JP2010248681A - Liquid crystal polyester fibers and winding package - Google Patents
Liquid crystal polyester fibers and winding package Download PDFInfo
- Publication number
- JP2010248681A JP2010248681A JP2010059254A JP2010059254A JP2010248681A JP 2010248681 A JP2010248681 A JP 2010248681A JP 2010059254 A JP2010059254 A JP 2010059254A JP 2010059254 A JP2010059254 A JP 2010059254A JP 2010248681 A JP2010248681 A JP 2010248681A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- liquid crystal
- crystal polyester
- weight
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Woven Fabrics (AREA)
- Artificial Filaments (AREA)
Abstract
Description
本発明は高強度、高弾性率であり、繊維長手方向の均一性に優れ、耐摩耗性に優れる液晶ポリエステル繊維に関するものである。 The present invention relates to a liquid crystal polyester fiber having high strength and high elastic modulus, excellent uniformity in the longitudinal direction of the fiber, and excellent wear resistance.
液晶ポリエステルは剛直な分子鎖からなるポリマーであり、溶融紡糸においてはその分子鎖を繊維軸方向に高度に配向させ、さらに熱処理(固相重合)を施すことにより溶融紡糸で得られる繊維の中では最も高い強度、弾性率が得られることが知られている。また液晶ポリエステルは固相重合により分子量が増加し、融点が上昇するため耐熱性、寸法安定性が向上することも知られている(非特許文献1参照)。このように液晶ポリエステル繊維においては固相重合を施すことにより高強度、高弾性率、優れた耐熱性、熱寸法安定性が発現する。その一方で、液晶ポリエステル繊維は剛直な分子鎖が繊維軸方向へ高配向しており緻密な結晶が生成されるため、繊維軸垂直方向への相互作用が低く、摩擦によりフィブリルが発生しやすく耐摩耗性に劣るという欠点も持つ。 Liquid crystalline polyester is a polymer composed of rigid molecular chains. In melt spinning, the molecular chains are highly oriented in the fiber axis direction, and further subjected to heat treatment (solid phase polymerization). It is known that the highest strength and elastic modulus can be obtained. In addition, it is also known that liquid crystal polyester has an increased molecular weight due to solid-phase polymerization and an increased melting point, thereby improving heat resistance and dimensional stability (see Non-Patent Document 1). Thus, liquid crystal polyester fibers exhibit high strength, high elastic modulus, excellent heat resistance, and thermal dimensional stability by solid phase polymerization. On the other hand, the liquid crystalline polyester fiber has a rigid molecular chain highly oriented in the fiber axis direction and produces dense crystals. Therefore, the interaction in the direction perpendicular to the fiber axis is low, and fibrils are easily generated by friction. It also has the disadvantage of being inferior in wear.
近年、特にモノフィラメントからなるフィルター、スクリーン印刷用紗に対し、性能向上のため織密度の高密度化(高メッシュ化)、開口部(オープニング)の大面積化の要望が強まっている。これを達成するために単繊維繊度の細繊度化、高強度、高弾性率化が強く要求されており、液晶ポリエステル繊維は高強度、高弾性率であるため期待が集まっている。一方、高性能化のために開口部の欠点減少も同時に要求されているが、液晶ポリエステル繊維は耐摩耗性に劣るため、この点では不利である。液晶ポリエステル繊維においては、前記したフィブリルが固相重合での融着欠陥または高次加工工程での摩擦により生じるため、融着欠陥の減少、すなわち繊維長手方向の強度、繊度の均一性向上、繊維の耐摩耗性の向上が求められている。さらに製織など繊維高次加工工程での工程通過性悪化および製織性そのものの悪化もフィブリルの引っ掛かり、あるいはガイドへのフィブリルの堆積による張力変動が要因であり、繊維長手方向の強度、繊度の均一性向上、繊維の耐摩耗性の向上が求められている。 In recent years, particularly for filters made of monofilaments and screen printing ridges, there has been a growing demand for higher weaving density (higher mesh) and larger openings (openings) to improve performance. In order to achieve this, there is a strong demand for fineness, high strength, and high elastic modulus of single fiber fineness, and liquid crystal polyester fibers have high expectations because they have high strength and high elastic modulus. On the other hand, a reduction in the defect of the opening is also required at the same time for higher performance, but the liquid crystal polyester fiber is disadvantageous in this respect because it is inferior in wear resistance. In the liquid crystal polyester fiber, the above-mentioned fibrils are caused by fusing defects in solid phase polymerization or friction in higher processing steps, so that fusing defects are reduced, that is, the strength in the longitudinal direction of the fiber, the uniformity of the fineness is improved, the fiber There is a need for improved wear resistance. In addition, deterioration of processability and high weaving in the fiber high-order processing process such as weaving is caused by fibril catching or tension fluctuation due to fibril deposition on the guide, and the strength and fineness of the fiber in the longitudinal direction are uniform. There is a need for improvement and improved wear resistance of fibers.
液晶ポリエステル繊維の耐摩耗性改善については、液晶ポリエステル繊維を、示差熱量測定において50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)+10℃以上の温度で熱処理する技術が提案されている(特許文献1、2参照)。この技術は耐摩耗性改善の点では優れているが、繊維長手方向の均一性の点では不十分であった。特許文献1、2に記載の技術は液晶ポリエステル繊維を繊維の状態で固相重合した後、これを解舒して一旦巻き取る工程、巻き取ったパッケージから繊維をもう一度解舒しつつ高温熱処理を施す工程の2工程からなる。固相重合後の解舒と高温熱処理が2工程となる理由は、固相重合後の解舒は速度を一定にすることが困難であり、速度一定の工程である高温熱処理と連続化することが不可能なためである。固相重合後の解舒の速度が一定でない理由は、固相重合したパッケージはわずかに融着しており、融着部分を強引に剥がすと繊維がフィブリル化するため低張力で解舒したいという背景があり、このためパッケージを積極駆動により回転させ、繊維を送り出すことが好ましく、回転数一定ならばパッケージの巻量の減少とともに送り出し速度が徐々に遅くなるためである。なお、送り出し速度が一定となるよう回転数を制御する方法も存在するが、液晶ポリエステルのように伸度が小さく、弾性率が高い繊維では短時間での速度(回転数)変化に対する張力変動が大きいため糸切れしやすく、適用が難しい。 For improving the abrasion resistance of the liquid crystal polyester fiber, the temperature of the endothermic peak temperature (Tm1) + 10 ° C. or higher observed when the liquid crystal polyester fiber is measured under a temperature increase condition of 50 ° C. to 20 ° C./min in differential calorimetry. The technique of heat-treating is proposed (see Patent Documents 1 and 2). This technique is excellent in terms of improving the abrasion resistance, but is insufficient in terms of uniformity in the fiber longitudinal direction. The techniques described in Patent Documents 1 and 2 are processes in which liquid crystalline polyester fibers are solid-phase polymerized in the state of fibers, then unwinding and winding them once, and high-temperature heat treatment is performed while unwinding the fibers from the wound package once again. It consists of two steps of applying. The reason why the unwinding after the solid-phase polymerization and the high-temperature heat treatment are two steps is that the unraveling after the solid-phase polymerization is difficult to make the speed constant, and is continuous with the high-temperature heat treatment that is a constant speed process. This is because it is impossible. The reason why the unwinding speed after solid-phase polymerization is not constant is that the solid-phase polymerized package is slightly fused, and if the fused part is forcibly peeled off, the fibers will become fibrillated, so we want to unwind with low tension. For this reason, it is preferable to rotate the package by positive driving and feed out the fibers. If the number of rotations is constant, the feeding speed gradually decreases as the winding amount of the package decreases. Although there is a method of controlling the rotational speed so that the feeding speed is constant, a fiber having a low elongation and a high elastic modulus, such as liquid crystal polyester, has a tension fluctuation with a speed (rotational speed) change in a short time. Because it is large, it is easy to break the thread and difficult to apply.
特許文献1、2の技術では固相重合した繊維を解舒して一度巻き取る点に課題がある。繊維の巻き取りにおいては繊維が緩まないよう張力をかけ、糸道ガイドを用いてトラバースさせつつパッケージに巻き上げる必要があるが、耐摩耗性が低い固相重合糸に張力をかけてガイドでトラバースさせると、特にトラバースの両端で張力が高くなるため繊維がわずかにフィブリル化してしまう。このわずかなフィブリル化は繊維の繊度や強度に対する影響は小さいが、剥がれたフィブリルがトラバースガイドに蓄積されることで、時間の経過、すなわち巻き量の増加と共に張力変動が大きくなり、突発的な張力異常による糸切れや激しいフィブリル化を招き、繊度や強度の局所低下を引き起こすのである。また、蓄積されたフィブリルが繊維に巻きこまれるケースもあり、この場合は繊度の局所増加となってしまうのである。さらに、このような繊度が局所的に異常である固相重合糸を高温熱処理すると、フィブリルのため走行安定性が悪化し、高温熱処理での張力変動が大きくなり、繊度の異常をより悪化させる他、繊維の溶断も引き起こしてしまうのである。 The techniques of Patent Documents 1 and 2 have a problem in that the solid-phase polymerized fibers are unwound and wound up once. When winding the fiber, it is necessary to apply tension to the fiber so that it does not loosen and wind it around the package while traversing it using the yarn path guide. In particular, since the tension is increased at both ends of the traverse, the fibers are slightly fibrillated. This slight fibrillation has little effect on the fineness and strength of the fiber, but the accumulated fibrils accumulate in the traverse guide, so that the tension fluctuation increases with time, that is, the winding amount increases, and sudden tension It causes yarn breakage and severe fibrillation due to abnormalities, causing local reduction in fineness and strength. In some cases, the accumulated fibrils are wrapped around the fiber, and in this case, the fineness is locally increased. Furthermore, when high-temperature heat treatment is performed on solid-phase polymerized yarns with locally abnormal fineness, running stability deteriorates due to fibrils, tension fluctuations during high-temperature heat treatment increase, and abnormality in fineness becomes worse. It also causes fiber fusing.
加えて、固相重合での融着防止のためには油剤を付与することが好ましいが、固相重合温度よりも固相重合後の高温熱処理温度は高いため、油剤は高温熱処理装置内に昇華物として堆積し、時間の経過に伴い走行する繊維と接触して張力変動するという問題を引き起こす他、堆積物が巻き込まれて最終製品に残存した場合、織機でのガイド等に再度堆積し、走行不良や糸切れを引き起こすという課題がある。このため固相重合用の油剤は、固相重合後の解舒時に洗浄除去することが好ましいが、洗浄除去すると油剤が持つ摩擦抵抗の低減効果も失われるため、走行張力が高くなり、フィブリル化しやすくなるため、固相重合糸の巻き取りは一層不利となってしまう。 In addition, it is preferable to add an oil agent to prevent fusion in solid phase polymerization. However, since the high temperature heat treatment temperature after solid phase polymerization is higher than the solid phase polymerization temperature, the oil agent is sublimated in the high temperature heat treatment apparatus. In addition to causing the problem of tension fluctuation due to contact with the fiber that travels over time, when the deposit is caught and remains in the final product, it accumulates again on the guide on the loom, etc. There is a problem of causing defects and thread breakage. For this reason, it is preferable to wash and remove the oil agent for solid-phase polymerization at the time of unwinding after solid-phase polymerization, but since the effect of reducing the frictional resistance of the oil agent is lost by washing and removal, the running tension becomes high and fibrillation occurs. Since it becomes easy, winding of a solid phase polymerization thread | yarn will become further disadvantageous.
このように特許文献1、2の技術では比較的少量である数万m程度では問題が顕在化しにくいが、連続して処理する量が増えると繊維の長手方向に局所的な異常が発生してしまうという課題がある。これは、固相重合後の繊維を解舒して一旦巻き取ることが原因である。 As described above, in the techniques of Patent Documents 1 and 2, the problem is hardly manifested at a relatively small amount of about tens of thousands of meters, but when the amount of continuous processing increases, a local abnormality occurs in the longitudinal direction of the fiber. There is a problem of end. This is because the fiber after solid-phase polymerization is unwound and wound up once.
なお、特許文献1では高温熱処理に関し「パッケージから繊維を解舒しつつ連続しても良い」との記載があるが、解舒にあたっては固相重合パッケージを「積極駆動により回転させることが好ましい」とも記載されている。前述したように固相重合したパッケージを回転させると繊維の走行速度が一定とならないため、このような状態で解舒と高温熱処理を連続して行うと熱処理速度が一定とならず、長手方向に強度や耐摩耗性のムラが生じる他、解舒張力の変動がそのまま高温熱処理工程に伝わるため張力が変動し、糸切れや繊度の異常を招いてしまうという課題がある。また特許文献1には固相重合油剤の洗浄除去の記載はなく、油剤を除去した固相重合糸の解舒−熱処理連続処理に関しては何ら示唆がない。 In addition, in Patent Document 1, there is a description regarding “high-temperature heat treatment may be continued while unwinding the fiber from the package”, but in the unraveling, it is preferable that the solid-state polymerization package be “rotated by active driving”. It is also described. As described above, when the solid-phase polymerized package is rotated, the traveling speed of the fibers is not constant. Therefore, if the unwinding and the high-temperature heat treatment are continuously performed in such a state, the heat treatment speed is not constant, and the longitudinal direction is increased. In addition to unevenness in strength and wear resistance, the fluctuations in the unwinding tension are directly transmitted to the high-temperature heat treatment process, which causes the tension to fluctuate, resulting in yarn breakage and abnormal fineness. Further, Patent Document 1 does not describe the washing and removal of the solid phase polymerized oil, and there is no suggestion regarding the continuous treatment of the solid phase polymerized yarn from which the oil has been removed.
本発明の課題は高強度、高弾性率、優れた耐摩耗性を併せ持ち、かつ長手方向の均一性に特に優れた液晶ポリエステル繊維を提供することにある。 An object of the present invention is to provide a liquid crystal polyester fiber having both high strength, high elastic modulus, excellent wear resistance, and particularly excellent longitudinal uniformity.
本発明者等は高強度、高弾性率、優れた耐摩耗性を達成し得る溶融紡糸、固相重合前の巻き返し、固相重合、固相重合後の解舒、高温熱処理というプロセスを検討した結果、繊維長手方向の均一性悪化の要因が固相重合後の解舒での巻き取りにあり、この巻き取りを行わないことで均一性を向上できることを見出し、上記した課題の解決に至った。 The present inventors examined processes such as melt spinning that can achieve high strength, high elastic modulus, and excellent wear resistance, rewinding before solid phase polymerization, solid phase polymerization, unwinding after solid phase polymerization, and high temperature heat treatment. As a result, the cause of deterioration in uniformity in the longitudinal direction of the fiber lies in winding after unwinding after solid-phase polymerization, and it was found that uniformity could be improved by not performing this winding, leading to the solution of the problems described above. .
すなわち、本発明は示差熱量測定において、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm1)におけるピーク半値幅が15℃以上であり、ポリスチレン換算の重量平均分子量が25.0万以上200.0万以下であり、ウースター糸むら試験機でのハーフイナートダイアグラムマス波形における変動波形が10%未満であることを特徴とする液晶ポリエステル繊維である。 That is, in the differential calorimetry, the peak half-value width at the endothermic peak (Tm1) observed when the temperature is measured at 50 ° C. to 20 ° C./min in the differential calorimetry is 15 ° C. or more, and the weight average in terms of polystyrene A liquid crystal polyester fiber having a molecular weight of 255,000 or more and 200,000 or less and having a fluctuation waveform of less than 10% in a half inert diagram mass waveform in a Worcester yarn unevenness tester.
本発明の液晶ポリエステル繊維は、高強度、高弾性率で、優れた耐摩耗性を有することから、織り編みなどの繊維の高次加工での工程通過性に優れ、織密度の高密度化、製織性を向上できることに加え、長手方向の均一性に優れることから織物品位を向上させることができる。特にハイメッシュ織物が必要とされるフィルター、スクリーン紗用途に対しては、性能向上のため織密度の高密度化(高メッシュ化)、開口部(オープニング)の大面積化、開口部の欠点減少、製織性向上が達成できる。 Since the liquid crystalline polyester fiber of the present invention has high strength, high elastic modulus and excellent wear resistance, it is excellent in process passability in high-order processing of fibers such as weaving and knitting, and the weaving density is increased. In addition to improving the weaving property, the fabric quality can be improved because of excellent uniformity in the longitudinal direction. Especially for filters and screens that require high mesh fabrics, weaving density is increased (higher mesh), opening area is increased, opening defects are reduced to improve performance. Improved weaving can be achieved.
以下、本発明の液晶ポリエステル繊維について詳細に説明する。 Hereinafter, the liquid crystal polyester fiber of the present invention will be described in detail.
本発明で用いられる液晶ポリエステルとは、溶融時に異方性溶融相(液晶性)を形成し得るポリエステルである。この特性は例えば、液晶ポリエステルからなる試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、試料の透過光を偏光下で観察することにより確認できる。 The liquid crystal polyester used in the present invention is a polyester capable of forming an anisotropic melt phase (liquid crystallinity) upon melting. This characteristic can be confirmed, for example, by placing a sample made of liquid crystal polyester on a hot stage, heating and heating in a nitrogen atmosphere, and observing the transmitted light of the sample under polarized light.
本発明に用いる液晶ポリエステルとしては、例えばa.芳香族オキシカルボン酸の重合物、b.芳香族ジカルボン酸と芳香族ジオール、脂肪族ジオールの重合物、c.aとbとの共重合物などが挙げられるが、高強度、高弾性率、高耐熱のためには脂肪族ジオールを用いない全芳香族ポリエステルが好ましい。ここで芳香族オキシカルボン酸としては、ヒドロキシ安息香酸、ヒドロキシナフトエ酸など、または上記芳香族オキシカルボン酸のアルキル、アルコキシ、ハロゲン置換体などが挙げられる。また、芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルエタンジカルボン酸など、または上記芳香族ジカルボン酸のアルキル、アルコキシ、ハロゲン置換体などが挙げられる。さらに、芳香族ジオールとしては、ハイドロキノン、レゾルシン、ジオキシジフェニール、ナフタレンジオールなど、または上記芳香族ジオールのアルキル、アルコキシ、ハロゲン置換体などが挙げられ、脂肪族ジオールとしてはエチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコールなどが挙げられる。 Examples of the liquid crystal polyester used in the present invention include a. A polymer of aromatic oxycarboxylic acid, b. Polymer of aromatic dicarboxylic acid and aromatic diol, aliphatic diol, c. Examples include a copolymer of a and b, and a wholly aromatic polyester that does not use an aliphatic diol is preferable for high strength, high elastic modulus, and high heat resistance. Here, examples of the aromatic oxycarboxylic acid include hydroxybenzoic acid, hydroxynaphthoic acid and the like, and alkyl, alkoxy and halogen substituted products of the above aromatic oxycarboxylic acid. Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, naphthalene dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenoxyethanedicarboxylic acid, diphenylethanedicarboxylic acid, and the like, or alkyl, alkoxy, and aromatic dicarboxylic acid. Examples include halogen substitution products. Furthermore, examples of the aromatic diol include hydroquinone, resorcin, dioxydiphenyl, naphthalene diol, and the like, and alkyl, alkoxy, and halogen substituted products of the above aromatic diol. Examples of the aliphatic diol include ethylene glycol, propylene glycol, Examples include butanediol and neopentyl glycol.
本発明に用いる液晶ポリエステルとしては、p−ヒドロキシ安息香酸成分と4,4’−ジヒドロキシビフェニル成分とハイドロキノン成分とテレフタル酸成分および/またはイソフタル酸成分とが共重合されたもの、p−ヒドロキシ安息香酸成分と6−ヒドロキシ2−ナフトエ酸成分とが共重合されたもの、p−ヒドロキシ安息香酸成分と6−ヒドロキシ2−ナフトエ酸成分とハイドロキノン成分とテレフタル酸成分とが共重合されたもの、などが紡糸性に優れ、高強度、高弾性率化が達成でき、固相重合後の高温熱処理を行うことで耐摩耗性が向上することから、好ましい例として挙げられる。 As the liquid crystalline polyester used in the present invention, a p-hydroxybenzoic acid component, a 4,4′-dihydroxybiphenyl component, a hydroquinone component, a terephthalic acid component and / or an isophthalic acid component are copolymerized, and p-hydroxybenzoic acid. A copolymer of a component and a 6-hydroxy 2-naphthoic acid component, a copolymer of a p-hydroxybenzoic acid component, a 6-hydroxy 2-naphthoic acid component, a hydroquinone component, and a terephthalic acid component, etc. It is excellent in spinnability, can achieve high strength and high elastic modulus, and wear resistance is improved by performing high-temperature heat treatment after solid phase polymerization.
本発明では、特に下記構造単位(I)、(II)、(III)、(IV)、(V)からなる液晶ポリエステルであることが好ましい。なお本発明において構造単位とはポリマーの主鎖における繰り返し構造を構成し得る単位を指す。 In the present invention, a liquid crystal polyester composed of the following structural units (I), (II), (III), (IV), and (V) is particularly preferable. In the present invention, the structural unit refers to a unit that can constitute a repeating structure in the main chain of the polymer.
この組み合わせにより分子鎖は適切な結晶性と非直線性すなわち溶融紡糸可能な融点を有するようになる。したがってポリマーの融点と熱分解温度の間で設定される紡糸温度において良好な製糸性を有するようになり長手方向に均一な繊維が得られ、かつ適度な結晶性を有するため繊維の強度、弾性率を高めることができる。 This combination results in the molecular chain having the proper crystallinity and non-linearity, ie, a melt-spinnable melting point. Therefore, the fiber has good spinning performance at the spinning temperature set between the melting point of the polymer and the thermal decomposition temperature, and a uniform fiber can be obtained in the longitudinal direction. Can be increased.
さらに構造単位(II)、(III)のような嵩高くなく、直線性の高いジオールからなる成分を組み合わせることが重要であり、この成分を組み合わせることにより繊維中で分子鎖は秩序だった乱れの少ない構造を取ると共に、結晶性が過度に高まらず繊維軸垂直方向の相互作用も維持できる。これにより高い強度、弾性率が得られることに加えて、固相重合後に高温熱処理を施すことで特に優れた耐摩耗性も得られるのである。 Furthermore, it is important to combine components composed of diols that are not bulky and have high linearity such as structural units (II) and (III). By combining these components, the molecular chains in the fibers are ordered and disordered. In addition to having a small structure, the crystallinity is not excessively increased and the interaction in the direction perpendicular to the fiber axis can be maintained. In addition to obtaining high strength and elastic modulus, high-temperature heat treatment is performed after solid-phase polymerization, so that particularly excellent wear resistance can be obtained.
また、上記した構造単位(I)は構造単位(I)、(II)および(III)の合計に対して40〜85モル%が好ましく、より好ましくは65〜80モル%、さらに好ましくは68〜75モル%である。このような範囲とすることで結晶性を適切な範囲とすることができ高い強度、弾性率が得られ、かつ融点も溶融紡糸可能な範囲となる。 Further, the structural unit (I) is preferably 40 to 85 mol%, more preferably 65 to 80 mol%, still more preferably 68 to 85 mol% with respect to the total of the structural units (I), (II) and (III). 75 mol%. By setting it as such a range, crystallinity can be made into an appropriate range, high intensity | strength and an elasticity modulus are obtained, and melting | fusing point also becomes the range which can be melt-spun.
構造単位(II)は構造単位(II)および(III)の合計に対して60〜90モル%が好ましく、より好ましくは60〜80モル%、さらに好ましくは65〜75モル%である。このような範囲とすることで結晶性が過度に高まらず繊維軸垂直方向の相互作用も維持できるため、固相重合後に高温熱処理を施すことで耐摩耗性を高めることができる。 The structural unit (II) is preferably 60 to 90 mol%, more preferably 60 to 80 mol%, still more preferably 65 to 75 mol%, based on the total of the structural units (II) and (III). By setting it as such a range, since crystallinity does not become high excessively and the interaction of a fiber axis perpendicular | vertical direction can be maintained, wear resistance can be improved by performing high temperature heat processing after solid-phase polymerization.
構造単位(IV)は構造単位(IV)および(V)の合計に対して40〜95モル%が好ましく、より好ましくは50〜90モル%、さらに好ましくは60〜85モル%である。このような範囲とすることでポリマーの融点が適切な範囲となり、ポリマーの融点と熱分解温度の間で設定される紡糸温度において良好な紡糸性を有するため長手方向に均一な繊維が得られる他、ポリマーの直線性が適度に乱れるため、固相重合後の高温熱処理によりフィブリル構造が乱れやすくなり繊維軸垂直方向の相互作用が高まり耐摩耗性を向上させることができる。 The structural unit (IV) is preferably 40 to 95 mol%, more preferably 50 to 90 mol%, still more preferably 60 to 85 mol%, based on the total of the structural units (IV) and (V). By setting such a range, the melting point of the polymer becomes an appropriate range, and it has good spinnability at a spinning temperature set between the melting point of the polymer and the thermal decomposition temperature, so that a uniform fiber can be obtained in the longitudinal direction. Since the linearity of the polymer is moderately disturbed, the fibril structure is easily disturbed by the high-temperature heat treatment after the solid phase polymerization, and the interaction in the direction perpendicular to the fiber axis is increased, thereby improving the wear resistance.
本発明に用いる液晶ポリエステルの各構造単位の好ましい範囲は以下のとおりである。この範囲の中で上記した条件を満たすよう組成を調整することで本発明の液晶ポリエステル繊維が好適に得られる。
構造単位(I)45〜65モル%
構造単位(II)12〜18モル%
構造単位(III)3〜10モル%
構造単位(IV)5〜20モル%
構造単位(V)2〜15モル%
なお本発明で用いる液晶ポリエステルには上記構造単位以外に3,3’−ジフェニルジカルボン酸、2,2’−ジフェニルジカルボン酸などの芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸などの脂肪族ジカルボン酸、ヘキサヒドロテレフタル酸(1,4−シクロヘキサンジカルボン酸)などの脂環式ジカルボン酸、クロロハイドロキノン、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシベンゾフェノン等の芳香族ジオールおよびp−アミノフェノールなどを本発明の効果を損なわない5モル%程度以下の範囲で共重合させても良い。
The preferred range of each structural unit of the liquid crystalline polyester used in the present invention is as follows. The liquid crystal polyester fiber of the present invention can be suitably obtained by adjusting the composition so as to satisfy the above conditions within this range.
Structural unit (I) 45-65 mol%
Structural unit (II) 12-18 mol%
Structural unit (III) 3 to 10 mol%
Structural unit (IV) 5-20 mol%
Structural unit (V) 2-15 mol%
In addition to the above structural units, the liquid crystalline polyester used in the present invention includes aromatic dicarboxylic acids such as 3,3′-diphenyldicarboxylic acid and 2,2′-diphenyldicarboxylic acid, adipic acid, azelaic acid, sebacic acid, and dodecanedioic acid. Aliphatic dicarboxylic acids such as hexahydroterephthalic acid (1,4-cyclohexanedicarboxylic acid), chlorohydroquinone, 4,4′-dihydroxydiphenyl sulfone, 4,4′-dihydroxydiphenyl sulfide, 4 An aromatic diol such as 4,4'-dihydroxybenzophenone and p-aminophenol may be copolymerized within a range of about 5 mol% or less without impairing the effects of the present invention.
また本発明の効果を損なわない5重量%程度以下の範囲で、ポリエステル、ポリオレフィンやポリスチレンなどのビニル系重合体、ポリカーボネート、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、芳香族ポリケトン、脂肪族ポリケトン、半芳香族ポリエステルアミド、ポリエーテルエーテルケトン、フッ素樹脂などのポリマーを添加しても良く、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ナイロン6、ナイロン66、ナイロン46、ナイロン6T、ナイロン9T、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリシクロヘキサンジメタノールテレフタレート、ポリエステル99Mなどが好適な例として挙げられる。なおこれらのポリマーを添加する場合、その融点は液晶ポリエステルの融点±30℃以内にすることが製糸性を損なわないために好ましい。 In addition, within a range of about 5% by weight or less that does not impair the effects of the present invention, a vinyl polymer such as polyester, polyolefin or polystyrene, polycarbonate, polyamide, polyimide, polyphenylene sulfide, polyphenylene oxide, polysulfone, aromatic polyketone, aliphatic polyketone. , Semi-aromatic polyester amide, polyether ether ketone, fluororesin and other polymers may be added. Polyphenylene sulfide, polyether ether ketone, nylon 6, nylon 66, nylon 46, nylon 6T, nylon 9T, polyethylene terephthalate, Polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycyclohexanedimethanol terephthalate, polyester 99M, etc. are suitable It is mentioned as examples. When these polymers are added, the melting point thereof is preferably within the melting point ± 30 ° C. of the liquid crystalline polyester so as not to impair the spinning property.
