[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010253374A - Catalyst for dehydrating glycerin and method for producing acrolein - Google Patents

Catalyst for dehydrating glycerin and method for producing acrolein Download PDF

Info

Publication number
JP2010253374A
JP2010253374A JP2009105694A JP2009105694A JP2010253374A JP 2010253374 A JP2010253374 A JP 2010253374A JP 2009105694 A JP2009105694 A JP 2009105694A JP 2009105694 A JP2009105694 A JP 2009105694A JP 2010253374 A JP2010253374 A JP 2010253374A
Authority
JP
Japan
Prior art keywords
catalyst
glycerin
acrolein
silica
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009105694A
Other languages
Japanese (ja)
Inventor
Hideaki Tsuneki
英昭 常木
Yoshio Arita
佳生 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2009105694A priority Critical patent/JP2010253374A/en
Publication of JP2010253374A publication Critical patent/JP2010253374A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst which is used for dehydrating glycerin to produce acrolein and deterioration of the acrolein yield of which with time can be suppressed and to provide a method for producing acrolein. <P>SOLUTION: The catalyst for dehydrating glycerin is obtained by essentially carrying the crystallized salt containing phosphorus and at least one element selected from aluminum, zirconium and boron and/or at least one element selected from rare earth elements on an amorphous porous carrier which contains ≥90 mass% silica and has micropores having 0.1-30 μm pore size and nanopores having 1-50 nm pore size. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、グリセリン脱水用触媒およびこの触媒を使用するアクロレインの製造方法に関するものである。   The present invention relates to a glycerol dehydration catalyst and a method for producing acrolein using the catalyst.

植物油から製造されるバイオディーゼルは、化石燃料の代替燃料としてだけではなく、二酸化炭素の排出量が少ない点でも注目され、需要の増大が見込まれている。このバイオディーゼルを製造するとグリセリンが副生するため、その有効利用を図る必要がある。グリセリンの利用の一態様としては、グリセリンをアクロレインの原料に使用することが挙げられる。   Biodiesel produced from vegetable oil is attracting attention not only as a substitute for fossil fuels but also because it emits less carbon dioxide, and demand is expected to increase. When this biodiesel is produced, glycerin is produced as a by-product, so it is necessary to make effective use of it. One embodiment of the use of glycerin includes the use of glycerin as a raw material for acrolein.

例えば、特許文献1には、担体をリン酸銅水溶液に浸漬後、乾燥および焼成して調製された触媒を使用して、グリセリンの気相脱水反応を行ってアクロレインを製造することが開示されている。また、特許文献2には、担体をリン酸水溶液に浸漬後、乾燥および焼成して調製された触媒を使用して、グリセリンの気相脱水反応を行ってアクロレインを製造することが開示されている。しかし、特許文献1および2に開示されている触媒では、工業的使用に対して寿命が不十分であるという問題がある。   For example, Patent Document 1 discloses that acrolein is produced by performing a gas phase dehydration reaction of glycerin using a catalyst prepared by immersing a support in an aqueous copper phosphate solution, followed by drying and firing. Yes. Patent Document 2 discloses that acrolein is produced by performing a gas-phase dehydration reaction of glycerin using a catalyst prepared by immersing a carrier in an aqueous phosphoric acid solution, drying and calcining. . However, the catalysts disclosed in Patent Documents 1 and 2 have a problem that their lifetime is insufficient for industrial use.

また、特許文献3には、特定のリン酸金属塩、例えばアルミニウム塩、ジルコニウム塩、マンガン塩、アルカリ金属塩、およびアルカリ土類金属塩等から選択された一種または二種以上のリン酸金属塩を使用することが開示されている。特許文献4では、結晶構造を有するリン酸金属塩を触媒に使用してグリセリンからアクロレインを製造でき、グリセリンの脱水反応により生じる炭素状物質が触媒に付着することを抑制でき、アクロレインの収率が安定に製造できることが開示されている。しかしながら特許文献3および特許文献4においても、高いアクロレイン収率を維持しつつ経時的な活性の低下を抑制することが十分ではなかった。   Patent Document 3 discloses that one or more metal phosphates selected from specific metal phosphates such as aluminum salts, zirconium salts, manganese salts, alkali metal salts, and alkaline earth metal salts. Is disclosed. In Patent Document 4, acrolein can be produced from glycerin using a metal phosphate having a crystal structure as a catalyst, and a carbonaceous substance generated by a dehydration reaction of glycerin can be prevented from adhering to the catalyst, and the yield of acrolein is increased. It is disclosed that it can be manufactured stably. However, in Patent Document 3 and Patent Document 4, it is not sufficient to suppress a decrease in activity over time while maintaining a high acrolein yield.

特許文献5には、グリセリンをヘテロポリ酸触媒の存在下に反応させるアクロレインの製造方法について開示されている。二元細孔シリカに担持された触媒は、物質輸送能に優れるマクロ細孔、および、高い比表面積を持つナノ細孔の両者をあわせ持ち、機械的強度が充分であり、圧力損失も少ないため、触媒担体として好適であり、更にアクロレインの選択率および収率を向上することが可能となるとの記載がある。しかしながら、アクロレイン収率の経時低下についての知見は記載されていなかった。   Patent Document 5 discloses a method for producing acrolein in which glycerin is reacted in the presence of a heteropolyacid catalyst. Catalysts supported on dual pore silica have both macropores with excellent mass transport capability and nanopores with high specific surface area, sufficient mechanical strength, and low pressure loss. There is a description that it is suitable as a catalyst carrier and that it is possible to further improve the selectivity and yield of acrolein. However, the knowledge about a time-dependent fall of the acrolein yield was not described.

上記触媒を使用してアクロレインを製造しても、触媒を継続して使用した際のアクロレインの収率低下を抑制する課題に対し十分でなく、抑制可能な触媒およびアクロレインの製造方法が望まれている。   Even if acrolein is produced using the above-mentioned catalyst, it is not sufficient for the problem of suppressing the yield loss of acrolein when the catalyst is continuously used, and a controllable catalyst and a method for producing acrolein are desired. Yes.

米国特許第1916743号明細書US Patent No. 1916743 仏国特許発明第695931号明細書French Patent Invention No. 695931 国際公開第2007/119528号International Publication No. 2007/119528 特開2008−307521号公報JP 2008-307521 A 特開2008−88149号公報JP 2008-88149 A

本発明は、上記事情に鑑み、グリセリンを脱水してアクロレインを製造するための方法であって、アクロレイン収率の経時低下が抑えられる触媒およびアクロレインの製造方法の提供を目的とする。   In view of the above circumstances, an object of the present invention is to provide a catalyst for producing acrolein by dehydrating glycerin, and a method for producing an acrolein which can suppress a decrease in the acrolein yield over time.

