い圧力の伝熱ガスを供給して前記試料を処理することを特徴とする真空処理方法。
A convex portion that is disposed in the vacuum processing chamber and that supports the sample on the sample mounting surface of the electrostatic chuck is provided apart from the outer peripheral portion and the inside thereof, and a push-up pin hole is provided in the surface of the convex portion, In a vacuum processing method in which a heat transfer gas supply hole holds a sample by electrostatic adsorption on a sample table provided in addition to the convex portion and controls the sample temperature to process the sample.
A vacuum processing method, wherein a heat transfer gas having a pressure higher than a heat transfer gas pressure supplied to a portion other than the convex portion is supplied to the push-up pin hole to process the sample.
試料を吸着する機構を備えた試料台と、前記試料台が配置される処理室と、前記処理室を排気する排気手段とを有する真空処理装置において、
前記試料台は、リング状凸部領域と、前記リング状凸部領域内に設けられた押し上げピン用穴と、前記リング凸部領域の内側に設けられた凹部領域と、前記凹部領域に設けられた伝熱ガス供給穴とを有し、
前記押し上げピン用穴へ供給される伝熱ガスの圧力は、前記伝熱ガス供給穴へ供給される伝熱ガスの圧力を超えた値に設定されるものであることを特徴とする真空処理装置。
In a vacuum processing apparatus having a sample stage provided with a mechanism for adsorbing a sample, a processing chamber in which the sample stage is arranged, and an exhaust unit for exhausting the processing chamber,
The sample stage is provided in a ring-shaped convex region, a push-up pin hole provided in the ring-shaped convex region, a concave region provided inside the ring convex region, and the concave region. Heat transfer gas supply holes,
The pressure of the heat transfer gas supplied to the push pin hole is set to a value exceeding the pressure of the heat transfer gas supplied to the heat transfer gas supply hole. .
請求項3記載の真空処理装置において、
前記リング状凸部領域は、二重に設けられており、前記押し上げピン用穴は内側のリング状凸部領域に設けられていることを特徴とする真空処理装置。
The vacuum processing apparatus according to claim 3, wherein
The said ring-shaped convex part area | region is provided twice, The said hole for push-up pins is provided in the inner ring-shaped convex part area | region, The vacuum processing apparatus characterized by the above-mentioned.
請求項3又は4に記載の真空処理装置において、
前記試料を吸着する機構は、静電チャックであることを特徴とする真空処理装置。
In the vacuum processing apparatus according to claim 3 or 4,
The vacuum processing apparatus, wherein the mechanism for adsorbing the sample is an electrostatic chuck.
請求項3乃至5のいずれか1項に記載の真空処理装置において、
前記押し上げピン用穴へ供給される伝熱ガスと、前記伝熱ガス供給穴へ供給される伝熱ガスとは供給源が同一であることを特徴とする真空処理装置。
The vacuum processing apparatus according to any one of claims 3 to 5,
A vacuum processing apparatus, wherein the heat transfer gas supplied to the push-up pin hole and the heat transfer gas supplied to the heat transfer gas supply hole have the same supply source.
請求項3乃至6のいずれか1項に記載の真空処理装置において、
前記試料を吸着する機構は、前記凸部領域に設けられていることを特徴とする真空処理装置。
The vacuum processing apparatus according to any one of claims 3 to 6,
The vacuum processing apparatus, wherein the mechanism for adsorbing the sample is provided in the convex region.
請求項3乃至6のいずれか1項に記載の真空処理装置において、
前記試料を吸着する機構は、前記凹部領域に設けられていることを特徴とする真空処理装置。
The vacuum processing apparatus according to any one of claims 3 to 6,
The vacuum processing apparatus, wherein the mechanism for adsorbing the sample is provided in the recessed area.
請求項3乃至8のいずれか1項に記載の真空処理装置において、
前記真空処理装置は、ドライエッチング装置であることを特徴とする真空処理装置。
The vacuum processing apparatus according to any one of claims 3 to 8,
The vacuum processing apparatus is a dry etching apparatus.
JP2009116518A 2009-05-13 2009-05-13 Device and method for vacuum processing Pending JP2010267708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116518A JP2010267708A (en) 2009-05-13 2009-05-13 Device and method for vacuum processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009116518A JP2010267708A (en) 2009-05-13 2009-05-13 Device and method for vacuum processing

Publications (1)

Publication Number Publication Date
JP2010267708A true JP2010267708A (en) 2010-11-25

Family

ID=43364455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116518A Pending JP2010267708A (en) 2009-05-13 2009-05-13 Device and method for vacuum processing

Country Status (1)

Country Link
JP (1) JP2010267708A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160024730A (en) 2014-08-26 2016-03-07 가부시키가이샤 히다치 하이테크놀로지즈 Plasma processing apparatus
JP2016143760A (en) * 2015-02-02 2016-08-08 住友大阪セメント株式会社 Electrostatic chuck device
JP2019121748A (en) * 2018-01-11 2019-07-22 株式会社日立ハイテクノロジーズ Plasma processing apparatus
JP2022536828A (en) * 2019-05-13 2022-08-19 ズス・マイクロテック・リソグラフィ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Bonding apparatus and method for bonding substrates

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160024730A (en) 2014-08-26 2016-03-07 가부시키가이샤 히다치 하이테크놀로지즈 Plasma processing apparatus
US10103007B2 (en) 2014-08-26 2018-10-16 Hitachi High-Technologies Corporation Plasma processing apparatus with gas feed and evacuation conduit
JP2016143760A (en) * 2015-02-02 2016-08-08 住友大阪セメント株式会社 Electrostatic chuck device
JP2019121748A (en) * 2018-01-11 2019-07-22 株式会社日立ハイテクノロジーズ Plasma processing apparatus
JP7083080B2 (en) 2018-01-11 2022-06-10 株式会社日立ハイテク Plasma processing equipment
JP2022536828A (en) * 2019-05-13 2022-08-19 ズス・マイクロテック・リソグラフィ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Bonding apparatus and method for bonding substrates
JP7320621B2 (en) 2019-05-13 2023-08-03 ズス・マイクロテック・リソグラフィ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Bonding apparatus and method for bonding substrates
US12009230B2 (en) 2019-05-13 2024-06-11 Suss Microtec Lithography Gmbh Bonding device as well as method for bonding substrates

Similar Documents

Publication Publication Date Title
US8152925B2 (en) Baffle plate and substrate processing apparatus
US7837828B2 (en) Substrate supporting structure for semiconductor processing, and plasma processing device
US8864936B2 (en) Apparatus and method for processing substrate
WO2020050080A1 (en) Mounting base, substrate processing device, edge ring, and edge ring transfer method
US8852386B2 (en) Plasma processing apparatus
US20060207725A1 (en) Substrate mounting table, substrate processing apparatus and substrate processing method
WO2015178222A1 (en) Heater power feeding mechanism
JP5591585B2 (en) Plasma processing equipment
JP2011035266A (en) Plasma processing apparatus and plasma processing method
JP6552346B2 (en) Substrate processing equipment
JP2001077088A (en) Plasma processing device
JP2018186179A (en) Substrate processing apparatus and substrate removal method
JP2016506592A (en) Capacitively coupled plasma device with uniform plasma density
JP2017157778A (en) Substrate processing device
JP2004342703A (en) Device and method for plasma treatment
WO2019244631A1 (en) Stage and substrate processing apparatus
US20080242086A1 (en) Plasma processing method and plasma processing apparatus
KR101898079B1 (en) Plasma processing apparatus
WO2015174287A1 (en) Heater power feeding mechanism and stage temperature control method
JP4935149B2 (en) Electrode plate for plasma processing and plasma processing apparatus
TW201301334A (en) Plasma processing apparatus
JP2007250860A (en) Plasma processor and electrode assembly therefor
US20060118044A1 (en) Capacitive coupling plasma processing apparatus
JP2017212051A (en) Plasma processing method
JP2010267708A (en) Device and method for vacuum processing