さらに本発明の効果を損なわない範囲内で、各種金属酸化物、カオリン、シリカなどの無機物や、着色剤、艶消剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、蛍光増白剤、末端基封止剤、相溶化剤等の各種添加剤を少量含有しても良い。 Furthermore, within the range not impairing the effects of the present invention, various metal oxides, kaolin, silica and other inorganic substances, colorants, matting agents, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, crystal nucleating agents In addition, various additives such as a fluorescent brightening agent, a terminal group blocking agent, and a compatibilizing agent may be contained in a small amount.
本発明の繊維のポリスチレン換算の重量平均分子量(以下、分子量と記載する)は25.0万以上200.0万以下である。25.0万以上の高い分子量を有することで高い強度、弾性率、伸度を有する。分子量は高いほど強度、弾性率、伸度が向上するため、30.0万以上が好ましく、35.0万以上がより好ましい。分子量の上限は特に限定されないが、本発明で達し得る上限としては200.0万程度である。なお本発明で言う分子量とは実施例記載の方法により求められた値とする。 The weight average molecular weight (hereinafter referred to as molecular weight) in terms of polystyrene of the fiber of the present invention is from 255,000 to 200,000. By having a high molecular weight of 255,000 or more, it has high strength, elastic modulus, and elongation. The higher the molecular weight, the higher the strength, elastic modulus, and elongation, and therefore it is preferably 30 million or more, more preferably 350,000 or more. The upper limit of the molecular weight is not particularly limited, but the upper limit that can be reached in the present invention is about 200,000. The molecular weight referred to in the present invention is a value determined by the method described in the examples.
本発明の繊維は、示差熱量測定において、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm1)におけるピーク半値幅が15℃以上である。この測定法におけるTm1は繊維の融点を表し、ピーク形状はその面積が広いほど、即ち融解熱量ΔHm1が大きいほど結晶化度が高く、またその半値幅が狭いほど結晶の完全性は高いと言える。液晶ポリエステルは紡糸した後固相重合を施すことでTm1が上昇、ΔHm1が増加、半値幅は減少し、結晶化度、結晶の完全性が高くなることで繊維の強度、伸度、弾性率が増加、耐熱性が向上する。一方で耐摩耗性が悪化するが、これは結晶の完全性が高まることにより、結晶部と非晶部の構造差が顕著となるため、その界面で破壊が起こるためと考えられる。そこで本発明の繊維では固相重合した繊維の特徴である高いTm1、高い強度、伸度、弾性率を維持したまま、ピーク半値幅を、固相重合していない液晶ポリエステル繊維のような15℃以上という値に増加させることで、結晶性を低下させて破壊の起点となる結晶/非晶の構造差を減少させ、フィブリル構造を乱し、繊維全体を柔軟化させることで耐摩耗性を高めることができるのである。Tm1におけるピーク半値幅は、高い方が耐摩耗性は高いため、好ましくは20℃以上である。なお、上限は特に制限されないが、工業的に達し得る上限は80℃程度である。 The fiber of the present invention has a peak half-value width of 15 ° C. or more in an endothermic peak (Tm1) observed when measured under a temperature rising condition of 50 ° C. to 20 ° C./min in differential calorimetry. Tm1 in this measurement method represents the melting point of the fiber, and it can be said that the peak shape has a higher crystallinity as the area is larger, that is, as the heat of fusion ΔHm1 is larger, and as the half-value width is narrower, the completeness of the crystal is higher. Liquid crystal polyester is subjected to solid phase polymerization after spinning, Tm1 increases, ΔHm1 increases, half width decreases, and the crystallinity and crystal integrity increase, so that the strength, elongation, and elastic modulus of the fiber are increased. Increases heat resistance. On the other hand, the wear resistance deteriorates, but this is thought to be due to the fact that the structural difference between the crystal part and the amorphous part becomes remarkable due to the increase in crystal perfection, so that the interface breaks down. Therefore, in the fiber of the present invention, while maintaining the high Tm1, high strength, elongation, and elastic modulus, which are the characteristics of the solid-phase polymerized fiber, the peak half-value width is 15 ° C. like liquid crystal polyester fiber not solid-phase polymerized. By increasing to the above values, the crystallinity is lowered, the crystal / amorphous structural difference that is the starting point of fracture is reduced, the fibril structure is disturbed, and the entire fiber is softened to increase the wear resistance. It can be done. The peak half width at Tm1 is preferably 20 ° C. or higher because higher wear resistance is higher. The upper limit is not particularly limited, but the upper limit that can be industrially reached is about 80 ° C.
なお、本発明の液晶ポリエステル繊維においては、吸熱ピークは1つであるが、固相重合が不十分な場合など繊維構造によっては2つ以上のピークが観測されることがある。この場合のピーク半値幅はそれぞれのピークの半値幅を合計した値とする。 In the liquid crystal polyester fiber of the present invention, there is one endothermic peak, but two or more peaks may be observed depending on the fiber structure, such as when solid phase polymerization is insufficient. In this case, the peak half-value width is the sum of the half-value widths of the respective peaks.
また、本発明の繊維は示差熱量測定において50℃から20℃/分の昇温条件で測定した際に実質的に発熱ピークが見られないことが好ましい。実質的に発熱ピークが見られないとは、発熱量が3.0J/g以上、好ましくは1.0J/g以上、さらに好ましくは0.5J/g以上のピークが見られないことを指し、ベースラインの微小なあるいは緩やかな変動はピークとは見なさない。発熱ピークが見られるのは、結晶性高分子が非晶状態で繊維に含まれる場合であり、発熱ピークが見られないことは繊維が実質的に液晶ポリエステル単成分であることを表す。繊維が実質的に液晶ポリエステル単成分であることで液晶ポリエステルの特性を十分に発揮でき、強度、弾性率、耐熱性、熱寸法安定性に優れる。 Further, it is preferable that the fiber of the present invention does not substantially exhibit an exothermic peak when measured under a temperature increase condition of 50 ° C. to 20 ° C./min in differential calorimetry. The fact that a substantially exothermic peak is not observed means that a peak with a calorific value of 3.0 J / g or more, preferably 1.0 J / g or more, more preferably 0.5 J / g or more is not observed, Small or gradual fluctuations in the baseline are not considered peaks. The exothermic peak is observed when the crystalline polymer is contained in the fiber in an amorphous state, and the absence of the exothermic peak indicates that the fiber is substantially a liquid crystal polyester single component. When the fiber is substantially a single component of liquid crystal polyester, the characteristics of the liquid crystal polyester can be sufficiently exhibited, and the strength, elastic modulus, heat resistance, and thermal dimensional stability are excellent.
本発明の繊維の融点(Tm1)は290℃以上が好ましく、300℃以上がより好ましく、310℃以上がさらに好ましい。このような高い融点を有することで繊維としての耐熱性が優れる。繊維の高融点化を達成するためには、高融点の液晶ポリエステルポリマーを製糸するなどの方法があるが、特に高い強度、弾性率を有し、さらに長手方向の均一性に優れる繊維を得るためには溶融紡糸した繊維を固相重合することが好ましい。なお、融点の上限は特に限定されないが、本発明で達しえる上限としては400℃程度である。 The melting point (Tm1) of the fiber of the present invention is preferably 290 ° C. or higher, more preferably 300 ° C. or higher, and further preferably 310 ° C. or higher. By having such a high melting point, the heat resistance as a fiber is excellent. In order to achieve a high melting point of the fiber, there are methods such as spinning a liquid crystal polyester polymer having a high melting point, in order to obtain a fiber having particularly high strength and elastic modulus and excellent longitudinal uniformity. For this, it is preferable to solid-phase polymerize melt-spun fibers. In addition, although the upper limit of melting | fusing point is not specifically limited, As an upper limit which can be achieved by this invention, it is about 400 degreeC.
また融解熱量ΔHm1の値は、液晶ポリエステルの構成単位の組成により変化するが、6.0J/g以下であることが好ましい。△Hm1が6.0J/g以下に低下することで結晶化度は低下し、フィブリル構造が乱れ、繊維全体が柔軟化し、かつ破壊の起点となる結晶/非晶の構造差が減少することで耐摩耗性が向上する。△Hm1は低いほど耐摩耗性は向上するため5.0J/g以下がより好ましい。なおΔHm1の下限は特に限定されないが、高い強度、弾性率を得るためには0.5J/g以上が好ましい。 Further, the value of heat of fusion ΔHm1 varies depending on the composition of the structural unit of the liquid crystal polyester, but is preferably 6.0 J / g or less. ΔHm1 is reduced to 6.0 J / g or less, so that the degree of crystallinity is lowered, the fibril structure is disturbed, the entire fiber is softened, and the crystal / amorphous structural difference that is the starting point of fracture is reduced. Abrasion resistance is improved. As ΔHm1 is lower, the wear resistance is improved, so 5.0 J / g or less is more preferable. The lower limit of ΔHm1 is not particularly limited, but 0.5 J / g or more is preferable in order to obtain high strength and elastic modulus.
分子量が25.0万以上と高いにも関わらず、ΔHm1が6.0J/g以下と低いことは驚くべきことである。分子量が25.0万以上の液晶ポリエステルは融点を超えても粘度が著しく高く流動せず溶融紡糸が困難であり、このような高分子量の液晶ポリエステル繊維は低分子量の液晶ポリエステルを溶融紡糸し、この繊維を固相重合することで得られる。液晶ポリエステル繊維を固相重合すると分子量が増加し強度、伸度、弾性率、耐熱性は向上し、同時に結晶化度も高まりΔHm1が増加する。結晶化度が高まると強度、伸度、弾性率、耐熱性はさらに向上するが、結晶部と非晶部の構造差が顕著となり、その界面が破壊されやすくなり耐摩耗性は低下してしまう。これに対し本発明では固相重合した繊維の1つの特徴である高い分子量を持つことで高い強度、伸度、弾性率、耐熱性を保持すると共に、固相重合をしていない液晶ポリエステル繊維のような低い結晶化度すなわち低いΔHm1を有することで耐摩耗性を向上できるのである。本発明では実質的に液晶ポリエステルのみからなる繊維を、構造変化すなわち結晶化度を低下させることにより耐摩耗性向上を達成した点で技術的進歩がある。 It is surprising that ΔHm1 is as low as 6.0 J / g or less even though the molecular weight is as high as 255,000 or more. A liquid crystal polyester having a molecular weight of 255,000 or more has a viscosity that is extremely high even when the melting point is exceeded and does not flow and is difficult to melt-spin. Such a high-molecular-weight liquid crystal polyester fiber melts and spins a low-molecular weight liquid crystal polyester, This fiber is obtained by solid phase polymerization. When the liquid crystalline polyester fiber is solid-phase polymerized, the molecular weight is increased and the strength, elongation, elastic modulus, and heat resistance are improved. At the same time, the crystallinity is increased and ΔHm1 is increased. When the degree of crystallinity increases, the strength, elongation, elastic modulus, and heat resistance are further improved, but the structural difference between the crystal part and the amorphous part becomes remarkable, the interface is easily broken, and the wear resistance is lowered. . On the other hand, in the present invention, the high molecular weight, which is one of the characteristics of the solid phase polymerized fiber, maintains high strength, elongation, elastic modulus and heat resistance, and liquid crystal polyester fiber not solid phase polymerized. Wear resistance can be improved by having such a low crystallinity, that is, a low ΔHm1. In the present invention, there is a technical advance in that the abrasion resistance is improved by reducing the structural change, that is, the degree of crystallinity, of the fiber consisting essentially of liquid crystalline polyester.
このような繊維構造を達成できれば、その製造方法は特に限定されないが、構造の均一化、生産性の向上のためには後述するような固相重合した液晶ポリエステル繊維を連続的に走行させつつ、その液晶ポリエステル繊維のTm1+10℃以上で熱処理することが好ましい。 If such a fiber structure can be achieved, its production method is not particularly limited, but in order to make the structure uniform and improve the productivity, while continuously running solid-state polymerized liquid crystal polyester fibers as described later, It is preferable to heat-treat the liquid crystalline polyester fiber at Tm1 + 10 ° C. or higher.
本発明の繊維のTcは組成により変化するが、耐熱性を高めるためには250℃以上350℃以下が好ましい。ΔHcは低すぎると結晶化度の低下のため強度、弾性率が低下し、過度に大きいと結晶化度が高まりすぎ、耐摩耗性の向上が難しくなることから2.0J/g以上5.0J/g以下が好ましい。なお、本発明の液晶ポリエステル繊維においては上記した測定条件における冷却時の発熱ピークは1つであるが、固相重合後の熱処理などによる構造変化によっては2つ以上のピークが観測されることがある。この場合のΔHcはそれぞれのピークのΔHcを合計した値とする。 Although Tc of the fiber of the present invention varies depending on the composition, it is preferably 250 ° C. or higher and 350 ° C. or lower in order to improve heat resistance. If ΔHc is too low, the crystallinity will decrease and the strength and elastic modulus will decrease. If it is excessively large, the crystallinity will increase excessively and it will be difficult to improve the wear resistance. / G or less is preferable. In the liquid crystalline polyester fiber of the present invention, there is one exothermic peak at the time of cooling under the measurement conditions described above, but two or more peaks may be observed depending on the structural change due to heat treatment after solid phase polymerization. is there. In this case, ΔHc is the sum of ΔHc of each peak.
また本発明の繊維のTm2は組成により変化するが、耐熱性を高めるためには300℃以上が好ましい。Tm2の上限は特に制限されないが、本発明で到達し得る上限としては400℃程度である。ΔHm2は過度に大きいとポリマーそのものの結晶性が高くなり、耐摩耗性の向上が難しくなるため5.0J/g以下が好ましく、2.0J/g以下がより好ましい。なお、本発明の液晶ポリエステル繊維においては上記した測定条件における冷却後の再昇温時の吸熱ピークは1つであるが、2つ以上のピークが観測されることがある。この場合のΔHm2はそれぞれのピークのΔHm2を合計した値とする。 Moreover, although Tm2 of the fiber of this invention changes with a composition, in order to improve heat resistance, 300 degreeC or more is preferable. The upper limit of Tm2 is not particularly limited, but the upper limit that can be reached in the present invention is about 400 ° C. If ΔHm2 is excessively large, the crystallinity of the polymer itself becomes high and it is difficult to improve the wear resistance, so 5.0 J / g or less is preferable, and 2.0 J / g or less is more preferable. In the liquid crystalline polyester fiber of the present invention, there is one endothermic peak at the time of reheating after cooling under the above-described measurement conditions, but two or more peaks may be observed. In this case, ΔHm2 is the sum of ΔHm2 of each peak.
本発明の繊維は、ウースター糸むら試験機でのハーフイナートダイアグラムマス波形(以下、U%Hと記す。)における変動波形が10%未満である。本発明で言うU%Hにおける変動波形とは実施例記載の方法により求められた値とする。U%Hで検出されるのは1m程度以上の波長の繊維直径異常であり、このような異常が見られるのは例えば蓄積したフィブリルが繊維に混入した場合に見られる繊維直径の高め異常(多く堆積したフィブリルは一瞬で全てが混入せず、数段階に分かれるため長い周期の異常となる)、フィブリルが高温熱処理前のロールに付着し走行安定性が悪化したときの繊維直径異常(ヒーターの長さ程度の長い周期の異常になる)が挙げられる。本発明の繊維は変動波形が10%未満であることで、繊維の削れやフィブリル化に起因する長い周期の異常がなく、長手方向に繊維直径が均一であることを表す。このように繊維径が長手方向に均一であることで製織等の高次工程での工程通過性および製織性が良好となり、織物とした際にも繊維の目開き(オープニング)が均一となり、織物品位が良好となる。変動波形は小さいほど繊維長手方向の均一性が高いため、8%未満がより好ましい。 The fiber of the present invention has a fluctuation waveform of less than 10% in a half inert diagram mass waveform (hereinafter referred to as U% H) in a Worcester yarn unevenness testing machine. The fluctuation waveform in U% H referred to in the present invention is a value obtained by the method described in the examples. A fiber diameter abnormality of a wavelength of about 1 m or more is detected by U% H. Such an abnormality is observed, for example, when the accumulated fibrils are mixed with the fiber, the fiber diameter is increased abnormally (many Accumulated fibrils do not mix all in an instant and are divided into several stages, resulting in a long-period abnormality). Abnormal fiber diameter when the fibril adheres to the roll before high-temperature heat treatment and the running stability deteriorates (the length of the heater) An unusually long cycle). The fluctuation waveform of the fiber of the present invention is less than 10%, which means that there is no abnormality in a long period due to fiber shaving or fibrillation, and the fiber diameter is uniform in the longitudinal direction. In this way, the fiber diameter is uniform in the longitudinal direction, so that the process passability and weaving in high-order processes such as weaving are good, and the fiber opening (opening) is uniform even when made into a woven fabric. Good quality. The smaller the fluctuation waveform is, the higher the uniformity in the fiber longitudinal direction is, so that it is more preferably less than 8%.
本発明の繊維は、外径測定における変動値が30%未満であることが好ましい。本発明で言う外径測定での変動値とは実施例記載の方法により求められた値とする。外径測定で検出されるのは数cm程度の波長の繊維直径異常であり、このような異常が見られるのは、繊維の局所的な削れによる繊維直径低め異常、フィブリルの混入による繊維直径高め異常(大きく堆積する前に混入する場合は小さい周期の異常となる)などが挙げられる。外径測定での変動値が30%未満であることは、比較的短い周期でも長手方向に繊維直径が均一であることを表すため、製織等の高次工程での工程通過性および製織性が良好となり、織物品位が良好となる。外径測定での変動値が小さいほど繊維長手方向の均一性は高いため、変動値は20%未満であることがより好ましく、15%未満であることがさらに好ましい。 The fiber of the present invention preferably has a variation value in the outer diameter measurement of less than 30%. The fluctuation value in the outer diameter measurement referred to in the present invention is a value obtained by the method described in the examples. Fiber diameter abnormalities with a wavelength of several centimeters are detected by the outer diameter measurement. Such abnormalities are observed when the fiber diameter is lowered due to local shaving of the fiber, or the fiber diameter is increased due to fibril mixing. Abnormality (when mixed before it is largely deposited, it becomes an abnormality of a small cycle). The fluctuation value in the outer diameter measurement of less than 30% indicates that the fiber diameter is uniform in the longitudinal direction even in a relatively short period, and therefore the process passability and weaving property in higher-order processes such as weaving are good. It becomes good and the textile quality becomes good. The smaller the variation value in the outer diameter measurement, the higher the uniformity in the fiber longitudinal direction. Therefore, the variation value is more preferably less than 20%, and even more preferably less than 15%.
繊維の長手方向の繊維直径の均一性は、特にモノフィラメントからなる印刷用スクリーン紗やフィルター用メッシュ織物で重要視される項目である。このような織物を連続して数十m以上製作する場合、緯糸は数十万m必要となるが、従来技術でも述べたように、特許文献1、2では糸長が長くなると固相重合糸の巻き取りに起因して繊維直径の均一性が悪化する。これに対し、本発明では固相重合の巻き取りそのものをなくすことで均一性に優れる繊維が得られ、数十mの連続した織物の品位を向上できるのである。このとき特にU%Hで表されるような長い周期の異常がないことで、織物中に連続した異常が発生せず、製品のロスを最小限に抑えることができるのである。 Uniformity of the fiber diameter in the longitudinal direction of the fiber is an important item particularly in printing screen wrinkles made of monofilaments and filter mesh fabrics. When such a woven fabric is continuously produced several tens of meters or more, several hundreds of thousands of wefts are required. However, as described in the prior art, in Patent Documents 1 and 2, if the yarn length becomes long, solid-state polymerized yarns Due to the winding of the fiber, the uniformity of the fiber diameter deteriorates. On the other hand, in the present invention, a fiber having excellent uniformity can be obtained by eliminating the winding of solid phase polymerization itself, and the quality of a continuous fabric of several tens of meters can be improved. At this time, since there is no abnormality having a long period, particularly represented by U% H, continuous abnormality does not occur in the fabric, and the loss of the product can be minimized.
本発明の繊維の強度は織物の強度を高めるため12.0cN/dtex以上が好ましく、14.0cN/dtex以上がより好ましく、15.0cN/dtex以上がさらに好ましい。強度の上限は特に限定されないが、本発明で達し得る上限としては30.0cN/dtex程度である。なお本発明で言う強度とはJISL1013:1999記載の引張強さを指す。 The strength of the fiber of the present invention is preferably 12.0 cN / dtex or more, more preferably 14.0 cN / dtex or more, and further preferably 15.0 cN / dtex or more in order to increase the strength of the fabric. The upper limit of the strength is not particularly limited, but the upper limit that can be achieved in the present invention is about 30.0 cN / dtex. The strength referred to in the present invention refers to the tensile strength described in JIS L1013: 1999.
また弾性率は織物の弾性率を高めるため500cN/dtex以上が好ましく、600cN/dtex以上がより好ましく、700cN/dtex以上がさらに好ましい。弾性率の上限は特に限定されないが、本発明で達しえる上限としては弾性率1200cN/dtex程度である。なお本発明で言う弾性率とはJISL1013:1999記載の初期引張抵抗度を指す。 The elastic modulus is preferably 500 cN / dtex or more, more preferably 600 cN / dtex or more, and further preferably 700 cN / dtex or more in order to increase the elastic modulus of the fabric. The upper limit of the elastic modulus is not particularly limited, but the upper limit that can be achieved in the present invention is about the elastic modulus of 1200 cN / dtex. The elastic modulus referred to in the present invention refers to the initial tensile resistance described in JIS L1013: 1999.
強度、弾性率が高いことによりロープ、テンションメンバー等の補強用繊維、印刷用スクリーン紗、フィルター用メッシュ等の用途に好適に使用できる他、細繊度でも高い強力を発現させ得るため繊維材料の軽量化、薄物化が達成でき、製織など高次加工工程での糸切れも抑制できる。本発明の繊維においては分子量が25.0万以上であることで高い強度、弾性率が得られる。 High strength and elastic modulus make it suitable for applications such as ropes, tension members and other reinforcing fibers, printing screens, filter meshes, etc. And thinning can be achieved, and yarn breakage in higher processing steps such as weaving can be suppressed. In the fiber of the present invention, high strength and elastic modulus can be obtained when the molecular weight is 255,000 or more.
本発明の繊維の単繊維繊度は18.0dtex以下が好ましい。単繊維繊度を18.0dtex以下と細くすることで、繊維状態で固相重合した際に分子量が増加しやすく、強度、伸度、弾性率が向上する。さらに繊維のしなやかさが向上し繊維の加工性が向上する、表面積が増加するため接着剤などの薬液との密着性が高まると言った特性を有することに加え、モノフィラメントからなる紗とする場合は厚みを薄くできる、織密度を高くできる、オープニング(開口部の面積)を広くできるという利点を持つ。単繊維繊度はより好ましくは10.0dtex以下、さらに好ましくは7.0dtex以下である。なお、単繊維繊度の下限は特に限定されないが、本発明で達しえる下限としては1.0dtex程度である。 The single fiber fineness of the fiber of the present invention is preferably 18.0 dtex or less. By reducing the single fiber fineness to 18.0 dtex or less, the molecular weight is easily increased when solid-phase polymerization is performed in a fiber state, and the strength, elongation, and elastic modulus are improved. In addition to having the properties of improving the flexibility of the fiber and improving the processability of the fiber, increasing the surface area and improving the adhesion with chemicals such as adhesives, in addition to the case of a cocoon made of monofilament The thickness can be reduced, the woven density can be increased, and the opening (area of the opening) can be widened. The single fiber fineness is more preferably 10.0 dtex or less, and even more preferably 7.0 dtex or less. The lower limit of the single fiber fineness is not particularly limited, but the lower limit that can be achieved in the present invention is about 1.0 dtex.
本発明の繊維の繊度変動率は30%以下が好ましく、より好ましくは20%以下、さらに好ましくは10%以下である。本発明で言う繊度変動率とは実施例記載の手法により測定された値を指す。繊度変動率が30%以下であることで長手方向の繊度の均一性が高く、繊維の強力(強度と繊度の積)変動も小さくなるため、繊維製品の欠陥が減少する他、モノフィラメントの場合には直径変動が小さくなるため、紗とした際のオープニング(開口部の面積)の均一性が高まり紗の性能が向上できる。 The fineness variation rate of the fiber of the present invention is preferably 30% or less, more preferably 20% or less, and still more preferably 10% or less. The fineness fluctuation rate referred to in the present invention refers to a value measured by the method described in the examples. When the fineness variation rate is 30% or less, the uniformity of the fineness in the longitudinal direction is high, and the variation in fiber strength (the product of strength and fineness) is also small. Since the diameter variation is small, the uniformity of the opening (area of the opening) when it is made can be improved, and the performance of the bag can be improved.
本発明の繊維の強力変動率は20%以下が好ましく、15%以下がより好ましい。なお本発明で言う強力とはJISL1013:1999記載の引張強さの測定における切断時の強さを指し、強力変動率とは実施例記載の手法により測定された値を指す。強力変動率が20%以下であることで長手方向の強力の均一性が高まり、織物の欠陥が減少する他、低強度部分に起因する高次加工工程での糸切れも抑制できる。 The strength variation rate of the fiber of the present invention is preferably 20% or less, and more preferably 15% or less. The strength referred to in the present invention refers to the strength at the time of cutting in the measurement of tensile strength described in JIS L1013: 1999, and the strength fluctuation rate refers to a value measured by the method described in the examples. When the strength fluctuation rate is 20% or less, the uniformity of strength in the longitudinal direction is increased, and defects in the fabric are reduced. Further, yarn breakage in a high-order processing step caused by a low strength portion can be suppressed.
本発明の繊維の伸度は1.0%以上が好ましく2.0%以上がより好ましい。伸度が1.0%以上あることで繊維の衝撃吸収性が高まり、高次加工工程での工程通過性、取り扱い性に優れる他、衝撃吸収性が高まるため耐摩耗性も高まる。なお、伸度の上限は特に限定されないが、本発明で達しえる上限としては10.0%程度である。本発明の繊維においては分子量が25.0万以上であることで高い伸度が得られる。 The elongation of the fiber of the present invention is preferably 1.0% or more, and more preferably 2.0% or more. When the elongation is 1.0% or more, the impact absorbability of the fibers is increased, the process passability and the handleability in the high-order processing step are excellent, and the impact absorbability is increased, so that the wear resistance is also increased. The upper limit of elongation is not particularly limited, but the upper limit that can be achieved in the present invention is about 10.0%. In the fiber of the present invention, high elongation can be obtained when the molecular weight is 255,000 or more.
本発明の繊維の繊維軸垂直方向の圧縮弾性率(以下、圧縮弾性率と記載する)は0.50GPa以下が好ましい。本発明の液晶ポリエステル繊維は引張方向には高い強度、弾性率を有するが、圧縮弾性率が低いことで、高次加工工程、あるいは織機で繊維がガイドや筬に押し付けられた際にその接触面積を広げ、荷重を分散する効果が発現する。この効果により繊維への押しつけ応力は低下し耐摩耗性が向上する。圧縮弾性率の下限は特に限定されないが、0.10GPa以上であれば繊維が押しつぶされて変形する量は小さく、印刷用スクリーン紗に用いる場合には紗厚を高いレベルで維持できるため紗の性能を損ねない。なお本発明で言う圧縮弾性率とは実施例記載の手法により求められた値を指す。 The compression elastic modulus (hereinafter referred to as compression elastic modulus) in the direction perpendicular to the fiber axis of the fiber of the present invention is preferably 0.50 GPa or less. The liquid crystalline polyester fiber of the present invention has high strength and elastic modulus in the tensile direction, but its compressive modulus is low, so that the contact area when the fiber is pressed against a guide or ridge by a high-order processing step or a loom The effect of spreading the load and dispersing the load appears. This effect reduces the pressing stress on the fiber and improves the wear resistance. The lower limit of the compressive elastic modulus is not particularly limited, but if it is 0.10 GPa or more, the amount of the fiber is crushed and deformed is small, and when used for printing screen wrinkles, the wrinkle performance can be maintained at a high level. Will not be damaged. In addition, the compression elastic modulus said by this invention points out the value calculated | required by the method of an Example description.