本発明のグリセリン脱水用触媒は、シリカを90質量%以上含み、かつ0.1〜30μmのマクロ領域と1〜50nmのナノ領域とに2種類の細孔を有する非晶質の多孔性担体に、アルミニウム、ジルコニウムおよびホウ素から選ばれる少なくとも一種の元素および/または希土類元素から選ばれる少なくとも一種の元素とリンを含む結晶塩を必須とし、該結晶塩が前記多孔性担体に担持していることが好ましい。該多孔性担体は二元細孔シリカと称されることもある。   The catalyst for dehydrating glycerin of the present invention is an amorphous porous carrier containing 90% by mass or more of silica and having two kinds of pores in a macro region of 0.1 to 30 μm and a nano region of 1 to 50 nm. A crystalline salt containing at least one element selected from aluminum, zirconium and boron and / or at least one element selected from rare earth elements and phosphorus is essential, and the crystalline salt is supported on the porous carrier. preferable. The porous carrier is sometimes referred to as binary pore silica.

また、本発明は、前記グリセリン脱水用触媒の共存下においてグリセリンを脱水させてアクロレインを製造する方法である。当該方法は、グリセリンガスと触媒を接触させる気相反応によりグリセリンを脱水させる気相脱水反応が好ましい。   The present invention is also a method for producing acrolein by dehydrating glycerin in the presence of the glycerin dehydrating catalyst. The method is preferably a gas phase dehydration reaction in which glycerin is dehydrated by a gas phase reaction in which a glycerin gas is brought into contact with a catalyst.

本発明に係るグリセリン脱水用触媒によれば、アクロレインの収率が高く、アクロレインの収率の経時変化が小さいので、アクロレインおよびアクロレインの誘導体を安価に製造できる。   According to the glycerol dehydration catalyst of the present invention, the yield of acrolein is high and the change with time of the yield of acrolein is small. Therefore, acrolein and acrolein derivatives can be produced at low cost.

本発明は、グリセリン脱水用触媒(以下、「グリセリン脱水用触媒」を単に「触媒」という)及び該触媒の共存下においてグリセリンを脱水させてアクロレインを製造する方法である。   The present invention is a method for producing acrolein by dehydrating glycerin in the presence of a catalyst for dehydrating glycerin (hereinafter, “catalyst for dehydrating glycerin” is simply referred to as “catalyst”) and the catalyst.

本発明の触媒は、アクロレインを生成させるためのグリセリンの分子内脱水反応を促進する触媒である。当該触媒は、シリカを90質量%以上含み、かつ0.1〜30μmのマクロ細孔および1〜50nmのナノ細孔を有する非晶質の多孔性担体に、アルミニウム、ジルコニウムおよび/またはホウ素から選ばれる少なくとも一種の元素、および/または希土類元素から選ばれる少なくとも一種の元素とリンを含む結晶塩を必須とし、該結晶塩が前記多孔性担体に担持している。   The catalyst of the present invention is a catalyst that promotes an intramolecular dehydration reaction of glycerin to produce acrolein. The catalyst is selected from aluminum, zirconium and / or boron in an amorphous porous support containing 90% by mass or more of silica and having 0.1-30 μm macropores and 1-50 nm nanopores. A crystalline salt containing at least one element selected from the group consisting of at least one element selected from the group consisting of rare earth elements and phosphorus is essential, and the crystalline salt is supported on the porous carrier.

前記多孔性担体は、シリカを90質量%以上含み、かつ0.1〜30μmのマクロ細孔および1〜50nmのナノ細孔を有していることが好ましい。多孔性担体は、物質輸送能に優れるマクロ細孔、および、高い比表面積を持つナノ細孔の両者をあわせ持ち、機械的強度に優れるため、上記製造方法に用いる触媒担体として好適であり、更にアクロレインの選択率および収率を向上することが可能となる。   The porous carrier preferably contains 90% by mass or more of silica, and has 0.1 to 30 μm macropores and 1 to 50 nm nanopores. The porous carrier is suitable as a catalyst carrier for use in the above production method because it has both macropores excellent in material transportability and nanopores having a high specific surface area and is excellent in mechanical strength. It is possible to improve the selectivity and yield of acrolein.

前記多孔性担体は、二元細孔シリカであることが好ましい。二元細孔シリカとは、マイクロメートル領域の細孔径を有するマクロ細孔、および、ナノメートル領域の細孔径を有するナノ細孔(メソ細孔)の両者をあわせ持つ非晶質のシリカからなる多孔質材料である。   The porous carrier is preferably binary porous silica. Binary pore silica is composed of amorphous silica that has both macropores with micrometer range pore diameters and nanopores with nanometer range pore sizes (mesopores). It is a porous material.

二元細孔シリカのマクロ細孔は、0.5〜200μmであり、1〜100μmであるとより好ましく、1〜20μmであると更に好ましい。2元細孔シリカのナノ細孔は、1〜50nmであり、1〜30nmであるとより好ましく、1〜10nmであると更に好ましい。上記マクロ細孔は、水銀圧入法又は電子顕微鏡による直接観察により測定可能であり、ナノ細孔は、水銀圧入法又は窒素吸着法により確認することができる。   The macropores of the binary porous silica are 0.5 to 200 μm, more preferably 1 to 100 μm, and even more preferably 1 to 20 μm. The nanopores of the binary pore silica are 1 to 50 nm, more preferably 1 to 30 nm, and even more preferably 1 to 10 nm. The macropores can be measured by mercury porosimetry or direct observation with an electron microscope, and the nanopores can be confirmed by mercury porosimetry or nitrogen adsorption.

二元細孔シリカは、平均粒子径が0.5mm〜10mmの粒子状であることが好ましい。圧縮などにより、球状、板状、シリンダー型、リング型などの任意の形状の2元細孔シリカの成型体を用いることもできる。   The binary fine silica is preferably in the form of particles having an average particle size of 0.5 mm to 10 mm. By compression or the like, a binary porous silica molded body having an arbitrary shape such as a spherical shape, a plate shape, a cylinder shape, or a ring shape can be used.

細孔容積は、担体1gあたり0.3〜4cmであることが好ましい。製造の容易さを考慮した場合には、1〜3cmであることが好適である。 The pore volume is preferably 0.3 to 4 cm 3 per gram of support. In consideration of ease of production, it is preferably 1 to 3 cm 3 .

