[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010260225A - Thermoconductive molding and use thereof - Google Patents

Thermoconductive molding and use thereof Download PDF

Info

Publication number
JP2010260225A
JP2010260225A JP2009111845A JP2009111845A JP2010260225A JP 2010260225 A JP2010260225 A JP 2010260225A JP 2009111845 A JP2009111845 A JP 2009111845A JP 2009111845 A JP2009111845 A JP 2009111845A JP 2010260225 A JP2010260225 A JP 2010260225A
Authority
JP
Japan
Prior art keywords
boron nitride
nitride powder
heat
silicone
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009111845A
Other languages
Japanese (ja)
Other versions
JP5405890B2 (en
Inventor
Toshitaka Yamagata
利貴 山縣
Kenji Miyata
建治 宮田
Takuya Okada
拓也 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009111845A priority Critical patent/JP5405890B2/en
Publication of JP2010260225A publication Critical patent/JP2010260225A/en
Application granted granted Critical
Publication of JP5405890B2 publication Critical patent/JP5405890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoconductive molding which has high thermal conductivity and is suitable particularly as a heat radiating member for electronic components. <P>SOLUTION: The thermoconductive molding is obtained by cutting a silicone laminate from the laminated direction, which laminate is formed by incorporating 50-75 vol.% thermoconductive filler containing the blended boron nitride powder obtained by blending boron nitride powder (A) having 25-45 μm average particle size and 15-100 aspect ratio with boron nitride powder (B) having 0.5-5 μm average particle size and 2-10 aspect ratio by the mass ratio (blending ratio) of 5:5 to 9:1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱伝導性に優れた熱伝導性成形体とその用途に関するものであり、特に電子部品用放熱部材として使用した際に、トランジスタ、サイリスタ、CPU(中央処理装置)等の発熱性電子部品を損傷させることなく、電子機器に組み込むことができる熱伝導性成形体に関するものである。   The present invention relates to a thermally conductive molded article having excellent thermal conductivity and its application, and particularly when used as a heat radiating member for an electronic component, a heat generating electron such as a transistor, a thyristor, or a CPU (central processing unit). The present invention relates to a thermally conductive molded body that can be incorporated into an electronic device without damaging the components.

トランジスタ、サイリスタ、CPU等の発熱性電子部品においては、使用時に発生する熱を如何に除去することが重要な問題となっている。従来、このような除熱方法としては、発熱性電子部品を電気絶縁性の放熱シートを介して放熱フィンや金属板に取り付け、熱を逃がすことが一般的に行われており、その放熱シートとしてはシリコーンゴムに熱伝導性フィラーを分散させたものが使用されている。   In heat-generating electronic components such as transistors, thyristors, and CPUs, it is an important problem how to remove heat generated during use. Conventionally, as such a heat removal method, a heat-generating electronic component is generally attached to a heat-radiating fin or a metal plate via an electrically insulating heat-dissipating sheet, and the heat is released. Uses a silicone rubber with a thermally conductive filler dispersed therein.

近年、電子部品内の回路の高集積化に伴いその発熱量も大きくなっており、従来にも増して高い熱伝導性を有する放熱シートが求められてきている。 In recent years, the amount of heat generated has increased with the high integration of circuits in electronic components, and there has been a demand for a heat dissipating sheet having higher thermal conductivity than before.

放熱シートの熱伝導性を向上させる従来技術としては、熱伝導性フィラーを高充填化する手法や異方性を示す熱伝導性フィラーを配向、配列させる手法が取られていたが、必ずしも高熱伝導を示すことはなかった(特許文献1〜4)。 Conventional techniques for improving the thermal conductivity of the heat-dissipating sheet include a method of highly filling the thermal conductive filler and a method of aligning and arranging the thermal conductive fillers exhibiting anisotropy. (Patent documents 1-4).

また従来の積層構成された熱伝導性成形体は平均粒子径が7μmの窒化ホウ素粉末が使用されており、シリコーンゴムへ熱伝導性フィラーを40体積%程度しか充填することはできず、低熱伝導であった(特許文献2)。 In addition, the conventional laminated heat conductive molded body uses boron nitride powder having an average particle size of 7 μm, and the silicone rubber can be filled with only about 40% by volume of the heat conductive filler. (Patent Document 2).

さらに熱伝導性フィラーとシリコーンゴムとで構成される複合材料中では特に熱伝導性フィラー同士の接触を通じて、熱は伝わりやすいが、平均粒子径が7μmの窒化ホウ素粉末を使用した場合、ゴム内での熱伝導性フィラーの緻密性は低く、熱伝導性フィラー同士が接触しにくいため、熱伝導率は3〜5W/mK程度であった(特許文献2)。 Furthermore, in the composite material composed of the heat conductive filler and the silicone rubber, heat is easily transmitted especially through contact between the heat conductive fillers. However, when boron nitride powder having an average particle diameter of 7 μm is used, Since the heat conductive fillers have low density and the heat conductive fillers hardly contact each other, the thermal conductivity was about 3 to 5 W / mK (Patent Document 2).