本発明の繊維の複屈折率(△n)は0.250以上0.450以下が好ましい。△nがこの範囲であれば繊維軸方向の分子配向は十分に高く、高い強度、弾性率が得られる。 The birefringence (Δn) of the fiber of the present invention is preferably from 0.250 to 0.450. If Δn is within this range, the molecular orientation in the fiber axis direction is sufficiently high, and high strength and elastic modulus can be obtained.
本発明の繊維は広角X線回折において繊維軸に対し赤道線方向の2θ=18〜22°に観測されるピークの半値幅(Δ2θ)が1.8°以上であることが好ましく、2.0°以上がより好ましく、2.2°以上であることがさらに好ましい。結晶性高分子では一般に結晶サイズの減少に伴いΔ2θも大きくなるが、液晶ポリエステルでは回折を与えるのがフェニレン環のスタッキングであることからスタッキングの乱れの寄与が大きいとΔ2θが大きくなると考えられる。液晶ポリエステルでは固相重合に伴いスタッキング構造が安定化し結晶化するためΔ2θが減少する。Δ2θが1.8°以上と大きいことで結晶性は低下し繊維全体が柔軟化し、かつ破壊の起点となる結晶/非晶の構造差が減少することで耐摩耗性が向上する。Δ2θの上限は特に限定されないが、本発明で達しえる上限としては4.0°程度である。なお本発明で言うΔ2θとは実施例記載の手法により求められた値を指す。 In the fiber of the present invention, the peak half-value width (Δ2θ) observed at 2θ = 18 to 22 ° in the equator direction with respect to the fiber axis in wide-angle X-ray diffraction is preferably 1.8 ° or more. More preferably, it is more than or equal to °, and more preferably is more than 2.2 °. In general, in crystalline polymers, Δ2θ also increases as the crystal size decreases. However, in liquid crystal polyester, it is considered that Δ2θ increases when the contribution of disturbance of stacking is large because diffraction is given to stacking of the phenylene ring. In the liquid crystal polyester, the stacking structure is stabilized and crystallized with solid phase polymerization, so that Δ2θ decreases. When Δ2θ is as large as 1.8 ° or more, the crystallinity is lowered, the entire fiber is softened, and the crystal / amorphous structural difference that is the starting point of fracture is reduced, so that the wear resistance is improved. The upper limit of Δ2θ is not particularly limited, but the upper limit that can be achieved by the present invention is about 4.0 °. In the present invention, Δ2θ refers to a value obtained by the method described in the examples.
本発明で得られる繊維には表面平滑性向上による耐摩耗性向上、工程通過性向上などのために油分が付着されていることが好ましく、油分付着量は繊維重量に対し0.01重量%以上が好ましい。なお本発明で言う油分付着量とは実施例記載の手法により求められた値を指す。油分は多いほどその効果は高まるため、0.05重量%以上がより好ましい。ただし油分が多すぎると繊維同士の接着力が高まり、走行張力が不安定になる、ガイドなどに油分が堆積し工程通過性が悪化し、時には製品に混入し欠点となるなどの問題を引き起こすため、2.0重量%以下が好ましく、1.0重量%以下がより好ましい。 The fiber obtained in the present invention is preferably attached with an oil for improving wear resistance by improving surface smoothness, improving process passability, etc., and the amount of oil attached is 0.01% by weight or more with respect to the fiber weight. Is preferred. In addition, the oil adhesion amount said by this invention refers to the value calculated | required by the method of an Example description. Since the effect increases as the amount of oil increases, 0.05% by weight or more is more preferable. However, if too much oil is present, the adhesive strength between fibers will increase, running tension will become unstable, oil will accumulate on the guide and the process will deteriorate, and sometimes it will be mixed into the product and cause defects. 2.0% by weight or less is preferable, and 1.0% by weight or less is more preferable.
液晶ポリエステル繊維の表面に残存する油分付着量は、加工工程である製経や製織におけるガイド部分などへのスカム発生の要因となることに加え、液晶ポリエステル繊維を製造する工程でのスカム発生による糸切れも抑制して、工程安定性を向上させることができる観点から、0.5重量%未満であるとさらに好ましい態様である。油分付着量が0.5重量%未満であると、得られた液晶ポリエステル繊維を解舒する際に好適に用いられるテンション付与装置等において、スカムの発生が極めて抑制される。テンション付与装置等で発生したスカムは、例えばテンション付与機構である擦過体の部分に堆積し、擦過体の摩擦抵抗を変化させるほか、走行する繊維の擦過体上の位置を変えてしまうなどの理由から、張力変動の要因となる。張力が変動してしまうと、その後の工程において液晶ポリエステル繊維が突っ張る部分と弛む部分ができてしまい、中間工程や最終工程における製品の品質を低下させてしまう原因になるほか、最悪の場合には工程を止めてしまい、大きな損失となる可能性がある。このことから油分付着量は、0.3重量%未満であることがさらに好ましい態様である。 The amount of oil adhering to the surface of the liquid crystal polyester fiber becomes a factor in generating scum on the guide part in warping and weaving that is a processing process, as well as yarn due to the occurrence of scum in the process of manufacturing liquid crystal polyester fiber From the viewpoint of suppressing the cutting and improving the process stability, it is a more preferable embodiment if it is less than 0.5% by weight. When the oil adhesion amount is less than 0.5% by weight, the occurrence of scum is extremely suppressed in a tension applying device suitably used for unwinding the obtained liquid crystal polyester fiber. For example, the scum generated by the tension applying device or the like is deposited on the portion of the scraping body, which is a tension applying mechanism, and the friction resistance of the scraping body is changed, and the position of the traveling fiber on the scraping body is changed. Therefore, it becomes a factor of tension fluctuation. If the tension fluctuates, in the subsequent process, the liquid crystal polyester fiber will be stretched and loosened, which will cause the product quality in the intermediate process and final process to deteriorate, and in the worst case. There is a possibility that the process is stopped and a large loss occurs. From this, it is a more preferable embodiment that the oil adhesion amount is less than 0.3% by weight.
本発明の液晶ポリエステル繊維の解舒張力変動率は、30%未満であることが好ましい。解舒張力変動率は、実施例記載の方法で測定されるパラメータである。解舒張力の変動は、特に織物を製造する際に、製織時の製経工程や緯打込み工程での液晶ポリエステル繊維の弛みを誘発するため、得られる織物において、弛みや引きつれの原因となる。このような弛みや引きつれは、織物の品位を悪化させるため、発生させないこと、つまり解舒張力の変動を極力抑えることが好ましい態様である。解舒張力の変動は、さまざまな要因によって引き起こされるが、数ある要因のうちの一つとして、繊維表面に残存した油分が、例えば糸道ガイドに堆積することで、解舒張力の変動を引き起こすことがある。このため解舒張力変動率を低減させ、走行糸条を安定させる観点からも油分付着量は、液晶ポリエステル繊維の表面に実質的に付着していないことが、より好ましい態様である。 The unwinding tension fluctuation rate of the liquid crystal polyester fiber of the present invention is preferably less than 30%. The unraveling tension fluctuation rate is a parameter measured by the method described in the examples. Fluctuation in the unwinding tension induces loosening of the liquid crystal polyester fiber in the warp process and weft-in process during weaving, especially when manufacturing the fabric, which causes the fabric to be loosened and pulled. . Since such slack and pulling deteriorate the quality of the fabric, it is a preferable aspect not to generate it, that is, to suppress fluctuations in the unwinding tension as much as possible. Variations in unwinding tension are caused by various factors. One of many factors is that oil remaining on the fiber surface, for example, accumulates on the yarn path guide, causing fluctuations in unwinding tension. Sometimes. Therefore, from the viewpoint of reducing the unwinding tension fluctuation rate and stabilizing the running yarn, it is a more preferable aspect that the oil adhesion amount is not substantially adhered to the surface of the liquid crystal polyester fiber.
上記の通り織物品位向上の観点から解舒張力変動率は、30%未満であることが好ましく、20%未満であるとより好ましく、15%未満であると最も好ましい。 As described above, the unwinding tension fluctuation rate is preferably less than 30%, more preferably less than 20%, and most preferably less than 15% from the viewpoint of improving the textile quality.
また付着させる油剤種は繊維に一般的に使用されるものであれば特に制限はないが、液晶ポリエステル繊維に対しては、固相重合での融着防止と表面平滑性向上の両方の効果を併せ持つポリシロキサン系化合物を少なくとも用いることが好ましく、中でも繊維への塗布が容易である常温で液体状のポリシロキサン系化合物(いわゆるシリコーンオイル)、特に水エマルジョン化に適し環境負荷の低いポリジメチルシロキサン系化合物を含むことが特に好ましい。付着した油分にポリシロキサン系化合物を含むことの判定は、本発明においては実施例記載の方法で行う。 The kind of oil agent to be attached is not particularly limited as long as it is generally used for fibers. However, liquid crystal polyester fibers have both effects of preventing fusion in solid phase polymerization and improving surface smoothness. It is preferable to use at least a polysiloxane compound having a combination, and in particular, a polysiloxane compound that is liquid at room temperature (so-called silicone oil) that can be easily applied to fibers, especially a polydimethylsiloxane compound that is suitable for water emulsification and has a low environmental impact. It is particularly preferred to include a compound. In the present invention, it is determined by the method described in the examples that the adhered oil contains a polysiloxane compound.
本発明の繊維の耐摩耗性Cは20秒以上が好ましく、50秒以上がより好ましく、60秒以上がさらに好ましく、70秒以上が特に好ましい。本発明で言う耐摩耗性Cとは実施例記載の手法により測定された値を指す。耐摩耗性Cが20秒以上であることで液晶ポリエステル繊維の高次加工工程でのフィブリル化が抑制でき、フィブリル堆積による工程通過性や製織性の悪化、堆積したフィブリルが織り込まれることによる開口部の目詰まりが抑制できる他、ガイド類へのフィブリルの堆積が減ずることから洗浄、交換周期を長くできる。 The abrasion resistance C of the fiber of the present invention is preferably 20 seconds or more, more preferably 50 seconds or more, further preferably 60 seconds or more, and particularly preferably 70 seconds or more. The abrasion resistance C referred to in the present invention refers to a value measured by the method described in the examples. Abrasion resistance C of 20 seconds or more can prevent fibrillation of liquid crystalline polyester fiber in the high-order processing step, deterioration of process passability and weaving property due to fibril deposition, and opening due to weaving of accumulated fibrils In addition to suppressing clogging, cleaning and replacement cycles can be lengthened because fibril accumulation on guides is reduced.
本発明の繊維のフィラメント数は、繊維製品の薄物化、軽量化のためにはフィラメント数50以下が好ましく、20以下がより好ましい。特にフィラメント数が1であるモノフィラメントは細繊度、高強度、高弾性率、単繊維繊度の均一性が強く望まれる分野であるため本発明の繊維は特に好適に用いることができる。 The number of filaments of the fiber of the present invention is preferably 50 or less, more preferably 20 or less, in order to make the fiber product thinner and lighter. In particular, since the monofilament having 1 filament is a field in which fineness, high strength, high elastic modulus, and uniformity of single fiber fineness are strongly desired, the fiber of the present invention can be particularly preferably used.
本発明の繊維の糸長は15万m以上が好ましい。糸長が長いことで織物の緯糸とした場合に製織長さを長くできる他、製品の輸送時の容積を減らすことができる。糸長が長いほどこの効果は高められるため、糸長は20万m以上がより好ましい。特に油分付着率が0.5重量%未満の液晶ポリエステル繊維は、その巻取パッケージにおける繊維長が20万m以上であることが好ましい。 The yarn length of the fiber of the present invention is preferably 150,000 m or more. The long yarn length allows the weaving length to be increased when the weft of the woven fabric is used, and the volume during transportation of the product can be reduced. Since this effect is enhanced as the yarn length is longer, the yarn length is more preferably 200,000 m or more. In particular, the liquid crystal polyester fiber having an oil adhesion rate of less than 0.5% by weight preferably has a fiber length of 200,000 m or more in the winding package.
従来は、油分付着率が高すぎて、液晶ポリエステル繊維の製造工程中でのガイド部などへスカムが堆積することにより、長時間連続して液晶ポリエステル繊維を巻き取ることが難しかった。本発明に記載される好ましい製造方法で得られた油分付着率が0.5重量%未満の液晶ポリエステル繊維は、製造工程中でのスカム堆積を抑制することができるため、安定して20万m以上の巻取パッケージを得ることができるため、好ましい態様である。 Conventionally, it was difficult to wind up the liquid crystal polyester fiber continuously for a long time because the oil adhesion rate was too high and scum was deposited on the guide portion or the like in the manufacturing process of the liquid crystal polyester fiber. Since the liquid crystal polyester fiber having an oil adhesion rate of less than 0.5% by weight obtained by the preferred production method described in the present invention can suppress scum accumulation during the production process, it is stably stabilized at 200,000 m. Since the above winding package can be obtained, it is a preferable aspect.
また織物や編物、ロープなどの資材に代表される最終製品を製造する工程において、長時間機械を停止せずに製造できることから、巻取パッケージの繊維長は20万m以上であると好ましく、30万m以上であると更に好ましい。上限は特に定められたものではないが、パッケージの重量やハンドリングの面から、繊維長400万m、パッケージ重量20kg程度で十分である。 Further, in the process of producing a final product typified by materials such as woven fabrics, knitted fabrics, and ropes, it can be produced without stopping the machine for a long time. Therefore, the fiber length of the winding package is preferably 200,000 m or more, and 30 More preferably, it is 10,000 m or more. Although the upper limit is not particularly defined, a fiber length of 4 million m and a package weight of about 20 kg are sufficient from the viewpoint of package weight and handling.
また本発明の繊維は糸長が長いため、繊維を芯材に巻きパッケージとすることが好ましい。パッケージ形態としては特にモノフィラメントの場合、端面での崩れが起きやすいため、端面がテーパー状であることが好ましく、テーパーエンドチーズ巻やパーン巻であることがより好ましい。端面のテーパー角は過度に大きいと端面が崩れるため70°以下が好ましく、60°以下がより好ましい。またテーパー角が小さいと巻量を多くできないため30°以上が好ましく、40°以上がより好ましい。なお本発明で言うテーパー角とは以下の式で定義される。 Since the fiber of the present invention has a long yarn length, it is preferable to wind the fiber around a core material to form a package. Especially in the case of a monofilament as a package form, the end face is likely to collapse, so that the end face is preferably tapered, and more preferably tapered end cheese winding or pirn winding. When the taper angle of the end face is excessively large, the end face collapses, so that it is preferably 70 ° or less, and more preferably 60 ° or less. Further, when the taper angle is small, the amount of winding cannot be increased, so that it is preferably 30 ° or more, and more preferably 40 ° or more. The taper angle referred to in the present invention is defined by the following equation.
以下、本発明の液晶ポリエステル繊維の製造例を詳細に説明する。 Hereafter, the manufacture example of the liquid crystalline polyester fiber of this invention is demonstrated in detail.
本発明に用いる液晶ポリエステルの製造方法は公知の製造方法に準じて製造でき、例えば以下の製造方法が好ましく挙げられる。 The method for producing the liquid crystal polyester used in the present invention can be produced according to a known production method. For example, the following production methods are preferred.
(1)p−アセトキシ安息香酸などのアセトキシカルボン酸および4,4’−ジアセトキシビフェニル、ジアセトキシベンゼンなどの芳香族ジヒドロキシ化合物のジアセチル化物とテレフタル酸、イソフタル酸などの芳香族ジカルボン酸から脱酢酸縮重合反応によって液晶性ポリエステルを製造する方法。 (1) Deacetic acid from acetoxycarboxylic acid such as p-acetoxybenzoic acid and diacetylated compounds of aromatic dihydroxy compounds such as 4,4′-diacetoxybiphenyl and diacetoxybenzene and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid A method for producing a liquid crystalline polyester by a condensation polymerization reaction.
(2)p−ヒドロキシ安息香酸などのヒドロキシカルボン酸および4,4’−ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物とテレフタル酸、イソフタル酸などの芳香族ジカルボン酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法。 (2) Hydroxycarboxylic acid such as p-hydroxybenzoic acid and aromatic dihydroxy compounds such as 4,4′-dihydroxybiphenyl and hydroquinone and aromatic dicarboxylic acid such as terephthalic acid and isophthalic acid are reacted with acetic anhydride to produce phenol. A method for producing a liquid crystalline polyester by deacetic acid polycondensation reaction after acylating a functional hydroxyl group.
(3)p−ヒドロキシ安息香酸などのヒドロキシカルボン酸のフェニルエステルおよび4,4’−ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物とテレフタル酸、イソフタル酸などの芳香族ジカルボン酸のジフェニルエステルから脱フェノール重縮合反応により液晶性ポリエステルを製造する方法。 (3) Dephenolization from phenyl esters of hydroxycarboxylic acids such as p-hydroxybenzoic acid and aromatic dihydroxy compounds such as 4,4′-dihydroxybiphenyl and hydroquinone and diphenyl esters of aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid A method for producing a liquid crystalline polyester by a polycondensation reaction.
(4)p−ヒドロキシ安息香酸などのヒドロキシカルボン酸およびテレフタル酸、イソフタル酸などの芳香族ジカルボン酸に所定量のジフェニルカーボネートを反応させて、それぞれジフェニルエステルとした後、4,4’−ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物を加え、脱フェノール重縮合反応により液晶性ポリエステルを製造する方法。 (4) A predetermined amount of diphenyl carbonate is reacted with a hydroxycarboxylic acid such as p-hydroxybenzoic acid and an aromatic dicarboxylic acid such as terephthalic acid or isophthalic acid to form a diphenyl ester, and then 4,4′-dihydroxybiphenyl. A method for producing a liquid crystalline polyester by dephenol polycondensation reaction by adding an aromatic dihydroxy compound such as hydroquinone.
中でもp−ヒドロキシ安息香酸などのヒドロキシカルボン酸および4,4’−ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物、テレフタル酸、イソフタル酸などの芳香族ジカルボン酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法が好ましい。さらに、4,4’−ジヒドロキシビフェニルおよびハイドロキノン等の芳香族ジヒドロキシ化合物の合計使用量とテレフタル酸およびイソフタル酸等の芳香族ジカルボン酸の合計使用量は、実質的に等モルであることが好ましい。無水酢酸の使用量は、p−ヒドロキシ安息香酸、4,4’−ジヒドロキシビフェニルおよびハイドロキノンのフェノール性水酸基の合計の1.12当量以下であることが好ましく、1.10当量以下であることがより好ましく、下限については1.00当量以上であることが好ましい。 In particular, hydroxycarboxylic acids such as p-hydroxybenzoic acid, aromatic dihydroxy compounds such as 4,4′-dihydroxybiphenyl and hydroquinone, and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid are reacted with acetic anhydride to produce phenolic hydroxyl groups. A method of producing a liquid crystalline polyester by acylating and then deaceticating polycondensation reaction is preferable. Further, the total amount of aromatic dihydroxy compounds such as 4,4'-dihydroxybiphenyl and hydroquinone and the total amount of aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid are preferably substantially equimolar. The amount of acetic anhydride used is preferably 1.12 equivalents or less, more preferably 1.10 equivalents or less of the total of the phenolic hydroxyl groups of p-hydroxybenzoic acid, 4,4′-dihydroxybiphenyl and hydroquinone. The lower limit is preferably 1.00 equivalent or more.
本発明で用いる液晶ポリエステルを脱酢酸重縮合反応により製造する際には、液晶ポリエステルが溶融する温度で減圧下反応させ、重縮合反応を完了させる溶融重合法が、均一なポリマーを製造でき、ガス発生量がより少なく、製糸性に優れるポリマーを得ることができるため好ましい。例えば、所定量のp−ヒドロキシ安息香酸等のヒドロキシカルボン酸および4,4’−ジヒドロキシビフェニル、ハイドロキノン等の芳香族ジヒドロキシ化合物、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸、無水酢酸を攪拌翼、留出管を備え、下部に吐出口を備えた反応容器中に仕込み、窒素ガス雰囲気下で攪拌しながら加熱し水酸基をアセチル化させた後、液晶性樹脂の溶融温度まで昇温し、減圧により重縮合し、反応を完了させる方法が挙げられる。アセチル化させる条件は、通常140〜180℃の範囲で、1〜6時間反応させる。重縮合させる温度は液晶ポリエステルの溶融温度、例えば250〜350℃の範囲であり、好ましくは液晶ポリエステルポリマーの融点+10℃以上の温度である。重縮合させるときの減圧度は通常665Pa以下である。 When the liquid crystalline polyester used in the present invention is produced by a deacetic acid polycondensation reaction, a melt polymerization method in which the polycondensation reaction is completed by reacting under reduced pressure at a temperature at which the liquid crystalline polyester melts can produce a uniform polymer, It is preferable because a polymer with a smaller amount of generation and excellent in yarn-making property can be obtained. For example, a predetermined amount of a hydroxycarboxylic acid such as p-hydroxybenzoic acid and an aromatic dihydroxy compound such as 4,4′-dihydroxybiphenyl and hydroquinone, an aromatic dicarboxylic acid such as terephthalic acid and isophthalic acid, and an acetic anhydride stirring blade, Charged into a reaction vessel equipped with a distillation pipe and provided with a discharge port at the bottom, heated under stirring in a nitrogen gas atmosphere to acetylate the hydroxyl group, then raised to the melting temperature of the liquid crystalline resin, and reduced pressure A method of completing the reaction by polycondensation is mentioned. The conditions for acetylation are usually in the range of 140 to 180 ° C. for 1 to 6 hours. The polycondensation temperature is a melting temperature of the liquid crystal polyester, for example, in the range of 250 to 350 ° C., and preferably a melting point of the liquid crystal polyester polymer + 10 ° C. or higher. The degree of pressure reduction during polycondensation is usually 665 Pa or less.
得られたポリマーは、それが溶融する温度で反応容器内を例えば、およそ0.1±0.05MPaに加圧し、反応容器下部に設けられた吐出口よりストランド状に吐出することができる。 The obtained polymer can be pressurized in the reaction vessel to, for example, about 0.1 ± 0.05 MPa at a temperature at which it melts and discharged in a strand form from the discharge port provided at the lower portion of the reaction vessel.
本発明に用いる液晶ポリエステルを製造する際に、固相重合法により重縮合反応を完了させることも可能である。例えば、液晶ポリエステルポリマーまたはオリゴマーを粉砕機で粉砕し、窒素気流下または減圧下、液晶ポリエステルの融点(Tm)−5℃〜融点(Tm)−50℃(例えば、200〜300℃)の範囲で1〜50時間加熱し、所望の重合度まで重縮合し、反応を完了させる方法が挙げられる。 When producing the liquid crystalline polyester used in the present invention, the polycondensation reaction can be completed by a solid phase polymerization method. For example, the liquid crystal polyester polymer or oligomer is pulverized by a pulverizer, and the melting point (Tm) -5 ° C. to the melting point (Tm) −50 ° C. (for example, 200 to 300 ° C.) of the liquid crystal polyester under a nitrogen stream or reduced pressure. A method of heating for 1 to 50 hours, polycondensing to a desired degree of polymerization, and completing the reaction can be mentioned.
ただし紡糸においては、固相重合法により製造した液晶性樹脂をそのまま用いると、固相重合によって生じた高結晶化部分が未溶融で残り、紡糸パック圧の上昇や糸中の異物の原因となる可能性があるため、一度二軸押出機などで混練して(リペレタイズ)、高結晶化部分を完全に溶融することが好ましい。 However, in spinning, if the liquid crystalline resin produced by the solid phase polymerization method is used as it is, the highly crystallized portion generated by the solid phase polymerization remains unmelted, which causes an increase in spinning pack pressure and foreign matter in the yarn. Since there is a possibility, it is preferable that the highly crystallized portion is completely melted by kneading (repletizing) once with a twin screw extruder or the like.
上記液晶ポリエステルの重縮合反応は無触媒でも進行するが、酢酸第一錫、テトラブチルチタネート、酢酸カリウムおよび酢酸ナトリウム、三酸化アンチモン、金属マグネシウムなどの金属化合物を使用することもできる。 The polycondensation reaction of the liquid crystal polyester proceeds even without catalyst, but metal compounds such as stannous acetate, tetrabutyl titanate, potassium acetate and sodium acetate, antimony trioxide, and magnesium metal can also be used.
本発明に用いる液晶ポリエステルポリマーの融点は、溶融紡糸可能な温度範囲を広くするため好ましくは200〜380℃であり、紡糸性を高めるためにより好ましいのは250〜360℃である。なお液晶ポリエステルポリマーの融点は実施例記載の方法で測定される値を指す。 The melting point of the liquid crystalline polyester polymer used in the present invention is preferably 200 to 380 ° C. in order to widen the temperature range in which melt spinning is possible, and more preferably 250 to 360 ° C. in order to improve the spinnability. In addition, melting | fusing point of a liquid crystalline polyester polymer points out the value measured by the method of an Example description.
本発明に用いる液晶ポリエステルポリマーの溶融粘度は、0.5〜200Pa・sであり、高い紡糸性を得るため10〜50Pa・sがより好ましい。なお、この溶融粘度は、融点(Tm)+10℃の条件で、ずり速度1,000(1/s)の条件下で高化式フローテスターによって測定した値である。 The melt viscosity of the liquid crystalline polyester polymer used in the present invention is 0.5 to 200 Pa · s, and 10 to 50 Pa · s is more preferable in order to obtain high spinnability. The melt viscosity is a value measured with a Koka flow tester under the condition of melting point (Tm) + 10 ° C. and shear rate of 1,000 (1 / s).
本発明に用いる液晶ポリエステルのポリスチレン換算の重量平均分子量(以下、分子量と記載)は3.0万以上が好ましい。分子量を3.0万以上とすることで紡糸温度において適切な粘度を持ち製糸性を高めることができる。分子量が高いほど得られる繊維の強度、伸度、弾性率は高まるが、分子量が高すぎると粘度が高くなり流動性が悪くなり、ついには流動しなくなるため分子量は25.0万未満が好ましく、20.0万未満がより好ましい。 The polystyrene equivalent weight average molecular weight (hereinafter referred to as molecular weight) of the liquid crystalline polyester used in the present invention is preferably 30,000 or more. By setting the molecular weight to 30,000 or more, it has an appropriate viscosity at the spinning temperature and can improve the spinning property. The higher the molecular weight, the higher the strength, elongation and elastic modulus of the resulting fiber, but if the molecular weight is too high, the viscosity will be high and the fluidity will be poor, and eventually it will not flow, so the molecular weight is preferably less than 25 million, More preferably less than 20 million.
本発明に用いる液晶ポリエステルは溶融紡糸に供する前に乾燥することが水分混入による発泡を抑え、製糸性を高めるうえで好ましい。また真空乾燥を行うことで、液晶ポリエステルに残存するモノマーも除去できるため、製糸性をさらに高めることができ、より好ましい。乾燥温度は通常100〜200℃にて、8〜24時間の真空乾燥を行う。 The liquid crystalline polyester used in the present invention is preferably dried before being subjected to melt spinning in order to suppress foaming due to water mixing and to improve the yarn-making property. Moreover, since the monomer which remain | survives in liquid crystalline polyester can also be removed by performing vacuum drying, a yarn-making property can be improved further and it is more preferable. The drying temperature is usually 100 to 200 ° C., and vacuum drying is performed for 8 to 24 hours.