前記二元細孔シリカは、市販品を用いることができ、また従来既知の方法により合成したものを使用することもできる。合成方法は特に限定されないが、例えば、特開平3−8729号公報によれば、テトラエトキシシランに代表されるケイ素アルコキシド、ポリエチレンオキサイドなどの有機高分子および酸からなるゾル液を出発原料とし、該ゾル液のゲル化現象と相分離現象を利用してマクロ細孔を形成させるものなどが知られている。   A commercial item can be used for the said binary pore silica, and what was synthesize | combined by the conventionally well-known method can also be used. The synthesis method is not particularly limited. For example, according to JP-A-3-8729, a sol solution composed of an organic polymer such as silicon alkoxide represented by tetraethoxysilane, polyethylene oxide and an acid and an acid is used as a starting material. There are known ones that form macropores by utilizing the gelation phenomenon and phase separation phenomenon of a sol liquid.

二元細孔シリカ担体の比表面積は、100〜900m/gであることが好ましい。より好ましくは、150〜850m/gである。更に好ましくは、200〜800m/gである。特に好ましくは、250〜800m/gである。このような比表面積を有することにより、担持物を高分散で担持でき高活性化が期待できるほか、物質輸送能にも優れていることから、生成物の速やかな拡散の効果よる逐次反応の抑制による選択性向上についても期待でき、優れた触媒担体になり得るものである。 The specific surface area of the binary porous silica support is preferably 100 to 900 m 2 / g. More preferably, it is 150-850 m < 2 > / g. More preferably, it is 200-800 m < 2 > / g. Most preferably, it is 250-800 m < 2 > / g. By having such a specific surface area, the support can be supported in a highly dispersed state, and high activation can be expected. In addition, since it has excellent material transport capability, it suppresses sequential reactions due to the rapid diffusion effect of the product. It can be expected that the selectivity of the catalyst will be improved, and it can be an excellent catalyst carrier.

本発明の触媒に使用される結晶塩は、アルミニウム、ジルコニウムおよびホウ素から選ばれる少なくとも一種の元素、および/または希土類元素から選ばれる少なくとも一種の元素とリンを含む結晶塩を必須とし、リン酸金属塩の結晶塩がより好ましい。   The crystalline salt used in the catalyst of the present invention essentially comprises at least one element selected from aluminum, zirconium and boron, and / or a crystalline salt containing phosphorus and at least one element selected from rare earth elements, and a metal phosphate A crystalline salt of the salt is more preferred.

本発明の触媒結晶塩の構成原子として使用される希土類元素は、セリウム族(La、Ce、Pr、Nd、Pm、Sm)、イットリウム族(Sc、Y、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)のいずれであっても良い。特に好ましい希土類金属は、Ndである。   The rare earth elements used as the constituent atoms of the catalyst crystal salt of the present invention are cerium group (La, Ce, Pr, Nd, Pm, Sm), yttrium group (Sc, Y, Eu, Gd, Tb, Dy, Ho, Any of Er, Tm, Yb, and Lu) may be used. A particularly preferred rare earth metal is Nd.

結晶塩における結晶系は一種であってもよく、二種以上の結晶系を含んでいても良い。また、結晶塩は、二種以上の結晶塩の複合結晶塩であっても良い。結晶塩を必須とするとは、前記した元素からなる結晶塩を一部含んでいればよく、他の元素からなる化合物を含んでいても良い。   The crystal system in the crystal salt may be one kind or may contain two or more kinds of crystal systems. The crystal salt may be a composite crystal salt of two or more kinds of crystal salts. The essential requirement for the crystalline salt is that it includes a part of the crystalline salt composed of the above-described elements, and may include a compound composed of another element.

前記した他の元素からなる化合物は特に限定されるものではなく、一種または二種以上であっても良い。また、化合物は、二種以上の元素の複合化合物であっても良い。化合物を構成する元素としては、例えば、アルカリ金属、アルカリ土類金属、アルミニウム、鉛等の典型金属元素;錫、ビスマス等の半金属元素;チタン、ハフニウム、バナジウム、ニオブ、クロム、マンガン、鉄、コバルト、ニッケル、銀、亜鉛、カドミウム、水銀等の遷移金属元素;である。また、上記他の元素と、アルミニウム、ジルコニウムおよびホウ素から選ばれる少なくとも一種の元素、および/または希土類元素から選ばれる少なくとも一種の元素とリンとを含む結晶塩であってもよい。   The compound which consists of said other element is not specifically limited, 1 type, or 2 or more types may be sufficient. The compound may be a composite compound of two or more elements. Examples of elements constituting the compound include typical metal elements such as alkali metals, alkaline earth metals, aluminum, and lead; metalloid elements such as tin and bismuth; titanium, hafnium, vanadium, niobium, chromium, manganese, iron, Transition metal elements such as cobalt, nickel, silver, zinc, cadmium, and mercury; Further, it may be a crystalline salt containing the above-mentioned other elements, at least one element selected from aluminum, zirconium and boron, and / or at least one element selected from rare earth elements and phosphorus.

本実施形態の触媒における結晶塩は、少なくともその一部にアルミニウム、ジルコニウムおよびホウ素から選ばれる少なくとも一種の元素、および/または希土類元素から選ばれる少なくとも一種の元素とリンを含む化合物の結晶構造を有する。結晶構造は、リン酸金属塩であれば、複数種の結晶構造が混在していても良い。   The crystal salt in the catalyst of the present embodiment has a crystal structure of a compound containing at least a part of at least one element selected from aluminum, zirconium and boron and / or at least one element selected from rare earth elements and phosphorus. . As long as the crystal structure is a metal phosphate, a plurality of types of crystal structures may be mixed.

前記結晶塩の結晶構造としては、例えば、リン酸アルミニウム(以下、「リン酸アルミニウム」を「AlP」という)の場合、クオーツ型、トリジマイト型、およびクリストバライト型がある。トリジマイト型およびクリストバライト型は、アクロレイン収率の経時変化が特に小さいので好ましい。一方、クオーツ型は、炭素状物質の付着量が特に少なく好ましい。炭素状物質の付着量が少ないほど、これを取り除くことによる触媒再生の容易化が期待できる。また、次のリン酸金属塩結晶を例に挙げることができる。リン酸ホウ素塩結晶としては正方晶系結晶、クリストバライト型結晶;である。   Examples of the crystal structure of the crystal salt include a quartz type, a tridymite type, and a cristobalite type in the case of aluminum phosphate (hereinafter, “aluminum phosphate” is referred to as “AlP”). The tridymite type and the cristobalite type are preferred because the change in the acrolein yield with time is particularly small. On the other hand, the quartz type is preferable because the amount of carbonaceous material attached is particularly small. The smaller the amount of carbonaceous material attached, the easier the catalyst regeneration can be expected by removing it. Moreover, the following metal phosphate crystal can be mentioned as an example. Examples of the boron phosphate crystals include tetragonal crystals and cristobalite crystals.