特開平11−21388号公報Japanese Patent Laid-Open No. 11-21388 特開平11−19948号公報Japanese Patent Laid-Open No. 11-19948 特開2007−254637号公報JP 2007-254637 A 特開2007−277406号公報JP 2007-277406 A

本発明の目的は、高い熱伝導性を有し、特に電子部品用放熱部材として好適な熱伝導性成形体を提供することである。   An object of the present invention is to provide a thermally conductive molded article having high thermal conductivity and particularly suitable as a heat radiating member for electronic parts.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)窒化ホウ素粉末(A)の平均粒子径が25〜45μm、アスペクト比が15〜100であり、窒化ホウ素粉末(B)の平均粒子径が0.5〜5μm、アスペクト比が2〜10であり、窒化ホウ素粉末の(A):(B)の配合割合が質量比で5:5〜9:1の窒化ホウ素粉末を含む熱伝導性フィラー50〜75体積%含有してなるシリコーン積層体を、積層方向から切断することを特徴とする熱伝導性成形体。
(2)シリコーン積層体が、窒化ホウ素粉末を含む熱伝導性フィラー50〜60体積%含有してなるシリコーンシート(C)と窒化ホウ素粉末を含む熱伝導性フィラー65〜75体積%含有してなるシリコーンシート(D)を交互に積層したことを特徴とする前記(1)に記載の熱伝導性成形体。
(3)前記(1)又は前記(2)に記載の熱伝導性成形体からなることを特徴とする電子部品用放熱部材。
The present invention employs the following means in order to solve the above problems.
(1) The average particle diameter of the boron nitride powder (A) is 25 to 45 μm, the aspect ratio is 15 to 100, the average particle diameter of the boron nitride powder (B) is 0.5 to 5 μm, and the aspect ratio is 2 to 10 And a silicon laminate comprising 50 to 75% by volume of a thermally conductive filler containing boron nitride powder in which the mixing ratio of (A) :( B) in the boron nitride powder is 5: 5 to 9: 1 by mass ratio Is cut from the laminating direction.
(2) The silicone laminate contains a silicone sheet (C) containing 50 to 60% by volume of a heat conductive filler containing boron nitride powder and 65 to 75% by volume of a heat conductive filler containing boron nitride powder. The thermally conductive molded article according to (1), wherein the silicone sheets (D) are alternately laminated.
(3) A heat dissipating member for electronic parts, comprising the heat conductive molded body according to (1) or (2).

本発明によれば、高熱伝導性を示す熱伝導性成形体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat conductive molded object which shows high heat conductivity can be provided.

以下、本発明について詳細に説明する。
本発明で使用される熱伝導性フィラーとしては、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化珪素、炭化珪素等をあげることができる。これらのうち、窒化ホウ素は鱗片状粒子の長さ方向の熱伝導性が極めて高く、その特徴をうまく利用すれば高熱伝導性を付与することができるので、本発明には特に好適なものである。また、その窒化ホウ素粉末としては、粉末X線解析法による黒鉛指数(GI)が2.5以下の高結晶性のものが望ましい。
Hereinafter, the present invention will be described in detail.
Examples of the thermally conductive filler used in the present invention include aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide and the like. Among these, boron nitride has extremely high thermal conductivity in the length direction of the scaly particles, and high thermal conductivity can be imparted if the characteristics are utilized well, and is therefore particularly suitable for the present invention. . The boron nitride powder is preferably highly crystalline with a graphite index (GI) of 2.5 or less by powder X-ray analysis.

更に、本発明においては、絶縁性を損なわせない範囲で、アルミニウム、銅、銀、カーボンファイバー、カーボンナノチューブ等の導電性粉末を併用することもできる。 Furthermore, in the present invention, conductive powders such as aluminum, copper, silver, carbon fiber, and carbon nanotube can be used in combination as long as the insulating properties are not impaired.

本発明の熱伝導性成形体における熱伝導性フィラーの含有率は、全体積中の50〜75体積%、特に65〜70体積%であることが望ましい。熱伝導性フィラーの含有率が50体積%未満では熱伝導性成形体の熱伝導性が減少する傾向にある。また75体積%を越えると、成形体の機械的強度が損なわれる傾向にある。 The content of the heat conductive filler in the heat conductive molded body of the present invention is preferably 50 to 75% by volume, particularly 65 to 70% by volume in the entire volume. If the content rate of a heat conductive filler is less than 50 volume%, it exists in the tendency for the heat conductivity of a heat conductive molded object to reduce. If it exceeds 75% by volume, the mechanical strength of the molded product tends to be impaired.

本発明の窒化ホウ素粉末(A)は、平均粒子径が25〜45μmである必要があり、さらに平均粒子径は30〜40μmの範囲のものが好ましい。平均粒子径が45μmより大きくなると熱伝導性フィラーを緻密に充填することが困難となる傾向にある。反対に平均粒子径が25μmより小さくなると充填性が悪くなり、熱伝導性が減少する傾向にある。 The boron nitride powder (A) of the present invention must have an average particle diameter of 25 to 45 μm, and the average particle diameter is preferably in the range of 30 to 40 μm. When the average particle diameter is larger than 45 μm, it tends to be difficult to densely fill the heat conductive filler. On the other hand, when the average particle size is smaller than 25 μm, the filling property is deteriorated and the thermal conductivity tends to decrease.

本発明の窒化ホウ素粉末(B)は、平均粒子径が0.5〜5μmである必要があり、さらに平均粒子径は1〜3μmの範囲のものが好ましい。平均粒子径が5μmより大きくなると平均粒子径が25〜45μmの窒化ホウ素粉末の粒子と粒子径が近いため、充填性が悪くなる傾向にあり、熱伝導性が減少する傾向にある。反対に平均粒子径が0.5μmより小さくなると全体の熱伝導性材料の充填性が悪くなる傾向にあり、熱伝導性が減少する傾向にある。 The boron nitride powder (B) of the present invention must have an average particle diameter of 0.5 to 5 μm, and the average particle diameter is preferably in the range of 1 to 3 μm. When the average particle diameter is larger than 5 μm, the particle diameter is close to that of the boron nitride powder having an average particle diameter of 25 to 45 μm, so that the filling property tends to deteriorate and the thermal conductivity tends to decrease. On the other hand, when the average particle size is smaller than 0.5 μm, the filling property of the whole heat conductive material tends to deteriorate, and the heat conductivity tends to decrease.

本発明における平均粒子径は、島津製作所製「レーザー回折式粒度分布測定装置SALD−200」を用いて測定を行った。評価サンプルは、ガラスビーカーに50ccの純水と測定する熱伝導性粉末を5g添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行った。分散処理を行った熱伝導性材料の粉末の溶液をスポイドを用いて、装置のサンプラ部に一滴ずつ添加して、吸光度が測定可能になるまで安定するのを待った。このようにして吸光度が安定になった時点で測定を行う。レーザー回折式粒度分布測定装置では、センサで検出した粒子による回折/散乱光の光強度分布のデータから粒度分布を計算する。平均粒子径は測定される粒子径の値に相対粒子量(差分%)を掛けて、相対粒子量の合計(100%)で割って求められる。なお、平均粒子径は粒子の平均直径である。 The average particle diameter in the present invention was measured using “Laser diffraction particle size distribution analyzer SALD-200” manufactured by Shimadzu Corporation. As an evaluation sample, 5 g of 50 cc of pure water and a heat conductive powder to be measured were added to a glass beaker, stirred using a spatula, and then subjected to a dispersion treatment for 10 minutes using an ultrasonic cleaner. The solution of the thermally conductive material powder that had been subjected to the dispersion treatment was added drop by drop to the sampler portion of the apparatus using a dropper, and waited until the absorbance became measurable. The measurement is performed when the absorbance becomes stable in this way. In the laser diffraction type particle size distribution measuring device, the particle size distribution is calculated from the data of the light intensity distribution of the diffracted / scattered light by the particles detected by the sensor. The average particle size is obtained by multiplying the value of the measured particle size by the relative particle amount (difference%) and dividing by the total relative particle amount (100%). The average particle diameter is the average diameter of the particles.

本発明の窒化ホウ素粉末(A)は、アスペクト比が15〜100である必要があり、さらにアスペクト比は30〜80の範囲のものが好ましい。アスペクト比が100より大きくなるとフィラーの充填性が悪くなる傾向にある。反対にアスペクト比が15より小さくなると樹脂中へ緻密に充填しづらくなり、熱伝導性が減少する傾向にある。 The boron nitride powder (A) of the present invention must have an aspect ratio of 15 to 100, and the aspect ratio is preferably in the range of 30 to 80. When the aspect ratio is greater than 100, the filler filling property tends to deteriorate. On the other hand, when the aspect ratio is smaller than 15, it becomes difficult to densely fill the resin, and the thermal conductivity tends to decrease.

本発明の窒化ホウ素粉末(B)は、アスペクト比が2〜10である必要があり、さらにアスペクト比は3〜8の範囲のものが好ましい。アスペクト比が10より大きくなるとフィラーの充填性が悪くなる傾向にある。反対にアスペクト比が2より小さくなると樹脂中へ緻密に充填しづらくなり、熱伝導性が減少する傾向にある。 The boron nitride powder (B) of the present invention needs to have an aspect ratio of 2 to 10, and the aspect ratio is preferably in the range of 3 to 8. When the aspect ratio is larger than 10, the filling property of the filler tends to deteriorate. On the contrary, when the aspect ratio is smaller than 2, it becomes difficult to densely fill the resin, and the thermal conductivity tends to decrease.

窒化ホウ素粉末のアスペクト比は窒化ホウ素粉末をガラススライド上に貼り付けた導電性カーボン両面テープ上に散布し、キーエンス製「3Dリアルサーフェスビュー顕微鏡VE−9800」を用いて、200個の粒子を観察し、その長径と短径の長さを測り、アスペクト比=長径/短径の計算式より算出する。 The aspect ratio of boron nitride powder was dispersed on conductive carbon double-sided tape with boron nitride powder affixed on a glass slide, and 200 particles were observed using Keyence's “3D Real Surface View Microscope VE-9800”. Then, the lengths of the major axis and the minor axis are measured and calculated from the calculation formula of aspect ratio = major axis / minor axis.

窒化ホウ素粉末(A)と窒化ホウ素粉末(B)の配合割合は質量比で5:5〜9:1である必要があり、さらに質量比で6:4〜8:2の範囲のものが好ましい。窒化ホウ素粉末(A)の割合が5より小さくなると、フィラーの充填性が悪くなる傾向にある。反対に窒化ホウ素粉末(A)の割合が9より大きくなると、フィラーが緻密に充填しづらくなり、熱伝導性が減少する傾向にある。   The mixing ratio of the boron nitride powder (A) and the boron nitride powder (B) needs to be 5: 5 to 9: 1 by mass ratio, and more preferably 6: 4 to 8: 2 by mass ratio. . When the proportion of the boron nitride powder (A) is less than 5, the filler filling property tends to be poor. On the other hand, when the ratio of the boron nitride powder (A) is greater than 9, the filler becomes difficult to be densely packed, and the thermal conductivity tends to decrease.

従来の技術である平均粒子径7μmの窒化ホウ素粉末を使用した際は困難であった熱伝導性フィラーの高充填化を、粒子径の大きい平均粒子径25〜45μmである窒化ホウ素粉末を充填した際の空隙部を平均粒子径0.5〜5μmである窒化ホウ素粉末で埋めることによって、より緻密に熱伝導性フィラーを充填することが可能となり、フィラーの充填量も従来の45体積%から75体積%まで上昇することが可能となる。   High filling of the thermally conductive filler, which was difficult when using boron nitride powder with an average particle diameter of 7 μm, which is a conventional technique, was filled with boron nitride powder with an average particle diameter of 25 to 45 μm having a large particle diameter. By filling the voids with boron nitride powder having an average particle diameter of 0.5 to 5 μm, it becomes possible to more precisely fill the thermally conductive filler, and the filler filling amount is from 45% by volume to 75% of the conventional amount. It becomes possible to rise to volume%.

シリコーン積層体は、熱伝導性フィラーとシリコーンゴムとの複合材料を薄板状に成形した未硬化体(以下グリーンシートと呼ぶ)を積層し、加熱硬化させることによって、未硬化のグリーンシート同士が接着し、硬化したシリコーン積層体となる。   Silicone laminates are made by laminating uncured bodies (hereinafter referred to as green sheets) formed from thin composite materials of heat-conductive filler and silicone rubber, and then curing them by heating to bond the uncured green sheets together. And a cured silicone laminate is obtained.

シリコーン積層体は、窒化ホウ素粉末を含む熱伝導性フィラーの含有率50〜60体積%であるグリーンシートAと窒化ホウ素粉末を含む熱伝導性フィラー含有率が65〜75体積%であるグリーンシートBを交互に積層することが好ましい。さらに窒化ホウ素粉末を含む熱伝導性フィラーの含有率53〜58体積%であるグリーンシートAと窒化ホウ素粉末を含む熱伝導性フィラー含有率が68〜73体積%であるグリーンシートBを交互に積層するものがより好ましい。グリーンシートAの窒化ホウ素粉末を含む熱伝導性フィラーの含有率が50体積%未満であると熱伝導性フィラーの充填量が少なくなり、熱伝導性が減少する傾向にある。グリーンシートAの窒化ホウ素粉末を含む熱伝導性フィラーの含有率が60体積%をこえると、グリーンシートBとの密着性が悪くなり、グリーンシート間の熱伝導性が減少する傾向にある。またグリーンシートBの窒化ホウ素粉末を含む熱伝導性フィラーの含有率が65体積%未満であると、熱伝導性フィラーの充填量が少なくなり、熱伝導性が減少する傾向にある。グリーンシートBの窒化ホウ素粉末を含む熱伝導性フィラーの含有率が75体積%をこえると、グリーンシートBの機械的強度が損なわれる傾向にある。 The silicone laminate includes a green sheet A having a thermal conductive filler content of 50-60% by volume containing boron nitride powder and a green sheet B having a thermal conductive filler content of 65-75% by volume containing boron nitride powder. Are preferably laminated alternately. Further, green sheets A having a thermal conductive filler content of 53 to 58% by volume containing boron nitride powder and green sheets B having a thermal conductive filler content of 68 to 73% by volume containing boron nitride powder are alternately laminated. More preferred is When the content of the thermally conductive filler containing the boron nitride powder of the green sheet A is less than 50% by volume, the amount of the thermally conductive filler filled decreases, and the thermal conductivity tends to decrease. When the content rate of the heat conductive filler containing the boron nitride powder of the green sheet A exceeds 60 volume%, adhesiveness with the green sheet B will deteriorate, and the heat conductivity between the green sheets tends to decrease. Moreover, when the content rate of the heat conductive filler containing the boron nitride powder of the green sheet B is less than 65 volume%, the filling amount of the heat conductive filler decreases, and the heat conductivity tends to decrease. When the content rate of the heat conductive filler containing the boron nitride powder of the green sheet B exceeds 75 volume%, the mechanical strength of the green sheet B tends to be impaired.

本発明のマトリックスとして使用されるゴムとしては、シリコーンゴム、ウレタンゴム、アクリルゴム、ブチルゴム、エチレンプロピレン共重合体、エチレン酢酸ビニル共重合体等をあげることができる。これらのうち、特にシリコーンゴムは成形体としたときの柔軟性、形状追随性、電子部品に接触させる際の発熱面への密着性、更には耐熱性が優れているので最適である。   Examples of the rubber used as the matrix of the present invention include silicone rubber, urethane rubber, acrylic rubber, butyl rubber, ethylene propylene copolymer, ethylene vinyl acetate copolymer and the like. Of these, silicone rubber is most suitable because it has excellent flexibility, shape followability, adhesion to a heat generating surface when it is brought into contact with an electronic component, and heat resistance.

シリコーンゴムの種類としては、ミラブル型シリコーンが代表的なものであるが、総じて所要の柔軟性を発現させることが難しい場合が多いので、高い柔軟性を発現させるためには付加反応型シリコーンが好適である。付加反応型液状シリコーンの具体例としては、分子量が数万である一分子中にビニル基とH−Si基の両方を有する一液反応型のオルガノポリシロキサン、または末端あるいは側鎖にビニル基を有するオルガノポリシロキサンと末端あるいは側鎖に2個以上のH−Si基を有するオルガノポリシロキサンとの二液性のシリコーンなどである。例えば東レ・ダウコーニング・シリコーン社製、商品名「SE−1885A/B」がある。 As a type of silicone rubber, millable type silicone is representative, but since it is often difficult to express the required flexibility as a whole, addition reaction type silicone is suitable for expressing high flexibility. It is. Specific examples of the addition reaction type liquid silicone include one liquid reaction type organopolysiloxane having both a vinyl group and an H-Si group in one molecule having a molecular weight of tens of thousands, or a vinyl group at a terminal or side chain. A two-part silicone of an organopolysiloxane having two or more H-Si groups at the terminal or side chain. For example, there is a product name “SE-1885A / B” manufactured by Toray Dow Corning Silicone.

グリーンシートの成形性を向上させるため、重量平均分子量が30万から80万であるビニル基をもつメチルビニルシリコーン生ゴムを添加することが好適である。分子量の大きいメチルビニルシリコーン生ゴムを添加することで、フィラーを高充填化することによる分子鎖の切断を防止し、高フィラー充填化でのグリーンシートの成形を可能にすることができる。例えばモメンティブ・パフォーマンス・マテリアルズ社製、商品名「SRH−32」がある。 In order to improve the moldability of the green sheet, it is preferable to add methyl vinyl silicone raw rubber having a vinyl group having a weight average molecular weight of 300,000 to 800,000. By adding a methyl vinyl silicone raw rubber having a large molecular weight, it is possible to prevent the molecular chain from being cut by filling the filler highly, and to enable the formation of a green sheet with a high filler filling. For example, there is a trade name “SRH-32” manufactured by Momentive Performance Materials.

また、本発明で使用される付加反応型液状シリコーンは、アセチルアルコール類、マレイン酸エステル類などの反応遅延剤、十〜数百μmのアエロジルやシリコーンパウダーなどの増粘剤、難燃剤、顔料などと併用することもできる。 The addition reaction type liquid silicone used in the present invention includes reaction retarders such as acetyl alcohols and maleates, thickeners such as 10 to several hundred μm aerosil and silicone powder, flame retardants, pigments, etc. Can also be used together.

熱伝導率は、TO−3型に裁断した試料(1mm)をトランジスタの内蔵されたTO−3型銅製ヒーターケース(有効面積6cm)と銅板との間に挟み、初期厚みの10%が圧縮されるように荷重をかけてセットした後、トランジスタに電力15Wをかけて5分間保持し、ヒーターケースと放熱フィンとの温度差(℃)から、次の(1)式で算出される熱抵抗(℃/W)を(2)式で換算したものである。 Thermal conductivity, sandwiched between the TO-3 TO-3 type cut sample was (1mm) built of transistor type copper heater case (effective area 6 cm 2) and copper plates, 10% of the initial thickness compression After setting with a load, the transistor is applied with power 15W and held for 5 minutes, and the thermal resistance calculated by the following equation (1) from the temperature difference (° C.) between the heater case and the radiation fin (° C./W) is converted by equation (2).

熱抵抗(℃/W)=温度差(℃)/電力(W)・・・(1) Thermal resistance (° C / W) = Temperature difference (° C) / Power (W) (1)

熱伝導率(W/mK)={試料厚み(m)/{熱抵抗(℃/W)×試料面積(m)・・・(2) Thermal conductivity (W / mK) = {sample thickness (m) / {thermal resistance (° C./W)×sample area (m 2 ) (2)

本発明の熱伝導性成形体の製造方法の一例を示すならば、付加反応型液状シリコーン及び窒化ホウ素粉末を室温下で混合し、さらにシリコーン生ゴムを追加し混合してコンパウンドを調整し、それをピストン式又はスクリュー式の押し出し機で押し出してグリーンシートに仮成形した後、それを積層し加熱硬化させた後、積層方向から所望の幅に切断する方法があげられる。 If an example of the manufacturing method of the heat conductive molded object of this invention is shown, an addition reaction type liquid silicone and boron nitride powder will be mixed at room temperature, and a silicone raw rubber will be added and mixed, and a compound may be adjusted, There is a method of extruding with a piston-type or screw-type extruder to temporarily form a green sheet, laminating and heat-curing it, and then cutting it to a desired width from the laminating direction.

本発明の熱伝導性成形体は、発熱性電子部品又は熱熱性電子部品の搭載された回路基板と冷却装置との間に挟みこんで使用されるものであるが、冷却装置にあらかじめ貼り付け一体化するなどして電子部品用放熱部材として供給することも可能である。冷却装置としては、例えばヒートシンク、放熱フィン、金属又はセラミックスのケース等があげられ、またはそのセラミックスとしては窒化アルミニウム、窒化ホウ素、炭化珪素、窒化珪素、酸化アルミニウム等があげられる。   The heat conductive molded body of the present invention is used by being sandwiched between a heat generating electronic component or a circuit board on which a thermothermal electronic component is mounted and a cooling device. For example, it can be supplied as a heat radiating member for electronic parts. Examples of the cooling device include a heat sink, a heat radiating fin, a metal or ceramic case, and examples of the ceramic include aluminum nitride, boron nitride, silicon carbide, silicon nitride, and aluminum oxide.

また、上記電子部品用放熱部材が使用される電子機器としては、パーソナルコンピューター、家庭用ゲーム機、電源、自動車、プロジェクター等をあげることができる。   In addition, examples of electronic devices in which the heat dissipating member for electronic parts is used include personal computers, home game machines, power supplies, automobiles, projectors, and the like.

実施例1〜10 比較例1〜8
表1に示される熱伝導性フィラーとA液(ビニル基を有するオルガノポリシロキサン)とB液(H−Si基を有するオルガノポリシロキサン)の二液性の付加反応型シリコーン(東レダウコーニング社製、商品名「SE−1885」)をA液対B液の混合比を表2、3、5に示す配合(体積%)で混合し、さらにこれにシリコーン生ゴム(モメンティブ・パフォーマンス・マテリアルズ社製、商品名「SRH−32」)を室温下で混合しコンパウンドを作製した。
Examples 1-10 Comparative Examples 1-8
Two-component addition reaction type silicone (manufactured by Toray Dow Corning Co., Ltd.) consisting of the thermally conductive filler shown in Table 1, solution A (organopolysiloxane having a vinyl group) and solution B (organopolysiloxane having an H-Si group) , Trade name “SE-1885”) is mixed with the mixing ratio (volume%) shown in Tables 2, 3, and 5 for the mixing ratio of A liquid to B liquid, and further, this is a silicone raw rubber (made by Momentive Performance Materials) , Trade name “SRH-32”) was mixed at room temperature to prepare a compound.

このコンパウンドをスリット(1mm×60mm)付きダイスの固定されたシリンダー構造金型内に充填し、ピストンで圧力をかけながらスリットから押し出して、熱伝導性フィラーとシリコーンゴムの複合材料の未硬化の薄板(グリーンシート)を作製した。 This compound is filled into a cylinder structure die fixed with a die having a slit (1 mm × 60 mm), extruded from the slit while applying pressure with a piston, and an uncured thin plate of a composite material of a heat conductive filler and silicone rubber (Green sheet) was produced.

この厚さ1mm、幅60mm、長さ120mmのグリーンシート25枚から縦横の長さが50mmの正方形となるようにカッターでグリーンシートを切り出した。そして、正方形のグリーンシート同士の各角を合わせつつ、50mmの高さになるまで50層積層した。その後、乾燥機を用いて150℃で22時間加熱硬化させて、シリコーン積層体を作製した。この1辺の長さが50mmの立方体であるシリコーン積層体をカッターでグリーンシートを重ねた面に対して垂直であり、その辺に対して平行に刃を下ろしながら切断し、本発明のシート状熱伝導性成形体(1mm)を作製した。 A green sheet was cut out from 25 green sheets having a thickness of 1 mm, a width of 60 mm, and a length of 120 mm with a cutter so as to form a square having a length and width of 50 mm. And 50 layers were laminated | stacked until it became a height of 50 mm, aligning each corner | angular of square green sheets. Then, it heat-cured for 22 hours at 150 degreeC using the dryer, and produced the silicone laminated body. This silicone layered body which is a cube with a length of 50 mm on one side is perpendicular to the surface on which the green sheets are stacked with a cutter, and is cut while lowering the blade parallel to the side, thereby forming the sheet-like shape of the present invention A thermally conductive molded body (1 mm) was produced.

表4の実施例11〜13に示すグリーンシートA及びBは、実施例1〜10と同様に表1に示される熱伝導性フィラーとA液(ビニル基を有するオルガノポリシロキサン)とB液(H−Si基を有するオルガノポリシロキサン)の二液性の付加反応型シリコーン(東レダウコーニング社製、商品名「SE−1885」)をA液対B液の混合比を表4に示す配合(体積%)で混合し、さらにこれにシリコーン生ゴム(モメンティブ・パフォーマンス・マテリアルズ社製、商品名「SRH−32」)を室温下で混合しコンパウンドを作製した。 The green sheets A and B shown in Examples 11 to 13 in Table 4 are the same as in Examples 1 to 10, and the thermally conductive filler, A liquid (organopolysiloxane having a vinyl group), and B liquid (shown in Table 1). A two-component addition reaction type silicone of H-Si group (organopolysiloxane) (trade name “SE-1885”, manufactured by Toray Dow Corning Co., Ltd.) having a mixing ratio of A to B in Table 4 ( In addition, a silicone raw rubber (manufactured by Momentive Performance Materials, trade name “SRH-32”) was mixed at room temperature to prepare a compound.

それぞれのコンパウンドをスリット(1mm×60mm)付きダイスの固定されたシリンダー構造金型内に充填し、ピストンで圧力をかけながらスリットから押し出して、熱伝導性フィラーとシリコーンゴムの複合材料の未硬化の薄板(グリーンシートA及びB)を作製した。 Each compound is filled into a cylinder structure mold in which a die with a slit (1 mm × 60 mm) is fixed, and is extruded from the slit while applying pressure with a piston, and an uncured composite material of a heat conductive filler and silicone rubber is uncured. Thin plates (green sheets A and B) were prepared.

グリーンシートA及びBを50mmの高さになるまで交互に積層した後、乾燥機を用いて150℃で22時間加熱硬化させて、シリコーン積層体を作製した。このシリコーン積層体をカッターで積層方向に垂直であり、その辺に対して平行に切断し、本発明のシート状熱伝導性成形体(1mm)を作製した。 The green sheets A and B were alternately laminated until reaching a height of 50 mm, and then heat-cured at 150 ° C. for 22 hours using a dryer to produce a silicone laminate. This silicone laminate was cut with a cutter perpendicular to the lamination direction and parallel to the sides to produce a sheet-like thermally conductive molded article (1 mm) of the present invention.

上記で得られたシート状熱伝導性成形体について、TO−3型に裁断し、熱伝導率を測定した。それらの結果を表2〜5に示す。なお、比較例5はシート状の熱伝導性成形体を作製することができなかった。 About the sheet-like heat conductive molded object obtained above, it cut | judged to TO-3 type | mold and measured thermal conductivity. The results are shown in Tables 2-5. In Comparative Example 5, a sheet-like thermally conductive molded body could not be produced.

Figure 2010260225
Figure 2010260225

Figure 2010260225
Figure 2010260225

Figure 2010260225
Figure 2010260225

Figure 2010260225
Figure 2010260225

Figure 2010260225
Figure 2010260225

表2〜表5の実施例と比較例から、本発明の熱伝導性成形体は、優れた熱伝導性を示している。
From the Examples and Comparative Examples in Tables 2 to 5, the thermally conductive molded body of the present invention exhibits excellent thermal conductivity.

Claims (3)

窒化ホウ素粉末(A)の平均粒子径が25〜45μm、アスペクト比が15〜100であり、窒化ホウ素粉末(B)の平均粒子径が0.5〜5μm、アスペクト比が2〜10であり、窒化ホウ素粉末の(A):(B)の配合割合が質量比で5:5〜9:1の窒化ホウ素粉末を含む熱伝導性フィラー50〜75体積%含有してなるシリコーン積層体を、積層方向から切断することを特徴とする熱伝導性成形体。 The average particle diameter of the boron nitride powder (A) is 25 to 45 μm and the aspect ratio is 15 to 100, the average particle diameter of the boron nitride powder (B) is 0.5 to 5 μm, and the aspect ratio is 2 to 10, A silicone laminate comprising 50 to 75% by volume of a thermally conductive filler containing boron nitride powder having a mass ratio of (A) :( B) of boron nitride powder of 5: 5 to 9: 1 is laminated. The heat conductive molded object characterized by cut | disconnecting from a direction. シリコーン積層体が、窒化ホウ素粉末を含む熱伝導性フィラー50〜60体積%含有してなるシリコーンシート(C)と窒化ホウ素粉末を含む熱伝導性フィラー65〜75体積%含有してなるシリコーンシート(D)を交互に積層したことを特徴とする請求項1に記載の熱伝導性成形体。 Silicone sheet (C) containing 50-60% by volume of thermally conductive filler containing boron nitride powder, and 65-75% by volume of silicone sheet containing thermally conductive filler containing boron nitride powder (Silicone laminate) The thermally conductive molded article according to claim 1, wherein D) are alternately laminated. 請求項1又は請求項2に記載の熱伝導性成形体を用いた電子部品用放熱部材。
The heat radiating member for electronic components using the heat conductive molded object of Claim 1 or Claim 2.
JP2009111845A 2009-05-01 2009-05-01 Thermally conductive moldings and their applications Active JP5405890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009111845A JP5405890B2 (en) 2009-05-01 2009-05-01 Thermally conductive moldings and their applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009111845A JP5405890B2 (en) 2009-05-01 2009-05-01 Thermally conductive moldings and their applications

Publications (2)

Publication Number Publication Date
JP2010260225A true JP2010260225A (en) 2010-11-18
JP5405890B2 JP5405890B2 (en) 2014-02-05

Family

ID=43358730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009111845A Active JP5405890B2 (en) 2009-05-01 2009-05-01 Thermally conductive moldings and their applications

Country Status (1)

Country Link
JP (1) JP5405890B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158942A1 (en) * 2010-06-17 2011-12-22 ソニーケミカル&インフォメーションデバイス株式会社 Thermally conductive sheet and process for producing same
JP2012023335A (en) * 2010-06-17 2012-02-02 Sony Chemical & Information Device Corp Thermally conductive sheet and method of producing the same
JP2012201106A (en) * 2011-03-28 2012-10-22 Denki Kagaku Kogyo Kk Thermoconductive molding and use thereof
WO2014199650A1 (en) * 2013-06-14 2014-12-18 三菱電機株式会社 Thermosetting resin composition, method for producing thermally conductive sheet, and power module
WO2017159689A1 (en) * 2016-03-15 2017-09-21 株式会社カネカ Thermally-conductive resin composition
WO2018131486A1 (en) * 2017-01-13 2018-07-19 デンカ株式会社 Thermally conductive resin composition, heat dissipation sheet, heat dissipation member and method for producing same
US10647094B2 (en) 2017-03-24 2020-05-12 Toyota Jidosha Kabushiki Kaisha Thermally conductive composite material
JP2021123661A (en) * 2020-02-06 2021-08-30 積水化学工業株式会社 Thermally conductive resin sheet
JP2022064580A (en) * 2020-10-14 2022-04-26 矢崎総業株式会社 Heat-conductive sheet, electronic apparatus and on-vehicle apparatus, and method for producing heat-conductive sheet
JP2022064582A (en) * 2020-10-14 2022-04-26 矢崎総業株式会社 Heat-conductive sheet, electronic apparatus and on-vehicle apparatus
DE112018003897B4 (en) 2017-07-31 2022-12-29 Bando Chemical Industries, Ltd. Thermally conductive plastic molded article

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624715A (en) * 1992-02-07 1994-02-01 Ciba Geigy Ag Filler for heat-conductive plastic material
JPH11145351A (en) * 1997-11-07 1999-05-28 Denki Kagaku Kogyo Kk Heat dissipating spacer
JP2000294700A (en) * 1999-04-02 2000-10-20 Denki Kagaku Kogyo Kk Resin molding and method of manufacturing the same and application field
JP2000345040A (en) * 1999-06-02 2000-12-12 Denki Kagaku Kogyo Kk Manufacture of heat-conductive silicone molding
JP2002164481A (en) * 2000-11-13 2002-06-07 Three M Innovative Properties Co Heat conductive sheet
JP2005343983A (en) * 2004-06-02 2005-12-15 Denki Kagaku Kogyo Kk Inorganic powder and its application
JP2006002076A (en) * 2004-06-18 2006-01-05 Suzuka Fuji Xerox Co Ltd Thermally conductive elastic material
JP2008189818A (en) * 2007-02-05 2008-08-21 Nitto Denko Corp Heat-conductive resin composition, heat-conductive sheet and method for producing the same
JP2008255186A (en) * 2007-04-03 2008-10-23 Mitsubishi Electric Corp Heat-conductive resin sheet and power module
JP2010174139A (en) * 2009-01-29 2010-08-12 Fuji Polymer Industries Co Ltd Thermoconductive resin composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624715A (en) * 1992-02-07 1994-02-01 Ciba Geigy Ag Filler for heat-conductive plastic material
JPH11145351A (en) * 1997-11-07 1999-05-28 Denki Kagaku Kogyo Kk Heat dissipating spacer
JP2000294700A (en) * 1999-04-02 2000-10-20 Denki Kagaku Kogyo Kk Resin molding and method of manufacturing the same and application field
JP2000345040A (en) * 1999-06-02 2000-12-12 Denki Kagaku Kogyo Kk Manufacture of heat-conductive silicone molding
JP2002164481A (en) * 2000-11-13 2002-06-07 Three M Innovative Properties Co Heat conductive sheet
JP2005343983A (en) * 2004-06-02 2005-12-15 Denki Kagaku Kogyo Kk Inorganic powder and its application
JP2006002076A (en) * 2004-06-18 2006-01-05 Suzuka Fuji Xerox Co Ltd Thermally conductive elastic material
JP2008189818A (en) * 2007-02-05 2008-08-21 Nitto Denko Corp Heat-conductive resin composition, heat-conductive sheet and method for producing the same
JP2008255186A (en) * 2007-04-03 2008-10-23 Mitsubishi Electric Corp Heat-conductive resin sheet and power module
JP2010174139A (en) * 2009-01-29 2010-08-12 Fuji Polymer Industries Co Ltd Thermoconductive resin composition

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9308695B2 (en) 2010-06-17 2016-04-12 Dexerials Corporation Thermally conductive sheet and process for producing same
JP2012023335A (en) * 2010-06-17 2012-02-02 Sony Chemical & Information Device Corp Thermally conductive sheet and method of producing the same
US8808607B2 (en) 2010-06-17 2014-08-19 Dexerials Corporation Thermally conductive sheet and process for producing same
WO2011158942A1 (en) * 2010-06-17 2011-12-22 ソニーケミカル&インフォメーションデバイス株式会社 Thermally conductive sheet and process for producing same
US9365001B2 (en) 2010-06-17 2016-06-14 Dexerials Corporation Thermally conductive sheet and process for producing same
JP2012201106A (en) * 2011-03-28 2012-10-22 Denki Kagaku Kogyo Kk Thermoconductive molding and use thereof
CN105308125B (en) * 2013-06-14 2017-12-19 三菱电机株式会社 Compositions of thermosetting resin, the manufacture method of heat conductive sheet and power module
DE112014002796B4 (en) 2013-06-14 2020-07-02 Mitsubishi Electric Corporation Thermosetting resin composition, method of manufacturing a thermally conductive sheet and power module
JP6022061B2 (en) * 2013-06-14 2016-11-09 三菱電機株式会社 Thermosetting resin composition, method for producing thermal conductive sheet, and power module
WO2014199650A1 (en) * 2013-06-14 2014-12-18 三菱電機株式会社 Thermosetting resin composition, method for producing thermally conductive sheet, and power module
CN105308125A (en) * 2013-06-14 2016-02-03 三菱电机株式会社 Thermosetting resin composition, method for producing thermally conductive sheet, and power module
US10351728B2 (en) 2013-06-14 2019-07-16 Mitsubishi Electric Corporation Thermosetting resin composition, method of producing thermal conductive sheet, and power module
WO2017159689A1 (en) * 2016-03-15 2017-09-21 株式会社カネカ Thermally-conductive resin composition
WO2018131486A1 (en) * 2017-01-13 2018-07-19 デンカ株式会社 Thermally conductive resin composition, heat dissipation sheet, heat dissipation member and method for producing same
JPWO2018131486A1 (en) * 2017-01-13 2019-11-07 デンカ株式会社 Thermally conductive resin composition, heat radiation sheet, heat radiation member and method for producing the same
TWI780100B (en) * 2017-01-13 2022-10-11 日商電化股份有限公司 Thermally conductive resin composition, heat dissipation sheet, heat dissipation member, and manufacturing method thereof
US10647094B2 (en) 2017-03-24 2020-05-12 Toyota Jidosha Kabushiki Kaisha Thermally conductive composite material
DE112018003897B4 (en) 2017-07-31 2022-12-29 Bando Chemical Industries, Ltd. Thermally conductive plastic molded article
JP2021123661A (en) * 2020-02-06 2021-08-30 積水化学工業株式会社 Thermally conductive resin sheet
JP7542317B2 (en) 2020-02-06 2024-08-30 積水化学工業株式会社 Thermally conductive resin sheet
JP2022064580A (en) * 2020-10-14 2022-04-26 矢崎総業株式会社 Heat-conductive sheet, electronic apparatus and on-vehicle apparatus, and method for producing heat-conductive sheet
JP2022064582A (en) * 2020-10-14 2022-04-26 矢崎総業株式会社 Heat-conductive sheet, electronic apparatus and on-vehicle apparatus
JP7235708B2 (en) 2020-10-14 2023-03-08 矢崎総業株式会社 Method for manufacturing thermally conductive sheet

Also Published As

Publication number Publication date
JP5405890B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5405890B2 (en) Thermally conductive moldings and their applications
JP5749536B2 (en) Thermally conductive moldings and their applications
JP6023474B2 (en) Thermally conductive insulating sheet, metal base substrate and circuit board, and manufacturing method thereof
CN111492474B (en) Insulating radiating fin
JP5497458B2 (en) Thermally conductive resin composition
JP7220150B2 (en) Low dielectric constant thermal conductive heat dissipation material
JP4916764B2 (en) Anisotropic heat conduction laminated heat dissipation member
JP2012253167A (en) Thermally conductive insulation sheet, metal base substrate and circuit board
JP6987210B2 (en) Thermal conductivity sheet
JP2002164481A (en) Heat conductive sheet
JP3372462B2 (en) Rubber sheet manufacturing method
JPH1177795A (en) Production of rubber sheet
CN108603034B (en) Heat conduction member and method for manufacturing heat conduction member
JP7390548B2 (en) Thermal conductive silicone compositions and thermally conductive silicone materials
WO2022044724A1 (en) Thermally conductive sheet and method for manufacturing thermally conductive sheet
KR20120078478A (en) Thermal interface material comprising carbon nano tube and metal, and ceramic nano particle
JP4514344B2 (en) Thermally conductive resin molding and its use
CN116964731A (en) Heat conductive resin sheet
JPH1119948A (en) Manufacture of radiation member for electronic part
JP3464752B2 (en) Molded polymer material and its use
JP6987941B1 (en) Method for manufacturing a heat conductive sheet and a heat conductive sheet
JP2000185328A (en) Heat conductive silicone moldings and manufacture thereof and use applications
WO2022181171A1 (en) Heat-conductive sheet and heat-conductive sheet production method
JP6999003B1 (en) Method for manufacturing a heat conductive sheet and a heat conductive sheet
JP2022129325A (en) Thermally conductive sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131031

R151 Written notification of patent or utility model registration

Ref document number: 5405890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250