溶融紡糸において、液晶ポリエステルの溶融押出は公知の手法を用いることができるが、重合時に生成する秩序構造をなくすためにエクストルーダー型の押出機を用いることが好ましい。押し出されたポリマーは配管を経由しギアーポンプなど公知の計量装置により計量され、異物除去のフィルターを通過した後、口金へと導かれる。このときポリマー配管から口金までの温度(紡糸温度)は流動性を高めるため液晶ポリエステルの融点以上とすることが好ましく、液晶ポリエステルの融点+10℃以上がより好ましい。ただし紡糸温度が過度に高いと液晶ポリエステルの粘度が増加し、流動性の悪化、製糸性の悪化を招くため500℃以下とすることが好ましく、400℃以下がより好ましい。なお、ポリマー配管から口金までの温度をそれぞれ独立して調整することも可能である。この場合、口金に近い部位の温度をその上流側の温度より高くすることで吐出が安定する。 In melt spinning, a known method can be used for melt extrusion of liquid crystal polyester, but an extruder type extruder is preferably used in order to eliminate the ordered structure generated during polymerization. The extruded polymer is measured by a known measuring device such as a gear pump through a pipe, and after passing through a filter for removing foreign matter, is guided to a base. At this time, the temperature from the polymer pipe to the die (spinning temperature) is preferably not less than the melting point of the liquid crystal polyester, and more preferably not less than the melting point of the liquid crystal polyester + 10 ° C. in order to improve fluidity. However, if the spinning temperature is excessively high, the viscosity of the liquid crystal polyester increases, leading to deterioration of fluidity and yarn-making property. Therefore, the temperature is preferably 500 ° C. or less, and more preferably 400 ° C. or less. It is also possible to independently adjust the temperature from the polymer pipe to the base. In this case, the discharge is stabilized by making the temperature of the part close to the base higher than the temperature on the upstream side.
吐出においては口金孔の孔径を小さくするとともに、ランド長(口金孔の孔径と同一の直管部の長さ)を長くすることが製糸性を高め、繊度の均一性を高める点で重要である。ただし孔径が過度に小さいと孔の詰まりが発生しやすくなるため直径0.03mm以上0.30mm以下が好ましく、0.08mm以上0.20mm以下がより好ましい。ランド長は過度に長いと圧力損失が高くなるため、ランド長を孔径で除した商で定義されるL/Dは0.5以上3.0以下が好ましく0.8以上2.5以下がより好ましい。 In discharging, reducing the diameter of the die hole and increasing the land length (the length of the straight pipe portion that is the same as the diameter of the die hole) are important in terms of improving the yarn production and improving the uniformity of the fineness. . However, if the hole diameter is excessively small, clogging of the hole is likely to occur, and the diameter is preferably 0.03 mm or more and 0.30 mm or less, and more preferably 0.08 mm or more and 0.20 mm or less. If the land length is excessively long, the pressure loss increases. Therefore, the L / D defined by the quotient obtained by dividing the land length by the hole diameter is preferably 0.5 or more and 3.0 or less, more preferably 0.8 or more and 2.5 or less. preferable.
また均一性を維持するために1つの口金の孔数は50孔以下が好ましく、20孔以下がより好ましい。なお、口金孔の直上に位置する導入孔はストレート孔とすることが圧力損失を高めない点で好ましい。導入孔と口金孔の接続部分はテーパーとすることが異常滞留を抑制する上で好ましいい。 In order to maintain uniformity, the number of holes in one die is preferably 50 holes or less, and more preferably 20 holes or less. In addition, it is preferable that the introduction hole located immediately above the die hole is a straight hole in terms of not increasing pressure loss. In order to suppress abnormal retention, it is preferable that the connecting portion between the introduction hole and the base hole is tapered.
口金孔より吐出されたポリマーは保温、冷却領域を通過させ固化させた後、一定速度で回転するローラー(ゴデットローラー)により引き取られる。保温領域は過度に長いと製糸性が悪くなるため口金面から200mmまでとすることが好ましく、100mmまでとすることがより好ましい。保温領域は加熱手段を用いて雰囲気温度を高めることも可能であり、その温度範囲は100℃以上500℃以下が好ましく、200℃以上400℃以下がより好ましい。冷却は不活性ガス、空気、水蒸気等を用いることができるが、平行あるいは環状に噴き出す空気流を用いることが環境負荷を低くする点から好ましい。 The polymer discharged from the base hole passes through a heat retaining and cooling region and solidifies, and is then taken up by a roller (godet roller) that rotates at a constant speed. If the heat-retaining region is excessively long, the yarn forming property is deteriorated, so that it is preferably up to 200 mm from the base surface, and more preferably up to 100 mm. In the heat retaining region, the atmospheric temperature can be increased by using a heating means, and the temperature range is preferably 100 ° C. or higher and 500 ° C. or lower, and more preferably 200 ° C. or higher and 400 ° C. or lower. For the cooling, an inert gas, air, water vapor, or the like can be used. However, it is preferable to use an air flow that is jetted in parallel or in an annular shape from the viewpoint of reducing the environmental load.
引き取り速度は生産性、単糸繊度の低減のため50m/分以上が好ましく、500m/分以上がより好ましい。本発明で好ましい例として挙げた液晶ポリエステルは紡糸温度において好適な曳糸性を有することから引き取り速度を高速にでき、上限は特に制限されないが、曳糸性の点から2000m/分程度となる。 The take-up speed is preferably 50 m / min or more, more preferably 500 m / min or more in order to reduce productivity and single yarn fineness. The liquid crystalline polyester mentioned as a preferred example in the present invention has a suitable spinnability at the spinning temperature, so that the take-up speed can be increased, and the upper limit is not particularly limited, but is about 2000 m / min from the viewpoint of spinnability.
引き取り速度を吐出線速度で除した商で定義される紡糸ドラフトは1以上500以下とすることが好ましく製糸性を高め、繊度の均一性を高める点で10以上100以下とすることがより好ましい。 The spinning draft defined by the quotient obtained by dividing the take-up speed by the discharge linear speed is preferably 1 or more and 500 or less, and more preferably 10 or more and 100 or less from the viewpoint of improving the spinning property and improving the uniformity of the fineness.
溶融紡糸においてはポリマーの冷却固化から巻き取りまでの間に油剤を付与することが繊維の取り扱い性を向上させる上で好ましい。油剤は公知のものを使用できるが、固相重合前巻き返しにおいて溶融紡糸で得られた繊維(以下、紡糸原糸と記載する)を解舒する際の解舒性を向上させる点でポリエーテル化合物を主体とする平滑剤とラウリルアルコールを主体とする乳化剤の水エマルジョンを用いることが好ましい。 In melt spinning, it is preferable to add an oil agent between the cooling and solidification of the polymer and the winding to improve the handleability of the fiber. As the oil agent, known ones can be used, but a polyether compound is used in terms of improving the unwinding property when unwinding the fiber (hereinafter referred to as the spinning yarn) obtained by melt spinning in the rewinding before solid phase polymerization. It is preferable to use an aqueous emulsion of a smoothing agent mainly composed of lauryl alcohol and an emulsifier mainly composed of lauryl alcohol.
巻き取りは公知の巻取機を用いパーン、チーズ、コーンなどの形態のパッケージとすることができるが、巻き取り時にパッケージ表面にローラーが接触しないパーン巻きとすることが繊維に摩擦力を与えずフィブリル化させない点で好ましい。 Winding can be carried out using a known winding machine to form a package such as pirn, cheese, corn, etc. However, wrapping with a roller that does not contact the surface of the package during winding does not give the fiber a frictional force. It is preferable in that it is not fibrillated.
次に、本発明の分子量25.0万以上、200.0万以下の液晶ポリエステル繊維を得るためには、紡糸原糸を固相重合する。固相重合を行うことで分子量が高まり、これにより強度、弾性率、伸度が高まる。固相重合はカセ状、トウ状(例えば金属網等にのせて行う)、あるいはローラー間で連続的に糸条として処理することも可能であるが、設備が簡素化でき、生産性も向上できる点から繊維を芯材に巻き取ったパッケージ状で行うことが好ましい。 Next, in order to obtain a liquid crystal polyester fiber having a molecular weight of 255,000 or more and 200,000 or less of the present invention, the spinning yarn is subjected to solid phase polymerization. By performing solid phase polymerization, the molecular weight is increased, thereby increasing strength, elastic modulus, and elongation. Solid-phase polymerization can be processed in the form of a cake, tow (for example, on a metal net), or continuously as a thread between rollers, but the equipment can be simplified and productivity can be improved. It is preferable to carry out in the form of a package in which fibers are wound around a core from the point.
パッケージ状で固相重合を行う場合、単繊維繊度を細くした際に顕著となる融着を防止することが重要となり、このため固相重合を行う際の繊維パッケージの巻き密度を小さくすることが好ましい。一方、巻き密度を小さくし過ぎるとパッケージの巻き崩れや端面での綾落ちが生じ、固相重合後に繊維を一定速度で解舒する際に張力変動や糸切れを招く。したがって本発明の繊維を得るためには巻き密度が小さく、かつ巻崩れや綾落ちが少ないパッケージを得ることが重要となる。 When performing solid-phase polymerization in the form of a package, it is important to prevent fusion that becomes prominent when the single fiber fineness is reduced. For this reason, it is possible to reduce the winding density of the fiber package when performing solid-phase polymerization. preferable. On the other hand, if the winding density is too small, the package is collapsed or the end face is fallen, and when the fiber is unwound at a constant speed after solid-phase polymerization, tension fluctuations and yarn breakage are caused. Therefore, in order to obtain the fiber of the present invention, it is important to obtain a package having a low winding density and less unwinding and falling.
このようなパッケージを溶融紡糸での巻き取りで形成することは、設備生産性、生産効率が向上するために望ましいが、紡糸原糸を巻き返して形成する方が、巻き形状を整えつつ、巻き張力を小さくすることができ、巻き密度を小さくできるため好ましい。 Forming such a package by winding by melt spinning is desirable in order to improve equipment productivity and production efficiency, but it is better to rewind and form the spinning yarn while adjusting the winding shape and winding tension. Is preferable because the winding density can be reduced.
巻き返しは紡糸原糸を解舒しつつ巻取機にて巻き取る。巻取機の一般的な制御方法は調速ローラーを介し、張力あるいは速度を検知して巻取機の速度を制御するものであるが、張力検知方式では巻き張力が高くなり、速度検知方式では伸度が小さく弾性率が高い液晶ポリエステル繊維の場合、速度の微小な変化による張力変動が大きくなり綾落ち、糸切れの問題を起こす。このことから巻き返しは紡糸原糸パッケージから調速ローラーを介せず直接、回転数が制御された巻取機で巻き取ることが好ましい。この場合、糸速度は時間の経過に伴い徐々に変化することもあるが、短時間での変化は小さく、張力は低い値をほぼ一定に保つことができ、巻き密度が小さく、かつ巻崩れや綾落ちが少ないパッケージを得ることができる。 In rewinding, the spinning yarn is unwound and wound by a winder. The general control method of the winder is to control the speed of the winder by detecting the tension or speed via a speed control roller. However, the tension detection method increases the winding tension, and the speed detection method In the case of a liquid crystal polyester fiber having a small elongation and a high elastic modulus, a tension fluctuation due to a minute change in speed becomes large, causing a problem of falling and thread breakage. For this reason, it is preferable that the rewinding is performed directly from the spinning yarn package by a winder having a controlled rotation speed without using a speed control roller. In this case, the yarn speed may gradually change over time, but the change in a short time is small, the tension can be kept at a low value, the winding density is small, A package with less twilight can be obtained.
巻き張力は、小さくするほど巻き密度は小さくできるので、1.0cN/dtex以下が好ましく、0.60cN/dtex以下がより好ましい。下限は特に定められないが本発明で達し得る下限は0.10cN/dtex程度である。 Since the winding density can be reduced as the winding tension is reduced, it is preferably 1.0 cN / dtex or less, more preferably 0.60 cN / dtex or less. The lower limit is not particularly defined, but the lower limit that can be reached in the present invention is about 0.10 cN / dtex.
巻き取り速度は500m/分以下、特に400m/分以下とすることが巻き密度を低くするために有効であるが、一方、巻き取り速度は生産性のためには高い方が有利であり、100m/分以上、特に200m/分以上とすることが好ましい。なお巻き返しの際に、回転数が制御された巻取機で直接巻き取る方式では、時間の経過と共に速度が変化する場合があるが、この場合の巻き取り速度は最高速度を指すものとする。 A winding speed of 500 m / min or less, particularly 400 m / min or less is effective for lowering the winding density. On the other hand, a higher winding speed is advantageous for productivity. / Min or more, and particularly preferably 200 m / min or more. Note that in the method of winding directly with a winder having a controlled number of revolutions during rewinding, the speed may change over time, but the winding speed in this case indicates the maximum speed.
巻き取りにおいてはパッケージ形状を整え巻き取り張力を安定化させるために用いられるコンタクトロール等の接圧(面圧)を小さくすること重要であり、接圧は400gf以下が好ましく、より好ましくは200gf以下である。接圧が過度に低いとコンタクトロールがパッケージから浮き、綾落ちすることから、接圧は50gf以上が好ましい。なお接圧はコンタクトロールとパッケージの接触長(巻きストローク、トラバース長とも言う)とも関係し、接触長が長いほど接圧は高くする必要がある。接触長が長いほどパッケージの巻き量は高まるため、接触長は100mm以上が好ましい。一方、接触長が過度に長いと固相重合後の解舒での端面での張力変動が大きくなるため、接触長は500mm以下が好ましい。 In winding, it is important to reduce the contact pressure (surface pressure) of a contact roll or the like used to adjust the package shape and stabilize the winding tension. The contact pressure is preferably 400 gf or less, more preferably 200 gf or less. It is. If the contact pressure is excessively low, the contact roll floats from the package and falls, so the contact pressure is preferably 50 gf or more. The contact pressure is also related to the contact length between the contact roll and the package (also referred to as a winding stroke or a traverse length). The longer the contact length, the higher the contact pressure needs to be. The longer the contact length, the higher the winding amount of the package. Therefore, the contact length is preferably 100 mm or more. On the other hand, if the contact length is excessively long, the variation in tension at the end face during unraveling after solid phase polymerization becomes large, so the contact length is preferably 500 mm or less.
低張力巻き取りにおいても綾落ちが少ないパッケージを形成するためには、巻き形態は両端にテーパーがついたテーパーエンド巻取とすることが好ましい。この際、テーパー角は70°以下が好ましく、60°以下がより好ましい。またテーパー角が小さい場合、繊維パッケージを大きくすることができないため、30°以上が好ましく、40°以上がより好ましい。なお本発明で言うテーパー角とは以下の式で定義される。 In order to form a package with less traversing even in low tension winding, the winding form is preferably a tapered end winding with both ends tapered. At this time, the taper angle is preferably 70 ° or less, and more preferably 60 ° or less. Further, when the taper angle is small, the fiber package cannot be enlarged, and therefore, 30 ° or more is preferable, and 40 ° or more is more preferable. The taper angle referred to in the present invention is defined by the following equation.
融着抑制にはワインド数も重要である。ここで言うワインド数とはトラバースが半往復する間にスピンドルが回転する回数であり、トラバース半往復の時間(分)とスピンドル回転数(rpm)の積で定義され、ワインド数が高いことは綾角が小さいことを示す。ワインド数は小さい方が繊維間の接触面積が小さく融着回避には有利であるが、本発明で好適な巻取条件となる低張力、低接圧などの条件においてはワインド数が高いほど端面での綾落ちが軽減でき、パッケージ形状が良好となる。これらの点からワインド数は3.0以上15.0以下が好ましく、5.0以上10.0以下がより好ましい。 The number of winds is also important for preventing fusion. The number of winds referred to here is the number of times the spindle rotates during a half-reciprocation of the traverse, and is defined by the product of the time (minutes) of the traverse half-reciprocation and the spindle rotation speed (rpm). Indicates that the corner is small. The smaller the number of winds, the smaller the contact area between the fibers, which is advantageous for avoiding fusion. However, the higher the number of winds, the lower the end face in conditions such as low tension and low contact pressure, which are suitable winding conditions in the present invention. Can be reduced, and the package shape is improved. From these points, the wind number is preferably 3.0 or more and 15.0 or less, and more preferably 5.0 or more and 10.0 or less.
本発明において、固相重合に供するパッケージの巻き密度は0.60g/cc以下が好ましい。ここで巻き密度とは、パッケージ外寸法と心材となるボビンの寸法から求められるパッケージの占有体積Vf(cc)と繊維の重量Wf(g)からWf/Vfにより計算される値である。なお占有体積Vfはパッケージの外形寸法を実測するか、写真を撮影し写真上で外形寸法を測定し、パッケージが回転対称であることを仮定し計算することで求められる値であり、Wfは繊度と巻取長から計算される値、もしくは巻取前後での重量差により実測される値である。巻き密度が小さいほどパッケージにおける繊維間の密着力が弱まり融着が抑制できるため、0.50g/cc以下がより好ましい。また巻き密度は過度に小さいとパッケージの巻き崩れや端面での綾落ちが生じるため0.05g/cc以上とすることが好ましく、0.20g/cc以上がより好ましい。 In the present invention, the winding density of the package subjected to solid phase polymerization is preferably 0.60 g / cc or less. Here, the winding density is a value calculated by Wf / Vf from the occupied volume Vf (cc) of the package and the weight Wf (g) of the fiber obtained from the outside dimension of the package and the size of the bobbin serving as the core material. The occupied volume Vf is a value obtained by actually measuring the outer dimension of the package or by taking a photograph and measuring the outer dimension on the photograph and assuming that the package is rotationally symmetric. Wf is the fineness And a value calculated from the winding length, or a value measured by a weight difference before and after winding. The lower the winding density, the weaker the adhesion between the fibers in the package and the lower the fusion, so 0.50 g / cc or less is more preferable. Further, if the winding density is excessively small, the package will be collapsed or the end face will fall, so that it is preferably 0.05 g / cc or more, more preferably 0.20 g / cc or more.
該繊維パッケージを形成するために用いられるボビンは円筒形状のものであればいかなるものでも良く、巻き返す際に巻取機に取り付け、これを回転させることで繊維を巻き取り、パッケージを形成する。固相重合に際しては繊維パッケージをボビンと一体で処理することもできるが、繊維パッケージからボビンのみを抜き取って処理することもできる。ボビンに巻いたまま処理する場合、該ボビンは固相重合温度に耐える必要があり、アルミや真鍮、鉄、ステンレスなどの金属製であることが好ましい。またこの場合、ボビンには多数の穴の空いていることが、重合反応副生物を速やかに除去でき固相重合を効率的に行えるため好ましい。また繊維パッケージからボビンを抜き取って処理する場合には、ボビン外層に外皮を装着しておくことが好ましい。また、いずれの場合にもボビンの外層にはクッション材を巻き付け、その上に液晶ポリエステル溶融紡糸繊維を巻き取っていくことが好ましい。クッション材の材質は、固相重合時の液晶ポリエステルとの融着を防ぐため耐熱性の高い有機繊維、例えばパラアラミド繊維やメタアラミド繊維からなるフェルトが好ましく、厚みは0.1mm以上、20mm以下が好ましい。前述の外皮を該クッション材で代用することもできる。 The bobbin used to form the fiber package may be any cylindrical one as long as it has a cylindrical shape. When the bobbin is wound, the bobbin is attached to a winder and rotated to wind the fiber to form a package. In the solid-phase polymerization, the fiber package can be processed integrally with the bobbin, but the bobbin alone can be extracted from the fiber package for processing. When the treatment is carried out while being wound around the bobbin, the bobbin needs to withstand the solid phase polymerization temperature, and is preferably made of a metal such as aluminum, brass, iron or stainless steel. Further, in this case, it is preferable that the bobbin has a large number of holes because the polymerization reaction by-products can be removed quickly and solid phase polymerization can be performed efficiently. Further, when the bobbin is extracted from the fiber package and processed, it is preferable to attach an outer skin to the bobbin outer layer. In any case, it is preferable that a cushion material is wound around the outer layer of the bobbin, and the liquid crystalline polyester melt-spun fiber is wound thereon. The material of the cushion material is preferably a felt made of organic fibers having high heat resistance, for example, para-aramid fiber or meta-aramid fiber, in order to prevent fusion with the liquid crystalline polyester during solid phase polymerization, and the thickness is preferably 0.1 mm or more and 20 mm or less. . The aforementioned outer skin can be substituted with the cushion material.
固相重合に供するパッケージの糸長は、生産性、並びに高次加工での連続性を高めるため15万m以上が好ましく、20万m以上がより好ましい。繊維の重量としては15g以上が好ましく、100g以上がより好ましい。各々、上限は特に定められないが本発明で達し得る上限は400万m、20kg程度である。 The yarn length of the package subjected to solid phase polymerization is preferably 150,000 m or more, and more preferably 200,000 m or more in order to improve productivity and continuity in high-order processing. The fiber weight is preferably 15 g or more, more preferably 100 g or more. In each case, the upper limit is not particularly defined, but the upper limit that can be reached in the present invention is about 4 million m and 20 kg.
固相重合時の融着を防ぐためには、繊維表面に油分、離型剤(以下、両者を油分と記載する)を付着させることも重要である。油分の付着は溶融紡糸から巻き取りまでの間に行っても良いが、付着効率を高めるためには紡糸原糸の巻き返しの際に行う、あるいは溶融紡糸で少量を付着させ、巻き返しの際にさらに追加することが好ましい。 In order to prevent fusion at the time of solid-phase polymerization, it is also important to attach an oil component and a release agent (hereinafter both referred to as an oil component) to the fiber surface. The oil may be attached during the period from melt spinning to winding, but in order to increase the adhesion efficiency, it is performed at the time of rewinding the spinning yarn, or a small amount is adhered by melt spinning, and further at the time of rewinding. It is preferable to add.
油分付着方法はガイド給油法でも良いが、モノフィラメントなど総繊度の細い繊維に均一に付着させるためには金属製あるいはセラミック製のキスロール(オイリングロール)による付着が好ましい。油分の成分としては固相重合での高温熱処理で揮発させないため耐熱性が高い方が良く、塩やタルク、スメクタイトなどの無機物質、フッ素系化合物、シロキサン系化合物(ジメチルポリシロキサン、ジフェニルポリシロキサン、メチルフェニルポリシロキサンなど)およびこれらの混合物などが好ましい。中でもシロキサン系化合物は固相重合での融着防止効果に加え、易滑性にも効果を示すため特に好ましい。 The oil adhering method may be a guide oil supply method, but in order to uniformly adhere to a fiber having a fine total fineness such as a monofilament, adhesion with a metal or ceramic kiss roll (oiling roll) is preferable. As the oil component, it is better to have high heat resistance because it is not volatilized by high-temperature heat treatment in solid phase polymerization, and inorganic substances such as salt, talc, smectite, fluorine compounds, siloxane compounds (dimethylpolysiloxane, diphenylpolysiloxane, Methylphenyl polysiloxane and the like) and mixtures thereof are preferred. Of these, siloxane compounds are particularly preferred because they have an effect on slipperiness in addition to the effect of preventing fusion in solid phase polymerization.
これらの成分は固体付着、液体の直接塗布でも構わないが付着量を適正化しつつ均一塗布するためにはエマルジョン塗布が好ましく、安全性の点から水エマルジョンが特に好ましい。したがって成分としては水溶性あるいは水エマルジョンを形成しやすいことが望ましく、ジメチルポリシロキサンの水エマルジョンを主体とし、これに塩や水膨潤性のスメクタイトを添加した混合油剤が最も好ましい。 These components may be solid-coated or directly coated with liquid. However, emulsion coating is preferable for uniform coating while optimizing the amount of coating, and water emulsion is particularly preferable from the viewpoint of safety. Therefore, it is desirable that the component is water-soluble or easily form a water emulsion, and a mixed oil agent mainly composed of a water emulsion of dimethylpolysiloxane and a salt or water-swellable smectite added thereto is most preferable.
繊維への油分の付着量は、油分が多いほど融着は抑制できるため、2.0重量%以上が好ましく、4.0重量%以上がより好ましい。一方、多すぎると繊維がべたつきハンドリングを悪化させる他、後工程で工程通過性を悪化させるため10.0重量%以下が好ましく、6.0重量%以下がより好ましい。なお繊維への油分付着量は実施例に記載した手法により求められる値を指す。 The amount of oil attached to the fiber is preferably 2.0% by weight or more, and more preferably 4.0% by weight or more because the larger the oil content, the more the fusion can be suppressed. On the other hand, if the amount is too large, the fiber deteriorates the sticky handling and also deteriorates the process passability in the subsequent step, so 10.0% by weight or less is preferable, and 6.0% by weight or less is more preferable. In addition, the oil adhesion amount to a fiber refers to the value calculated | required by the method described in the Example.
固相重合は窒素等の不活性ガス雰囲気中や、空気のような酸素含有の活性ガス雰囲気中または減圧下で行うことが可能であるが、設備の簡素化および繊維あるいは付着物の酸化防止のため窒素雰囲気下で行うことが好ましい。この際、固相重合の雰囲気は露点が−40℃以下の低湿気体が好ましい。 Solid-phase polymerization can be carried out in an inert gas atmosphere such as nitrogen, an oxygen-containing active gas atmosphere such as air, or under reduced pressure, but it can simplify equipment and prevent oxidation of fibers or deposits. Therefore, it is preferable to carry out in a nitrogen atmosphere. At this time, the atmosphere of the solid phase polymerization is preferably a low-humidity gas having a dew point of −40 ° C. or less.
固相重合温度は、固相重合に供する液晶ポリエステル繊維の吸熱ピーク温度をTm1(℃)とした場合、最高到達温度がTm1−60℃以上であることが好ましい。このような融点近傍の高温とすることで固相重合が速やかに進行し、繊維の強度を向上させることができる。なお、ここで言うTm1は一般には液晶ポリエステル繊維の融点であり、本発明においては実施例記載の測定方法により求められた値を指す。なお最高到達温度はTm1(℃)未満とすることが融着防止のために好ましい。また固相重合温度を時間に対し段階的にあるいは連続的に高めることは、融着を防ぐと共に固相重合の時間効率を高めることができ、より好ましい。この場合、固相重合の進行と共に液晶ポリエステル繊維の融点は上昇するため、固相重合温度は、固相重合前の液晶ポリエステル繊維のTm1+100℃程度まで高めることができる。ただしこの場合においても固相重合での最高到達温度は固相重合後の繊維のTm1−60(℃)以上Tm1(℃)未満とすることが固相重合速度を高めかつ融着を防止できる点から好ましい。 As for the solid phase polymerization temperature, when the endothermic peak temperature of the liquid crystal polyester fiber to be subjected to the solid phase polymerization is Tm1 (° C.), it is preferable that the highest temperature is Tm 1-60 ° C. or higher. By setting the temperature close to the melting point, solid phase polymerization can proceed rapidly and the strength of the fiber can be improved. In addition, Tm1 said here is generally melting | fusing point of liquid crystalline polyester fiber, and points out the value calculated | required by the measuring method of an Example in this invention. It is preferable that the maximum temperature is less than Tm1 (° C.) in order to prevent fusion. Further, it is more preferable to raise the solid-phase polymerization temperature stepwise or continuously with respect to time because it can prevent fusion and increase the time efficiency of solid-phase polymerization. In this case, since the melting point of the liquid crystal polyester fiber increases with the progress of the solid phase polymerization, the solid phase polymerization temperature can be increased to about Tm1 + 100 ° C. of the liquid crystal polyester fiber before the solid phase polymerization. However, even in this case, the maximum attainable temperature in the solid-phase polymerization is Tm1-60 (° C.) or more and less than Tm1 (° C.) of the fiber after the solid-phase polymerization, so that the solid-phase polymerization rate can be increased and fusion can be prevented. To preferred.