また、上記結晶塩がリン酸ジルコニウム(以下、「リン酸ジルコニウム」を「ZrP」という)である場合、その結晶構造としては、α−ZrP(α−Zr(HPO)・HO)、ε−ZrP(ε−Zr(HPO))、pyro−ZrP(結晶性ZrP)、γ−ZrP(γ−Zr(HPO)・2HO)、γ−ZrP無水物、β−ZrP(β−Zr(HPO)等がある。 When the crystalline salt is zirconium phosphate (hereinafter, “zirconium phosphate” is referred to as “ZrP”), the crystal structure thereof is α-ZrP (α-Zr (HPO 4 ) 2 .H 2 O). , Ε-ZrP (ε-Zr (HPO 4 ) 2 ), pyro-ZrP (crystalline ZrP 2 O 7 ), γ-ZrP (γ-Zr (HPO 4 ) 2 · 2H 2 O), γ-ZrP anhydride , Β-ZrP (β-Zr (HPO 4 ) 2 ) and the like.

本実施形態の触媒を製造するには、公知の結晶塩の製法を使用すると良い。その例として、共沈法や沈殿法がある。その他、AlP結晶およびZrP結晶の製法としては、以下の製法が知られている。   In order to produce the catalyst of the present embodiment, a known crystal salt production method may be used. Examples are coprecipitation and precipitation. In addition, the following production methods are known as methods for producing AlP crystals and ZrP crystals.

(AlP結晶の製法)
クオーツ型AlPは、アルミニウムイソブロボキシド、およびリン酸トリエチルを、少量の水の共存下、トルエン中において250℃で反応させることにより、準安定相としてクリストバライト型AlPを経た後に生成する。トリジマイト型、およびクリストバライト型のAlPは、クオーツ型のAlPを大気中で加熱して相転移させることにより製造することが可能である。なお、クオーツ型からトリジマイト型に相転移させる場合の加熱温度は707℃程度であることが知られており、トリジマイト型からクリストバライト型に相転移させる加熱温度は1047℃程度であることが知られている。
(AlP crystal manufacturing method)
Quartz-type AlP is produced after passing through cristobalite-type AlP as a metastable phase by reacting aluminum isobroboxide and triethyl phosphate in toluene in the presence of a small amount of water at 250 ° C. Tridymite-type and cristobalite-type AlP can be produced by heating quartz-type AlP in the atmosphere to cause phase transition. It is known that the heating temperature for the phase transition from the quartz type to the tridymite type is about 707 ° C., and the heating temperature for the phase transition from the tridymite type to the cristobalite type is known to be about 1047 ° C. Yes.

また、AlP結晶は次の方法でも製造できる。リン酸と水酸化アルミニウムからメタバリスカイト(AlPO・2HO)を調製し、このメタバリスカイトにリン酸水溶液を添加した後に乾燥し、乾燥物を溶媒で処理するとAlP結晶を製造できる。このとき使用する溶媒を選択することで、クオーツ型、トリジマイト型、およびクリストバライト型の結晶を作り分け可能である。n−ブタノール等の親水性溶媒を使用すればクオーツ型AlPを製造でき、イソブチルメチルケトン等の疎水性溶媒を使用すればクリストバライト型AlPを製造できる。 In addition, the AlP crystal can be manufactured by the following method. An AlP crystal can be produced by preparing metavalvite (AlPO 4 .2H 2 O) from phosphoric acid and aluminum hydroxide, adding an aqueous phosphoric acid solution to the metavalvite, drying it, and treating the dried product with a solvent. By selecting a solvent to be used at this time, quartz, tridymite, and cristobalite crystals can be formed. Quartz-type AlP can be produced by using a hydrophilic solvent such as n-butanol, and cristobalite-type AlP can be produced by using a hydrophobic solvent such as isobutyl methyl ketone.

(ZrP結晶の製法)
α−ZrPは、10〜15mol/Lリン酸水溶液中でZr(HPOを還流加熱することにより製造される。結晶化度の高いZrPを製造する場合には、約50時間以上の還流加熱を行うと良い。また、Zr(HPOと濃リン酸との混合物を減圧加熱(圧力:200mmHg程度、加熱温度:130℃程度)すると共に留出水を反応系外に取り出す方法によっても、α−ZrPを製造することができる。
(Method for producing ZrP crystal)
α-ZrP is produced by heating Zr (HPO 4 ) 2 under reflux in a 10-15 mol / L phosphoric acid aqueous solution. When producing ZrP having a high degree of crystallinity, it is preferable to perform reflux heating for about 50 hours or more. Further, α-ZrP can also be obtained by heating a mixture of Zr (HPO 4 ) 2 and concentrated phosphoric acid under reduced pressure (pressure: about 200 mmHg, heating temperature: about 130 ° C.) and taking out distilled water out of the reaction system. Can be manufactured.

ε−ZrP、pyro−ZrPを製造するためには、上記Zr(HPOと濃リン酸との混合物を減圧加熱するα−ZrPの製法における圧力および加熱温度を変更した方法を使用すると良い。当該方法においては、200mmHg程度の圧力とした場合、加熱温度を180℃程度にすればε−ZrPが得られ、加熱温度を300℃程度にすればpyro−ZrPが得られる。γ−ZrP、およびβ−ZrPを製造するためには、ZrOCl・8HOとNaHPOとの水熱反応を行うと良い。 In order to produce ε-ZrP and pyro-ZrP, it is preferable to use a method in which the pressure and heating temperature in the α-ZrP production method in which the mixture of Zr (HPO 4 ) 2 and concentrated phosphoric acid is heated under reduced pressure are changed. . In this method, when the pressure is about 200 mmHg, ε-ZrP is obtained when the heating temperature is about 180 ° C., and pyro-ZrP is obtained when the heating temperature is about 300 ° C. To produce gamma-ZrP, and beta-ZrP is preferably performed hydrothermal reaction and ZrOCl 2 · 8H 2 O and NaH 2 PO 4.