固相重合時間は、繊維の分子量すなわち強度、弾性率、伸度を十分に高くするためには最高到達温度で5時間以上とすることが好ましく、10時間以上がより好ましい。一方、強度、弾性率、伸度増加の効果は経過時間と共に飽和するため、生産性を高めるためには50時間以下とすることが好ましい。 The solid phase polymerization time is preferably 5 hours or more at the maximum temperature, and more preferably 10 hours or more, in order to sufficiently increase the molecular weight, that is, strength, elastic modulus, and elongation of the fiber. On the other hand, the effects of increasing the strength, elastic modulus, and elongation are saturated with the elapsed time.
次に、固相重合されたパッケージから繊維を解舒するが、固相重合で生じる軽微な融着を剥がす際のフィブリル化を抑制するためには固相重合パッケージを回転させながら、回転軸と垂直方向(繊維周回方向)に糸を解舒する、いわゆる横取りにより解舒することが好ましい。固相重合パッケージの回転について、モーター等を用いて回転数一定で積極駆動すると、解舒に伴い巻き径が減少し速度が徐々に遅くなるため、解舒以降の工程を連続して行う場合に速度一定での処理ができなくなるという問題がある。このため固相重合パッケージの回転は、ダンサーローラーを用いて回転数を制御する調速解舒方式とすることもできるが、耐摩耗性に劣る固相重合糸がダンサーローラーを通過するとフィブリル化するため、固相重合パッケージは積極駆動を行わず、フリーロールに固相重合パッケージをかけて、調速ローラーにより繊維を引っ張りつつ解舒することが、固相重合糸のフィブリル化を抑制しつつ解舒できるため好ましい。フリーロールは、軸とベアリング、並びに外層部の構成となるが、ベアリングの摺動抵抗によりブレーキ作用が働くため、回転数はほぼ一定ながらもわずかに変化し、解舒張力の変動を抑えることができるのである。 Next, the fibers are unwound from the solid-state polymerized package. In order to suppress fibrillation at the time of peeling off the slight fusion produced by solid-phase polymerization, while rotating the solid-state polymerization package, It is preferable that the yarn is unwound by so-called side-drawing, in which the yarn is unwound in the vertical direction (fiber circumferential direction). When the solid phase polymerization package is rotated actively with a constant rotational speed using a motor, etc., the winding diameter decreases with the unwinding and the speed gradually decreases. However, there is a problem that processing at a constant speed cannot be performed. For this reason, the rotation of the solid-state polymerization package can be controlled by a controlled unwinding method in which the number of rotations is controlled using a dancer roller, but when the solid-state polymerization yarn having poor wear resistance passes through the dancer roller, it is fibrillated. Therefore, solid-state polymerization packages are not actively driven, and it is possible to unwind the solid-state polymerization yarns while suppressing the fibrillation of the solid-state polymerization yarns by placing the solid-state polymerization package on the free roll and pulling the fibers with a speed control roller. It is preferable because it can be dredged. A free roll is composed of a shaft, a bearing, and an outer layer, but because the braking action works due to the sliding resistance of the bearing, the rotational speed changes slightly although it is almost constant, suppressing fluctuations in unwinding tension. It can be done.
解舒された固相重合糸には融着防止用の油分が付着しているため、これを除去することが好ましい。油分は融着抑制には効果的であるが、固相重合以降の工程や製織工程では油分が多すぎるとガイド等への堆積による工程通過性の悪化、堆積物の製品への混入による欠点生成などを招くため油分付着量は低下させた方が好ましい。すなわち固相重合前に付着させた油分を固相重合後に除去することで、融着抑制と、長手方向の繊度、強度の均一性向上および工程通過性向上を両立できる。 Since the melted solid phase polymerized yarn has an oil component for preventing fusion, it is preferably removed. Oil is effective in suppressing fusion, but if there is too much oil in the processes after solid-phase polymerization or weaving, deterioration of process passability due to deposition on guides, etc., and generation of defects due to inclusion of deposits in products For this reason, it is preferable to reduce the oil adhesion amount. That is, by removing the oil adhering before solid-phase polymerization after solid-phase polymerization, it is possible to achieve both fusion suppression, improvement in fineness in the longitudinal direction, uniformity of strength, and improvement in process passability.
油分除去方法は、例えば繊維を連続的に走行させながら布や紙で拭き取る方法などが挙げられるが、固相重合糸に力学的な負荷を与えるとフィブリル化するため、油分が溶解あるいは分散できる液体に繊維を浸す方法が好ましい。この時、単位時間当たりの処理量を増加させるため、繊維をパッケージの状態で液体に浸しても良いが、繊維長手方向の均一な除去を行うために、繊維を連続的に走行させつつ液体に浸すことが好ましい。繊維を連続的に液体に浸す方法は、ガイド等を用いて繊維を浴内に導く方法でも良いが、ガイドとの接触抵抗による固相重合繊維のフィブリル化を抑制するため、浴の両端にスリットを設け、このスリットを通って繊維が浴内を通過できるようにし、かつ浴内には糸道ガイドを設けないことが好ましい。 Examples of the oil removing method include a method of wiping with a cloth or paper while continuously running the fiber. However, when a mechanical load is applied to the solid-phase polymerized yarn, it is fibrillated so that the oil can be dissolved or dispersed. A method of immersing the fiber in is preferable. At this time, in order to increase the throughput per unit time, the fiber may be immersed in a liquid in a package state, but in order to perform uniform removal in the longitudinal direction of the fiber, the fiber is continuously run while the fiber is running. It is preferable to immerse. The method of continuously immersing the fiber in the liquid may be a method of guiding the fiber into the bath using a guide or the like, but in order to suppress fibrillation of the solid-phase polymerized fiber due to contact resistance with the guide, slits are provided at both ends of the bath. It is preferable to allow the fiber to pass through the slit through the slit and not to provide a yarn path guide in the bath.
除去に用いる液体は、環境負荷を低減するために水とすることが好ましい。液体の温度は高い方が除去効率を高めることができ、30℃以上が好ましく、40℃以上がより好ましい。ただし温度が高すぎる場合には液体の蒸発が著しくなるため、液体の沸点−20℃以下が好ましく、沸点−30℃以下がより好ましい。 The liquid used for removal is preferably water in order to reduce the environmental load. The higher the temperature of the liquid, the higher the removal efficiency. The temperature is preferably 30 ° C or higher, more preferably 40 ° C or higher. However, if the temperature is too high, the liquid will evaporate significantly, so the boiling point of the liquid is preferably −20 ° C. or lower, more preferably the boiling point of −30 ° C. or lower.
除去に用いる液体には、油分に応じて、例えば非イオン・アニオン系等の界面活性剤を添加することが好ましい。界面活性剤の添加量は除去効率を高め、かつ環境負荷を低下させるため0.01〜1重量%が好ましく、0.1〜0.5重量%がより好ましい。 For example, a nonionic / anionic surfactant is preferably added to the liquid used for removal depending on the oil content. The addition amount of the surfactant is preferably 0.01 to 1% by weight, more preferably 0.1 to 0.5% by weight in order to increase the removal efficiency and reduce the environmental load.
液晶ポリエステル繊維をパッケージの状態で液体に浸し、そのまま解舒する方法は、油分を効率的に除去することが可能であるため、好ましい態様である。特に固相重合後のパッケージからの解舒と高温熱処理工程を連続化することで、擦過による毛羽が発生しやすい油分付着量の少ない高温熱処理前の液晶ポリエステル繊維を一旦巻取る必要がなく、品質を保ったまま、油分付着量を低減させた高温熱処理後の液晶ポリエステル繊維を得ることができるため、好ましい態様である。 The method of immersing the liquid crystal polyester fiber in a liquid in a package state and unwinding it as it is is a preferable embodiment because the oil component can be efficiently removed. In particular, by continuously unwinding from the package after solid-phase polymerization and high-temperature heat treatment process, it is not necessary to wind up the liquid crystalline polyester fiber before high-temperature heat treatment, which has a small amount of oil adhering and is likely to cause fluff due to scratching. This is a preferred embodiment because liquid crystal polyester fibers after high-temperature heat treatment with reduced oil adhesion amount can be obtained while maintaining the above.
このとき液体に浸されたパッケージから解舒された液晶ポリエステル繊維は、未乾燥の液体や固相重合前に付与した油剤変性物の溶解物等を液晶ポリエステル繊維表面に残しているため、流体を用いて吹き飛ばすことや、すすぐことも好ましい態様である。未乾燥の液体や固相重合前に付与した油剤変性物の溶解物等のいわゆる汚れは、液晶ポリエステル繊維表面に残存すると最終的に乾燥してスカム成分となるため、これを吹き飛ばすことや、すすぐことでより液晶ポリエステル繊維表面に付着した油分を低減することができ、スカム発生による解舒張力の変動を抑制することが可能になる。 At this time, the liquid crystal polyester fiber unraveled from the package immersed in the liquid leaves an undried liquid or a solution of the modified oil agent applied before solid-phase polymerization on the surface of the liquid crystal polyester fiber. It is also a preferred aspect to use and blow away or to rinse. So-called stains such as undried liquids and dissolved product of oil-modified products applied before solid-phase polymerization, when they remain on the surface of the liquid crystal polyester fiber, will eventually dry and become scum components. As a result, oil adhering to the surface of the liquid crystal polyester fiber can be reduced, and fluctuations in the unwinding tension due to the occurrence of scum can be suppressed.
このことから吹き飛ばしに用いる流体は、空気または水であることが好ましい。特に流体に空気を用いる場合は、液晶ポリエステル繊維表面を乾燥させる効果も期待することが可能になるため、その後の工程中で汚れが堆積することを防止し、すなわち収率の改善が見込まれることから、好ましい態様である。 Therefore, the fluid used for blowing off is preferably air or water. In particular, when air is used as the fluid, it is possible to expect the effect of drying the liquid crystal polyester fiber surface, so that it is possible to prevent the accumulation of dirt in the subsequent process, that is, the yield can be improved. Therefore, this is a preferred embodiment.
またすすぎに用いる流体は、水であることが好ましい。すすぎは、液晶ポリエステル繊維表面に付着した未乾燥の汚れや洗浄水を除去する目的で行われるため、汚れを溶解させることができる水を用いると、効率的に洗浄を行うことができる。また汚れの水への溶解度を増すことを目的に、水を加温することも好ましい態様である。加温する温度は、高温ほど溶解度が高まるため、すすぎの効率があがることが期待できるため、上限は特に限定されるものではないが、加温に要するエネルギー消費を抑え、エネルギーコストを低減することや、蒸発によるロスを考慮すると、80℃を目安にすると良い。 The fluid used for rinsing is preferably water. The rinsing is performed for the purpose of removing undried dirt and washing water adhering to the surface of the liquid crystal polyester fiber. Therefore, when water that can dissolve the dirt is used, washing can be performed efficiently. It is also a preferred embodiment to warm water for the purpose of increasing the solubility of dirt in water. The upper temperature is not particularly limited because the higher the temperature, the higher the solubility and the higher the efficiency of rinsing.Therefore, the energy consumption required for heating should be reduced and the energy cost reduced. Considering the loss due to evaporation, 80 ° C. is a good guideline.
またすすぎと吹き飛ばしを組み合わせることも好ましい態様である。すすぎによる汚れの溶解除去と、吹き飛ばしによる液晶ポリエステル繊維表面に残存した水分の除去を組み合わせることで、更に効率的に油分を除去することが可能になる。この場合の組み合わせは、先にすすぎを行って汚れを溶解除去し、次いで吹き飛ばしを行うと、より好ましい態様となる。 A combination of rinsing and blowing off is also a preferred embodiment. By combining dissolution removal by rinsing and removal of water remaining on the surface of the liquid crystal polyester fiber by blowing away, it becomes possible to remove oil more efficiently. The combination in this case becomes a more preferable aspect when rinsing is first performed to dissolve and remove the dirt, and then blown off.
さらに、除去効率を高めるため、除去に用いる液体に振動・液流を付与することが好ましい。この場合、液体を超音波振動させるなどの手法もあるが、設備簡素化、省エネの観点から液流を付与することが好ましい。液流付与の方法は液浴内の撹拌、ノズルでの液流付与等の方法があるが、液浴を循環する際の供給をノズルで行うことで簡単に実施できることからノズルでの液流付与が好ましい。 Furthermore, in order to increase the removal efficiency, it is preferable to impart vibration / liquid flow to the liquid used for removal. In this case, there is a method of ultrasonically vibrating the liquid, but it is preferable to apply a liquid flow from the viewpoint of simplifying the equipment and saving energy. There are liquid flow application methods such as stirring in the liquid bath and liquid flow application at the nozzle, but it can be easily implemented by supplying with the nozzle when circulating in the liquid bath. Is preferred.
油分除去の程度は目的に応じ適宜調整されるが、高次加工工程や製織工程での繊維の工程通過性向上の観点から油分付着量として2.0重量%以下とすることが好ましい。なお、油分付着量は実施例に記載した手法により求められる値を指す。 The degree of oil removal is appropriately adjusted according to the purpose, but it is preferably 2.0% by weight or less as the oil adhesion amount from the viewpoint of improving the processability of the fiber in the high-order processing step and the weaving step. In addition, the amount of oil adhesion refers to the value calculated | required by the method described in the Example.
ただし油分付着量を0.5重量%未満とした固相重合後の高温熱処理を受けていない液晶ポリエステル繊維は、擦過によって毛羽が発生しやすいため、高温熱処理前の工程では、極力擦過を避けることが毛羽抑制の観点から好ましい態様である。特に糸道を規制するガイドは、直接液晶ポリエステル繊維と擦過されるため、回転式のガイドを用いることが好ましい。更には、液晶ポリエステル繊維が屈曲する部分を極力避けることも好ましい態様の一つであり、このため工程を直線的に構成することが好ましい。 However, liquid crystal polyester fibers that have not been subjected to high-temperature heat treatment after solid-phase polymerization with an oil adhesion amount of less than 0.5% by weight are prone to fluff due to rubbing, so avoid rubbing as much as possible in the process before high-temperature heat treatment. Is a preferred embodiment from the viewpoint of fluff suppression. In particular, since the guide for regulating the yarn path is directly abraded with the liquid crystal polyester fiber, it is preferable to use a rotary guide. Furthermore, it is also one of preferred embodiments to avoid the portion where the liquid crystal polyester fiber is bent as much as possible, and therefore it is preferable to configure the process linearly.
次に、本発明のTm1におけるピーク半値幅が15℃以上の繊維を得るには、液晶ポリエステル固相重合糸に高温熱処理を施す。加えて、本発明のU%Hが10%未満である繊維を得るには、固相重合パッケージから解舒、油分除去を施した後、一旦巻き取ることなく、高温熱処理を施す。この理由は従来技術で述べた通りであり、本発明の繊維を得るための重要な技術ポイントである。 Next, in order to obtain a fiber having a peak half-value width of 15 ° C. or higher at Tm1 of the present invention, the liquid crystal polyester solid phase polymerized yarn is subjected to high temperature heat treatment. In addition, in order to obtain a fiber having U% H of less than 10% according to the present invention, high-temperature heat treatment is performed without unwinding and then removing the oil from the solid-phase polymerization package. This reason is as described in the prior art and is an important technical point for obtaining the fiber of the present invention.
固相重合パッケージから解舒、油分除去した後、一旦巻き取らずに高温熱処理を施すためには、例えば油分除去した繊維を一旦キャンに受け、そこから繊維を取り出して高温熱処理を施す等の方法もあるが、取り出し時の張力変動が大きいことから、処理張力の安定性を高め、長手方向の繊維直径の均一性を高めるために解舒、油分除去の後、連続して高温熱処理を施すことが好ましい。特に油分付着量を0.5重量%未満とした液晶ポリエステル繊維は、高温熱処理時の擦過によって毛羽が発生しやすいため、固相重合パッケージから解舒、油分除去した後に、直接高温熱処理を施すと、工程中の擦過を低減できるほか、工程を単純化することもでき、更にはガイド部分へのスカム発生を抑制し、工程中での糸切れ頻度を低減せしめる効果も期待できることから、好ましい態様である。 In order to perform high-temperature heat treatment without unwinding after removing the oil from the solid-phase polymerization package, for example, a method in which the fiber from which oil has been removed is once received in a can, and the fiber is taken out from the can and subjected to high-temperature heat treatment. However, since the tension fluctuation at the time of take-out is large, in order to increase the stability of the processing tension and to improve the uniformity of the fiber diameter in the longitudinal direction, continuous high-temperature heat treatment is applied after unraveling and oil removal. Is preferred. In particular, liquid crystal polyester fibers with an oil adhesion amount of less than 0.5% by weight are prone to fluff due to rubbing during high temperature heat treatment. In addition to reducing scratches during the process, it is possible to simplify the process, and further suppress the occurrence of scum on the guide part, and can also be expected to reduce the frequency of yarn breakage during the process. is there.
解舒、油分除去の後、連続して高温熱処理を施すためには解舒速度を一定にする必要があり、このためには固相重合パッケージに綾落ちが少なく、巻崩れがないことが重要となる。このためには巻き密度を高め、面圧を付与し巻き取ることが有効である。しかしその場合、繊維同士の密着性が高まるため固相重合時に融着しやすくなり、繊維長手方向の均一性が悪化する等の問題が生じる。従来技術では、融着抑制のため巻き密度を極限まで低下することを重視しており、面圧を付与せず、巻き張力を低くすることで、これを実現した。その場合、端面での綾落ちが生じやすくなるため、テーパー角を小さくし、かつトラバースを周期的に揺動させることにより意図的に端面を崩し、全体の巻姿を整えていた。しかし端面を崩す、すなわちパッケージのテーパー部分に繊維を重ねて巻き上げると、テーパー部では径が変化するため、一定速度での解舒では、テーパー部と中央部でボビンの回転数を変化させる必要がある。このような回転数の制御は特に伸度が小さく、また耐摩耗性に劣る液晶ポリエステル固相重合繊維では不可能であり、このため従来技術では固相重合パッケージを積極駆動し、速度は一定ではないものの張力をほぼ一定として解舒していた。 In order to perform high temperature heat treatment continuously after unwinding and oil removal, it is necessary to keep the unwinding speed constant. For this purpose, it is important that the solid-phase polymerization package has little falling and no collapse. It becomes. For this purpose, it is effective to increase the winding density and apply a surface pressure to wind up. In that case, however, the adhesion between the fibers is increased, so that the fibers are easily fused at the time of solid phase polymerization, resulting in problems such as deterioration of the uniformity in the fiber longitudinal direction. In the prior art, emphasis was placed on reducing the winding density to the limit to suppress fusion, and this was achieved by reducing the winding tension without applying surface pressure. In that case, the end face is likely to fall, so the taper angle is reduced and the traverse is periodically swung to intentionally collapse the end face to adjust the entire winding shape. However, when the end face is broken, that is, when the fiber is rolled up on the taper portion of the package, the diameter changes at the taper portion. Therefore, in unwinding at a constant speed, it is necessary to change the rotation speed of the bobbin between the taper portion and the center portion. is there. Such control of the rotational speed is not possible with a liquid crystal polyester solid-phase polymerized fiber that is particularly low in elongation and inferior in abrasion resistance. Therefore, in the prior art, the solid-state polymerized package is actively driven and the speed is constant. It was unraveled that the tension of the things that were not there was almost constant.
これに対し、本発明の繊維を得るには、固相重合前の巻き返しにおいて面圧を低いレベルで与え、トラバースの揺動を行わないことで、巻き密度が低く、かつ綾落ちの少ないパッケージを形成し、これにより一定速度での解舒が可能となり、解舒−油分除去−高温熱処理の連続処理が可能となるのである。この際、巻き密度は低いとは言え、従来技術よりは高いため、融着しやすくなるが、固相重合用の油分付着量を高めることで融着を抑制できるのである。さらに固相重合糸を解舒した後、油分を除去することで、繊維への最終的な付着量は低くできるのである。 On the other hand, in order to obtain the fiber of the present invention, a surface pressure is applied at a low level in the rewinding before solid-phase polymerization, and the traverse is not shaken so that a package with a low winding density and a small amount of falling is obtained. In this way, unwinding at a constant speed becomes possible, and continuous processing of unwinding-oil removal-high temperature heat treatment becomes possible. At this time, although the winding density is low, it is higher than that of the prior art, so that it is easy to fuse. However, the adhesion can be suppressed by increasing the oil adhesion amount for solid phase polymerization. Furthermore, after the solid phase polymerized yarn is unwound, the final amount of adhesion to the fiber can be lowered by removing the oil.
固相重合した繊維の高温熱処理は、Tm1+10℃以上の温度とすることが好ましい。なお、ここで言うTm1は実施例記載の測定方法により求められた値を指す。Tm1は繊維の融点であるが、液晶ポリエステル繊維に融点+10℃以上もの高温で熱処理を施すことでTm1におけるピーク半値幅は15℃以上となり、耐摩耗性は大きく向上する。なお単繊維繊度が小さい場合にその効果は顕著となる。 The high temperature heat treatment of the solid phase polymerized fiber is preferably at a temperature of Tm1 + 10 ° C. or higher. In addition, Tm1 said here points out the value calculated | required by the measuring method of an Example description. Although Tm1 is the melting point of the fiber, when the liquid crystal polyester fiber is heat-treated at a high temperature of melting point + 10 ° C. or higher, the peak half width at Tm1 becomes 15 ° C. or higher, and the wear resistance is greatly improved. In addition, the effect becomes remarkable when the single fiber fineness is small.
液晶ポリエステルのように剛直な分子鎖は緩和時間が長く、表層が緩和する時間のうちに内層も緩和し繊維が溶融してしまう。このため、液晶ポリエステル繊維に適した耐摩耗性向上技術を検討したところ、液晶ポリエステルの場合、分子鎖を緩和させるのではなく加熱により繊維全体の結晶化度、結晶の完全性を低下させることで耐摩耗性を向上できることを見出した。 A rigid molecular chain such as liquid crystal polyester has a long relaxation time, and the inner layer also relaxes and the fiber melts during the time that the surface layer relaxes. For this reason, when we examined wear resistance improvement technology suitable for liquid crystal polyester fibers, in the case of liquid crystal polyester, it is not possible to relax the molecular chain but to reduce the crystallinity of the whole fiber and the integrity of the crystals by heating. It has been found that the wear resistance can be improved.
さらに結晶性を低下させるためには繊維を融点以上に加熱する必要があるが、熱可塑性合成繊維においてはこのような高温では、特に単繊維繊度が小さい場合には強度、弾性率が低下し、さらには熱変形、溶融(溶断)してしまう。液晶ポリエステルでもこのような挙動は見られるが、本発明者らは固相重合した液晶ポリエステル繊維では分子量増加により緩和時間は非常に長くなっているため分子運動性が低く、融点以上の高温で熱処理しても短時間であれば、分子鎖の配向を高いレベルで維持したまま結晶化度を低下させることができ、強度、弾性率の低下が小さいことを見出した。これらのことから特に単糸繊度が小さい液晶ポリエステル繊維に対し、Tm1+10℃以上の高温熱処理を短時間行うことで、液晶ポリエステル繊維の強度、弾性率、耐熱性を大きく損なうことなく耐摩耗性を向上できることを見出したのである。 In order to further reduce the crystallinity, it is necessary to heat the fiber to the melting point or more, but at such a high temperature in the thermoplastic synthetic fiber, particularly when the single fiber fineness is small, the strength and elastic modulus decrease, Furthermore, it is thermally deformed and melted (melted). Although such behavior is also observed in liquid crystal polyester, the present inventors have low molecular mobility due to the increase in molecular weight due to increase in molecular weight of liquid crystal polyester fiber, and heat treatment at a temperature higher than the melting point. Even in such a short time, it was found that the degree of crystallinity can be reduced while maintaining the molecular chain orientation at a high level, and the decrease in strength and elastic modulus is small. For these reasons, liquid crystal polyester fibers with particularly small single yarn fineness are subjected to high-temperature heat treatment at Tm1 + 10 ° C or higher for a short time, thereby improving the wear resistance without significantly impairing the strength, elastic modulus, and heat resistance of the liquid crystal polyester fibers. I found what I could do.
高温熱処理温度は繊維の結晶化度の低下、結晶の完全性の低下のために固相重合した繊維のTm1+40℃以上とすることがより好ましく、固相重合した繊維のTm1+60℃以上とすることがさらに好ましく、Tm1+80℃以上が特に好ましい。処理温度の上限は繊維が溶断する温度であり、張力、速度、単繊維繊度、処理長で異なるがTm1+300℃程度である。 The high-temperature heat treatment temperature is more preferably Tm1 + 40 ° C. or higher for solid-phase polymerized fibers and lower than Tm1 + 60 ° C. for solid-phase polymerized fibers in order to reduce fiber crystallinity and crystal integrity. More preferably, Tm1 + 80 ° C. or higher is particularly preferable. The upper limit of the treatment temperature is the temperature at which the fiber melts, and it is about Tm1 + 300 ° C., although it varies depending on the tension, speed, single fiber fineness, and treatment length.
なお、従来でも液晶ポリエステル繊維の熱処理を行う例はあるが、液晶ポリエステルは融点以下の温度でも応力により熱変形(流動)するため融点以下で行うことが一般的である。熱処理という点では液晶ポリエステル繊維の固相重合があるが、この場合でも処理温度は繊維の融点以下としないと繊維が融着、溶断してしまう。固相重合の場合、処理に伴い繊維の融点が上昇するため、最終の固相重合温度は処理前の繊維の融点以上となることがあるが、その場合でも処理温度は処理されている繊維の融点、すなわち熱処理後の繊維の融点よりも低い。 Conventionally, there is an example in which the heat treatment of the liquid crystalline polyester fiber is performed, but since the liquid crystalline polyester is thermally deformed (flowed) by stress even at a temperature lower than the melting point, it is generally performed at a temperature lower than the melting point. In terms of heat treatment, there is solid-state polymerization of liquid crystalline polyester fiber, but even in this case, the fiber will be fused and blown unless the treatment temperature is lower than the melting point of the fiber. In the case of solid-phase polymerization, the melting point of the fiber increases with the treatment, so the final solid-phase polymerization temperature may be equal to or higher than the melting point of the fiber before the treatment. It is lower than the melting point, that is, the melting point of the fiber after heat treatment.
本発明における高温熱処理は固相重合を行うことではなく、固相重合によって形成された緻密な結晶部分と非晶部分の構造差を減少させること、つまり結晶化度、結晶の完全性を低下させることで耐摩耗性を高めるものである。したがって処理温度は熱処理によりTm1が変化しても、変化後の繊維のTm1+10℃以上とすることが好ましく、この点から処理温度は処理後の繊維のTm1+10℃以上とすることが好ましく、Tm1+40℃以上がより好ましく、Tm1+60℃以上とすることがさらに好ましく、Tm1+80℃以上とすることが特に好ましい。 The high-temperature heat treatment in the present invention does not perform solid-phase polymerization, but reduces the structural difference between the dense crystal portion and the amorphous portion formed by solid-phase polymerization, that is, decreases the crystallinity and crystal integrity. This increases the wear resistance. Therefore, even if Tm1 changes due to heat treatment, the treatment temperature is preferably Tm1 + 10 ° C. or higher of the fiber after the change. From this point, the treatment temperature is preferably Tm1 + 10 ° C. or higher of the fiber after the treatment, and Tm1 + 40 ° C. or higher. Is more preferable, Tm1 + 60 ° C. or higher is further preferable, and Tm1 + 80 ° C. or higher is particularly preferable.
また、別の熱処理として液晶ポリエステル繊維の熱延伸があるが、熱延伸は高温で繊維を緊張させるものであり、繊維構造は分子鎖の配向が高くなり、強度、弾性率は増加し、結晶化度、結晶の完全性は維持したまま、すなわちΔHm1は高いまま、Tm1のピーク半値幅は小さいままである。したがって耐摩耗性に劣る繊維構造となり、結晶化度を低下(ΔHm1減少)、結晶の完全性を低下(ピーク半値幅増加)させて耐摩耗性を向上させることを目的とする本発明の熱処理とは異なる。なお本発明で言う高温熱処理では結晶化度が低下するため、強度、弾性率は増加しない。 Another heat treatment is the thermal stretching of liquid crystalline polyester fiber, but the thermal stretching is to tension the fiber at high temperature, the fiber structure has higher molecular chain orientation, the strength and elastic modulus increase, and the crystallization The degree of crystal integrity is maintained, that is, ΔHm1 remains high, and the peak half-value width of Tm1 remains small. Therefore, the heat treatment of the present invention aims to improve the abrasion resistance by reducing the crystallinity (decreasing ΔHm1) and decreasing the crystal perfection (increasing the peak half-value width), resulting in a fiber structure inferior in abrasion resistance. Is different. The high temperature heat treatment referred to in the present invention does not increase the strength and elastic modulus because the crystallinity is lowered.
高温熱処理は、繊維を連続的に走行させながら行うことが繊維間の融着を防ぎ、処理の均一性を高められるため好ましい。このときフィブリルの発生を防ぎ、かつ均一な処理を行うため、非接触熱処理を行うことが好ましい。加熱手段としては雰囲気の加熱、レーザーや赤外線を用いた輻射加熱などがあるがブロックまたはプレートヒーターを用いたスリットヒーターによる加熱は雰囲気加熱、輻射加熱の両方の効果を併せ持ち、処理の安定性が高まるため好ましい。 The high temperature heat treatment is preferably performed while continuously running the fibers because fusion between the fibers can be prevented and the uniformity of the treatment can be improved. At this time, non-contact heat treatment is preferably performed in order to prevent generation of fibrils and perform uniform treatment. Heating means include atmospheric heating and radiant heating using laser and infrared rays, but heating with a slit heater using a block or plate heater has both the effects of atmospheric heating and radiant heating, increasing the stability of processing. Therefore, it is preferable.
処理時間は結晶化度、結晶の完全性を低下させるためには長い方が好ましく、0.01秒以上が好ましく、0.05秒以上がより好ましく、0.1秒以上がさらに好ましい。また処理時間の上限は、設備負荷を小さくするため、また処理時間が長いと分子鎖の配向が緩和し強度、弾性率が低下するため5.0秒以下が好ましく、3.0秒以下がより好ましく、2.0秒以下とすることがさらに好ましい。 The treatment time is preferably longer in order to lower the crystallinity and crystal perfection, preferably 0.01 seconds or more, more preferably 0.05 seconds or more, and further preferably 0.1 seconds or more. Further, the upper limit of the treatment time is preferably 5.0 seconds or less, more preferably 3.0 seconds or less, because the equipment load is reduced, and if the treatment time is long, the orientation of the molecular chain is relaxed and the strength and elastic modulus are lowered. Preferably, it is 2.0 seconds or less.
処理する際の繊維の張力は過度に高いと溶断が発生しやすく、また過度の張力がかかった状態で熱処理を行う場合、結晶化度の低下が小さく耐摩耗性の向上効果が低くなるため、できるだけ低張力にすることが好ましい。この点において熱延伸とは明らかに異なる。しかしながら、張力が低いと繊維の走行が不安定となり処理が不均一になることから、0.001cN/dtex以上1.0cN/dtex以下が好ましく、0.1cN/dtex以上0.3cN/dtex以下がより好ましい。 When the fiber tension at the time of processing is excessively high, fusing is likely to occur, and when heat treatment is performed in an excessive tension state, the effect of improving wear resistance is low because the decrease in crystallinity is small. It is preferable to make the tension as low as possible. This is clearly different from thermal stretching. However, if the tension is low, the fiber travel becomes unstable and the treatment becomes non-uniform, so 0.001 cN / dtex or more and 1.0 cN / dtex or less is preferable, and 0.1 cN / dtex or more and 0.3 cN / dtex or less. More preferred.
また走行させつつ高温熱処理する場合、張力はできるだけ低いほうが好ましいが、適宜ストレッチおよびリラックスを加えても良い。しかしながら、張力が低すぎると繊維の走行が不安定となり処理が不均一になることから、リラックス率は2%以下(延伸倍率0.98倍以上)が好ましい。また、張力が高いと熱による溶断が発生しやすく、また過度の張力がかかった状態で熱処理を行う場合、結晶化度の低下が小さく耐摩耗性の向上効果が低くなるため、ストレッチ率は熱処理温度にもよるが、10%(延伸倍率1.10倍)未満が好ましい。より好ましくは5%(延伸倍率1.05倍)未満、さらに好ましくは3%(1.03倍)未満である。 When heat treatment is performed while running, the tension is preferably as low as possible, but stretching and relaxation may be added as appropriate. However, if the tension is too low, the fiber travel becomes unstable and the treatment becomes non-uniform, so the relaxation rate is preferably 2% or less (stretching ratio 0.98 times or more). Also, when the tension is high, fusing due to heat is likely to occur, and when heat treatment is performed in an excessive tension state, the reduction in crystallinity is small and the effect of improving wear resistance is low. Depending on the temperature, it is preferably less than 10% (stretching ratio: 1.10 times). More preferably, it is less than 5% (stretching ratio: 1.05 times), more preferably less than 3% (1.03 times).
処理速度は処理長にもよるが高速であるほど高温短時間処理が可能となり、耐摩耗向上効果が高まり、さらに生産性も向上するため100m/分以上が好ましく、200m/分以上がより好ましく、300m/分以上がさらに好ましい。処理速度の上限は繊維の走行安定性から1000m/分程度である。 Although the treatment speed depends on the treatment length, the higher the speed, the higher the temperature and short time treatment becomes possible, and the effect of improving wear resistance is further enhanced, and the productivity is also improved, preferably 100 m / min or more, more preferably 200 m / min or more, More preferably, it is 300 m / min or more. The upper limit of the processing speed is about 1000 m / min from the running stability of the fiber.
処理長は加熱方法にもよるが、非接触加熱の場合には均一な処理を行うために100mm以上が好ましく、500mm以上がさらに好ましい。また処理長が過度に長いとヒーター内部での糸揺れにより処理ムラ、繊維の溶断が発生するため3000mm以下が好ましく、1000mm以下がさらに好ましい。 The treatment length depends on the heating method, but in the case of non-contact heating, it is preferably 100 mm or more, more preferably 500 mm or more in order to perform uniform treatment. Further, if the treatment length is excessively long, treatment unevenness and fiber fusing occur due to yarn swaying inside the heater, preferably 3000 mm or less, and more preferably 1000 mm or less.
高温熱処理に供する繊維の固相重合用油分の付着量は低い方が好ましいが、製品となる高温熱処理後の繊維には、次工程以降の工程通過性、さらには織機での製織性を向上させるために平滑性向上のための工程油剤を追油することが好ましい。油剤成分は公知の物を使用でき、例えばポリエーテル化合物を主体とする平滑剤とラウリルアルコールを主体とする乳化剤の水エマルジョンが好適な例として挙げられる。 It is preferable that the amount of oil for solid-phase polymerization of the fiber to be subjected to high-temperature heat treatment is low, but the fiber after high-temperature heat treatment to be a product improves the processability after the next step and further improves the weaving property on the loom. Therefore, it is preferable to add a process oil for improving smoothness. As the oil component, known substances can be used. For example, a water emulsion of a smoothing agent mainly composed of a polyether compound and an emulsifier mainly composed of lauryl alcohol can be mentioned.
ここで高温熱処理での繊維構造変化について処理前後での繊維特性の違いから述べる。 Here, the fiber structure change in the high temperature heat treatment will be described from the difference in fiber characteristics before and after the treatment.
この熱処理は、繊維の融点以上の高温で短時間の熱処理を施すものであり、結晶化度は低下するが配向は緩和しない。このことは熱処理によりΔHm1は減少、Tm1における半値幅は増加、Δ2θは増加するが、Δnはほとんど変化しないという構造変化に示されている。また処理時間が短いため分子量は変化しない。結晶化度の低下は力学特性の大幅な低下を引き起こすことが一般的であり、本発明の熱処理においても強度、弾性率は増加することはなく低下するものの、本発明の方法では高い分子量と配向を維持するために、高いレベルで強度、弾性率を維持し、かつ高い融点(Tm1)、耐熱性を維持するのである。また熱処理により圧縮弾性率は低下する。耐摩耗性向上は結晶性低下により繊維全体が柔軟化し、かつ破壊の起点となる結晶/非晶の構造差が減少することが要因であるが、圧縮弾性率の低下による荷重分散効果によって、さらに耐摩耗性は高まるのである。 This heat treatment is a heat treatment for a short time at a temperature higher than the melting point of the fiber, and the crystallinity is lowered but the orientation is not relaxed. This is shown by the structural change in which ΔHm1 decreases, the half width at Tm1 increases, Δ2θ increases, but Δn hardly changes by heat treatment. Moreover, since the processing time is short, the molecular weight does not change. A decrease in crystallinity generally causes a significant decrease in mechanical properties, and even in the heat treatment of the present invention, the strength and elastic modulus do not increase but decrease, but the method of the present invention has a high molecular weight and orientation. Therefore, the strength and elastic modulus are maintained at a high level, and the high melting point (Tm1) and heat resistance are maintained. Further, the compression elastic modulus is lowered by the heat treatment. The improvement in wear resistance is due to the fact that the entire fiber is softened due to the decrease in crystallinity and the structural difference between crystal / amorphous that is the starting point of fracture decreases. Abrasion resistance is increased.
本発明の液晶ポリエステル繊維は高強度、高弾性率、高耐熱の特徴を有しながら、耐摩耗性が改善されたものであり、一般産業用資材、土木・建築資材、スポーツ用途、防護衣、ゴム補強資材、電気材料(特に、テンションメンバーとして)、音響材料、一般衣料等の分野で広く用いられる。有効な用途としては、スクリーン紗、フィルター、ロープ、ネット、魚網、コンピューターリボン、プリント基板用基布、抄紙用のカンバス、エアーバッグ、飛行船、ドーム用等の基布、ライダースーツ、釣糸、各種ライン(ヨット、パラグライダー、気球、凧糸)、ブラインドコード、網戸用支持コード、自動車や航空機内各種コード、電気製品やロボットの力伝達コード等が挙げられ、特に有効な用途として工業資材用織物等に用いるモノフィラメントが挙げられ、中でも高強度、高弾性率、細繊度化の要求が強く、製織性向上、織物品位向上のため耐摩耗性を必要とする印刷用スクリーン紗用モノフィラメントに最も好適である。 The liquid crystalline polyester fiber of the present invention has characteristics of high strength, high elastic modulus, and high heat resistance, and has improved wear resistance. General industrial materials, civil engineering / building materials, sports applications, protective clothing, Widely used in fields such as rubber reinforcement materials, electrical materials (especially as tension members), acoustic materials, and general clothing. Effective applications include screen kites, filters, ropes, nets, fishnets, computer ribbons, printed circuit board fabrics, paper canvases, airbags, airships, dome fabrics, rider suits, fishing lines, various lines (Yachts, paragliders, balloons, kites), blind cords, support cords for screen doors, various cords in automobiles and aircraft, power transmission cords for electrical products and robots, etc. Monofilaments to be used are mentioned, and among them, there is a strong demand for high strength, high elastic modulus and fineness, and it is most suitable for monofilaments for printing screens that require abrasion resistance to improve weaving and fabric quality.
以下、実施例により本発明を詳細に説明するが、本発明はこれにより何ら限定されるものではない。なお、本発明の各種特性の評価は次の方法で行った。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by this. The various characteristics of the present invention were evaluated by the following methods.
(1)ポリスチレン換算の重量平均分子量(分子量)
溶媒としてペンタフルオロフェノール/クロロホルム=35/65(重量比)の混合溶媒を用い、液晶ポリエステルの濃度が0.04〜0.08重量/体積%となるように溶解させGPC測定用試料とした。なお、室温24時間の放置でも不溶物がある場合は、さらに24時間静置し、上澄み液を試料とした。これを、Waters社製GPC測定装置を用いて測定し、ポリスチレン換算により重量平均分子量(Mw)を求めた。
カラム:ShodexK−806M 2本、K−802 1本
検出器:示差屈折率検出器RI(2414型)
温度 :23±2℃
流速 :0.8mL/分
注入量:200μL
(2)液晶ポリエステル繊維のTm1、Tm1におけるピーク半値幅、ΔHm1、Tc、ΔHc、Tm2、ΔHm2、液晶ポリエステルポリマーの融点
TA instruments社製DSC2920により示差熱量測定を行い、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピークの温度をTm1(℃)とし、Tm1におけるピーク半値幅(℃)、融解熱量(ΔHm1)(J/g)を測定した。
(1) Weight average molecular weight in terms of polystyrene (molecular weight)
A mixed solvent of pentafluorophenol / chloroform = 35/65 (weight ratio) was used as a solvent, and the solution was dissolved so that the concentration of liquid crystal polyester was 0.04 to 0.08 weight / volume% to obtain a sample for GPC measurement. In addition, when there was an insoluble matter even after standing at room temperature for 24 hours, the mixture was left still for 24 hours, and the supernatant was used as a sample. This was measured using a GPC measuring apparatus manufactured by Waters, and the weight average molecular weight (Mw) was determined by polystyrene conversion.
Column: 2 Shodex K-806M, 1 K-802 Detector: Differential refractive index detector RI (type 2414)
Temperature: 23 ± 2 ° C
Flow rate: 0.8 mL / min Injection volume: 200 μL
(2) Tm1, Tm1 peak half-width, ΔHm1, Tc, ΔHc, Tm2, ΔHm2 of liquid crystal polyester fiber, melting point of liquid crystal polyester polymer Differential calorimetry was carried out by DSC2920 manufactured by TA instruments, and 50 ° C to 20 ° C / min. The temperature of the endothermic peak observed when measured under the temperature raising condition was Tm1 (° C.), and the peak half-value width (° C.) and heat of fusion (ΔHm1) (J / g) at Tm1 were measured.
なお、この測定において発熱ピークの有無を判定し、ピークが見られる場合には発熱量を求めた。続いて、Tm1の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピークの温度をTc(℃)とし、Tcにおける結晶化熱量(ΔHc)(J/g)を測定した。続けて50℃まで冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピークをTm2とし、Tm2における融解熱量(ΔHm2)(J/g)を測定した。 In this measurement, the presence or absence of an exothermic peak was determined, and when a peak was observed, the calorific value was determined. Subsequently, after observing Tm1, holding at a temperature of Tm1 + 20 ° C. for 5 minutes, the temperature of an exothermic peak observed when measured under a temperature drop condition of 20 ° C./min is defined as Tc (° C.), and the amount of crystallization heat at Tc (ΔHc) (J / g) was measured. Subsequently, the mixture was cooled to 50 ° C., and the endothermic peak observed when the temperature was again measured at 20 ° C./min was defined as Tm2, and the heat of fusion (ΔHm2) (J / g) at Tm2 was measured.
なお、参考例に示した液晶ポリエステルポリマーについてはTm1の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で50℃まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピークをTm2とし、Tm2をもってポリマーの融点とした。 In addition, about the liquid crystalline polyester polymer shown in the reference example, after observing Tm1, it was held at a temperature of Tm1 + 20 ° C. for 5 minutes, then cooled to 50 ° C. under a temperature decreasing condition of 20 ° C./minute, and again increased to 20 ° C./minute. The endothermic peak observed when measured under temperature conditions was defined as Tm2, and Tm2 was defined as the melting point of the polymer.
(3)ウースター糸むら試験機でのハーフイナートダイアグラムマス波形(U%H)での変動波形
ツェルベガーウースター社製糸むら試験機UT−4により、ツイスターを用いず、200m/分にて5分の測定を行い、ハーフイナートダイアグラムマス波形を求める。1本の繊維パッケージに対し、最外層より1万m以内で3回、最内層より1万m以内で3回の測定を行い、1本の繊維パッケージ当たり合計6つの波形を求める。それぞれの波形にて絶対値が最も大きい変動のピークをチャートから読み取り、6つの波形の中で最大の値の絶対値をそのサンプルのU%H変動波形(%)とする。
(3) Fluctuation waveform with half inert diagram mass waveform (U% H) in Worcester yarn unevenness testing machine 5 minutes at 200 m / min without using a twister by using Zellerweger Worcester yarn unevenness testing machine UT-4 Measure and obtain half inert diagram mass waveform. A single fiber package is measured three times within 10,000 m from the outermost layer and three times within 10,000 m from the innermost layer to obtain a total of six waveforms per fiber package. The fluctuation peak having the largest absolute value in each waveform is read from the chart, and the absolute value of the maximum value among the six waveforms is defined as the U% H fluctuation waveform (%) of the sample.
(4)外径測定での変動値
Zimmer社製外形測定器D−6101 ROSSDORF1を用い、サンプリングレート0.002秒の条件で400m/分にて3分の測定を行う。1本の繊維パッケージに対し、最外層より1万m以内で3回、最内層より1万m以内で3回の測定を行い、1本の繊維パッケージ当たり合計6つの外径測定を行う。一つの外径測定結果のデータ群に対し、データ全体の平均値からの差(偏差)を求め、絶対値が最も大きい値と平均値から、以下の式で変動値(%)を求める。6つの外径測定結果のうち、変動値の絶対値が最も大きい値の絶対値をそのサンプルの外径測定での変動値(%)とする。
(4) Fluctuation value in outer diameter measurement Using an external shape measuring instrument D-6101 ROSSDORF1 manufactured by Zimmer, measurement is performed at 400 m / min for 3 minutes under the condition of a sampling rate of 0.002 seconds. A single fiber package is measured three times within 10,000 m from the outermost layer and three times within 10,000 m from the innermost layer, and a total of six outer diameter measurements are performed per fiber package. For one data group of outer diameter measurement results, the difference (deviation) from the average value of the entire data is obtained, and the fluctuation value (%) is obtained from the value having the largest absolute value and the average value by the following formula. Of the six outer diameter measurement results, the absolute value of the largest absolute value of the fluctuation value is defined as the fluctuation value (%) in the outer diameter measurement of the sample.
(絶対値が最大の偏差)×100/平均値=変動値(%)
(5)単繊維繊度および繊度変動率
検尺機にて繊維を10mカセ取りし、その重量(g)を1000倍し、1水準当たり10回の測定を行い、平均値を繊度(dtex)とした。これをフィラメント数で除した商を単繊維繊度(dtex)とした。繊度変動率は繊度の10回の平均値からの最大もしくは最小値の差の絶対値のうち、いずれか大きい方の値を用いて下式により算出した。
繊度変動率(%)=((|最大値もしくは最小値−平均値|/平均値)×100)
(6)強度、伸度、弾性率および強力変動率
JIS L1013:1999記載の方法に準じて、試料長100mm、引張速度50mm/分の条件で、オリエンテック社製テンシロンUCT−100を用い1水準当たり10回の測定を行い、平均値を強力(cN)、強度(cN/dtex)、伸度(%)、弾性率(cN/dtex)とした。強力変動率は強力の10回の平均値からの最大もしくは最小値の差の絶対値のうち、いずれか大きい方の値を用いて下式により算出した。
強力変動率(%)=((|最大値もしくは最小値−平均値|/平均値)×100)
(7)繊維軸垂直方向の圧縮弾性率(圧縮弾性率)
単繊維1本をセラミックス製等の剛性の高いステージに静置し、圧子の辺を繊維とほぼ平行とした状態で、下記条件において直径方向に圧子を用いて圧縮負荷を一定の試験速度で加え、荷重−変位曲線を得た後、次式から繊維軸垂直方向の圧縮弾性率を算出した。
(Deviation with the maximum absolute value) × 100 / average value = variation value (%)
(5) Single fiber fineness and fineness fluctuation rate Take 10 m of fiber with a measuring instrument, multiply the weight (g) by 1000, measure 10 times per level, and calculate the average value as fineness (dtex) did. The quotient obtained by dividing this by the number of filaments was defined as the single fiber fineness (dtex). The fineness variation rate was calculated by the following equation using the larger one of the absolute values of the difference between the maximum value and the minimum value from the average value of 10 finenesses.
Fineness fluctuation rate (%) = ((| maximum value or minimum value−average value | / average value) × 100)
(6) Strength, elongation, elastic modulus, and strength fluctuation rate According to the method described in JIS L1013: 1999, using Tensilon UCT-100 manufactured by Orientec Co., Ltd. under the conditions of a sample length of 100 mm and a tensile speed of 50 mm / min. The measurement was performed 10 times per average, and the average value was defined as strength (cN), strength (cN / dtex), elongation (%), and elastic modulus (cN / dtex). The strength fluctuation rate was calculated by the following formula using the larger one of the absolute values of the differences between the maximum and minimum values from the average value of 10 strengths.
Strong fluctuation rate (%) = ((| maximum or minimum value−average value | / average value) × 100)
(7) Compression modulus in the direction perpendicular to the fiber axis (compression modulus)
Place a single fiber on a highly rigid stage such as ceramic, and apply a compressive load at a constant test speed using the indenter in the diameter direction under the following conditions with the side of the indenter approximately parallel to the fiber. After obtaining the load-displacement curve, the compression elastic modulus in the direction perpendicular to the fiber axis was calculated from the following equation.
なお測定に当たっては、装置系の変形量の補正を行うため試料を置かない状態で荷重−変位曲線を得て、これを直線近似して荷重に対する装置の変形量を算出し、試料を置いて荷重−変位曲線を測定した際の各々のデータ点の変位から、その荷重に対する装置の変形量を減じて試料そのものの変位を求め、これを以下の算出に用いた。 In the measurement, in order to correct the deformation amount of the device system, a load-displacement curve is obtained without placing the sample, and this is approximated by a straight line to calculate the deformation amount of the device with respect to the load. -From the displacement of each data point when the displacement curve was measured, the amount of deformation of the apparatus with respect to the load was subtracted to obtain the displacement of the sample itself, which was used for the following calculation.
算出に当たっては、荷重−変位曲線で線形性が成立する2点での荷重と変位を用いて圧縮弾性率を算出した。その低荷重側の点は荷重をかけた初期では圧子がサンプル全面にあたっていない可能性があるため、荷重約30mNの点とした。ただしここで定めた低荷重点が非線形領域内の場合には、降伏点を通過するように荷重−変位曲線に沿って低荷重側に直線を引き、その直線と変位のずれが0.1μm以内となる最小荷重の点とした。また高荷重側は荷重約100mNの点とした。なお高荷重側の点が降伏点荷重を超える場合には、低荷重側の点を通過するように荷重−変位曲線に沿って高荷重側に直線を引き、その直線との変位のずれが0.1μm以内となる最大荷重の点を高荷重側の点とした。なお下式中のlは500μmとして計算を行い、単繊維半径は試験前に光学顕微鏡を用いて試料の直径を10回測定し、これを平均して求めた平均直径を1/2にした値を用いた。また荷重−変位曲線は試料1水準について5回測定し、圧縮弾性率も5回算出し、これを平均したものを圧縮弾性率とした。 In the calculation, the compression elastic modulus was calculated using the load and displacement at two points where linearity is established in the load-displacement curve. The point on the low load side is a point where the load is about 30 mN because there is a possibility that the indenter does not hit the entire surface of the sample at the initial stage when the load is applied. However, when the low load point determined here is in the non-linear region, a straight line is drawn on the low load side along the load-displacement curve so as to pass the yield point, and the deviation between the straight line and the displacement is within 0.1 μm. The minimum load point is The high load side was a point with a load of about 100 mN. When the point on the high load side exceeds the yield point load, a straight line is drawn on the high load side along the load-displacement curve so as to pass the point on the low load side, and the displacement deviation from that line is zero. The point of maximum load within 1 μm was taken as the point on the high load side. In addition, l in the following formula is calculated as 500 μm, and the single fiber radius is a value obtained by measuring the diameter of the sample 10 times using an optical microscope before the test and halving the average diameter obtained by averaging this. Was used. Further, the load-displacement curve was measured 5 times for the sample 1 level, the compression elastic modulus was also calculated 5 times, and the average of these was taken as the compression elastic modulus.
装置 :Instron社製超精密材料試験機Model5848
圧子 :ダイヤモンド製平面圧子(1辺500μmの正方形)
試験速度 :50μm/分
サンプリング速度 :0.1秒
データ処理システム:Instron社製“Merlin”
測定雰囲気 :室温大気中(23±2℃、50±5%RH)
(8)広角X線回折でのピーク半値幅(Δ2θ)
繊維を4cmに切り出し、その20mgを秤量し試料とした。測定は繊維軸方向に対し赤道線方向に行い、その条件は下記とした。このとき2θ=18〜22°に観測されるピークの半値幅(Δ2θ)を測定した。
X線発生装置 :理学電気社製4036A2型
X線源 :CuKα線(Niフィルター使用)
出力 :40kV−20mA
ゴニオメーター:理学電気社製2155D型
スリット :2mmφ−1°−1°
検出器 :シンチレーションカウンター
計数記録装置 :理学電気社製RAD−C型
測定範囲 :2θ=5〜60°
ステップ :0.05°
積算時間 :2秒
(9)複屈折率(△n)
偏光顕微鏡(OLYMPUS社製BH−2)を用いコンペンセーター法により試料1水準当たり5回の測定を行い、平均値として求めた。
Apparatus: Instron super precision material testing machine Model 5848
Indenter: Diamond flat indenter (square with a side of 500 μm)
Test speed: 50 μm / min Sampling speed: 0.1 second Data processing system: “Merlin” manufactured by Instron
Measurement atmosphere: At room temperature in air (23 ± 2 ° C., 50 ± 5% RH)
(8) Peak half-width (Δ2θ) in wide-angle X-ray diffraction
The fiber was cut into 4 cm, 20 mg of the fiber was weighed and used as a sample. The measurement was performed in the equator direction with respect to the fiber axis direction, and the conditions were as follows. At this time, the half width (Δ2θ) of the peak observed at 2θ = 18 to 22 ° was measured.
X-ray generator: Rigaku Denki 4036A2 type X-ray source: CuKα ray (using Ni filter)
Output: 40kV-20mA
Goniometer: Rigaku Denki 2155D type slit: 2mmφ-1 ° -1 °
Detector: Scintillation counter counting recording device: RAD-C type measurement range manufactured by Rigaku Corporation: 2θ = 5-60 °
Step: 0.05 °
Integration time: 2 seconds (9) Birefringence (Δn)
Using a polarizing microscope (BLY-2 manufactured by OLYMPUS), measurement was performed 5 times per one sample level by the compensator method, and the average value was obtained.
(10)耐摩耗性C
1.23cN/dtexの荷重をかけた繊維を垂直に垂らし、繊維に対して垂直になるように直径4mmのセラミック棒ガイド(湯浅糸道工業(株)社製、材質YM−99C)を接触角2.7°で押し付け、ストローク長30mm、ストローク速度600回/分でガイドを繊維軸方向に擦過させ、15秒おきに実体顕微鏡観察を行い、棒ガイド上もしくは繊維表面上に白粉またはフィブリルの発生が確認されるまでの時間を測定し、7回の測定のうち最大値および最小値を除いた5回の平均値を求め耐摩耗性Cとした。なお耐摩耗性Cの評価はマルチフィラメントでも同様の試験法で行った。
(10) Wear resistance C
A fiber loaded with a load of 1.23 cN / dtex was hung vertically, and a ceramic bar guide (made by Yuasa Yido Co., Ltd., material YM-99C) with a diameter of 4 mm was contacted to be perpendicular to the fiber. Press at 2.7 °, rub the guide in the fiber axis direction at a stroke length of 30 mm and a stroke speed of 600 times / minute, observe with a stereomicroscope every 15 seconds, and generate white powder or fibrils on the bar guide or on the fiber surface Was measured, and the average value of five times excluding the maximum value and the minimum value among the seven measurements was determined as the wear resistance C. The abrasion resistance C was evaluated by the same test method for multifilaments.