本発明の触媒に含まれるリンと希土類元素から成る結晶塩の組成は特に限定されない。その組成としては、例えば、ScPO、YPO、LaPO、CePO、PrPO、NdPO、SmPO、EuPO、GdPO、TbPO、HoPO、ErPO、TmPo、YbPOなどが挙げられる。 The composition of the crystalline salt comprising phosphorus and rare earth elements contained in the catalyst of the present invention is not particularly limited. Examples of the composition include ScPO 4 , YPO 4 , LaPO 4 , CePO 4 , PrPO 4 , NdPO 4 , SmPO 4 , EuPO 4 , GdPO 4 , TbPO 4 , HoPO 4 , ErPO 4 , TmPo 4 , and TmPo 4. Can be mentioned.

リンと希土類元素の結晶塩の結晶構造も特に限定されず、正方晶、単斜晶、六方晶などが挙げられる。例えば、リン酸イットリウム塩結晶としては正方晶系結晶;リン酸ランタン塩結晶としては単斜晶系柱状晶;リン酸セリウム塩結晶としては単斜晶系結晶、斜方晶系柱状晶;である。   The crystal structure of the crystal salt of phosphorus and rare earth elements is not particularly limited, and examples thereof include tetragonal crystal, monoclinic crystal, and hexagonal crystal. For example, tetragonal crystals as yttrium phosphate crystals; monoclinic columnar crystals as lanthanum phosphate crystals; monoclinic crystals and orthorhombic columnar crystals as cerium phosphate crystals; .

前記リンと希土類元素から成る結晶塩の製造は、水と希土類元素の水酸化物および/または当該水酸化物の脱水縮合物とを含有する液を調製し、この液にリン酸イオンを含ませることで生じた固形分を焼成する。理由は明らかではないが、このような製法により得られた結晶塩を触媒に使用すれば、アクロレイン収率を高くすることができる。   The production of the crystalline salt composed of phosphorus and a rare earth element involves preparing a liquid containing water and a hydroxide of the rare earth element and / or a dehydration condensate of the hydroxide, and including phosphate ions in the liquid. The solid content produced by this is fired. Although the reason is not clear, the acrolein yield can be increased by using the crystalline salt obtained by such a production method as a catalyst.

本発明の二元細孔シリカ担体に結晶塩を担持させた触媒の製法としては、公知の製法を使用すれば良く、特に限定されない。例えば、(1)担体と、結晶構造を有する結晶塩とを混合する方法、(2)結晶塩原料が混合された液を担体に含浸後、乾固させ、その後、結晶塩を結晶化させるための適宜な温度で焼成する方法、が挙げられる。   A method for producing a catalyst in which a crystalline salt is supported on the binary pore silica support of the present invention may be a known production method and is not particularly limited. For example, (1) a method of mixing a support and a crystal salt having a crystal structure, and (2) impregnating the support with a liquid in which a crystal salt raw material is mixed, and then drying and then crystallizing the crystal salt And a method of firing at an appropriate temperature.

次に、本実施形態の触媒を使用したアクロレインの製造方法について説明する。本実施形態におけるアクロレインの製造方法は、固定床反応器、移動床反応器、流動床反応器等から任意に選択した反応器内でグリセリン含有ガスと触媒を接触させる気相脱水反応によりアクロレインを製造するものである。なお、本発明に係る触媒は、グリセリン含有ガスと触媒を接触させるアクロレイン製法用途に限定されるものではなく、グリセリン溶液と触媒とを接触させてアクロレインを製造する液相脱水反応用途にも使用できる。   Next, a method for producing acrolein using the catalyst of the present embodiment will be described. The method for producing acrolein according to the present embodiment produces acrolein by a gas phase dehydration reaction in which a glycerin-containing gas and a catalyst are contacted in a reactor arbitrarily selected from a fixed bed reactor, a moving bed reactor, a fluidized bed reactor and the like. To do. The catalyst according to the present invention is not limited to an acrolein production method in which a glycerin-containing gas and a catalyst are contacted, but can also be used in a liquid phase dehydration reaction in which an acrolein is produced by contacting a glycerin solution and a catalyst. .

グリセリン含有ガスにおいて使用されるグリセリンは、精製グリセリンおよび粗製グリセリンの何れであっても良い。グリセリン含有ガスにおけるグリセリン濃度は、特に限定されないが、0.1〜100モル%であると良く、1モル%以上が好ましく、経済的かつ高効率にアクロレインを生成させることができる5モル%以上が更に好ましい。なお、グリセリン含有ガス中におけるグリセリン濃度の調整が必要な場合には、水蒸気、窒素、および空気等から選択した一種以上のガスを濃度調整用ガスとして使用することができる。また、グリセリン含有ガスに水蒸気を含ませた場合には、脱水用触媒の活性低下が抑制される共に、アクロレイン収率が高まるので好適である。   The glycerin used in the glycerin-containing gas may be either purified glycerin or crude glycerin. The glycerin concentration in the glycerin-containing gas is not particularly limited, but is preferably 0.1 to 100 mol%, preferably 1 mol% or more, and 5 mol% or more capable of producing acrolein economically and highly efficiently. Further preferred. When adjustment of the glycerin concentration in the glycerin-containing gas is necessary, one or more gases selected from water vapor, nitrogen, air, and the like can be used as the concentration adjusting gas. Moreover, when water vapor is included in the glycerin-containing gas, it is preferable because the decrease in the activity of the dehydrating catalyst is suppressed and the acrolein yield is increased.

反応器内におけるグリセリン含有ガス量は、単位触媒容積あたりのグリセリン含有ガス流量(GHSV)で表すと100〜10000hr−1であると良い。好ましくは、5000hr−1以下であり、アクロレインの製造を経済的かつ高効率で、行うためには、3000hr−1以下がより好ましい。また、グリセリンの分子内脱水反応を進行させるときの温度は、200〜500℃であると良く、好ましくは、250〜450℃、更に好ましくは、300〜400℃である。そして、脱水反応における圧力は、グリセリンが凝縮しない範囲の圧力であれば特に限定されない。通常、0.001〜1MPaであると良く、好ましくは、0.01〜0.5MPaである。 The amount of glycerin-containing gas in the reactor is preferably 100 to 10,000 hr −1 in terms of glycerol-containing gas flow rate (GHSV) per unit catalyst volume. Preferred is a 5000 hr -1 or less, the production of acrolein economically and efficiently, in order to carry out the 3000 hr -1 or less is more preferable. The temperature when the intramolecular dehydration reaction of glycerin proceeds is preferably 200 to 500 ° C, preferably 250 to 450 ° C, more preferably 300 to 400 ° C. And the pressure in a dehydration reaction will not be specifically limited if it is a pressure of the range which glycerin does not condense. Usually, it is good that it is 0.001 to 1 MPa, and preferably 0.01 to 0.5 MPa.

以上の方法により、アクロレインを製造することが可能である。製造されたアクロレインは、既に公知となっている通り、アクリル酸、1,3−プロパンジオール、アリルアルコール、ポリアクリル酸、ポリアクリル酸塩等のアクロレイン誘導体の製造原料として使用可能である。   Acrolein can be produced by the above method. The acrolein thus produced can be used as a raw material for producing acrolein derivatives such as acrylic acid, 1,3-propanediol, allyl alcohol, polyacrylic acid, polyacrylate and the like as already known.

以下、実施例を挙げて本発明を具体的に説明するが本発明の範囲はこれらの実施例のみに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the scope of the present invention is not limited to these examples.

次の通り、実施例および比較例の触媒を調製し、これらの触媒を使用してアクロレインを製造した。触媒の調整方法、およびアクロレインの製造方法の詳細は以下の通りである。   The catalysts of Examples and Comparative Examples were prepared as follows, and acrolein was produced using these catalysts. Details of the catalyst preparation method and the acrolein production method are as follows.

(二元細孔シリカ担持触媒調製例)
二元細孔シリカ担持リン酸ホウ素触媒は、特開2008−179520号公報の実施例1記載の方法により得られた二元細孔シリカ担体を使用し、以下に示した方法で製造した。上記二元細孔シリカ担体は、1から10μmのマクロ領域と4nmのメソ領域に細孔構造をもつものであった。
二次元細孔シリカ担体はあらかじめ120℃、12時間以上空気流通下オーブンで乾燥させたのち、これを取り出し、ドライボックス中で室温まで放置した。少量の二次元細孔シリカを磁製皿上に移し、ピペットで蒸留水を小量づつ滴下、シリカ表面全体が濡れる所で終了し、乾燥したシリカ担体が吸収する事ができる水量(吸水量)を測定した。乾燥二元細孔シリカ1gに対して、1.6gの蒸留水を吸収した。
(Example of preparation of dual pore silica supported catalyst)
The biporous silica-supported boron phosphate catalyst was produced by the method shown below using a biporous silica support obtained by the method described in Example 1 of JP-A-2008-179520. The binary porous silica support had a pore structure in a macro region of 1 to 10 μm and a meso region of 4 nm.
The two-dimensional pore silica support was previously dried in an oven at 120 ° C. for 12 hours or more in an air flow, then taken out and allowed to stand at room temperature in a dry box. Transfer a small amount of two-dimensional pore silica onto a porcelain dish, add a small amount of distilled water with a pipette, finish when the entire silica surface gets wet, and the amount of water that can be absorbed by the dried silica carrier (water absorption) Was measured. 1.6 g of distilled water was absorbed with respect to 1 g of dry binary pore silica.

ホウ酸2.59g(和光純薬製、特級)を湯浴上で蒸留水30.1gに溶解、これに85質量%のリン酸4.80g(キシダ化学製)を加え、室温まで冷却した。この時、沈殿物が生成しないことを確認した。このホウ酸とリン酸の混合水溶液を、磁製皿上においた乾燥した二元細孔シリカ25gに全量加え、加える際に洗浄水を5.0g使用した。使用した全水量は43.2gであり、二元細孔シリカ担体の吸収量よりやや多い量とした。ホウ酸とリン酸の混合水溶液を加えた二元細孔シリカは室温で約30分間放置し、その後80℃の湯浴上でゆっくりかき回しながら乾燥した。得られた乾燥物は、空気流通下120℃の乾燥機で一晩乾燥し、続いて空気流通下800℃で5時間焼成し触媒を得た。得られた触媒の酸素を除く組成はB1P1Si10であった。   2.59 g of boric acid (manufactured by Wako Pure Chemicals, special grade) was dissolved in 30.1 g of distilled water on a hot water bath, and 4.80 g of 85 mass% phosphoric acid (manufactured by Kishida Chemical Co., Ltd.) was added thereto, and cooled to room temperature. At this time, it was confirmed that no precipitate was formed. The total amount of this mixed aqueous solution of boric acid and phosphoric acid was added to 25 g of dried dual pore silica placed on a porcelain dish, and 5.0 g of washing water was used. The total amount of water used was 43.2 g, which was slightly higher than the amount absorbed by the dual pore silica support. The binary porous silica to which a mixed aqueous solution of boric acid and phosphoric acid was added was allowed to stand at room temperature for about 30 minutes, and then dried while gently swirling in an 80 ° C. hot water bath. The obtained dried product was dried overnight in a dryer at 120 ° C. under air flow, and then calcined at 800 ° C. for 5 hours under air flow to obtain a catalyst. The composition of the obtained catalyst excluding oxygen was B1P1Si10.

(シリカ担持触媒調製例)
リン酸ホウ素シリカ担持触媒は、富士シリシア化学株式会社製球状シリカ担体(キャリアクトQ50)を使用し、以下に示した方法で調製した。上記シリカ担体は、50nmの単一の細孔構造を持つものである。
(Silica supported catalyst preparation example)
The boron phosphate silica-supported catalyst was prepared by the method shown below using a spherical silica carrier (Carteact Q50) manufactured by Fuji Silysia Chemical Ltd. The silica support has a single pore structure of 50 nm.

二元細孔シリカと同様に、吸水量を測定したところ、乾燥シリカ担体1gに対して1.3gの蒸留水を吸収した。   When the amount of water absorption was measured in the same manner as in the dual pore silica, 1.3 g of distilled water was absorbed with respect to 1 g of the dry silica carrier.

ホウ酸2.59g(和光純薬製、特級)を湯浴上で蒸留水28.2gに溶解、これに85質量%のリン酸4.80g(キシダ化学製)を加え、室温まで冷却した。この時、沈殿物が生成しないことを確認した。このホウ酸とリン酸の混合水溶液を、磁製皿上に置いた乾燥したシリカ25gに全量加え、加える際に洗浄水を5.0g使用した。使用した全水量は33.2gであり、シリカ担体の吸収量よりやや多い量とした。ホウ酸とリン酸の混合水溶液を加えたシリカは室温で約30分間放置し、その後80℃の湯浴上でゆっくりかき回しながら乾燥した。得られた乾燥物は、空気流通下120℃の乾燥機で一晩乾燥し、続いて空気流通下800℃で5時間焼成し触媒を得た。得られた触媒の酸素を除く組成はB1P1Si10であった。   2.59 g of boric acid (manufactured by Wako Pure Chemicals, special grade) was dissolved in 28.2 g of distilled water on a hot water bath, and 4.80 g of 85% by mass phosphoric acid (manufactured by Kishida Chemical Co., Ltd.) was added thereto, and cooled to room temperature. At this time, it was confirmed that no precipitate was formed. A total amount of this mixed aqueous solution of boric acid and phosphoric acid was added to 25 g of dried silica placed on a porcelain dish, and 5.0 g of washing water was used when added. The total amount of water used was 33.2 g, which was slightly higher than the amount absorbed by the silica support. The silica to which the mixed aqueous solution of boric acid and phosphoric acid was added was allowed to stand at room temperature for about 30 minutes, and then dried while gently swirling on an 80 ° C. hot water bath. The obtained dried product was dried overnight in a dryer at 120 ° C. under air flow, and then calcined at 800 ° C. for 5 hours under air flow to obtain a catalyst. The composition of the obtained catalyst excluding oxygen was B1P1Si10.

(実験例1)
80質量%のグリセリン水溶液を気化させたガスと、窒素から成る反応原料ガス(反応ガス組成:グリセリン10モル%、水12モル%、窒素78モル%)を調整した。
(Experimental example 1)
A gas obtained by vaporizing an 80% by mass glycerin aqueous solution and a reaction raw material gas composed of nitrogen (reaction gas composition: glycerin 10 mol%, water 12 mol%, nitrogen 78 mol%) were prepared.

15mlの上記リン酸ホウ素担持二元細孔シリカ触媒をステンレス製反応管(内径10mm、長さ500mm)に充填し、この反応器を360℃の溶融塩浴に浸漬し、上記反応原料ガスを反応器に流通させた。この時のGHSVは1700hr−1であった。 15 ml of the above-mentioned boron phosphate-supported dual pore silica catalyst was filled in a stainless steel reaction tube (inner diameter 10 mm, length 500 mm), and this reactor was immersed in a molten salt bath at 360 ° C. to react the reaction raw material gas. It was distributed to the vessel. The GHSV at this time was 1700 hr −1 .

反応器内に反応器入口ガスを流通させてから0.5〜1時間、2.5〜3.0時間、4.5〜5.0時間、6.5〜7.0時間の間で30分間における流出ガスを冷却捕集(以下、「捕集した流出ガスの冷却液化物」を「流出物」と称する)し、ガスクロマトグラフィ(GC)により、流出物の同定および定量分析を行った。GCによる定性分析の結果、グリセリン、アクロレインと共に1−ヒドロキシアセトンなどの副生成物が検出された。また、定量分析結果から、グリセリン転化率、アクロレイン選択率、および1−ヒドロキシアセトン選択率を算出した。   30 to 0.5 to 1 hour, 2.5 to 3.0 hours, 4.5 to 5.0 hours, and 6.5 to 7.0 hours after circulating the reactor inlet gas. The effluent gas for 1 minute was collected by cooling (hereinafter, the “cooled liquefied product of the collected effluent gas” is referred to as “effluent”), and the effluent was identified and quantitatively analyzed by gas chromatography (GC). As a result of qualitative analysis by GC, by-products such as 1-hydroxyacetone were detected together with glycerin and acrolein. Moreover, the glycerol conversion rate, acrolein selectivity, and 1-hydroxyacetone selectivity were computed from the quantitative analysis result.

ここで、グリセリン転化率は、(1−(捕集流出物中のグリセリンのモル数)/(30分間で反応器に流入させたグリセリンのモル数))×100、で算出される値である。また、アクロレイン選択率は、((アクロレインのモル数)/(30分間に反応器に流入させたグリセリンのモル数))×100/グリセリン転化率×100、で算出される値であり、1−ヒドロキシアセトン選択率は、(1−ヒドロキシアセトンのモル数)/(30分間に反応器に流入させたグリセリンのモル数))×100/グリセリン転化率×100で算出される値である。得られた結果は表1に示した。   Here, the glycerin conversion rate is a value calculated by (1− (mol number of glycerin in the collected effluent) / (mol number of glycerin introduced into the reactor in 30 minutes)) × 100. . The acrolein selectivity is a value calculated by ((molar number of acrolein) / (molar number of glycerin introduced into the reactor in 30 minutes)) × 100 / glycerin conversion × 100. The hydroxyacetone selectivity is a value calculated by (number of moles of 1-hydroxyacetone) / (number of moles of glycerin introduced into the reactor in 30 minutes)) × 100 / glycerin conversion × 100. The results obtained are shown in Table 1.

(比較例1)
15mlのリン酸ホウ素シリカ担持触媒を実験例1に示したものと同一の反応管に充填した以外は実施例1と同様に反応を実施した。得られた結果は表1に示した。

Figure 2010253374
(Comparative Example 1)
The reaction was carried out in the same manner as in Example 1 except that 15 ml of boron phosphate silica-supported catalyst was charged in the same reaction tube as shown in Experimental Example 1. The results obtained are shown in Table 1.

Figure 2010253374


表1において、2元細孔シリカを担体に使用した触媒を使用すると、比較例のシリカ担持触媒を使用した場合よりもアクロレインの選択率が高く、経時低下も小さかった。

In Table 1, when a catalyst using binary porous silica as a support was used, the selectivity for acrolein was higher and the decrease over time was smaller than when the silica-supported catalyst of the comparative example was used.

Claims (4)

シリカを90質量%以上含み、かつ0.1〜30μmのマクロ細孔および1〜50nmのナノ細孔を有する非晶質の多孔性担体に、アルミニウム、ジルコニウムおよびホウ素から選ばれる少なくとも一種の元素、および/または希土類元素から選ばれる少なくとも一種の元素とリンを含む結晶塩を必須とし担持していることを特徴とするグリセリン脱水用触媒。 An amorphous porous carrier containing 90% by mass or more of silica and having 0.1-30 μm macropores and 1-50 nm nanopores, at least one element selected from aluminum, zirconium and boron, And / or a catalyst for dehydration of glycerine characterized by comprising and supporting a crystalline salt containing phosphorus and at least one element selected from rare earth elements. 前記多孔性担体が二元細孔シリカであることを特徴とする請求項1記載のグリセリン脱水用触媒。 The catalyst for glycerin dehydration according to claim 1, wherein the porous carrier is binary pore silica. 触媒の共存下においてグリセリンを脱水させてアクロレインを製造する方法であって、触媒が請求項1または2いずれかに記載のグリセリン脱水用触媒であることを特徴とするアクロレインの製造方法。 A method for producing acrolein by dehydrating glycerol in the presence of a catalyst, wherein the catalyst is the glycerol dehydrating catalyst according to claim 1 or 2. 気化グリセリンと触媒を接触させる気相反応によりグリセリンを脱水させる請求項3に記載のアクロレインの製造方法。 The method for producing acrolein according to claim 3, wherein glycerin is dehydrated by a gas phase reaction in which vaporized glycerin is brought into contact with a catalyst.
JP2009105694A 2009-04-23 2009-04-23 Catalyst for dehydrating glycerin and method for producing acrolein Pending JP2010253374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009105694A JP2010253374A (en) 2009-04-23 2009-04-23 Catalyst for dehydrating glycerin and method for producing acrolein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009105694A JP2010253374A (en) 2009-04-23 2009-04-23 Catalyst for dehydrating glycerin and method for producing acrolein

Publications (1)

Publication Number Publication Date
JP2010253374A true JP2010253374A (en) 2010-11-11

Family

ID=43314939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009105694A Pending JP2010253374A (en) 2009-04-23 2009-04-23 Catalyst for dehydrating glycerin and method for producing acrolein

Country Status (1)

Country Link
JP (1) JP2010253374A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2554258A1 (en) * 2010-03-31 2013-02-06 Nippon Shokubai Co., Ltd. Glycerin dehydration catalyst, and acrolein production process, acrylic acid production process and hydrophilic resin production process each using the catalyst
WO2013018915A2 (en) 2011-07-29 2013-02-07 Arkema France Improved process of dehydration reactions
WO2013018752A2 (en) 2011-07-29 2013-02-07 日本化薬株式会社 Catalyst for manufacture of acrolein and acrylic acid by means of dehydration of glycerin, and manufacturing method for same
WO2015072643A1 (en) * 2013-11-13 2015-05-21 주식회사 엘지화학 Method for producing catalyst for glycerin dehydration reaction and method for preparing acrolein

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2554258A1 (en) * 2010-03-31 2013-02-06 Nippon Shokubai Co., Ltd. Glycerin dehydration catalyst, and acrolein production process, acrylic acid production process and hydrophilic resin production process each using the catalyst
EP2554258A4 (en) * 2010-03-31 2014-08-06 Nippon Catalytic Chem Ind Glycerin dehydration catalyst, and acrolein production process, acrylic acid production process and hydrophilic resin production process each using the catalyst
EP2886193A3 (en) * 2010-03-31 2015-09-30 Nippon Shokubai Co., Ltd. Catalyst for glycerin dehydration, and process for producing acrolein, process for producing acrylic acid, and process for producing hydrophilic resin each using the catalyst
WO2013018915A2 (en) 2011-07-29 2013-02-07 Arkema France Improved process of dehydration reactions
WO2013017942A2 (en) 2011-07-29 2013-02-07 Arkema France Improved process of dehydration reactions
WO2013018752A2 (en) 2011-07-29 2013-02-07 日本化薬株式会社 Catalyst for manufacture of acrolein and acrylic acid by means of dehydration of glycerin, and manufacturing method for same
WO2013018752A3 (en) * 2011-07-29 2013-03-21 日本化薬株式会社 Catalyst for manufacture of acrolein and acrylic acid by means of dehydration of glycerin, and manufacturing method for same
US9914699B2 (en) 2011-07-29 2018-03-13 Arkema France Process of dehydration reactions
WO2015072643A1 (en) * 2013-11-13 2015-05-21 주식회사 엘지화학 Method for producing catalyst for glycerin dehydration reaction and method for preparing acrolein
US9259718B1 (en) 2013-11-13 2016-02-16 Lg Chem, Ltd. Method for preparing catalyst for glycerin dehydration, and method for preparing acrolein

Similar Documents

Publication Publication Date Title
JP4991471B2 (en) Glycerin dehydration catalyst and method for producing acrolein
KR101896646B1 (en) A process for the production of ethylenically unsaturated carboxylic acids or esters and a catalyst therefor
Tao et al. Sustainable production of acrolein: Acidic binary metal oxide catalysts for gas-phase dehydration of glycerol
KR101818242B1 (en) Process for manufacturing acrolein or acrylic acid from glycerin
EP2006273B1 (en) Process for production of acrolein
JP2008088149A (en) Catalyst for production of acrolein and method for producing acrolein by using the same
WO2007058221A1 (en) Process for dehydration of polyhydric alcohols
JP5570142B2 (en) Method for producing methacrylic acid production catalyst and method for producing methacrylic acid
JP2016521288A (en) Process for producing acrylic acid with high space-time yield
Vasconcelos et al. Activity of nanocasted oxides for gas-phase dehydration of glycerol
JP2007268363A (en) Catalyst for dehydrating glycerol, method for preparing catalyst for dehydrating glycerol, method for preparing acrolein, and method for preparing acrolein derivative
JP2010253374A (en) Catalyst for dehydrating glycerin and method for producing acrolein
JP2016522825A (en) Method for producing vinylidenecarboxylic acid (ester) by reacting formaldehyde with alkylcarboxylic acid (ester)
KR101298672B1 (en) Fabrication method of 1,3-butadiene from 2,3-butanediol
JP2010099596A (en) Catalyst for manufacturing acrolein and acrylic acid by dehydration reaction of glycerin and method of manufacturing this catalyst
JP5130113B2 (en) Acrolein production method
KR20140111329A (en) A process for the production of ethylenically unsaturated carboxylic acids or esters and a catalyst therefor
JP5162128B2 (en) Method for producing acrolein from glycerin
KR101606191B1 (en) Catalyst for dehydration of glycerin, method of preparing the same, and preparing method of acrolein
JP5069977B2 (en) Method for producing acrolein from glycerin
JP4512972B2 (en) Activated alumina compact
KR101402957B1 (en) Mixed Oxide Catalysts with Ordered Mesopores, Method of Preparing the Same and Method of Producing Ester Compounds Using the Same
JPH04227848A (en) Application to catalyst system and oxidation dehydrogenation of saturated carboxylic acid
Nozawa et al. Vapor-Phase Dehydration of 1, 3-butanediol over CeO 2–ZrO 2 Catalysts
JP5075104B2 (en) Catalyst for dimethyl ether production