(11)油分付着量、ポリシロキサン系化合物付着の判定
100mg以上の繊維を採取し、60℃にて10分間乾燥させた後の重量を測定し(W0)、繊維重量に対し100倍以上の水にドデシルベンゼンスルホン酸ナトリウムを繊維重量に対し2.0重量%添加した溶液に繊維を浸漬させ、室温にて20分超音波洗浄し、洗浄後の繊維を水洗し、60℃にて10分間乾燥させた後の重量を測定し(W1)、次式により油分付着量を算出した。
(油分付着量(重量%))=(W0−W1)×100/W1
またポリシロキサン系化合物付着の判定は超音波洗浄後の溶液を採取し、これをIR測定し、ドデシルベンゼンスルホン酸ナトリウムのスルホン酸基に由来する1150〜1250cm−1のピーク強度に対しポリシロキサンに由来する1050〜1150cm−1のピーク強度が0.1倍以上あればポリシロキサンが繊維に付着していると判断した。
(11) Judgment of oil adhesion amount and polysiloxane compound adhesion 100 mg or more of fibers were collected and weighed after drying for 10 minutes at 60 ° C. (W0), and water more than 100 times the fiber weight. The fiber was immersed in a solution containing 2.0% by weight of sodium dodecylbenzenesulfonate added to the fiber, ultrasonically washed at room temperature for 20 minutes, the washed fiber was washed with water, and dried at 60 ° C. for 10 minutes. The weight after the measurement was measured (W1), and the oil adhesion amount was calculated by the following formula.
(Amount of oil adhering (weight%)) = (W0−W1) × 100 / W1
In addition, the determination of polysiloxane compound adhesion was obtained by collecting a solution after ultrasonic cleaning, performing IR measurement, and determining the polysiloxane against the peak intensity of 1150 to 1250 cm −1 derived from the sulfonic acid group of sodium dodecylbenzenesulfonate. If the derived peak intensity of 1050 to 1150 cm −1 was 0.1 times or more, it was judged that the polysiloxane adhered to the fiber.
(12)走行張力、走行応力
東レ・エンジニアリング社製テンションメーター(MODEL TTM−101)を用いて測定した。また、極低張力用には上記テンションメーターを改造したフルスケール5g、精度0.01g測定可能な張力計を用いた。計測した走行張力は単位を換算し、処理後繊維の繊度で除してcN/dtexの単位として走行応力とした。
(12) Running tension and running stress Measured using a tension meter (MODEL TTM-101) manufactured by Toray Engineering. In addition, a tension meter capable of measuring a full scale of 5 g and an accuracy of 0.01 g was used for the extremely low tension. The measured traveling tension was converted into a unit and divided by the fineness of the treated fiber to obtain the traveling stress as a unit of cN / dtex.
(13)製織性、織物特性評価
レピア織機にて経糸に13dtexのポリエステルモノフィラメントを用い、織密度を経、緯とも250本/インチ(2.54cm)とし、打ち込み速度を100回/分とし、緯糸を液晶ポリエステル繊維として緯打ち込み試織を行った。この時、幅180cm、長さ5mの試織における給糸口(セラミックガイド)へのフィブリル、スカムの堆積から工程通過性を評価し、糸切れによる停台回数から製織性を評価し、織物開口部へのフィブリル、スカムの混入個数から織物品位を評価した。それぞれの判断基準を下記する。なお織り上がった織物の厚みはピーコック社製ダイアルシックネスゲージを用い測定した。
<工程通過性>
製織後も目視にてフィブリル、スカムの堆積が認められない;優良(◎)
製織後にフィブリル、スカムは認められるが繊維走行には支障なし;良好(○)
製織中にフィブリル、スカムが認められ、繊維走行張力が増加する;不合格(△)
製織中にフィブリル、スカムが認められ、試織を停止した;不良(×)
<製織性>
停台5回以下;優良(◎)、6〜10回;良好(○)、11回以上;不良(×)
<織物品位>
フィブリル、スカム混入個数5個以下;優良(◎)、6〜10個;良好(○)、11個以上;不良(×)
(14)解舒張力変動率
得られた液晶ポリエステル繊維を、速度400m/分で20分間、湯浅糸道製ワッシャーテンサーY−601L(金属梨地ワッシャー一枚使用)を介して、東レエンジニアリング社製TTM−101型張力測定装置(DAMPINGなし)により走行糸条の張力を測定した。得られた走行糸条の張力から、以下の式に従って解舒張力変動率を算出した。
(13) Weaving and evaluation of fabric characteristics Using a 13 dtex polyester monofilament for warp on a rapier loom, weaving density is set to 250 wefts / inch (2.54 cm), wefting speed is set to 100 times / min, weft Was weaved as a liquid crystal polyester fiber. At this time, the process passability is evaluated from the fibril and scum accumulation on the yarn feeder (ceramic guide) in the trial weaving of 180 cm in width and 5 m in length, and the weaving property is evaluated from the number of stops due to yarn breakage. The quality of the fabric was evaluated from the number of fibrils and scum mixed in. The criteria for each are described below. The thickness of the woven fabric was measured using a dial thickness gauge manufactured by Peacock.
<Process passability>
Even after weaving, no fibril or scum accumulation is observed; excellent (◎)
Fibrils and scum are observed after weaving, but there is no hindrance to fiber running; good (○)
Fibrils and scum are observed during weaving, and fiber running tension increases; Fail (△)
Fibrils and scum were observed during weaving, and trial weaving was stopped; defective (×)
<Weaving properties>
Stopping 5 times or less; Excellent (◎), 6 to 10 times; Good (◯), 11 times or more; Poor (x)
<Textile grade>
Number of fibrils and scum mixed in 5 or less; Excellent (◎), 6 to 10; Good (◯), 11 or more; Poor (×)
(14) Unwinding tension fluctuation rate TTM manufactured by Toray Engineering Co., Ltd. was used for the obtained liquid crystal polyester fiber at a speed of 400 m / min for 20 minutes through a Yuasa Yarnichi Washer Tensor Y-601L (using one metal pear washer). The tension of the running yarn was measured with a -101 type tension measuring device (without DAMPING). From the tension of the obtained traveling yarn, the unwinding tension fluctuation rate was calculated according to the following formula.
解舒張力変動率(%)=(解舒張力標準偏差)/(解舒張力平均値)×100
(15)糸条弛み
得られた液晶ポリエステル繊維をクリールにかけて、湯浅糸道製ワッシャーテンサーY−601L(金属梨地ワッシャーをバー2本に対してそれぞれ一枚使用)を介して引き出し、周長1mの検尺器に、100m/分の速度で100回の巻取を行い、得られた巻き上がりの糸条を目視点検して、糸条の弛み状況を評価した。
Unwinding tension fluctuation rate (%) = (Unwinding tension standard deviation) / (Average unwinding tension) x 100
(15) Thread Looseness The obtained liquid crystalline polyester fiber is creeled and pulled out through a Yuasa Yodo washer tensor Y-601L (one metal pear washer is used for each of the two bars), and the circumference is 1 m. The measuring instrument was wound 100 times at a speed of 100 m / min, and the obtained wound yarn was visually inspected to evaluate the slackness of the yarn.
糸条弛みが全く見られないものを○、弛みが5本以下のものを△、弛みが6本以上見られるものを×として評価を行った。 The evaluation was made with ○ indicating that no slack in the yarn was observed, Δ indicating that the slack was 5 or less, and × indicating that 6 or more slack was observed.
参考例1
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸870重量部、4,4’−ジヒドロキシビフェニル327重量部、ハイドロキノン89重量部、テレフタル酸292重量部、イソフタル酸157重量部および無水酢酸1460重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、335℃まで4時間で昇温した。
Reference example 1
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 870 parts by weight of p-hydroxybenzoic acid, 327 parts by weight of 4,4′-dihydroxybiphenyl, 89 parts by weight of hydroquinone, 292 parts by weight of terephthalic acid, 157 parts by weight of isophthalic acid Then, 1460 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 335 degreeC in 4 hours.
重合温度を335℃に保持し、1.5時間で133Paに減圧し、更に40分間反応を続け、トルクが28kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 335 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 40 minutes. When the torque reached 28 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
参考例2
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸870重量部、4,4’−ジヒドロキシビフェニル327重量部、ハイドロキノン89重量部、テレフタル酸292重量部、イソフタル酸157重量部および無水酢酸1433重量部(フェノール性水酸基合計の1.08当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、330℃まで4時間で昇温した。
Reference example 2
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 870 parts by weight of p-hydroxybenzoic acid, 327 parts by weight of 4,4′-dihydroxybiphenyl, 89 parts by weight of hydroquinone, 292 parts by weight of terephthalic acid, 157 parts by weight of isophthalic acid Then, 1433 parts by weight of acetic anhydride (1.08 equivalent of the total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 330 degreeC in 4 hours.
重合温度を330℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 330 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
参考例3
攪拌翼、留出管を備えた5Lの反応容器に p−ヒドロキシ安息香酸1008重量部と6−ヒドロキシ−2−ナフトエ酸508重量部及び無水酢酸1071重量部(フェノール性水酸基合計の1.05モル当量)を攪拌翼、留出管を備えた反応容器に仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、325℃まで4時間で昇温した。
Reference example 3
In a 5 L reaction vessel equipped with a stirring blade and a distilling tube, 1008 parts by weight of p-hydroxybenzoic acid, 508 parts by weight of 6-hydroxy-2-naphthoic acid and 1071 parts by weight of acetic anhydride (1.05 mol of total phenolic hydroxyl groups) Equivalent) was charged into a reaction vessel equipped with a stirring blade and a distillation tube, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, and then the reaction was carried out at 145 ° C. for 2 hours. Then, it heated up to 325 degreeC in 4 hours.
重合温度を325℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 325 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
参考例4
攪拌翼、留出管を備えた5Lの反応容器に6−ヒドロキシ−2−ナフトエ酸38重量部、2,6−ナフタレンジカルボン酸259重量部、p−ヒドロキシ安息香酸1022重量部、ハイドロキノン132重量部、及び無水酢酸1071重量部(フェノール性水酸基合計の1.05モル当量)を攪拌翼、留出管を備えた反応容器に仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、335℃まで4時間で昇温した。
Reference example 4
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 38 parts by weight of 6-hydroxy-2-naphthoic acid, 259 parts by weight of 2,6-naphthalenedicarboxylic acid, 1022 parts by weight of p-hydroxybenzoic acid, 132 parts by weight of hydroquinone , And 1071 parts by weight of acetic anhydride (1.05 molar equivalents of the total phenolic hydroxyl group) were charged into a reaction vessel equipped with a stirring blade and a distillation tube, and stirred from room temperature to 145 ° C. in 30 minutes with stirring in a nitrogen gas atmosphere. After raising the temperature, the reaction was carried out at 145 ° C. for 2 hours. Then, it heated up to 335 degreeC in 4 hours.
重合温度を335℃に保持し、1.5時間で133Paに減圧し、更に30分間反応を続け、トルクが20kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 335 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 30 minutes. When the torque reached 20 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
参考例5
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸808重量部、4,4’−ジヒドロキシビフェニル411重量部、ハイドロキノン104重量部、テレフタル酸314重量部、イソフタル酸209重量部および無水酢酸1364重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、300℃まで4時間で昇温した。
Reference Example 5
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 808 parts by weight of p-hydroxybenzoic acid, 411 parts by weight of 4,4′-dihydroxybiphenyl, 104 parts by weight of hydroquinone, 314 parts by weight of terephthalic acid, 209 parts by weight of isophthalic acid Then, 1364 parts by weight of acetic anhydride (1.10 equivalents of the total phenolic hydroxyl groups) was charged, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 300 degreeC in 4 hours.
重合温度を300℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 300 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
参考例6
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸323重量部、4,4’−ジヒドロキシビフェニル436重量部、ハイドロキノン109重量部、テレフタル酸359重量部、イソフタル酸194重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、325℃まで4時間で昇温した。
Reference Example 6
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 323 parts by weight of p-hydroxybenzoic acid, 436 parts by weight of 4,4′-dihydroxybiphenyl, 109 parts by weight of hydroquinone, 359 parts by weight of terephthalic acid, 194 parts by weight of isophthalic acid Then, 1011 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 325 degreeC in 4 hours.
重合温度を325℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 325 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
参考例7
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸895重量部、4,4’−ジヒドロキシビフェニル168重量部、ハイドロキノン40重量部、テレフタル酸135重量部、イソフタル酸75重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、365℃まで4時間で昇温した。
Reference Example 7
895 parts by weight of p-hydroxybenzoic acid, 168 parts by weight of 4,4′-dihydroxybiphenyl, 40 parts by weight of hydroquinone, 135 parts by weight of terephthalic acid, 75 parts by weight of isophthalic acid in a 5 L reaction vessel equipped with a stirring blade and a distillation tube Then, 1011 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 365 degreeC in 4 hours.
重合温度を365℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 365 ° C., the pressure was reduced to 133 Pa in 1.5 hours, the reaction was continued for another 20 minutes, and the polycondensation was completed when the torque reached 15 kgcm. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
参考例8
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル235重量部、ハイドロキノン89重量部、テレフタル酸224重量部、イソフタル酸120重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、340℃まで4時間で昇温した。
Reference Example 8
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 671 parts by weight of p-hydroxybenzoic acid, 235 parts by weight of 4,4′-dihydroxybiphenyl, 89 parts by weight of hydroquinone, 224 parts by weight of terephthalic acid, 120 parts by weight of isophthalic acid Then, 1011 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 340 degreeC in 4 hours.
重合温度を340℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 340 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
参考例9
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル335重量部、ハイドロキノン30重量部、テレフタル酸224重量部、イソフタル酸120重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、305℃まで4時間で昇温した。
Reference Example 9
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 671 parts by weight of p-hydroxybenzoic acid, 335 parts by weight of 4,4′-dihydroxybiphenyl, 30 parts by weight of hydroquinone, 224 parts by weight of terephthalic acid, 120 parts by weight of isophthalic acid Then, 1011 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 305 degreeC in 4 hours.
重合温度を305℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 305 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
参考例10
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル268重量部、ハイドロキノン69重量部、テレフタル酸314重量部、イソフタル酸30重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、355℃まで4時間で昇温した。
Reference Example 10
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 671 parts by weight of p-hydroxybenzoic acid, 268 parts by weight of 4,4′-dihydroxybiphenyl, 69 parts by weight of hydroquinone, 314 parts by weight of terephthalic acid, 30 parts by weight of isophthalic acid Then, 1011 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 355 degreeC in 4 hours.
重合温度を355℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 355 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
参考例11
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル268重量部、ハイドロキノン69重量部、テレフタル酸150重量部、イソフタル酸194重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、310℃まで4時間で昇温した。
Reference Example 11
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 671 parts by weight of p-hydroxybenzoic acid, 268 parts by weight of 4,4′-dihydroxybiphenyl, 69 parts by weight of hydroquinone, 150 parts by weight of terephthalic acid, 194 parts by weight of isophthalic acid Then, 1011 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 310 degreeC in 4 hours.
重合温度を310℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 310 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
参考例1〜11で得られた液晶性ポリエステルの特性を表1に示す。いずれの樹脂もホットステージにて窒素雰囲気下で昇温加熱し、試料の透過光を偏光下で観察したところ光学的異方性(液晶性)が確認された。なお、溶融粘度は高化式フローテスターを用い、温度を融点+10℃、剪断速度を1000/sとして測定した。 The characteristics of the liquid crystalline polyester obtained in Reference Examples 1 to 11 are shown in Table 1. Each resin was heated and heated in a nitrogen atmosphere on a hot stage, and the transmitted light of the sample was observed under polarized light. As a result, optical anisotropy (liquid crystallinity) was confirmed. The melt viscosity was measured using a Koka flow tester at a temperature of melting point + 10 ° C. and a shear rate of 1000 / s.
本発明の液晶ポリエステル繊維の最適な実施形態について、実施例1、比較例1〜4により説明する。 The optimal embodiment of the liquid crystalline polyester fiber of this invention is demonstrated by Example 1 and Comparative Examples 1-4.
実施例1
参考例1の液晶ポリエステルを用い、160℃、12時間の真空乾燥を行った後、大阪精機工作株式会社製φ15mm単軸エクストルーダーにて溶融押し出しし、ギアーポンプで計量しつつ紡糸パックにポリマーを供給した。紡糸パックでは金属不織布フィルターを用いてポリマーを濾過し、口金よりポリマーを吐出した。吐出したポリマーは40mmの保温領域を通過させた後、25℃、空気流の環状冷却風により糸条の外側から冷却し固化させ、その後、ポリエーテル化合物を主体とする平滑剤とラウリルアルコールを主体とする乳化剤の水エマルジョンからなる油剤を付与し全フィラメントを第1ゴデットロールに引き取った。これを同じ速度である第2ゴデットロールを介した後、全フィラメント中の1本以外はサクションガンにて吸引し、残り1本はダンサーアームを介しパーンワインダー(神津製作所社製EFT型テークアップワインダー、巻取パッケージに接触するコンタクトロール無し)にてパーンの形状に巻き取った。巻取中、糸切れは発生せず製糸性は良好であった。紡糸条件、紡糸繊維物性を表2に示す。
Example 1
After vacuum drying at 160 ° C. for 12 hours using the liquid crystal polyester of Reference Example 1, melt extrusion with a φ15 mm single screw extruder manufactured by Osaka Seiki Machine Co., Ltd., and supplying the polymer to the spinning pack while measuring with a gear pump did. In the spinning pack, the polymer was filtered using a metal nonwoven fabric filter, and the polymer was discharged from the die. The discharged polymer is allowed to pass through a 40 mm heat insulation region, and then cooled and solidified from the outside of the yarn with an annular cooling airflow at 25 ° C., and then mainly a smoothing agent mainly composed of a polyether compound and lauryl alcohol. The oil agent which consists of the water emulsion of the emulsifier made was given, and all the filaments were taken up by the 1st godet roll. After passing this through the second godet roll at the same speed, one of all the filaments is sucked with a suction gun, and the remaining one is passed through a dancer arm through a pirn winder (EFT take-up winder manufactured by Kozu Seisakusho, It was wound up in the shape of a pan with no contact roll in contact with the winding package. During winding, yarn breakage did not occur, and the yarn forming property was good. Table 2 shows the spinning conditions and the physical properties of the spun fiber.
この紡糸繊維パッケージから神津製作所社製SSP−MV型リワインダー(接触長200mm、ワインド数8.7、テーパー角45°)を用いて固相重合前巻き返しを行った。紡糸繊維の解舒は、縦方向(繊維周回方向に対し垂直方向)に行い、調速ローラーは用いず、オイリングローラー(梨地仕上げのステンレスロール)を用いてポリジメチルシロキサン(東レ・ダウコーニング社製SH200)が5.0重量%の水エマルジョンを油剤とし、給油を行った。巻き返しの心材にはステンレス製の穴あきボビンにケブラーフェルト(目付280g/m2、厚み1.5mm)を巻いたものを用い、面圧は100gfとした。巻き返し条件を表3に示す。 From this spun fiber package, roll-back was performed before solid phase polymerization using an SSP-MV type rewinder (contact length: 200 mm, wind number: 8.7, taper angle: 45 °) manufactured by Kozu Seisakusho. Spinning fibers are unwound in the longitudinal direction (perpendicular to the fiber circulation direction), and do not use a speed control roller, but use an oiling roller (satin-finished stainless steel roll) to produce polydimethylsiloxane (manufactured by Dow Corning Toray). A water emulsion having SH 200) of 5.0% by weight was used as an oil agent, and refueling was performed. As the core material for rewinding, a stainless steel perforated bobbin wound with Kevlar felt (weight per unit: 280 g / m 2 , thickness: 1.5 mm) was used, and the surface pressure was 100 gf. Table 3 shows the rewinding conditions.
次に巻き返したパッケージからステンレスの穴あきボビンを外し、ケブラーフェルトに繊維を巻き取ったパッケージの状態として固相重合を行なった。固相重合は、密閉型オーブンを用い、室温から240℃までは約30分で昇温し、240℃にて3時間保持した後、4℃/時間で最終温度まで昇温し、最終温度で保持する温度プログラムとした。なお雰囲気は除湿窒素を流量20NL/分にて供給し、庫内が加圧にならないよう排気口より排気させた。固相重合条件、固相重合繊維物性も表3に示す。 Next, the bobbin made of stainless steel was removed from the wound package, and solid state polymerization was performed in a package state in which the fiber was wound around Kevlar felt. In the solid-phase polymerization, the temperature is raised from room temperature to 240 ° C. in about 30 minutes using a closed oven, maintained at 240 ° C. for 3 hours, and then heated to the final temperature at 4 ° C./hour. The temperature program was held. The atmosphere was supplied with dehumidified nitrogen at a flow rate of 20 NL / min, and exhausted from the exhaust port so that the inside of the chamber was not pressurized. Table 3 also shows the solid-state polymerization conditions and solid-state polymerization fiber properties.
最後に、固相重合後のパッケージから繊維を解舒し、連続して油分除去(洗浄)、高温非接触熱処理を行なった。固相重合後のパッケージをフリーロールクリール(軸およびベアリングを有し、外層部は自由に回転できる。ブレーキおよび駆動源なし。)にはめ、ここから糸を横方向(繊維周回方向)に引き出し、連続して、繊維を両端にスリットを設けた浴槽(内部に繊維と接触するガイドなし)内に通し、油剤を洗浄除去した。洗浄液は非イオン・アニオン系の界面活性剤(三洋化成社製グランアップUS−30)を0.1重量%含有した50℃の温水とし、外部タンクにてこれを温調し、ポンプにて水槽に供給した。水槽への供給に際しては、水槽内に5cm置きに穴を開けたパイプを通し、このパイプに供給することで水槽内に液流を与えるようにした。なおスリットおよび液面調整用穴からあふれた洗浄液は回収し、外部タンクに戻す機構を設けている。 Finally, the fiber was unwound from the package after the solid phase polymerization, continuously removed (washed), and subjected to high-temperature non-contact heat treatment. The package after solid-phase polymerization is fitted into a freeroll creel (having a shaft and a bearing, the outer layer part can freely rotate. There is no brake and drive source), and the yarn is pulled out in the lateral direction (fiber circulation direction) from here. Continuously, the fiber was passed through a bathtub provided with slits at both ends (without a guide contacting the fiber inside), and the oil agent was washed and removed. The cleaning liquid is 50 ° C. warm water containing 0.1% by weight of a nonionic / anionic surfactant (Granup US-30 manufactured by Sanyo Kasei Co., Ltd.). Supplied to. When supplying to the water tank, a pipe having holes formed every 5 cm was passed through the water tank, and a liquid flow was given to the water tank by supplying the pipe. A cleaning liquid overflowing from the slit and the liquid level adjusting hole is collected and returned to the external tank.
洗浄後の繊維はベアリングローラーガイドを通した後、セパレートローラー付きの第1ローラーに通した。なお、クリールはフリーロールであるため、このローラーにより繊維を引っ張ることで、固相重合パッケージからの解舒を行ない、繊維を走行させることになる。ローラーを通過した繊維をスリットヒーターに通し、高温熱処理を行なった。スリットヒーター内にはガイド類を設けず、またヒーターと繊維も非接触としている。ヒーター通過後の繊維はセパレートローラー付きの第2ローラーに通した。第1ローラーと第2ローラーは同速度とした。第2ローラーを通過した繊維は、セラミック製のオイリングローラーによりポリエーテル化合物を主体とする平滑剤とラウリルアルコールを主体とする乳化剤の水エマルジョンからなる油剤を付与し、ワインダー(神津製作所社製ET−8T型調速巻取機、巻取張力15gf、面圧120gf、テーパー角60°、ワインド数8.7、接触長200mm)にて巻き取った。解舒、洗浄、高温熱処理の条件、および高温熱処理後の繊維物性を表4に示す。なお、この液晶ポリエステル繊維の△nは0.35であり高い配向を有していた。 The washed fiber was passed through a bearing roller guide and then passed through a first roller with a separate roller. In addition, since a creel is a free roll, by pulling a fiber with this roller, the unwinding from a solid phase polymerization package is performed and the fiber is run. The fiber that passed through the roller was passed through a slit heater and subjected to high temperature heat treatment. No guides are provided in the slit heater, and the heater and fiber are not in contact with each other. The fiber after passing through the heater was passed through a second roller with a separate roller. The first roller and the second roller were at the same speed. The fiber that has passed through the second roller is provided with an oil agent consisting of a smoothing agent mainly composed of a polyether compound and a water emulsion of an emulsifier mainly composed of lauryl alcohol by a ceramic oiling roller, and a winder (ET- 8T type speed-controlled winder, winding tension 15 gf, surface pressure 120 gf, taper angle 60 °, wind number 8.7, contact length 200 mm). Table 4 shows the conditions of unraveling, washing, high-temperature heat treatment, and fiber properties after high-temperature heat treatment. In addition, Δn of this liquid crystal polyester fiber was 0.35 and had a high orientation.
表4から分かるように、実施例1の繊維は高強度、高弾性率、高伸度であり、かつ高い耐摩耗性を持つものである。加えてU%Hの変動波形、外径測定の変動値も小さく、長手方向の繊維直径の均一性にも優れている。 As can be seen from Table 4, the fiber of Example 1 has high strength, high elastic modulus, high elongation, and high wear resistance. In addition, the fluctuation waveform of U% H and the fluctuation value of the outer diameter measurement are small, and the uniformity of the fiber diameter in the longitudinal direction is also excellent.
この繊維を用いた試織評価結果も表4に合わせて示す。高い耐摩耗性を持ち、長手方向の繊維直径の均一性に優れることから工程通過性、製織性、織物品位は優良であった。繊維直径の異常、目開きの異常がないことから、印刷用スクリーン紗、フィルター用メッシュとした際には欠点がなく、良好な特性を有することが期待できる。 Table 4 also shows the results of evaluation of the test fabric using this fiber. Since it has high abrasion resistance and excellent uniformity in the fiber diameter in the longitudinal direction, the process passability, weaving property, and textile quality were excellent. Since there is no abnormality in fiber diameter and opening, there are no defects when printing screens and filter meshes, and it can be expected to have good characteristics.
比較例1
実施例1と同様の方法で得た固相重合後のパッケージから、実施例1と同様に解舒、洗浄を行った後、神津製作所社製ET−8T型調速巻取機にて一旦巻き取った。実施例1との関係で言うと、第1ローラーを通過した後、巻き取ることにあたる。このときの巻き取り条件は、張力15gf、面圧120gf、テーパー角60°、ワインド数8.7、接触長200mmとした。最初に実施例1と同様、400m/分の解舒、洗浄を行い巻き取ったが、巻取機で糸切れが頻発したため、200m/分に速度を下げ、巻き取った。巻き取った繊維パッケージから繊維を縦方向(繊維周回方向に対し垂直方向)に引き出し、実施例1と同様に高温熱処理を行なった。実施例1との関係で言うと、第1ローラーの前にパッケージを置き、縦取り解舒して繊維を供給することにあたる。高温熱処理中、第1ローラーにフィブリルと推測される毛羽が巻き付き、特に処理の後半では第1ローラーからの糸離れが不安定となり、走行安定性が悪化した。解舒、洗浄、高温熱処理の条件、および高温熱処理後の繊維物性を表4に示す。
Comparative Example 1
The package after solid phase polymerization obtained by the same method as in Example 1 was unwound and washed in the same manner as in Example 1, and then wound once with an ET-8T type speed-controlled winder manufactured by Kozu Manufacturing Co., Ltd. I took it. In terms of the relationship with Example 1, it corresponds to winding after passing through the first roller. The winding conditions at this time were tension 15 gf, surface pressure 120 gf, taper angle 60 °, wind number 8.7, and contact length 200 mm. Initially, as in Example 1, unwinding and washing were performed at 400 m / min, and winding was performed. However, yarn breakage occurred frequently with the winder, and the speed was reduced to 200 m / min and wound. The fiber was drawn out from the wound fiber package in the longitudinal direction (perpendicular to the fiber circulation direction) and subjected to high-temperature heat treatment in the same manner as in Example 1. In terms of the relationship with Example 1, the package is placed in front of the first roller, and the fiber is fed by longitudinally unraveling. During the high-temperature heat treatment, fluff presumed to be fibrils was wound around the first roller, and in particular, in the latter half of the treatment, the yarn separation from the first roller became unstable and the running stability deteriorated. Table 4 shows the conditions of unraveling, washing, high-temperature heat treatment, and fiber properties after high-temperature heat treatment.
表4から分かるように、比較例1の繊維は高強度、高弾性率、高伸度であり、かつ高い耐摩耗性を持つものであるが、U%Hの変動波形、外径測定での変動値が大きく、長手方向の繊維直径の均一性に劣っている。これは固相重合された液晶ポリエステル繊維を一旦巻き取ることでフィブリルが発生するためと考えられる。 As can be seen from Table 4, the fiber of Comparative Example 1 has high strength, high elastic modulus, high elongation, and high wear resistance. The variation value is large and the uniformity of the fiber diameter in the longitudinal direction is inferior. This is presumably because fibrils are generated by once winding the solid phase polymerized liquid crystal polyester fiber.
この繊維を用いた試織評価結果も表4に合わせて示すが、工程通過性は不合格、製織性、織物品位は不良であった。特に製織の後半で織物品位の欠点が目立ったことから、熱処理後の繊維の内層部、したがって固相重合後の繊維を一旦巻き取った際の外層部にフィブリル化、フィブリル堆積物の巻き込み等の欠点が多く、工程通過性、製織性、織物品位を悪化させたことが推測される。 The results of evaluation of the test fabric using this fiber are also shown in Table 4, but the process passability was rejected, the weaving property, and the fabric quality were poor. In particular, since the defect of the fabric quality was conspicuous in the second half of weaving, fibrillation, entrapping of fibril deposits, etc. were carried out in the inner layer part of the fiber after heat treatment, and hence the outer layer part once the fiber after solid phase polymerization was wound up. It is presumed that there were many defects, and the process passability, weaving property, and textile quality were deteriorated.
比較例2
実施例1と同様の方法で得た紡糸繊維パッケージから、特許文献2の実施例1と同様に繊維を縦方向に解舒し、調速ローラーを介さず、速度を一定とした巻取機(神津製作所社製ET−68S調速巻取機)にて巻き返しを行った。巻き返しの心材は実施例1と同様としたが、面圧は付与せず、さらにパッケージ形態はテーパー角20°のテーパーエンド巻きとし、テーパー幅調整機構の改造によりトラバース幅を常に揺動させるようにした。巻き返し条件を表3に示す。
Comparative Example 2
From a spun fiber package obtained by the same method as in Example 1, the fiber is unwound in the longitudinal direction in the same manner as in Example 1 of Patent Document 2, and a winder (with a constant speed without using a speed control roller) Rewinding was performed using an ET-68S controlled winding machine manufactured by Kozu Seisakusho. The core material for rewinding was the same as in Example 1, but no surface pressure was applied, and the package form was a taper end winding with a taper angle of 20 °, and the traverse width was constantly swung by remodeling the taper width adjusting mechanism. did. Table 3 shows the rewinding conditions.
これを実施例1と同様に固相重合した。固相重合後の繊維物性を表3に示すが、この段階での物性値は実施例1と同様である。これを実施例1と同様の方法で解舒、洗浄を行おうとしたが糸切れが頻発し、速度を200m/分まで低下させても糸切れが生じるため評価を中止した。 This was subjected to solid phase polymerization in the same manner as in Example 1. The fiber physical properties after solid-phase polymerization are shown in Table 3. The physical property values at this stage are the same as in Example 1. An attempt was made to unwind and wash this in the same manner as in Example 1, but the yarn breakage occurred frequently, and the yarn breakage occurred even when the speed was reduced to 200 m / min.
このように特許文献2の実施例1と同様の手法で、固相重合前の巻き返しにおいてテーパー幅を常に揺動させて端面を崩したことにより、端面がテーパー部に形成されてしまい、直径が変化して一定速度での解舒が困難となったため糸切れが発生したと考えられる。 Thus, by the same method as in Example 1 of Patent Document 2, the end face is broken by constantly oscillating the taper width in rewinding before solid-phase polymerization, so that the end face is formed in the tapered portion, and the diameter is reduced. It is thought that the yarn breakage occurred because it became difficult to unwind at a constant speed.
比較例3
比較例2と同様の方法(特許文献2の実施例1と同様の手法)で得た固相重合後のパッケージを、送り出しロール(モーター駆動による回転数一定送り出し)に装着し、調速ローラーを通すことなく、実施例1と同様の方法で洗浄、高温熱処理、追油を行い巻き取ることを試みた。しかし高温熱処理ヒーターを通過させると巻取機の速度変動が大きくなり、200m/分でも糸切れが発生した。巻き取り張力が高温熱処理内の繊維に伝わることで、熱処理張力が過度に大きくなり溶断が発生したと考えられる。
Comparative Example 3
A package after solid phase polymerization obtained by the same method as in Comparative Example 2 (the same method as in Example 1 of Patent Document 2) is mounted on a delivery roll (motor-driven constant rotation delivery), and a speed control roller Without passing through, it was attempted to wind up by washing, high-temperature heat treatment, and additional oil in the same manner as in Example 1. However, when passing through a high-temperature heat treatment heater, the speed fluctuation of the winder increased, and yarn breakage occurred even at 200 m / min. It is considered that the winding tension is transmitted to the fibers in the high-temperature heat treatment, so that the heat treatment tension becomes excessively large and fusing occurs.
このように特許文献2の実施例1と同様に固相重合後のパッケージを送り出しロールで送り出すことでは解舒−洗浄−熱処理の連続化は行うことができず、本発明の繊維は得られない。 As described above, in the same manner as in Example 1 of Patent Document 2, when the package after the solid-phase polymerization is sent out by the delivery roll, continuation of unraveling-cleaning-heat treatment cannot be performed, and the fiber of the present invention cannot be obtained. .
比較例4
比較例1と同様の方法で得た解舒、洗浄後の固相重合糸を用いて、高温熱処理を行うことなく製織評価を行った。繊維物性を表4に示すが洗浄を行ったことにより耐摩耗性は固相重合糸に比べても低下している。製織評価では1mも織らないうちに糸切れ、フィブリル堆積が著しくなり、工程通過性不良となったため評価を中止した。
Comparative Example 4
Weaving evaluation was performed using the solid-state polymerized yarn obtained by the same method as in Comparative Example 1 without performing high-temperature heat treatment. The physical properties of the fibers are shown in Table 4, but the abrasion resistance is lowered by the washing as compared with the solid phase polymerized yarn. In the weaving evaluation, the yarn breakage and fibril accumulation became remarkable before weaving even 1 m, and the evaluation was stopped because of poor processability.
このように高温熱処理を施さず、Tm1におけるピーク半値幅が15℃未満の液晶ポリエステル繊維では耐摩耗性に劣り、高次工程通過性、製織性に劣る。 Thus, high temperature heat treatment is not performed, and the liquid crystal polyester fiber having a peak half width at Tm1 of less than 15 ° C. is inferior in wear resistance, and inferior in high-order process passability and weaving.
実施例2〜4
ここでは繊維直径(繊度)、フィラメント数について評価を行った。
Examples 2-4
Here, the fiber diameter (fineness) and the number of filaments were evaluated.
紡糸条件を表2に記載の条件とすること以外は実施例1と同様の方法で溶融紡糸を行った。なお実施例4では吐出したフィラメントを全てまとめて巻き取っている。製糸性については良好であったが、実施例2では1回糸切れが発生したため、再度糸掛けを行ったが、その後糸切れは見られなかった。得られた紡糸繊維物性も表2に示す。 Melt spinning was carried out in the same manner as in Example 1 except that the spinning conditions were those shown in Table 2. In Example 4, all the discharged filaments are rolled up together. Although the yarn forming property was good, in Example 2, the yarn breakage occurred once, so the yarn was threaded again, but no yarn breakage was observed thereafter. The obtained spinning fiber properties are also shown in Table 2.
これを、巻き返し条件を表3記載の条件とすること以外は実施例1と同様の方法で固相重合前巻き返しを行った。次に、実施例1と同様の方法で固相重合を行った。得られた固相重合繊維物性を表3に示す。 This was rewound before solid phase polymerization in the same manner as in Example 1 except that the rewinding conditions were the conditions shown in Table 3. Next, solid phase polymerization was performed in the same manner as in Example 1. The obtained solid state polymerized fiber properties are shown in Table 3.
これを解舒、洗浄、高温熱処理の条件を表4に記載の条件とすること以外は実施例1と同様の方法で解舒−洗浄−高温熱処理を連続して行った。実施例2では第1ローラーからの糸離れが不安定となり、走行安定性がやや悪化したが糸切れは生じなかった。得られた高温熱処理後繊維物性を表4に示す。 Unwinding, cleaning, and high temperature heat treatment were continuously performed in the same manner as in Example 1 except that the conditions of unraveling, cleaning, and high temperature heat treatment were changed to the conditions shown in Table 4. In Example 2, the yarn separation from the first roller became unstable and the running stability was slightly deteriorated, but the yarn breakage did not occur. Table 4 shows the fiber properties after the high-temperature heat treatment.
得られた繊維を用いて製織評価を行った結果も表4に併せて示す。実施例3、4では工程通過性、製織性、織物品位は優良であった。実施例2では評価開始直後に糸切れによる停台が発生し、フィブリルの混入も見られたが、後半は順調であった。耐摩耗性がやや劣るため、解舒−洗浄−高温熱処理工程でわずかなフィブリルが蓄積し、高温熱処理後のパッケージの外層部にフィブリルの堆積物が混入したためと考えられる。 Table 4 also shows the results of weaving evaluation using the obtained fibers. In Examples 3 and 4, the process passability, weaving property, and fabric quality were excellent. In Example 2, a standstill due to yarn breakage occurred immediately after the start of evaluation, and fibrils were mixed, but the latter half was smooth. This is probably because the abrasion resistance is slightly inferior, so that a slight amount of fibrils accumulates in the unraveling-cleaning-high temperature heat treatment process, and fibril deposits are mixed in the outer layer portion of the package after the high temperature heat treatment.
実施例5〜14
ここでは樹脂組成について評価を行った。
Examples 5-14
Here, the resin composition was evaluated.
参考例2〜11で得た液晶ポリエステルを用い、紡糸条件を表2に示す条件とすること以外は実施例1と同様の方法で溶融紡糸を行った。実施例6、実施例7、実施例10では紡糸中にそれぞれ1度ずつ糸切れが発生したが、再度糸掛けした後は、糸切れは発生しなかった。得られた紡糸繊維物性を表2に示す。 Using the liquid crystalline polyesters obtained in Reference Examples 2 to 11, melt spinning was performed in the same manner as in Example 1 except that the spinning conditions were as shown in Table 2. In Examples 6, 7, and 10, yarn breakage occurred once during spinning, but no yarn breakage occurred after re-threading. The obtained spinning fiber properties are shown in Table 2.
これを、巻き返し条件を表3に示す条件とすること以外は実施例1と同様の方法で固相重合前巻き返しを行った。さらに固相重合の最終温度を表3に記載の条件とすること以外は実施例1と同様の方法で固相重合を行った。得られた固相重合繊維物性を表3に示す。 Rewinding before solid phase polymerization was performed in the same manner as in Example 1 except that the rewinding conditions were set as shown in Table 3. Further, the solid phase polymerization was performed in the same manner as in Example 1 except that the final temperature of the solid phase polymerization was set to the conditions shown in Table 3. The obtained solid state polymerized fiber properties are shown in Table 3.
これを解舒、洗浄、高温熱処理の条件を表4に記載の条件とすること以外は実施例1と同様の方法で解舒−洗浄−高温熱処理を連続して行った。実施例6、7では第1ローラーからの糸離れが不安定となり、糸切れがそれぞれ1回発生した。また実施例13、14では走行安定性がやや悪化したが糸切れは生じなかった。得られた高温熱処理後繊維物性を表4に示す。 Unwinding, cleaning, and high temperature heat treatment were continuously performed in the same manner as in Example 1 except that the conditions of unraveling, cleaning, and high temperature heat treatment were changed to the conditions shown in Table 4. In Examples 6 and 7, yarn separation from the first roller became unstable, and yarn breakage occurred once each. In Examples 13 and 14, running stability was slightly deteriorated, but yarn breakage did not occur. Table 4 shows the fiber properties after the high-temperature heat treatment.
得られた繊維を用いて製織評価を行った結果も表4に併せて示す。実施例5では工程通過性、製織性、織物品位は優良であった。実施例6〜14では評価開始直後に糸切れによる停台が発生し、フィブリルの混入も見られたが、後半は順調であった。耐摩耗性がやや劣るため、解舒−洗浄−高温熱処理工程でわずかなフィブリルが蓄積し、高温熱処理後のパッケージの外層部にフィブリルの堆積物が混入したためと考えられる。実施例6、7では製織後に工程中のガイド類にフィブリルの堆積が見られた。また糸切れによる停台や、フィブリルの混入もやや多かった。実施例6、7は耐摩耗性がより劣るため、フィブリルの発生量が多く、U%Hの変動波形、外径測定の変動値がやや大きくなっていることから工程通過性、製織性、織物品位にやや劣る結果になったと考えられる。 Table 4 also shows the results of weaving evaluation using the obtained fibers. In Example 5, the process passability, weaving property, and fabric quality were excellent. In Examples 6 to 14, a stop due to yarn breakage occurred immediately after the start of evaluation, and fibrils were mixed, but the latter half was smooth. This is probably because the abrasion resistance is slightly inferior, so that a slight amount of fibrils accumulates in the unraveling-cleaning-high temperature heat treatment process, and fibril deposits are mixed in the outer layer portion of the package after the high temperature heat treatment. In Examples 6 and 7, fibrils were deposited on the guides in the process after weaving. There were also a lot of stops due to thread breakage and fibrils. In Examples 6 and 7, since the abrasion resistance is inferior, the amount of fibrils generated is large, the fluctuation waveform of U% H, and the fluctuation value of the outer diameter measurement are slightly large. It seems that the result was slightly inferior in quality.
実施例15
紡糸条件のうち巻き時間を400分、巻き返しの巻き量を40万mとし、固相重合後のパッケージから解舒を行うに際して、固相重合後のパッケージそのものを、50℃に保温した界面活性剤入りの洗浄浴へ巻取糸の層が全て埋没するように浸漬し、糸を縦方向(繊維周回方向と垂直方向)に引き出しつつ解舒し、両端にスリットを設けた浴槽(内部に繊維と接触するガイドなし)内に通し、界面活性剤入りの洗浄水をすすいで除去した。浴槽へは、外部タンクにて温調された50℃の温水を、ポンプにて供給した。なおスリットおよび液面調整用穴からあふれた温水は回収し、外部タンクに戻す機構を設けたこと以外は、実施例1と同様の方法で液晶ポリエステル繊維を得た。
Example 15
A surfactant in which the winding time is 400 minutes and the amount of rewinding is 400,000 m among spinning conditions, and the package itself after solid phase polymerization is kept at 50 ° C. when unwinding from the package after solid phase polymerization. Immerse so that all layers of the wound yarn are buried in the washing bath, unwind while pulling the yarn in the longitudinal direction (perpendicular to the fiber circulation direction), and a bathtub (with fibers inside) The washing water containing the surfactant was rinsed and removed. To the bathtub, hot water at 50 ° C. that was temperature-controlled in an external tank was supplied by a pump. In addition, liquid crystal polyester fiber was obtained by the same method as Example 1 except having provided the mechanism which collect | recovered the warm water which overflowed from the slit and the liquid level adjustment hole, and returned to an external tank.
得られた液晶ポリエステル繊維の油分付着量は、0.05重量%であった。また解舒張力変動率は、12.7%であり、解舒張力変動を優れたレベルで抑制でき、糸条弛みもなく、良好な工程通過性を示した。 The oil adhesion amount of the obtained liquid crystal polyester fiber was 0.05% by weight. Further, the unwinding tension fluctuation rate was 12.7%, and the unwinding tension fluctuation could be suppressed at an excellent level, and there was no yarn slack and good processability was exhibited.
更に液晶ポリエステル繊維の製造工程中でのスカム発生、糸切れもなく、繊維長40万mの巻取パッケージを得ることができた。 Further, there was no scum generation or yarn breakage during the production process of the liquid crystalline polyester fiber, and a winding package having a fiber length of 400,000 m could be obtained.
実施例16
温水の温度を18℃とした以外は、実施例15と同様の方法で液晶ポリエステル繊維を得た。
Example 16
A liquid crystal polyester fiber was obtained in the same manner as in Example 15 except that the temperature of the hot water was 18 ° C.
得られた液晶ポリエステル繊維の油分付着量は、0.26重量%であった。また解舒張力変動率は、19.1%であり、解舒張力変動を良好なレベルで抑制でき、糸条弛みもほとんどなく、良好な工程通過性を示した。 The obtained liquid crystal polyester fiber had an oil adhesion amount of 0.26% by weight. The unwinding tension fluctuation rate was 19.1%, and the unwinding tension fluctuation could be suppressed at a good level, and there was almost no loosening of the yarn, and good processability was exhibited.
更に液晶ポリエステル繊維の製造工程中でのスカム発生も少なく、平均して繊維長26万mの巻取パッケージを得ることができた。 Furthermore, there was little scum generation during the production process of the liquid crystal polyester fiber, and a winding package having a fiber length of 260,000 m on average could be obtained.
実施例17
両端にスリットを設けたすすぎ用の浴槽を用いなかったこと以外は、実施例15と同様の方法で液晶ポリエステル繊維を得た。
Example 17
A liquid crystal polyester fiber was obtained in the same manner as in Example 15 except that the rinsing bath provided with slits at both ends was not used.
得られた液晶ポリエステル繊維の油分付着量は、0.35重量%であった。また解舒張力変動率は、23.2%であり、解舒張力変動を問題ないレベルで抑制でき、糸条弛みもほとんどなく、良好な工程通過性を示した。 The oil adhesion amount of the obtained liquid crystal polyester fiber was 0.35% by weight. The unwinding tension fluctuation rate was 23.2%, and the unraveling tension fluctuation could be suppressed at a problem-free level, there was almost no slack in the yarn, and good processability was exhibited.
更に液晶ポリエステル繊維の製造工程中でのスカム発生も少なく、平均して繊維長22万mの巻取パッケージを得ることができた。 Furthermore, there was little scum generation during the production process of the liquid crystalline polyester fiber, and a winding package having a fiber length of 220,000 m on average could be obtained.
実施例18
界面活性剤入りの洗浄浴を18℃に保温したこと以外は、実施例15と同様の方法で液晶ポリエステル繊維を得た。
Example 18
A liquid crystal polyester fiber was obtained in the same manner as in Example 15 except that the washing bath containing the surfactant was kept at 18 ° C.
得られた液晶ポリエステル繊維の油分付着量は、0.39重量%であった。また解舒張力変動率は、26.9%であり、解舒張力変動を問題ないレベルで抑制でき、糸条弛みもほとんどなく、良好な工程通過性を示した。 The obtained liquid crystal polyester fiber had an oil adhesion amount of 0.39% by weight. The unwinding tension fluctuation rate was 26.9%, and the unraveling tension fluctuation could be suppressed at a problem-free level, there was almost no slack in the yarn, and good processability was exhibited.
更に液晶ポリエステル繊維の製造工程中でのスカム発生も少なく、平均して繊維長20万mの巻取パッケージを得ることができた。 Furthermore, there was little scum generation during the production process of the liquid crystal polyester fiber, and a winding package having a fiber length of 200,000 m on average could be obtained.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010059254A JP5327109B2 (en) | 2009-03-23 | 2010-03-16 | Liquid crystalline polyester fiber and winding package |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009070298 | 2009-03-23 | ||
JP2009070298 | 2009-03-23 | ||
JP2010059254A JP5327109B2 (en) | 2009-03-23 | 2010-03-16 | Liquid crystalline polyester fiber and winding package |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010248681A true JP2010248681A (en) | 2010-11-04 |
JP5327109B2 JP5327109B2 (en) | 2013-10-30 |
Family
ID=43311314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010059254A Active JP5327109B2 (en) | 2009-03-23 | 2010-03-16 | Liquid crystalline polyester fiber and winding package |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5327109B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012090406A1 (en) * | 2010-12-27 | 2012-07-05 | 東レ株式会社 | Liquid-crystalline polyester and process for preparing same |
WO2012132851A1 (en) | 2011-03-29 | 2012-10-04 | 東レ株式会社 | Liquid crystal polyester fibers and method for producing same |
JP2013082804A (en) * | 2011-10-07 | 2013-05-09 | Kaneka Corp | High-molecular weight liquid crystal polymer, and molecule-oriented fiber |
JP2013108191A (en) * | 2011-11-21 | 2013-06-06 | Sumitomo Chemical Co Ltd | Material for producing fiber and fiber |
JP2013136860A (en) * | 2011-03-30 | 2013-07-11 | Toray Ind Inc | Liquid crystal polyester fiber and manufacturing method thereof |
JP2016014217A (en) * | 2015-10-19 | 2016-01-28 | 住友化学株式会社 | Material for producing fiber and fiber |
JP2016191179A (en) * | 2015-03-31 | 2016-11-10 | 東レ株式会社 | Liquid crystal polyester multifilament |
KR20170034784A (en) * | 2014-09-26 | 2017-03-29 | 케이비 세렌 가부시키가이샤 | Melt anisotropic aromatic polyester fiber and method for producing same |
KR20200105848A (en) | 2018-01-29 | 2020-09-09 | 도레이 카부시키가이샤 | Mesh fabric containing liquid crystal polyester fibers |
KR20220157554A (en) * | 2021-05-21 | 2022-11-29 | 주식회사 삼환티에프 | Apparatus for hot air heat treatment of yarn |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63262289A (en) * | 1987-04-21 | 1988-10-28 | Toray Ind Inc | Polyester monofilament for screening gauze superior in weaving properties |
JPH11124772A (en) * | 1997-10-22 | 1999-05-11 | Teijin Ltd | Polyester monofilament for screen gauze |
JP2004019021A (en) * | 2002-06-14 | 2004-01-22 | Toray Ind Inc | Liquid-crystalline polyester for fiber and its fiber |
JP2004232182A (en) * | 2003-01-10 | 2004-08-19 | Toray Ind Inc | Polyester monofilament for screen gauze and method for producing the same |
JP2006169680A (en) * | 2004-12-17 | 2006-06-29 | Toray Ind Inc | Method for producing polyester monofilament for screen gauze and monofilament |
JP2008240228A (en) * | 2007-03-01 | 2008-10-09 | Toray Ind Inc | Method for producing liquid crystalline polyester fiber |
JP2008240230A (en) * | 2007-02-28 | 2008-10-09 | Toray Ind Inc | Liquid crystalline polyester yarn |
JP2008240229A (en) * | 2007-02-28 | 2008-10-09 | Toray Ind Inc | Liquid crystalline polyester yarn |
-
2010
- 2010-03-16 JP JP2010059254A patent/JP5327109B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63262289A (en) * | 1987-04-21 | 1988-10-28 | Toray Ind Inc | Polyester monofilament for screening gauze superior in weaving properties |
JPH11124772A (en) * | 1997-10-22 | 1999-05-11 | Teijin Ltd | Polyester monofilament for screen gauze |
JP2004019021A (en) * | 2002-06-14 | 2004-01-22 | Toray Ind Inc | Liquid-crystalline polyester for fiber and its fiber |
JP2004232182A (en) * | 2003-01-10 | 2004-08-19 | Toray Ind Inc | Polyester monofilament for screen gauze and method for producing the same |
JP2006169680A (en) * | 2004-12-17 | 2006-06-29 | Toray Ind Inc | Method for producing polyester monofilament for screen gauze and monofilament |
JP2008240230A (en) * | 2007-02-28 | 2008-10-09 | Toray Ind Inc | Liquid crystalline polyester yarn |
JP2008240229A (en) * | 2007-02-28 | 2008-10-09 | Toray Ind Inc | Liquid crystalline polyester yarn |
JP2008240228A (en) * | 2007-03-01 | 2008-10-09 | Toray Ind Inc | Method for producing liquid crystalline polyester fiber |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012090406A1 (en) * | 2010-12-27 | 2012-07-05 | 東レ株式会社 | Liquid-crystalline polyester and process for preparing same |
JP5126453B2 (en) * | 2010-12-27 | 2013-01-23 | 東レ株式会社 | Liquid crystalline polyester and method for producing the same |
US9109159B2 (en) | 2010-12-27 | 2015-08-18 | Toray Industries, Inc. | Liquid crystalline polyester and production method of the same |
WO2012132851A1 (en) | 2011-03-29 | 2012-10-04 | 東レ株式会社 | Liquid crystal polyester fibers and method for producing same |
KR20140039166A (en) | 2011-03-29 | 2014-04-01 | 도레이 카부시키가이샤 | Liquid crystal polyester fibers and method for producing same |
US10584429B2 (en) | 2011-03-29 | 2020-03-10 | Toray Industries, Inc. | Method of producing liquid crystal polyester fibers |
EP2692913B1 (en) | 2011-03-29 | 2016-05-04 | Toray Industries, Inc. | Liquid crystal polyester fibers and method for producing same |
JP2013136860A (en) * | 2011-03-30 | 2013-07-11 | Toray Ind Inc | Liquid crystal polyester fiber and manufacturing method thereof |
JP2013082804A (en) * | 2011-10-07 | 2013-05-09 | Kaneka Corp | High-molecular weight liquid crystal polymer, and molecule-oriented fiber |
JP2013108191A (en) * | 2011-11-21 | 2013-06-06 | Sumitomo Chemical Co Ltd | Material for producing fiber and fiber |
TWI650453B (en) * | 2014-09-26 | 2019-02-11 | Kb世聯股份有限公司 | Melted anisotropic aromatic polyester fiber and preparation method thereof |
KR20170034784A (en) * | 2014-09-26 | 2017-03-29 | 케이비 세렌 가부시키가이샤 | Melt anisotropic aromatic polyester fiber and method for producing same |
KR101969558B1 (en) * | 2014-09-26 | 2019-04-16 | 케이비 세렌 가부시키가이샤 | Melt anisotropic aromatic polyester fiber and method for producing same |
JP2016191179A (en) * | 2015-03-31 | 2016-11-10 | 東レ株式会社 | Liquid crystal polyester multifilament |
JP2016014217A (en) * | 2015-10-19 | 2016-01-28 | 住友化学株式会社 | Material for producing fiber and fiber |
KR20200105848A (en) | 2018-01-29 | 2020-09-09 | 도레이 카부시키가이샤 | Mesh fabric containing liquid crystal polyester fibers |
KR20220157554A (en) * | 2021-05-21 | 2022-11-29 | 주식회사 삼환티에프 | Apparatus for hot air heat treatment of yarn |
KR102499271B1 (en) | 2021-05-21 | 2023-02-14 | 주식회사 삼환티에프 | Apparatus for hot air heat treatment of yarn |
Also Published As
Publication number | Publication date |
---|---|
JP5327109B2 (en) | 2013-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5327109B2 (en) | Liquid crystalline polyester fiber and winding package | |
US9011743B2 (en) | Liquid crystal polyester fibers and method for producing the same | |
US10584429B2 (en) | Method of producing liquid crystal polyester fibers | |
TWI440748B (en) | Liquid crystal polyester fiber and its manufacturing method | |
JP5286827B2 (en) | Liquid crystal polyester fiber | |
TWI655328B (en) | Liquid crystal polyester fiber and manufacturing method thereof | |
JP5098693B2 (en) | Liquid crystal polyester fiber | |
JP5470930B2 (en) | Method for producing liquid crystal polyester fiber | |
JP5428271B2 (en) | Method for producing liquid crystal polyester fiber | |
JP5098692B2 (en) | Method for producing liquid crystal polyester fiber | |
JP4983689B2 (en) | Method for producing liquid crystal polyester fiber | |
JP6040549B2 (en) | Liquid crystal polyester fiber and method for producing the same | |
JP5298597B2 (en) | Method for producing liquid crystal polyester fiber | |
JP5187224B2 (en) | Method for producing molten liquid crystalline polyester fiber | |
JP5115471B2 (en) | Liquid crystalline polyester fiber and method for producing the same | |
JP2014167174A (en) | Liquid crystal polyester fiber and production method thereof | |
JP5239454B2 (en) | Liquid crystal polyester fiber and method for producing the same | |
JP6720561B2 (en) | Liquid crystal polyester monofilament | |
JP6225592B2 (en) | Liquid crystal polyester monofilament package | |
JP2019157331A (en) | Manufacturing method of liquid crystalline polyester monofilament | |
JP2016089285A (en) | Manufacturing method of liquid crystal polyester fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130513 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130625 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130708 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5327109 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |