JP2010245216A - Magnetic powder material, granulating powder, compact, baked object for magnetic core, and method of manufacturing electromagnetic component and baked object for magnetic core - Google Patents
Magnetic powder material, granulating powder, compact, baked object for magnetic core, and method of manufacturing electromagnetic component and baked object for magnetic core Download PDFInfo
- Publication number
- JP2010245216A JP2010245216A JP2009090906A JP2009090906A JP2010245216A JP 2010245216 A JP2010245216 A JP 2010245216A JP 2009090906 A JP2009090906 A JP 2009090906A JP 2009090906 A JP2009090906 A JP 2009090906A JP 2010245216 A JP2010245216 A JP 2010245216A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic powder
- resin
- firing
- soft magnetic
- coarse particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
本発明は、磁性粉末材、その粉末材を用いた造粒粉、造粒粉を用いた成形体、成形体からできた磁心用焼成体、磁心用焼成体を用いた電磁部品、および磁心用焼成体の製造方法に関するものである。 The present invention relates to a magnetic powder material, a granulated powder using the powder material, a molded body using the granulated powder, a sintered body for a magnetic core made of the molded body, an electromagnetic component using the sintered body for a magnetic core, and a magnetic core The present invention relates to a method for producing a fired body.
スイッチング電源やDC/DCコンバータなど、エネルギーを変換する回路で、チョークコイルなどを代表例とするインダクタが使用される。インダクタの構成例として、軟磁性粉末の圧粉成形体を焼成して得られた磁心と、磁心の外周に巻線を巻回して構成したコイルとを備えるものが知られている。 Inductors such as choke coils are used in circuits that convert energy, such as switching power supplies and DC / DC converters. As an example of a configuration of an inductor, one having a magnetic core obtained by firing a powder compact of soft magnetic powder and a coil configured by winding a winding around the outer periphery of the magnetic core is known.
例えば、特許文献1には、次のような磁心を製造する方法が開示されている。まず、粒径が5〜70μmの異形状の軟磁性粉末にシリコーン樹脂を混合し、その混合物を100℃〜130℃の範囲で加熱して、軟質磁性粉末に酸化シリコーンの絶縁被膜を形成する。そして、この酸化シリコーンの絶縁被膜の形成された軟磁性粉末を所定形状に加圧成形し、かつ500℃〜700℃で熱処理して磁心を製造する。 For example, Patent Document 1 discloses a method for manufacturing a magnetic core as follows. First, a silicone resin is mixed with an irregularly shaped soft magnetic powder having a particle size of 5 to 70 μm, and the mixture is heated in the range of 100 ° C. to 130 ° C. to form an insulating coating of silicone oxide on the soft magnetic powder. Then, the soft magnetic powder having the silicone oxide insulating film formed thereon is pressure-molded into a predetermined shape and heat-treated at 500 ° C. to 700 ° C. to produce a magnetic core.
このような方法により得られた磁心によれば、酸化シリコーンの絶縁被膜により軟磁性粉末同士の絶縁が確保され、大きな直流電流が重畳されてもインダクタンスが極端に低下しないとされる。 According to the magnetic core obtained by such a method, the insulation between the soft magnetic powders is ensured by the insulating coating made of silicone oxide, and even if a large direct current is superimposed, the inductance is not extremely reduced.
インダクタの磁心には、透磁率を上げることや、渦電流の発生を抑えて鉄損を下げることが求められる。しかし、このような要求に対し、従来の磁心ではなお不十分であった。 Inductor magnetic cores are required to increase magnetic permeability and to reduce iron loss by suppressing the generation of eddy currents. However, the conventional magnetic core is still insufficient for such a demand.
一般に、圧粉成形体は、その密度を上げることで透磁率を高めることができるが、特許文献1は、単に粒径が5〜70μmの軟磁性粉末を用いることしか開示していない。通常、このような粉末は、ある平均粒径を中心として一定の粒径分布を持つ。そのため、この分布内の微粒から粗粒の種々の粒子がランダムに混在された状態の圧粉成形体しか得られず、その成形体の密度を向上すること、つまり透磁率を向上させることが難しい。 In general, the green compact can increase the magnetic permeability by increasing its density. However, Patent Document 1 only discloses the use of soft magnetic powder having a particle size of 5 to 70 μm. Usually, such a powder has a certain particle size distribution around a certain average particle size. Therefore, only a compacted body in which various particles of coarse to coarse particles in this distribution are mixed at random can be obtained, and it is difficult to improve the density of the molded body, that is, to improve the magnetic permeability. .
また、鉄損を低減するには、軟磁性粉末の粒子同士が確実に絶縁されていることが求められる。しかし、特許文献1の技術では、軟磁性粉末とシリコーン樹脂の混合物の熱処理温度が100℃〜130℃と低く、このような熱処理温度では、酸化ケイ素に変換されるシリコーン樹脂の割合が相当低い。その結果、軟磁性粉末の外周に形成される絶縁被膜は十分な硬度を得られず、成形体の加圧形成時の粉末同士の接触により絶縁被膜が破断し、軟磁性粉末同士を十分に絶縁することが難しい。特に、軟磁性粉末が成形時の圧力で実質的に変形しない程度の剛性を持つ場合、シリコーン樹脂の状態で残った硬度の低い絶縁被膜では破断が顕著に起こりやすい。 Moreover, in order to reduce an iron loss, it is calculated | required that the particles of soft-magnetic powder are insulated reliably. However, in the technique of Patent Document 1, the heat treatment temperature of the mixture of the soft magnetic powder and the silicone resin is as low as 100 ° C. to 130 ° C., and at such a heat treatment temperature, the ratio of the silicone resin converted into silicon oxide is considerably low. As a result, the insulation film formed on the outer periphery of the soft magnetic powder cannot obtain sufficient hardness, and the insulation film breaks due to the contact between the powders during the pressure forming of the molded body, and the soft magnetic powder is sufficiently insulated from each other. Difficult to do. In particular, when the soft magnetic powder has such a rigidity that it is not substantially deformed by the pressure at the time of molding, the insulating coating with a low hardness remaining in the silicone resin state is likely to break.
本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、高密度で透磁率を向上し、軟磁性粉末の絶縁処理により鉄損を低減できる磁心用焼成体を得るための磁性粉末材、造粒粉及び成形体を提供することにある。 The present invention has been made in view of the above circumstances, and one of its purposes is to obtain a sintered body for a magnetic core which can improve magnetic permeability at a high density and reduce iron loss by insulating treatment of soft magnetic powder. It is in providing a magnetic powder material, granulated powder, and a molded object.
また、本発明の他の目的は、高密度で透磁率が高く、軟磁性粉末の絶縁処理により鉄損を低減できる磁心用焼成体とその製造方法並びに磁心用焼成体を用いた電磁部品を提供することにある。 Another object of the present invention is to provide a sintered core for a magnetic core that has a high density, a high magnetic permeability, and can reduce iron loss by insulating a soft magnetic powder, a method for manufacturing the same, and an electromagnetic component using the sintered core for a magnetic core. There is to do.
〔磁性粉末材〕
本発明の磁性粉末材は、粒径の異なる微粒と粗粒とを含む軟磁性粉末と、この軟磁性粉末のうち、少なくとも粗粒の外周面に形成された酸化ケイ素を主成分とする無機質からなる絶縁層とを備えることを特徴とする。
[Magnetic powder material]
The magnetic powder material of the present invention is composed of a soft magnetic powder containing fine particles and coarse particles having different particle diameters, and an inorganic substance mainly composed of silicon oxide formed on the outer peripheral surface of at least the coarse particles of the soft magnetic powder. And an insulating layer.
この構成によれば、剛性に優れた酸化ケイ素を主成分とする無機質からなる絶縁層を少なくとも粗粒に形成することで、鉄損に影響の大きい粗粒間の絶縁を確実に確保することができる。また、微粒と粗粒が組み合わされた軟磁性粉末を用いることで、粗粒間の隙間に微粒が入り込んだ成形体や焼成体を得ることができ、高密度で透磁率の高い焼成体を製造できる。 According to this configuration, it is possible to reliably ensure insulation between coarse grains having a large influence on iron loss by forming at least coarse grains of an inorganic insulating layer mainly composed of silicon oxide having excellent rigidity. it can. In addition, by using soft magnetic powder in which fine particles and coarse particles are combined, it is possible to obtain compacts and fired bodies in which fine particles enter the gaps between the coarse particles, producing high-density and high magnetic permeability fired bodies. it can.
本発明の磁性粉末材において、前記粗粒のみに酸化ケイ素を主成分とする無機質からなる絶縁層を備えることが好ましい。 In the magnetic powder material of the present invention, it is preferable that only the coarse particles have an insulating layer made of an inorganic material mainly composed of silicon oxide.
この構成によれば、粗粒にのみ酸化ケイ素を主成分とする無機質からなる絶縁層を設けることで、高透磁率、低鉄損の焼成体を容易に得ることができる。 According to this configuration, a sintered body having a high magnetic permeability and a low iron loss can be easily obtained by providing an insulating layer made of an inorganic material mainly composed of silicon oxide only on coarse particles.
本発明の磁性粉末材において、前記軟磁性粉末は、Fe-Si-Al系合金、Fe-Si系合金、及びFe-Al系合金の少なくとも一種であることが好ましい。 In the magnetic powder material of the present invention, the soft magnetic powder is preferably at least one of an Fe—Si—Al alloy, an Fe—Si alloy, and an Fe—Al alloy.
このような組成の軟磁性粉末は、磁性粉末材を成形する際の圧縮力で軟磁性粉末が実質的に変形しない。そのため、このような高剛性の軟磁性粉末であれば、高硬度の絶縁層を有していても、粉末の変形により絶縁層が損傷することを可及的に回避できる。 In the soft magnetic powder having such a composition, the soft magnetic powder is not substantially deformed by the compression force when the magnetic powder material is formed. Therefore, with such a high-rigidity soft magnetic powder, damage to the insulating layer due to the deformation of the powder can be avoided as much as possible even if it has a high-hardness insulating layer.
本発明の磁性粉末材において、前記微粒の最大粒径は40μm未満であり、前記粗粒の最小粒径が40μm以上、最大粒径が150μm以下であることが好ましい。 In the magnetic powder material of the present invention, the fine particles preferably have a maximum particle size of less than 40 μm, the coarse particles have a minimum particle size of 40 μm or more, and a maximum particle size of 150 μm or less.
このように粉末の最大粒径を制限することによって、粒度の2乗に比例して発生する、粉末粒内の渦電流損失を低く抑えることができる。 By limiting the maximum particle size of the powder in this manner, eddy current loss in the powder particles, which is generated in proportion to the square of the particle size, can be kept low.
本発明の磁性粉末材において、前記軟磁性粉末の構成材料のビッカース硬さHV0.1が300以上であることが好ましい。なお、「HV0.1」は、試験時の圧子の荷重が0.1kgfであることを示す。 In the magnetic powder material of the present invention, the constituent material of the soft magnetic powder preferably has a Vickers hardness HV0.1 of 300 or more. “HV0.1” indicates that the load of the indenter during the test is 0.1 kgf.
この構成によれば、磁性粉末材を成形する際の圧縮力で軟磁性粉末が実質的に変形しない。そのため、このような高剛性の軟磁性粉末であれば、高硬度の絶縁層を有していても、粉末の変形により絶縁層が損傷することを可及的に回避できる。 According to this configuration, the soft magnetic powder is not substantially deformed by the compressive force when the magnetic powder material is molded. Therefore, with such a high-rigidity soft magnetic powder, damage to the insulating layer due to the deformation of the powder can be avoided as much as possible even if it has a high-hardness insulating layer.
〔造粒粉〕
本発明の造粒粉は、加圧により成形体とされ、その成形体の焼成により磁心用焼成体とされる造粒粉であって、上記本発明の磁性粉末材と、前記焼成時に結合材となって焼成後に焼成体を保形する焼成用樹脂とを備える。そして、これら磁性粉末材、及び焼成用樹脂が粒状に一体化されてなることを特徴とする。
[Granulated powder]
The granulated powder of the present invention is a granulated powder that is formed into a molded body by pressurization and is fired for a magnetic core by firing the molded body, and the magnetic powder material of the present invention and a binder during the firing And a firing resin for retaining the fired body after firing. The magnetic powder material and the firing resin are integrated into a granular form.
この構成の造粒粉によれば、高密度で粗粒同士が酸化ケイ素を主成分とする無機質からなる絶縁層で絶縁された成形体を得ることができ、さらに成形体を焼成することで、高密度で低鉄損の磁心用焼成体とすることができる。 According to the granulated powder of this configuration, it is possible to obtain a molded body with high density and coarse particles insulated by an insulating layer made of an inorganic material mainly composed of silicon oxide, and further by firing the molded body, It can be set as the sintered body for magnetic cores of high density and low iron loss.
本発明の造粒粉において、さらに、前記加圧後に成形体を保形すると共に、前記焼成時に実質的に消失する成形用樹脂を備え、これら磁性粉末材、成形用樹脂、及び焼成用樹脂が粒状に一体化されてなることが好ましい。 The granulated powder of the present invention further comprises a molding resin that retains the molded body after the pressurization and that substantially disappears during the firing. These magnetic powder material, molding resin, and firing resin are provided. It is preferable to be integrated in a granular form.
この構成によれば、磁性粉末材を成形体とした際に、確実に成形体を保形することができる。 According to this configuration, when the magnetic powder material is formed into a molded body, the molded body can be reliably retained.
本発明の造粒粉において、前記成形用樹脂が熱可塑性樹脂であり、前記焼成用樹脂がシリコーン樹脂であることが挙げられる。 In the granulated powder of the present invention, it is mentioned that the molding resin is a thermoplastic resin and the baking resin is a silicone resin.
この構成によれば、磁性粉末材を成形した際には成形用樹脂で成形体を保形し、焼成した際には焼成用樹脂から生成される結合材で焼成体を十分に保形することができる。 According to this configuration, when the magnetic powder material is molded, the molded body is retained by the molding resin, and when fired, the sintered body is sufficiently retained by the binder generated from the firing resin. Can do.
〔成形体〕
本発明の成形体は、上記造粒粉を加圧成形したことを特徴とする。
[Molded body]
The molded body of the present invention is characterized in that the granulated powder is pressure-molded.
この構成によれば、高密度で粗粒同士が酸化ケイ素を主成分とする無機質からなる絶縁層で絶縁された成形体を得ることができ、後に焼成することで、高密度で低鉄損の焼成体とすることができる。 According to this configuration, it is possible to obtain a molded body having high density and coarse particles insulated by an insulating layer made of an inorganic material mainly composed of silicon oxide. It can be set as a sintered body.
〔磁心用焼成体〕
本発明の磁心用焼成体は、磁性粉末材と、この磁性粉末材を一体化する結合材とを備える磁心用焼成体である。この磁性粉末材は、粒径の異なる微粒と粗粒とを含む軟磁性粉末と、この軟磁性粉末のうち、少なくとも粗粒の外周面に形成された酸化ケイ素を主成分とする無機質からなる絶縁層とを有する。そして、前記結合材は、Si、C、及びOを含む非晶質体であることを特徴とする。
[Firing body for magnetic core]
The fired body for magnetic core of the present invention is a fired body for magnetic core comprising a magnetic powder material and a binder that integrates the magnetic powder material. This magnetic powder material is composed of a soft magnetic powder including fine particles and coarse particles having different particle diameters, and an insulating material made of an inorganic material mainly composed of silicon oxide formed on the outer peripheral surface of at least the coarse particles of the soft magnetic powder. And having a layer. The binder is an amorphous body containing Si, C, and O.
この構成によれば、微粒と粗粒を用いることで、高密度の磁心用焼成体とすることができる。また、粗粒に形成された酸化ケイ素を主成分とする無機質からなる絶縁層により、粗粒同士又は粗粒と微粒の絶縁を確保して、低鉄損の磁性用焼成体とすることができる。さらに、Si、C、及びOを含む非晶質体の結合材により前記軟磁性粉末を確実に保形することができる。 According to this structure, it can be set as the high-density sintered body for magnetic cores by using a fine grain and a coarse grain. In addition, the insulating layer made of an inorganic material mainly composed of silicon oxide formed into coarse particles can secure insulation between the coarse particles or between the coarse particles and the fine particles, and can be made into a sintered body for magnetism with low iron loss. . Furthermore, the soft magnetic powder can be reliably retained by an amorphous binder containing Si, C, and O.
本発明の磁心用焼成体において、上記本発明の成形体を焼成してなることが挙げられる。 In the fired body for magnetic core of the present invention, the molded body of the present invention is fired.
この構成によれば、本発明の成形体を焼成することで、本発明の磁心用焼成体を容易に得ることができる。 According to this configuration, the fired body for magnetic core of the present invention can be easily obtained by firing the molded body of the present invention.
〔磁心用焼成体の製造方法〕
本発明の磁心用焼成体の製造方法は、軟磁性粉末を用いて成形体を形成し、その成形体を焼成して焼成体とする磁心用焼成体の製造方法であって、以下の工程を含むことを特徴とする。
粒径の異なる微粒と粗粒とを含む軟磁性粉末を準備する工程。
この軟磁性粉末のうち、少なくとも粗粒に酸化ケイ素を主成分とする無機質からなる絶縁層を形成する工程。
前記絶縁層を有する粗粒を含む軟磁性粉末と、前記成形体を保形するための成形用樹脂と、前記焼成後に焼成体を保形するための焼成用樹脂とを混合して造粒する工程。
この造粒粉を所定の形状に圧縮成形して成形体とする工程。
この成形体を焼成して焼成体とする工程。
[Method of manufacturing sintered body for magnetic core]
The method for producing a fired body for a magnetic core according to the present invention is a method for producing a fired body for a magnetic core by forming a formed body using soft magnetic powder, and firing the formed body to obtain a fired body. It is characterized by including.
A step of preparing soft magnetic powder containing fine particles and coarse particles having different particle sizes.
A step of forming an insulating layer made of an inorganic material mainly composed of silicon oxide on at least coarse particles of the soft magnetic powder.
The soft magnetic powder including the coarse particles having the insulating layer, the molding resin for retaining the molded body, and the firing resin for retaining the fired body after the firing are mixed and granulated. Process.
A step of compression-molding the granulated powder into a predetermined shape to form a molded body.
A step of firing the molded body to obtain a fired body.
この方法によれば、本発明の磁心用焼成体を容易に得ることができる。 According to this method, the fired body for magnetic core of the present invention can be easily obtained.
〔電磁部品〕
本発明の電磁部品は、本発明の磁心用焼成体からなる磁心と、巻線を巻回して構成され、この磁心の外側に配されるコイルとを備えることを特徴とする。
[Electromagnetic parts]
An electromagnetic component according to the present invention includes a magnetic core made of the fired body for a magnetic core according to the present invention, and a coil that is formed by winding a winding and is disposed outside the magnetic core.
この構成によれば、低鉄損で比較的透磁率の高い磁心を持った電磁部品とすることができる。 According to this configuration, an electromagnetic component having a magnetic core with a low iron loss and a relatively high magnetic permeability can be obtained.
本発明の磁性粉末材や造粒粉によれば、高密度で低鉄損の成形体や焼成体を得ることができる。 According to the magnetic powder material and granulated powder of the present invention, a molded body and a fired body having a high density and a low iron loss can be obtained.
本発明の成形体や焼成体によれば、高密度で低鉄損を実現できる。 According to the molded body and fired body of the present invention, high iron loss can be achieved at high density.
本発明の焼成体の製造方法によれば、高密度で低鉄損の焼成体を容易に製造できる。 According to the method for producing a fired body of the present invention, a fired body having a high density and a low iron loss can be easily produced.
本発明の電磁部品によれば、高密度で低鉄損の磁心を有するインダクタを構成できる。 According to the electromagnetic component of the present invention, an inductor having a magnetic core with high density and low iron loss can be configured.
以下、本発明の磁性粉末材、造粒粉、成形体、焼成体、電磁部品を順次より詳しく説明する。 Hereinafter, the magnetic powder material, the granulated powder, the molded body, the fired body, and the electromagnetic component of the present invention will be described in more detail sequentially.
〔磁性粉末材〕
<構造>
本発明の磁性粉末材は、軟磁性粉末と、その外周面に形成される酸化ケイ素を主成分とする無機質からなる絶縁層とを備える。
[Magnetic powder material]
<Structure>
The magnetic powder material of the present invention includes soft magnetic powder and an insulating layer made of an inorganic material mainly composed of silicon oxide formed on the outer peripheral surface thereof.
(軟磁性粉末)
軟磁性粉末は、後述する成形体を得る際の加圧圧力で実質的に変形しない程度の剛性を有するものが好ましい。例えば、ビッカース硬さHV0.1が300以上の軟磁性粉末が好適である。具体的には、Fe-Si-Al系合金、Fe-Si系合金、Fe-Al系合金などが挙げられる。Fe-Si-Al系合金では、Siが3〜15質量%、Alが1〜10質量%含有されたものが好適である。Fe-Si系合金では、Siが3〜15質量%含有されたものが好適である。Fe-Al系合金では、Alが1〜10質量%含有されたものが好適である。このような軟磁性粉末であれば、所定の電磁気特性を有する焼成体を得やすい。その他、Fe-Ni系合金、Fe-B系合金、Fe-C系合金、Fe-N系合金、Fe-P系合金、Fe-Co系合金、Fe-Ni-Co系合金などの利用も考えられる。ビッカース硬さHV0.1はJIS-Z2244に準拠して測定され、「HV0.1」は、試験時の圧子の荷重が0.1kgfであることを示す。各合金系におけるビッカース硬さの具体例は、Fe-9.5Si-5.5Alが約500、Fe-6.5Siが約400、Fe-Si系合金ではSiが4質量%以上において約300以上である。
(Soft magnetic powder)
The soft magnetic powder preferably has such a rigidity that it is not substantially deformed by the pressure applied when a molded body to be described later is obtained. For example, a soft magnetic powder having a Vickers hardness HV0.1 of 300 or more is suitable. Specifically, Fe-Si-Al alloys, Fe-Si alloys, Fe-Al alloys, and the like can be given. Of the Fe-Si-Al alloys, those containing 3 to 15% by mass of Si and 1 to 10% by mass of Al are suitable. Among Fe-Si alloys, those containing 3 to 15% by mass of Si are suitable. Of the Fe-Al alloys, those containing 1 to 10% by mass of Al are suitable. With such a soft magnetic powder, it is easy to obtain a fired body having predetermined electromagnetic characteristics. Other uses such as Fe-Ni alloys, Fe-B alloys, Fe-C alloys, Fe-N alloys, Fe-P alloys, Fe-Co alloys, Fe-Ni-Co alloys are also considered. It is done. The Vickers hardness HV0.1 is measured in accordance with JIS-Z2244, and “HV0.1” indicates that the load of the indenter during the test is 0.1 kgf. Specific examples of the Vickers hardness in each alloy system are about 500 for Fe-9.5Si-5.5Al, about 400 for Fe-6.5Si, and about 300 or more for Si-containing alloys of 4 mass% or more.
このような軟磁性粉末は、粗粒と微粒とが混在される。これらの混合粒の粒径分布には複数のピークが存在することが好ましい。特に、粗粒と微粒は、粒径の分布範囲が重ならない組み合わせ又は分布範囲が隣接する組み合わせとすることが好ましい。このような粗粒と微粒の組み合わせにより、粗粒間の隙間に微粒が充填された成形体を得やすい。例えば、粗粒の最小粒径は40μm、最大粒径は150μm程度が好ましい。このような粒径の粗粒を用いれば、1kHz以上の高周波域で磁心用焼成体を使用したときに渦電流損の増大抑制に効果的である。微粒の最大粒径は40μm程度が好ましい。但し、微粒の取り扱いの便宜上、微粒の最小粒径は1μm以上とすることが好適である。また、このような粗粒と微粒の粒径比は、微粒の平均粒径:粗粒の平均粒径=1:2〜1:10程度が好ましい。さらに、粗粒と微粒の質量配合比は、微粒:粗粒=1:1〜1:4程度が好ましい。このような粒径比や配合比とすることで、粗粒間の隙間に微粒が充填された高密度の成形体や焼成体を得やすい。 In such soft magnetic powder, coarse particles and fine particles are mixed. It is preferable that a plurality of peaks exist in the particle size distribution of these mixed grains. In particular, the coarse particles and the fine particles are preferably a combination in which the particle size distribution ranges do not overlap or a combination in which the distribution ranges are adjacent. By such a combination of coarse particles and fine particles, it is easy to obtain a molded body in which fine particles are filled in the gaps between the coarse particles. For example, the minimum particle size of the coarse particles is preferably about 40 μm, and the maximum particle size is preferably about 150 μm. Use of such coarse grains is effective in suppressing increase in eddy current loss when using a sintered body for a magnetic core in a high frequency range of 1 kHz or higher. The maximum particle size of the fine particles is preferably about 40 μm. However, for the convenience of handling the fine particles, the minimum particle size of the fine particles is preferably 1 μm or more. Further, the particle size ratio between the coarse particles and the fine particles is preferably about the average particle size of the fine particles: the average particle size of the coarse particles = 1: 2 to 1:10. Further, the mass blending ratio of coarse particles to fine particles is preferably about fine particles: coarse particles = 1: 1 to 1: 4. By setting it as such a particle size ratio or compounding ratio, it is easy to obtain a high-density molded body or fired body in which fine particles are filled in gaps between coarse particles.
その他、軟磁性粉末は、アトマイズ法にて得られるものが好ましいが、水アトマイズ法で製造されたものでもガスアトマイズ法で製造されたものでもいずれも利用できる。水アトマイズ法で製造された軟磁性粉末は、粒子表面に凹凸が多いため、その凹凸の噛合により高強度の焼成体を得やすい。一方、ガスアトマイズ法で製造された軟磁性粉末は、粒子形状がほぼ球形のため、絶縁層を突き破るような凹凸が少なくて好ましい。また、軟磁性粉末の表面には、自然酸化膜などの絶縁被膜が形成されていても良い。 In addition, the soft magnetic powder is preferably obtained by the atomization method, but any of those produced by the water atomization method and those produced by the gas atomization method can be used. Since the soft magnetic powder produced by the water atomization method has many irregularities on the particle surface, it is easy to obtain a high-strength fired body by meshing the irregularities. On the other hand, the soft magnetic powder produced by the gas atomization method is preferable because the particle shape is almost spherical, and there are few irregularities that break through the insulating layer. In addition, an insulating coating such as a natural oxide film may be formed on the surface of the soft magnetic powder.
(酸化ケイ素を主成分とする無機質からなる絶縁層)
酸化ケイ素を主成分とする無機質からなる絶縁層は、軟磁性粉末の外周面を覆うことで、軟磁性粉末間の絶縁を確保する。即ち、この絶縁層は、後に磁性粉末材を用いた造粒粉を圧縮して成形体を形成する際に、その加圧力で破壊されることがなく、かつ成形体を焼成した際の熱にも分解されることがない。絶縁層における酸化ケイ素の含有量は、50質量%以上が好ましく、より好ましくは70質量%以上、さらに好ましくは90質量%以上である。酸化ケイ素は、代表的にはSiO2であるが、SiO、Si2O3の少なくとも一方が含まれていても良い。酸化ケイ素を主成分とする無機質からなる絶縁層としては、例えば、酸素を含む雰囲気中でシリコーン樹脂を熱処理することにより形成した被膜が挙げられる。
(Insulating layer made of inorganic material mainly composed of silicon oxide)
The insulating layer made of an inorganic material mainly composed of silicon oxide covers the outer peripheral surface of the soft magnetic powder, thereby ensuring insulation between the soft magnetic powders. That is, this insulating layer is not destroyed by the pressing force when the granulated powder using the magnetic powder material is compressed later to form a molded body, and the insulating layer is exposed to the heat when the molded body is fired. Will not be disassembled. The content of silicon oxide in the insulating layer is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass or more. The silicon oxide is typically SiO 2 , but at least one of SiO and Si 2 O 3 may be contained. Examples of the insulating layer made of an inorganic material mainly composed of silicon oxide include a film formed by heat-treating a silicone resin in an oxygen-containing atmosphere.
酸化ケイ素を主成分とする無機質からなる絶縁層の形成対象は、少なくとも粗粒とする。本発明の磁性粉末材を用いて成形体を形成した場合、粗粒間に微粒が充填された状態が高頻度に実現される。そのような状態では、粗粒同士の接触を抑制することが鉄損の低減に効果的である。粗粒のみにしか絶縁層がなく、微粒同士が直接接触しても、等価的には若干大き目の微粒が存在する状態とみなすことができるため、鉄損の低減効果は十分奏することができる。このように、粗粒のみに酸化ケイ素を主成分とする無機質からなる絶縁層を形成することで、高密度、低損失を容易に実現できる。一方、粗粒だけでなく、微粒にも酸化ケイ素を主成分とする無機質からなる絶縁層を形成した場合は、一層確実に各軟磁性粉末同士の絶縁を確保できるため、鉄損低減効果を向上させることができる。 The formation target of the insulating layer made of an inorganic material mainly composed of silicon oxide is at least coarse. When a molded body is formed using the magnetic powder material of the present invention, a state in which fine particles are filled between coarse particles is realized with high frequency. In such a state, suppressing the contact between the coarse particles is effective in reducing the iron loss. Even if there is an insulating layer only in the coarse particles and the fine particles are in direct contact with each other, it can be regarded as a state in which a slightly larger fine particle exists equivalently, and therefore, the effect of reducing the iron loss can be sufficiently achieved. In this way, by forming an insulating layer made of an inorganic material mainly composed of silicon oxide only on coarse particles, high density and low loss can be easily realized. On the other hand, when an insulating layer made of an inorganic material mainly composed of silicon oxide is formed not only on coarse particles but also on fine particles, insulation between soft magnetic powders can be secured more reliably, improving the iron loss reduction effect. Can be made.
酸化ケイ素を主成分とする無機質からなる絶縁層の厚さは、20nm以上、1μm以下が好ましい。下限値以上とすることで、軟磁性粉末間の絶縁を確保すると共に、造粒粉圧縮時の加圧力で破壊されない機械的強度を確保する。上限値以下とすることで、絶縁層の厚みを大きすぎないようにし、磁性粉末材を成形体や焼成体とした場合に所定の密度を確保すると共に、絶縁層の損傷を抑制する。 The thickness of the insulating layer made of an inorganic substance mainly composed of silicon oxide is preferably 20 nm or more and 1 μm or less. By setting it as the lower limit value or more, the insulation between the soft magnetic powders is secured, and the mechanical strength that is not broken by the applied pressure during the granulated powder compression is secured. By setting it to the upper limit or less, the thickness of the insulating layer is prevented from being too large, and when the magnetic powder material is formed into a molded body or a fired body, a predetermined density is secured and damage to the insulating layer is suppressed.
<製造方法>
本発明の磁性粉末材は、分級、樹脂混合、及び熱処理を主たる工程とする製造方法により得られる。
<Manufacturing method>
The magnetic powder material of the present invention can be obtained by a production method mainly including classification, resin mixing, and heat treatment.
(分級)
軟磁性粉末を所定の粒径の粗粒と微粒に分級する。この分級は、代表的には、所定メッシュサイズのふるいを用いて行えばよい。例えば、粗粒は、粒径の上限と下限に対応したメッシュサイズのメッシュを用いればよい。また、微粒は、粒径の上限に対応したメッシュサイズのメッシュを用いればよい。分級前の軟磁性粉末は、粗粒用と微粒用の各々として平均粒径が異なる粉末を用意しておけば、効率的に分級が行える。
(Classification)
The soft magnetic powder is classified into coarse particles and fine particles having a predetermined particle size. This classification may be typically performed using a sieve having a predetermined mesh size. For example, the coarse particles may be a mesh having a mesh size corresponding to the upper and lower limits of the particle size. The fine particles may be a mesh having a mesh size corresponding to the upper limit of the particle size. The soft magnetic powder before classification can be classified efficiently by preparing powders having different average particle sizes for coarse particles and fine particles, respectively.
(樹脂混合)
分級された粗粒と微粒の各々は、シリコーン樹脂と混合される。この混合は、ミキサーなどで行うことが好適である。シリコーン樹脂の配合量は、混合する軟磁性粉末の比表面積に応じて選択することが好ましい。軟磁性粉末の比表面積に応じてシリコーン樹脂の配合量を決定することで、所定の厚みのシリコーン樹脂被膜を軟磁性粉末の外周面に形成することができる。軟磁性粉末とシリコーン樹脂との配合量は、例えば両者の混合物に対してシリコーン樹脂が0.02〜1.8質量%程度となるようにすることが挙げられるが、より好ましくは0.05〜1.5質量%、さらに好ましくは0.1〜1.0質量%である。軟磁性粉末とシリコーン樹脂との混合は、粗粒と微粒の双方に酸化ケイ素を主成分とする無機質からなる絶縁層を形成する場合であっても、粗粒と微粒の各々を分けて行うことが好ましい。微粒と粗粒を一括してシリコーン樹脂と混合すると、相対的に微粒のシリコーン樹脂被膜が厚くなったり、微粒同士が凝集したりするが、粗粒と微粒を分けてシリコーン樹脂と混合することで、これらの不都合を抑制できる。また、シリコーン樹脂は、適宜な溶剤により適切な粘度のスラリーに調整して軟磁性粉末に混合しても良い。
(Mixed resin)
Each of the classified coarse particles and fine particles is mixed with a silicone resin. This mixing is preferably performed with a mixer or the like. The blending amount of the silicone resin is preferably selected according to the specific surface area of the soft magnetic powder to be mixed. By determining the blending amount of the silicone resin according to the specific surface area of the soft magnetic powder, a silicone resin film having a predetermined thickness can be formed on the outer peripheral surface of the soft magnetic powder. The blending amount of the soft magnetic powder and the silicone resin may be, for example, such that the silicone resin is about 0.02 to 1.8% by mass with respect to the mixture of both, more preferably 0.05 to 1.5% by mass, and still more preferably Is 0.1-1.0 mass%. The mixing of soft magnetic powder and silicone resin should be performed separately for both coarse and fine particles, even when forming an insulating layer made of an inorganic material mainly composed of silicon oxide on both coarse and fine particles. Is preferred. When fine particles and coarse particles are mixed together with the silicone resin, the fine silicone resin coating becomes relatively thick or the fine particles are aggregated together, but the coarse particles and fine particles are separated and mixed with the silicone resin. These inconveniences can be suppressed. Further, the silicone resin may be adjusted to a slurry having an appropriate viscosity with an appropriate solvent and mixed with the soft magnetic powder.
(硬化(乾燥))
軟磁性粉末の外周面に形成されたシリコーン樹脂の被膜は、加熱により硬化されることが好ましい。この樹脂の硬化は、軟磁性粉末とシリコーン樹脂とを加熱せずに混合した後、加熱することで行うことが好ましい。このシリコーン樹脂の硬化により、後述する熱処理の際に、シリコーン樹脂同士が接合されることを抑制できる。硬化条件は、例えば100℃〜200℃×30〜120分程度が好適である。
(Curing (dry))
The silicone resin film formed on the outer peripheral surface of the soft magnetic powder is preferably cured by heating. This resin is preferably cured by heating after mixing the soft magnetic powder and the silicone resin without heating. By curing the silicone resin, it is possible to prevent the silicone resins from being bonded to each other during the heat treatment described later. The curing condition is preferably about 100 ° C. to 200 ° C. × 30 to 120 minutes, for example.
(ほぐし)
通常、シリコーン樹脂硬化後の軟磁性粉末は、一部の軟磁性粉末同士がシリコーン樹脂を介して接合されているため、この接合を分離する「ほぐし」を行うことが好ましい。このほぐし作業は、シリコーン樹脂硬化後の軟磁性粉末を軽くふるいにかける程度で十分である。
(Hoshigushi)
Usually, since the soft magnetic powders after curing of the silicone resin are partly joined to each other through the silicone resin, it is preferable to perform “unraveling” to separate the joints. The loosening operation is enough to lightly screen the soft magnetic powder after curing the silicone resin.
(熱処理)
この熱処理により、軟磁性粉末の表面に形成されたシリコーン樹脂の被膜を酸化ケイ素を主成分とする無機質からなる絶縁層とする。シリコーン樹脂は300℃程度で分解するが、より高温とすることで、確実にシリコーン樹脂を酸化ケイ素に変換することができる。特に、高温とすることで、酸化ケイ素の結晶性を高めることができ、高硬度の絶縁層を形成することができる。好ましい熱処理温度は、400℃〜1000℃であり、さらに好ましい熱処理温度は、500℃〜800℃である。また、好ましい熱処理時間は30分〜2時間程度である。この熱処理によりシリコーン樹脂の被膜は、約半分程度の厚さの酸化ケイ素を主成分とする無機質からなる絶縁層となる。
(Heat treatment)
By this heat treatment, the silicone resin film formed on the surface of the soft magnetic powder is used as an insulating layer made of an inorganic material mainly composed of silicon oxide. Although the silicone resin decomposes at about 300 ° C., the silicone resin can be reliably converted to silicon oxide by setting the temperature higher. In particular, by increasing the temperature, the crystallinity of silicon oxide can be increased, and an insulating layer having a high hardness can be formed. A preferable heat treatment temperature is 400 ° C to 1000 ° C, and a more preferable heat treatment temperature is 500 ° C to 800 ° C. A preferable heat treatment time is about 30 minutes to 2 hours. By this heat treatment, the silicone resin film becomes an insulating layer made of an inorganic material mainly composed of silicon oxide having a thickness of about half.
(解砕)
通常、酸化ケイ素を主成分とする無機質からなる絶縁層が形成された磁性粉末材は、粒子の絶縁層同士が結合した箇所が存在する。そのため、このように結合した磁性粉末材同士を適宜な手段にて解砕することが好ましい。
(Disintegration)
Usually, a magnetic powder material on which an insulating layer made of an inorganic material mainly composed of silicon oxide is formed has a portion where the insulating layers of particles are bonded to each other. Therefore, it is preferable to crush the magnetic powder materials bonded in this way by an appropriate means.
〔造粒粉〕
<構造>
上記の磁性粉末材は、さらに成形用樹脂及び焼成用樹脂と混合されて造粒粉とされる。この造粒粉は、少なくとも焼成用樹脂と磁性粉末材が一体化されており、必要に応じて、さらに成形用樹脂も一体化されても良い。
[Granulated powder]
<Structure>
The magnetic powder material is further mixed with a molding resin and a firing resin to form a granulated powder. In this granulated powder, at least a firing resin and a magnetic powder material are integrated, and if necessary, a molding resin may be further integrated.
(成形用樹脂)
成形用樹脂は、磁性粉末材を圧縮して成形体とする場合、成形体を保形するための樹脂であり、熱可塑性樹脂であることが好ましい。造粒粉とした場合、次述する焼成用樹脂が磁性粉末材と一体化されているため、この焼成用樹脂で成形体の保形が可能であれば、成形用樹脂の添加を省略しても良い。熱可塑性樹脂の具体例としては、ポリビニルブチラールの他、ポリビニルアルコール、アクリル樹脂、ポリエチレン樹脂等が利用できると考えられる。
(Resin for molding)
When the magnetic powder material is compressed into a molded body, the molding resin is a resin for retaining the molded body, and is preferably a thermoplastic resin. In the case of granulated powder, since the firing resin described below is integrated with the magnetic powder material, if the shaped body can be retained with this firing resin, the addition of the molding resin can be omitted. Also good. As specific examples of the thermoplastic resin, it is considered that polyvinyl alcohol, acrylic resin, polyethylene resin and the like can be used in addition to polyvinyl butyral.
(焼成用樹脂)
焼成用樹脂は、磁性粉末材を圧縮した成形体を焼成することで焼成体とした場合、セラミックス系の化合物となって磁性粉末材を保持する結合材となる。代表的には、焼成用樹脂にはシリコーン樹脂が用いられる。そして、このシリコーン樹脂は、後述するように、焼成過程でSi、C、及びOを含む非晶質体の結合材になっていると推定される。その他、焼成用樹脂には、珪酸ソーダ系結着剤(水ガラス)などが利用できる。
(Resin for baking)
When the fired resin is made by firing a compact obtained by compressing the magnetic powder material, the firing resin becomes a ceramic compound and becomes a binder for holding the magnetic powder material. Typically, a silicone resin is used as the firing resin. As will be described later, this silicone resin is presumed to be an amorphous binder containing Si, C, and O during the firing process. In addition, a sodium silicate binder (water glass) can be used as the firing resin.
<製造方法>
造粒粉は、磁性粉末材および焼成用樹脂、必要に応じてさらに成形用樹脂をミキサーなどで混合することにより製造する。この混合により、通常、数個の磁性粉末材が焼成用樹脂(成形用樹脂)で一体化された造粒粉の単位粒子が構成される。成形用樹脂又は焼成用樹脂は、適宜な溶剤により適切な粘度のスラリーに調整して磁性粉末材と混合しても良い。
<Manufacturing method>
The granulated powder is produced by mixing a magnetic powder material, a firing resin and, if necessary, a molding resin with a mixer or the like. This mixing usually forms unit particles of granulated powder in which several magnetic powder materials are integrated with a firing resin (molding resin). The molding resin or the firing resin may be adjusted to a slurry having an appropriate viscosity with an appropriate solvent and mixed with the magnetic powder material.
磁性粉末材と焼成用樹脂の混合物(成形用樹脂も添加する場合は、磁性粉末材、焼成用樹脂及び成形体樹脂の合計混合物)は、添加する樹脂の合計量が混合物の5〜15体積%となるように混合することが好ましい。この下限以上の樹脂含有量とすることで、成形体又は焼成体を十分に保形することができ、逆に上限以下とすることで、混合物中の樹脂量が適量となり、成形体や焼成体を高密度化することができる。 The mixture of magnetic powder material and firing resin (when adding molding resin, the total mixture of magnetic powder material, firing resin and molded body resin) is 5-15% by volume of the total amount of resin added. It is preferable to mix so that it becomes. By setting the resin content above this lower limit, the molded body or fired body can be sufficiently retained, and conversely by setting it to the upper limit or lower, the amount of resin in the mixture becomes an appropriate amount, and the molded body or fired body. Can be densified.
〔成形体〕
<構造>
本発明の成形体は、上記造粒粉を所定の形状に加圧成形したものである。つまり、この成形体は、磁性粉末材が、焼成用樹脂、必要に応じて成形用樹脂により一体化された状態となっている。ここで用いられている軟磁性粉末は、この成形時の圧力により実質的に変形しないため、軟磁性粉末の外周に形成された高硬度の絶縁層も損傷が抑制される。成形体の形状は、電磁部品の磁性コアの形状に応じて選択すれば良い。
[Molded body]
<Structure>
The molded body of the present invention is obtained by pressure-molding the granulated powder into a predetermined shape. That is, in this molded body, the magnetic powder material is integrated with the firing resin and, if necessary, the molding resin. Since the soft magnetic powder used here is not substantially deformed by the pressure at the time of molding, damage to the high-hardness insulating layer formed on the outer periphery of the soft magnetic powder is also suppressed. What is necessary is just to select the shape of a molded object according to the shape of the magnetic core of electromagnetic components.
<製造方法>
このような成形体は、造粒粉を金型に供給する工程と、金型内の造粒粉を加圧して成形体とする工程とを含む方法により得られる。
<Manufacturing method>
Such a molded body is obtained by a method including a step of supplying granulated powder to a mold and a step of pressing the granulated powder in the mold to form a molded body.
ここで、造粒粉を加圧する圧力は、500MPa〜1200MPa程度が好ましい。下限値以上とすることで、高密度の成形体を得ることができる。また、上限値以下とすることで、軟磁性粉末の変形に伴う絶縁層の損傷を抑制することができる。この加圧は、常温下でよいが、成形用樹脂として熱可塑性樹脂を使用した場合には樹脂のガラス転移温度以上で成形することが好ましい。これによって成形体の密度と強度の向上を図ることができる。 Here, the pressure for pressurizing the granulated powder is preferably about 500 MPa to 1200 MPa. By setting the lower limit value or more, a high-density molded body can be obtained. Moreover, the damage of an insulating layer accompanying the deformation | transformation of a soft magnetic powder can be suppressed by setting it as an upper limit or less. This pressurization may be performed at room temperature, but when a thermoplastic resin is used as the molding resin, it is preferably molded at a temperature equal to or higher than the glass transition temperature of the resin. This can improve the density and strength of the molded body.
〔焼成体〕
<構造>
本発明の磁心用焼成体は、上述した磁性粉末材と、この磁性粉末材を一体化する結合材とを備える。
[Fired body]
<Structure>
The sintered body for a magnetic core of the present invention includes the above-described magnetic powder material and a binder that integrates the magnetic powder material.
磁性粉末材は、上述したように、軟磁性粉末の外周面に酸化ケイ素を主成分とする無機質からなる絶縁層が形成された粒状材である。この絶縁層は、焼成後もほぼそのまま残存して、確実に軟磁性粉末同士の絶縁を確保する。 As described above, the magnetic powder material is a granular material in which an insulating layer made of an inorganic material mainly composed of silicon oxide is formed on the outer peripheral surface of the soft magnetic powder. This insulating layer remains almost intact even after firing, and ensures insulation between the soft magnetic powders.
一方、結合材は、焼成用樹脂が焼成時の熱で変性したセラミックス系の材料である。この結合材は、焼成用樹脂として添加したシリコーン樹脂が焼成過程でSi、C、及びOを含む非晶質体になっていると推定される。つまり、結合材中に磁性粉末材が保持された状態の焼成体となっており、軟磁性粉末の外周近傍は、酸化ケイ素を主成分とする無機質からなる絶縁層で構成されているが、その絶縁層の外側は、絶縁層に比べてCの含有量が多い材料、つまりSi、C、及びOを含む非晶質体となっている。 On the other hand, the binder is a ceramic material in which the firing resin is modified by heat during firing. In this binder, it is presumed that the silicone resin added as a firing resin is an amorphous body containing Si, C, and O during the firing process. In other words, it is a fired body in which the magnetic powder material is held in the binder, and the vicinity of the outer periphery of the soft magnetic powder is composed of an insulating layer made of an inorganic material mainly composed of silicon oxide. The outside of the insulating layer is an amorphous material containing a material having a higher C content than the insulating layer, that is, Si, C, and O.
<製造方法>
このような焼成体は、上述した成形体に所定の熱処理を施すことで得られる。この熱処理の加熱温度は、600℃〜1000℃とすることが好ましい。また、加熱時間は、30分〜2時間程度が好適である。焼成前の成形体を構成する軟磁性粉末には多くの歪が導入されている。前記の条件で成形体を熱処理することにより、十分に歪を除去することができる。さらに、上記の条件で熱処理することで、成形用樹脂を消失させ、かつ焼成用樹脂をSi、C、及びOを含む非晶質体の結合材とする。その他、この熱処理の雰囲気は、窒素雰囲気などの不活性ガス雰囲気又減圧雰囲気とすることが好ましい。このような雰囲気下で熱処理することにより、焼成用樹脂の質量減少を防ぎ焼成体を確実に保持できる点で好ましい。
<Manufacturing method>
Such a fired body can be obtained by subjecting the above-described molded body to a predetermined heat treatment. The heating temperature for this heat treatment is preferably 600 ° C to 1000 ° C. The heating time is preferably about 30 minutes to 2 hours. Many strains are introduced into the soft magnetic powder constituting the green body before firing. By heat-treating the molded body under the above conditions, the strain can be sufficiently removed. Furthermore, by performing heat treatment under the above conditions, the molding resin disappears, and the firing resin is used as an amorphous binder containing Si, C, and O. In addition, the heat treatment atmosphere is preferably an inert gas atmosphere such as a nitrogen atmosphere or a reduced pressure atmosphere. Heat treatment in such an atmosphere is preferable in that the mass of the firing resin can be prevented from being reduced and the fired body can be reliably retained.
〔電磁部品〕
本発明の電磁部品は、磁性コアとコイルとを備える。磁性コアは、上述した磁心用焼成体からなる。磁性コアの形状は、環状、棒状など、E型、I型コアなどが挙げられる。一方、コイルは、導線に絶縁被覆を設けた巻線を巻回して構成される。巻線の断面形状は、丸や矩形など種々の形状が利用できる。例えば、丸線をらせん状に巻回して円筒状のコイルとしたり、平角線をらせん状にエッジワイズ巻きして角筒状のコイルとしたりすることが挙げられる。
[Electromagnetic parts]
The electromagnetic component of the present invention includes a magnetic core and a coil. A magnetic core consists of the sintered body for magnetic cores mentioned above. Examples of the shape of the magnetic core include an E-type and an I-type core such as an annular shape and a rod shape. On the other hand, the coil is formed by winding a winding having a conductive wire provided with an insulating coating. As the cross-sectional shape of the winding, various shapes such as a circle and a rectangle can be used. For example, a round wire may be wound in a spiral shape to form a cylindrical coil, or a flat wire may be wound edgewise in a spiral shape to form a rectangular tube coil.
この電磁部品は、磁性コアの外周に巻線を巻回して構成しても良いし、予めらせん状に形成した空芯コイルを磁性コアの外周にはめ込んで構成しても良い。 This electromagnetic component may be configured by winding a winding around the outer periphery of the magnetic core, or may be configured by fitting an air-core coil formed in advance in a spiral shape into the outer periphery of the magnetic core.
この電磁部品の具体例としては、高周波チョークコイル、高周波同調用コイル、バーアンテナコイル、電源用チョークコイル、電源トランス、スイッチング電源用トランス、リアクトルなどが挙げられる。 Specific examples of the electromagnetic component include a high frequency choke coil, a high frequency tuning coil, a bar antenna coil, a power choke coil, a power transformer, a switching power transformer, and a reactor.
以下の条件で磁性粉末材の作製、造粒粉の生成、成形体の成形、焼成体の焼成を行って磁心用焼成体の試験片を作製し、その試験片についていくつかの特性を評価した。 Under the following conditions, the magnetic powder material was produced, the granulated powder was produced, the molded body was molded, and the fired body was fired to produce a test piece of the sintered body for the magnetic core, and several characteristics of the test piece were evaluated. .
<試料の作製>
まず、組成がFe-9.5質量%Si-5.5質量%Alで、ガスアトマイズ法により得られた軟磁性粉末であって、平均粒径が30μmと75μmの2種類の粉末を用意する。この組成の合金のビッカース硬さHV0.1は500である。各軟磁性粉末をふるいにかけて分級し、最大粒径が38μm以下の微粒と、最小粒径が45μm、最大粒径が106μmの粗粒との2種類にした。微粒の平均粒径は約25μm、粗粒の平均粒径は約75μmであり、これらの平均粒径の比率は1:3である。
<Preparation of sample>
First, two types of soft magnetic powders having a composition of Fe-9.5 mass% Si-5.5 mass% Al and obtained by a gas atomization method and having an average particle diameter of 30 μm and 75 μm are prepared. The Vickers hardness HV0.1 of the alloy having this composition is 500. Each soft magnetic powder was sieved and classified into two types: fine particles having a maximum particle size of 38 μm or less and coarse particles having a minimum particle size of 45 μm and a maximum particle size of 106 μm. The average particle size of the fine particles is about 25 μm, the average particle size of the coarse particles is about 75 μm, and the ratio of these average particle sizes is 1: 3.
次に、粗粒をシリコーン樹脂とミキサーで混合して、粗粒表面にシリコーン樹脂被膜を形成する。軟磁性粉末とシリコーン樹脂との配合量は、両者の混合物に対してシリコーン樹脂が0.3質量%となるようにする。さらに、微粒も同様にシリコーン樹脂被膜を形成したものを用意する。用いたシリコーン樹脂は、反応性基としてアルコキシ基を40%含有するレジン系シリコーンオリゴマーである。その25℃での粘度は4.9mPa・s、比重は1.09である。シリコーン樹脂被膜の厚さは約250nmである。 Next, the coarse particles are mixed with a silicone resin by a mixer to form a silicone resin film on the surface of the coarse particles. The blending amount of the soft magnetic powder and the silicone resin is such that the silicone resin is 0.3% by mass with respect to the mixture of both. Further, fine particles having a silicone resin film formed thereon are also prepared. The silicone resin used is a resin-based silicone oligomer containing 40% alkoxy groups as reactive groups. Its viscosity at 25 ° C. is 4.9 mPa · s, and its specific gravity is 1.09. The thickness of the silicone resin film is about 250 nm.
続いて、シリコーン樹脂被膜を形成した軟磁性粉末に大気雰囲気で180℃×1時間の熱処理を施して、樹脂を硬化させる。この時点では、シリコーン樹脂は酸化ケイ素へ変換されていない。その後、得られたシリコーン樹脂被膜付きの軟磁性粉末をふるいにかけて粒子同士の接合をほぐす。 Subsequently, the soft magnetic powder on which the silicone resin film is formed is subjected to a heat treatment at 180 ° C. for 1 hour in an air atmosphere to cure the resin. At this point, the silicone resin has not been converted to silicon oxide. Thereafter, the obtained soft magnetic powder with a silicone resin coating is sieved to loosen the particles.
次に、得られたシリコーン樹脂被膜付きの軟磁性粉末に大気雰囲気で600℃×1時間の熱処理を施し、シリコーン樹脂被膜を酸化ケイ素を主成分とする無機質からなる絶縁層とする。絶縁層の厚みは約120nmである。絶縁層付きの軟磁性粉末が得られたら、解砕を行って粒子同士の接合を分離する。 Next, the obtained soft magnetic powder with a silicone resin coating is subjected to a heat treatment at 600 ° C. for 1 hour in an air atmosphere to form the silicone resin coating as an insulating layer made of an inorganic material mainly composed of silicon oxide. The thickness of the insulating layer is about 120 nm. When a soft magnetic powder with an insulating layer is obtained, pulverization is performed to separate the particles from each other.
以上の工程により、酸化ケイ素を主成分とする無機質からなる絶縁層のない粗粒、絶縁層のある粗粒、絶縁層のない微粒、及び絶縁層のある微粒の計4種類の磁性粉末材を作製した。 According to the above process, a total of four types of magnetic powder materials including coarse particles without an insulating layer mainly composed of silicon oxide, coarse particles without an insulating layer, coarse particles with an insulating layer, fine particles without an insulating layer, and fine particles with an insulating layer are obtained. Produced.
得られた粗粒及び微粒を組み合わせ、成形用樹脂と焼成用樹脂を混合して、以下の試料No.1〜No.3の焼成体となる造粒粉を作製する。造粒粉中の粗粒と微粒の配合比は、質量比で7:3である。いずれも成形用樹脂と焼成用樹脂の合計添加量は造粒粉全原料の10体積%である。成形用樹脂にはポリビニルブチラール(電気化学工業社製デンカブチラール#3000-K)を、焼成用樹脂にはシリコーン樹脂を用いた。このシリコーン樹脂は絶縁被覆に使用したシリコーン樹脂とは別のものであり、ポリアルキルシロキサンを主成分とするシリコーンワニスであり、焼成後Si、C、及びOを含む非晶質体となっていると推定される。その25℃での粘度は100mPa・s、比重は1.02である。
(発明品)試料No.1: 粗粒:絶縁処理あり、微粒:絶縁処理なし
(発明品)試料No.2: 粗粒:絶縁処理あり、微粒:絶縁処理あり
(比較品)試料No.3: 粗粒:絶縁処理なし、微粒:絶縁処理なし
The obtained coarse particles and fine particles are combined, and a molding resin and a firing resin are mixed to produce granulated powder that becomes a fired body of the following samples No. 1 to No. 3. The blending ratio of coarse particles and fine particles in the granulated powder is 7: 3 by mass ratio. In any case, the total addition amount of the molding resin and the firing resin is 10% by volume of the total raw material of the granulated powder. Polyvinyl butyral (Denka Butyral # 3000-K manufactured by Denki Kagaku Kogyo Co., Ltd.) was used as the molding resin, and silicone resin was used as the firing resin. This silicone resin is different from the silicone resin used for the insulation coating, and is a silicone varnish mainly composed of polyalkylsiloxane, and after firing, is an amorphous body containing Si, C, and O It is estimated to be. Its viscosity at 25 ° C. is 100 mPa · s, and its specific gravity is 1.02.
(Invention) Sample No.1: Coarse grain: with insulation treatment, Fine grain: No insulation treatment (Invention product) Sample No.2: Coarse grain: With insulation treatment, Fine grain: With insulation treatment (Comparative product) Sample No.3 : Coarse grain: no insulation treatment, fine grain: no insulation treatment
次に、各試料の造粒粉を金型に供給し、圧縮することで成形体とする。この加圧成形時の面圧は980MPaである。この面圧であれば、成形時に軟磁性粉末は実質的に変形しない。 Next, the granulated powder of each sample is supplied to a mold and compressed to form a molded body. The surface pressure during this pressure molding is 980 MPa. With this surface pressure, the soft magnetic powder is not substantially deformed during molding.
そして、得られた成形体に、窒素雰囲気下で800℃×1時間の熱処理を施し、焼成体とする。得られた焼成体からなる試験片は、リング状で外径34mm、内径20mm、厚み5mmである。 Then, the obtained molded body is heat-treated at 800 ° C. for 1 hour in a nitrogen atmosphere to obtain a fired body. The obtained test piece made of the fired body has a ring shape and has an outer diameter of 34 mm, an inner diameter of 20 mm, and a thickness of 5 mm.
<評価>
上述のようにして作製した各試料について、以下に列挙する特性値を測定し、焼成体の評価を行った。評価結果は、後段の表1および表2にまとめて記載する。各表中の試料No.に下線のあるものは比較品であることを示す。
<Evaluation>
About each sample produced as mentioned above, the characteristic value enumerated below was measured and the calcination object was evaluated. The evaluation results are listed in Tables 1 and 2 below. Underlined sample numbers in each table indicate comparative products.
≪磁気特性≫
リング状の試験片に巻線を施し、試験片の磁気特性を測定するための測定部材を作製した。この試験片について、岩通計測株式会社製B-H/μ アナライザ SY-8258を用いて、励起磁束密度Bm:1kG(=0.1T)、測定周波数:100kHzにおける鉄損W1/100kおよび交流初透磁率μiacを測定した。また、鉄損の周波数曲線を下記の3つの式で最小二乗法によりフィッティングし、ヒステリシス損係数Kh(kWs/m3)および渦電流損係数Ke(kWs2/m3)を算出した。
(鉄損)=(ヒステリシス損)+(渦電流損)
(ヒステリシス損)=(ヒステリシス損係数)×(周波数)
(渦電流損)=(渦電流損係数)×(周波数)2
≪Magnetic characteristics≫
Winding was applied to the ring-shaped test piece to prepare a measuring member for measuring the magnetic properties of the test piece. About this test piece, BH / μ analyzer SY-8258 made by Iwatsu Measurement Co., Ltd., excitation magnetic flux density Bm: 1kG (= 0.1T), measurement frequency: 100kHz, iron loss W1 / 100k and AC initial permeability μiac Was measured. Further, the frequency curve of iron loss was fitted by the following three equations by the least square method, and the hysteresis loss coefficient Kh (kWs / m 3 ) and eddy current loss coefficient Ke (kWs 2 / m 3 ) were calculated.
(Iron loss) = (Hysteresis loss) + (Eddy current loss)
(Hysteresis loss) = (Hysteresis loss coefficient) x (Frequency)
(Eddy current loss) = (Eddy current loss coefficient) × (Frequency) 2
≪密度≫
各試験片について外径、内径、厚み、重量を測定し、試験片の密度(g/cm3)を算出した。外径、内径、厚みの測定はマイクロメータを用いて行った。
≪Density≫
The outer diameter, inner diameter, thickness, and weight of each test piece were measured, and the density (g / cm 3 ) of the test piece was calculated. The outer diameter, inner diameter, and thickness were measured using a micrometer.
≪評価結果≫
表1および2の結果から、試料No.1、2は、酸化ケイ素を主成分とする無機質からなる絶縁層により軟磁性粉末同士の絶縁が確実に確保されているため、試料No.3に比べて渦電流損係数Keが小さく、鉄損も低く抑えられている。一方、粗粒にのみ絶縁層のある磁性粉末材を用いた試料No.1は、粗粒と微粒の双方に絶縁層のある試料No.2に比べて若干鉄損が大きいが、初透磁率が高いことがわかる。
≪Evaluation results≫
From the results in Tables 1 and 2, sample Nos. 1 and 2 are compared to sample No. 3 because insulation between soft magnetic powders is ensured reliably by an inorganic insulating layer mainly composed of silicon oxide. Therefore, the eddy current loss coefficient Ke is small and the iron loss is also kept low. On the other hand, sample No. 1 using a magnetic powder material having an insulating layer only in coarse grains has a slightly higher iron loss than sample No. 2 having an insulating layer in both coarse grains and fine grains. Is high.
実施例1と同様の組成、製法、粒径の軟磁性粉末に、実施例1と同様の方法で表面に酸化ケイ素を主成分とする無機質からなる絶縁層を形成した、微粒のみおよび粗粒のみの粉末を用意する。粗粒と微粒の各々ごとに成形用樹脂と焼成用樹脂を混合して、以下の試料No.4(微粒のみを使用)、No.5(粗粒のみを使用)の焼成体となる造粒粉を作製する。樹脂量および樹脂の種類は実施例1と同様である。
(比較品)試料No.4: 微粒(38μm以下)のみ使用、絶縁処理あり
(比較品)試料No.5: 粗粒(45〜106μm)のみ使用、絶縁処理あり
A soft magnetic powder having the same composition, production method, and particle size as in Example 1 was formed by forming an insulating layer made of an inorganic material mainly composed of silicon oxide on the surface by the same method as in Example 1. Only fine particles and only coarse particles Prepare a powder. Granulation that becomes a fired body of sample No. 4 (uses only fine particles) and No. 5 (uses only coarse particles) by mixing molding resin and firing resin for each of coarse and fine particles. Make flour. The amount of resin and the type of resin are the same as in Example 1.
(Comparative product) Sample No.4: Use only fine particles (38μm or less), with insulation treatment (Comparative product) Sample No.5: Use only coarse particles (45-106μm), with insulation treatment
続いて、造粒粉を実施例1と同様の方法で焼成体とし、評価を行った。評価結果は、後段の表1および表2にまとめて記載する。表1および2の結果から、微粒のみ、粗粒のみを用いた試料No.4、No.5では微粒と粗粒を組み合わせて使用した試料No.1〜No.3に比べて密度が低く、初透磁率も低い。 Subsequently, the granulated powder was fired in the same manner as in Example 1 and evaluated. The evaluation results are listed in Tables 1 and 2 below. From the results of Tables 1 and 2, the samples No. 4 and No. 5 using only fine particles and only coarse particles have a lower density than samples No. 1 to No. 3 using a combination of fine particles and coarse particles. Low initial permeability.
実施例1と同様の組成、製法の、平均粒径が30μmと75μmの2種類の粉末を用意する。各軟磁性粉末をふるいにかけて分級し、最大粒径が38μm以下の微粒と、最小粒径が45μm、最大粒径が180μmの粗粒との2種類にした。微粒の平均粒径は約25μm、粗粒の平均粒径は約90μmである。次に、実施例1と同様の方法で粗粒の表面に酸化ケイ素を主成分とする無機質からなる絶縁層を形成する。得られた粗粒と微粒とを組み合わせて成形用樹脂と焼成用樹脂を混合して、以下の試料No.6の焼成体となる造粒粉を作製する。造粒粉中の粗粒と微粒の配合比、樹脂量、樹脂の種類は実施例1と同様である。
(発明品)試料No.6: 粗粒:45〜180μm、絶縁処理あり
微粒:38μm以下、絶縁処理なし
Two types of powders having the same composition and production method as those of Example 1 and having an average particle diameter of 30 μm and 75 μm are prepared. Each soft magnetic powder was sieved and classified into two types: fine particles having a maximum particle size of 38 μm or less and coarse particles having a minimum particle size of 45 μm and a maximum particle size of 180 μm. The average particle size of the fine particles is about 25 μm, and the average particle size of the coarse particles is about 90 μm. Next, an insulating layer made of an inorganic material mainly composed of silicon oxide is formed on the surface of the coarse particles by the same method as in Example 1. The obtained coarse particles and fine particles are combined and a molding resin and a firing resin are mixed to produce a granulated powder that becomes a fired body of Sample No. 6 below. The blending ratio of coarse particles and fine particles in the granulated powder, the amount of resin, and the type of resin are the same as in Example 1.
(Invention) Sample No.6: Coarse grain: 45-180μm, with insulation treatment
Fine: 38μm or less, no insulation treatment
続いて、造粒粉を実施例1と同様の方法で焼成体とし、評価を行った。評価結果は、後段の表1および表2にまとめて記載する。表1および2の結果から、試料No.6では粒径の大きい粉末が存在し、発生する粒内渦損が大きいため、試料No.1に比べて渦電流損係数Keが大きく、鉄損も大きい。 Subsequently, the granulated powder was fired in the same manner as in Example 1 and evaluated. The evaluation results are listed in Tables 1 and 2 below. From the results of Tables 1 and 2, sample No. 6 has a powder with a large particle size, and the generated intragranular eddy loss is large. Therefore, eddy current loss coefficient Ke is larger than sample No. 1, and iron loss is large.
実施例1と同様の組成、製法、粒径の軟磁性粉末を用意する。次に、粗粒をシリコーン樹脂とミキサーで混合して、粗粒表面にシリコーン樹脂被膜を形成する。軟磁性粉末とシリコーン樹脂との配合量は、両者の混合物に対してシリコーン樹脂が0.02〜1.8質量%となるようにする。シリコーン樹脂被膜を、実施例1と同様の方法で酸化ケイ素を主成分とする無機質からなる絶縁層に変換する。得られた粗粒と微粒とを組み合わせて成形用樹脂と焼成用樹脂を混合して、以下の試料No.7 〜No.10の焼成体となる造粒粉を作製する。造粒粉中の粗粒と微粒の配合比、樹脂量および樹脂の種類は実施例1と同様である。
(発明品)試料No.7: 粗粒:被覆量=0.02質量%、微粒:絶縁処理なし
(発明品)試料No.8: 粗粒:被覆量=0.1質量%、微粒:絶縁処理なし
(発明品)試料No.9: 粗粒:被覆量=1.0質量%、微粒:絶縁処理なし
(発明品)試料No.10: 粗粒:被覆量=1.8質量%、微粒:絶縁処理なし
A soft magnetic powder having the same composition, production method, and particle size as in Example 1 is prepared. Next, the coarse particles are mixed with a silicone resin by a mixer to form a silicone resin film on the surface of the coarse particles. The blending amount of the soft magnetic powder and the silicone resin is set so that the silicone resin is 0.02 to 1.8% by mass with respect to the mixture of both. The silicone resin film is converted to an insulating layer made of an inorganic material mainly composed of silicon oxide by the same method as in Example 1. The obtained coarse particles and fine particles are combined and a molding resin and a firing resin are mixed to produce granulated powder that becomes a fired body of the following samples No. 7 to No. 10. The blending ratio of coarse particles and fine particles in the granulated powder, the amount of resin, and the type of resin are the same as in Example 1.
(Invention product) Sample No.7: Coarse particles: Covering amount = 0.02 mass%, Fine particles: No insulation treatment (Invention product) Sample No.8: Coarse particles: Coating amount = 0.1 mass%, Fine particles: No insulation treatment (Invention) Product) Sample No. 9: Coarse particles: coating amount = 1.0 mass%, fine particles: no insulation treatment (Invention product) Sample No. 10: Coarse particles: coating amount = 1.8 mass%, fine particles: no insulation treatment
続いて、造粒粉を実施例1と同様の方法で焼成体とし、評価を行った。評価結果は、後段の表1および表2にまとめて記載する。表1および2の結果から、絶縁処理を行った試料No.7〜No.10は試料No.3に比べて渦電流損係数Keが小さく、鉄損が低く抑えられている。被覆量の少ない試料No.7では鉄損が若干大きく、被覆量の多い試料No.10では密度が低く、初透磁率が若干低い。 Subsequently, the granulated powder was fired in the same manner as in Example 1 and evaluated. The evaluation results are listed in Tables 1 and 2 below. From the results of Tables 1 and 2, Sample Nos. 7 to 10 subjected to insulation treatment have a smaller eddy current loss coefficient Ke and a lower iron loss than Sample No. 3. Sample No. 7 with a small amount of coating has a slightly large iron loss, and sample No. 10 with a large amount of coating has a low density and a slightly low initial permeability.
実施例1と同様の組成、製法、粒径の軟磁性粉末を用意し、粗粒の表面に実施例1と同様の方法でシリコーン樹脂被膜を形成する。次に、得られたシリコーン樹脂被膜付きの軟磁性粉末に200℃×1時間の熱処理を施す。得られた粗粒と微粒とを組み合わせて成形用樹脂と焼成用樹脂を混合して、以下の試料No.11の焼成体となる造粒粉を作製する。造粒粉中の粗粒と微粒の配合比、樹脂量および樹脂の種類は実施例1と同様である。
(比較品)試料No.11: 粗粒:熱処理温度=200℃、微粒:絶縁処理なし
A soft magnetic powder having the same composition, production method, and particle size as in Example 1 is prepared, and a silicone resin film is formed on the surface of the coarse particles by the same method as in Example 1. Next, the obtained soft magnetic powder with a silicone resin coating is subjected to heat treatment at 200 ° C. for 1 hour. The obtained coarse particles and fine particles are combined and a molding resin and a firing resin are mixed to produce a granulated powder that becomes a fired body of Sample No. 11 below. The blending ratio of coarse particles and fine particles in the granulated powder, the amount of resin, and the type of resin are the same as in Example 1.
(Comparative product) Sample No. 11: Coarse grain: Heat treatment temperature = 200 ° C, Fine grain: No insulation treatment
続いて、造粒粉を実施例1と同様の方法で焼成体とし、評価を行った。評価結果は、後段の表1および表2にまとめて記載する。表1および2の結果から、試料No.11は試料No.1と比較して、熱処理温度が低くシリコーン樹脂被膜の酸化ケイ素への変換が不完全で粉末間の絶縁確保が不十分であるため、渦電流損係数Keが大きく、鉄損も大きい。 Subsequently, the granulated powder was fired in the same manner as in Example 1 and evaluated. The evaluation results are listed in Tables 1 and 2 below. From the results of Tables 1 and 2, sample No. 11 has a lower heat treatment temperature and incomplete conversion of the silicone resin coating to silicon oxide and insufficient insulation between the powders compared to sample No. 1. The eddy current loss coefficient Ke is large, and the iron loss is also large.
以上の試料No.1〜11の評価結果を総合的に比較すれば、発明品は、渦電流損係数(×10-8kWs2/m3):4.5以下、鉄損(kW/m3):650以下、密度(g/cm3):5.5以上、交流初透磁率μiac(H/m):70以上であり、高密度・高透磁率・低鉄損をバランスよく満たすことがわかる。特に、試料No.1,2,8,9は、渦電流損係数(×10-8kWs2/m3):3.5以下、鉄損(kW/m3):600以下、密度(g/cm3):5.7以上、交流初透磁率μiac(H/m):90以上を満たしている。 By comparing the evaluation results of the above samples No.1~11 Overall, the invention products, the eddy current loss coefficient (× 10 -8 kWs 2 / m 3): 4.5 or less, the core loss (kW / m 3) : 650 or less, density (g / cm 3 ): 5.5 or more, AC initial permeability μiac (H / m): 70 or more, and it can be seen that high density, high permeability, and low iron loss are well-balanced. In particular, sample Nos. 1, 2, 8 , and 9 have an eddy current loss coefficient (× 10 −8 kWs 2 / m 3 ): 3.5 or less, iron loss (kW / m 3 ): 600 or less, density (g / cm) 3 ): 5.7 or higher, AC initial permeability μiac (H / m): 90 or higher.
なお、本発明は、上述した実施例に限定されるわけではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。 In addition, this invention is not necessarily limited to the Example mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably.
本発明の磁性粉末材、造粒粉、磁心用成形体、及び磁心用焼成体の製造方法は、各種インダクタに用いられる磁心用焼成体を得るのに好適である。また、本発明の磁心用焼成体及び電磁部品は、高周波チョークコイル、高周波同調用コイル、バーアンテナコイル、電源用チョークコイル、電源トランス、スイッチング電源用トランス、リアクトルなどに好適に利用できる。 The magnetic powder material, granulated powder, magnetic core molded body, and core core fired body manufacturing method of the present invention are suitable for obtaining the core fired body used in various inductors. The sintered body for magnetic core and electromagnetic component of the present invention can be suitably used for a high-frequency choke coil, a high-frequency tuning coil, a bar antenna coil, a power choke coil, a power transformer, a switching power transformer, a reactor, and the like.
Claims (13)
この軟磁性粉末のうち、少なくとも粗粒の外周面に形成された酸化ケイ素を主成分とする無機質からなる絶縁層とを備えることを特徴とする磁性粉末材。 Soft magnetic powder containing fine particles and coarse particles having different particle sizes;
A magnetic powder material comprising: an insulating layer made of an inorganic substance mainly composed of silicon oxide formed on at least a coarse outer peripheral surface of the soft magnetic powder.
前記粗粒の最小粒径が40μm以上、最大粒径が150μm以下であることを特徴とする請求項1〜3のいずれか1項に記載の磁性粉末材。 The fine particles have a maximum particle size of less than 40 μm,
The magnetic powder material according to claim 1, wherein the coarse particles have a minimum particle size of 40 μm or more and a maximum particle size of 150 μm or less.
請求項1〜5のいずれか1項に記載の磁性粉末材と、
前記焼成時に結合材となって焼成後に焼成体を保形する焼成用樹脂とを備え、
これら磁性粉末材及び焼成用樹脂が粒状に一体化されてなることを特徴とする造粒粉。 It is a granulated powder that is made into a molded body by pressing, and is made into a sintered body for a magnetic core by firing the molded body,
Magnetic powder material according to any one of claims 1 to 5,
A firing resin that becomes a binder during the firing and retains the fired body after firing,
A granulated powder comprising the magnetic powder material and a firing resin integrated in a granular form.
磁性粉末材、成形用樹脂、及び焼成用樹脂が粒状に一体化されてなることを特徴とする請求項6に記載の造粒粉。 Furthermore, while holding the shaped body after the pressurization, comprising a molding resin that substantially disappears during the firing,
The granulated powder according to claim 6, wherein the magnetic powder material, the molding resin, and the firing resin are integrated in a granular form.
前記焼成用樹脂がシリコーン樹脂であることを特徴とする請求項7に記載の造粒粉。 The molding resin is a thermoplastic resin;
The granulated powder according to claim 7, wherein the baking resin is a silicone resin.
前記磁性粉末材は、
粒径の異なる微粒と粗粒とを含む軟磁性粉末と、
この軟磁性粉末のうち、少なくとも粗粒の外周面に形成された酸化ケイ素を主成分とする無機質からなる絶縁層とを有し、
前記結合材は、Si、C、及びOを含む非晶質体であることを特徴とする磁心用焼成体。 A sintered body for a magnetic core comprising a magnetic powder material and a binder for integrating the magnetic powder material,
The magnetic powder material is
Soft magnetic powder containing fine particles and coarse particles having different particle sizes;
Of this soft magnetic powder, it has an insulating layer made of an inorganic material mainly composed of silicon oxide formed on at least the outer peripheral surface of coarse particles,
The sintered body for a magnetic core, wherein the binder is an amorphous body containing Si, C, and O.
粒径の異なる微粒と粗粒とを含む軟磁性粉末を準備する工程と、
この軟磁性粉末のうち、少なくとも粗粒に酸化ケイ素を主成分とする無機質からなる絶縁層を形成する工程と、
前記絶縁層を有する粗粒を含む軟磁性粉末と、前記成形体を保形するための成形用樹脂と、前記焼成後に焼成体を保形するための焼成用樹脂とを混合して造粒する工程と、
この造粒粉を所定の形状に圧縮成形して成形体とする工程と、
この成形体を焼成して焼成体とする工程とを含むことを特徴とする磁心用焼成体の製造方法。 A method for producing a fired body for a magnetic core by forming a molded body using soft magnetic powder and firing the molded body to obtain a fired body,
Preparing a soft magnetic powder containing fine particles and coarse particles having different particle sizes;
A step of forming an insulating layer made of an inorganic material mainly composed of silicon oxide in at least coarse particles of the soft magnetic powder;
The soft magnetic powder including the coarse particles having the insulating layer, the molding resin for retaining the molded body, and the firing resin for retaining the fired body after the firing are mixed and granulated. Process,
A step of compression molding the granulated powder into a predetermined shape to form a molded body;
A method for producing a fired body for a magnetic core, comprising a step of firing the formed body to obtain a fired body.
巻線を巻回して構成され、この磁心の外側に配されるコイルとを備えることを特徴とする電磁部品。 A magnetic core comprising the sintered body for a magnetic core according to claim 10;
An electromagnetic component comprising a coil wound around and disposed outside the magnetic core.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009090906A JP2010245216A (en) | 2009-04-03 | 2009-04-03 | Magnetic powder material, granulating powder, compact, baked object for magnetic core, and method of manufacturing electromagnetic component and baked object for magnetic core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009090906A JP2010245216A (en) | 2009-04-03 | 2009-04-03 | Magnetic powder material, granulating powder, compact, baked object for magnetic core, and method of manufacturing electromagnetic component and baked object for magnetic core |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010245216A true JP2010245216A (en) | 2010-10-28 |
Family
ID=43097924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009090906A Pending JP2010245216A (en) | 2009-04-03 | 2009-04-03 | Magnetic powder material, granulating powder, compact, baked object for magnetic core, and method of manufacturing electromagnetic component and baked object for magnetic core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010245216A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012234868A (en) * | 2011-04-28 | 2012-11-29 | Taiyo Yuden Co Ltd | Coil component |
JP2012234867A (en) * | 2011-04-28 | 2012-11-29 | Taiyo Yuden Co Ltd | Coil component |
US20130294129A1 (en) * | 2011-03-24 | 2013-11-07 | Sumitomo Electric Industries, Ltd. | Composite material, reactor-use core, reactor, converter, and power converter apparatus |
CN103745791A (en) * | 2013-12-27 | 2014-04-23 | 青岛云路新能源科技有限公司 | Production method of ultrahigh magnetic permeability of iron-based nanocrystalline magnetic powder core |
JP2014116527A (en) * | 2012-12-12 | 2014-06-26 | Hitachi Metals Ltd | Method for manufacturing dust core |
CN103943296A (en) * | 2013-01-23 | 2014-07-23 | Tdk株式会社 | Soft magnetic body composition, manufacturing method thereof, magnetic core, and coil-type electronic component |
JP2015213148A (en) * | 2013-11-29 | 2015-11-26 | 株式会社神戸製鋼所 | Mixed powder for powder magnetic core, and powder magnetic core |
JP2016039330A (en) * | 2014-08-08 | 2016-03-22 | 株式会社タムラ製作所 | Soft magnetic composite material, magnetic core arranged by use thereof, reactor, and manufacturing method of reactor |
US9349511B2 (en) | 2011-03-24 | 2016-05-24 | Sumitomo Electric Industries, Ltd. | Composite material, reactor-use core, reactor, converter, and power converter apparatus |
JP2019081946A (en) * | 2017-10-31 | 2019-05-30 | 日立化成株式会社 | Method for manufacturing a sintered magnetic core, green compact and sintered magnetic core |
CN112687447A (en) * | 2019-10-18 | 2021-04-20 | 株式会社村田制作所 | Inductor and method for manufacturing the same |
-
2009
- 2009-04-03 JP JP2009090906A patent/JP2010245216A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9349511B2 (en) | 2011-03-24 | 2016-05-24 | Sumitomo Electric Industries, Ltd. | Composite material, reactor-use core, reactor, converter, and power converter apparatus |
US20130294129A1 (en) * | 2011-03-24 | 2013-11-07 | Sumitomo Electric Industries, Ltd. | Composite material, reactor-use core, reactor, converter, and power converter apparatus |
CN103430249A (en) * | 2011-03-24 | 2013-12-04 | 住友电气工业株式会社 | Composite material, reactor core, reactor, converter, and power conversion device |
US9847156B2 (en) | 2011-03-24 | 2017-12-19 | Sumitomo Electric Industries, Ltd. | Composite material, reactor-use core, reactor, converter, and power converter apparatus |
JP2012234868A (en) * | 2011-04-28 | 2012-11-29 | Taiyo Yuden Co Ltd | Coil component |
JP2012234867A (en) * | 2011-04-28 | 2012-11-29 | Taiyo Yuden Co Ltd | Coil component |
JP2014116527A (en) * | 2012-12-12 | 2014-06-26 | Hitachi Metals Ltd | Method for manufacturing dust core |
CN103943296A (en) * | 2013-01-23 | 2014-07-23 | Tdk株式会社 | Soft magnetic body composition, manufacturing method thereof, magnetic core, and coil-type electronic component |
JP2015213148A (en) * | 2013-11-29 | 2015-11-26 | 株式会社神戸製鋼所 | Mixed powder for powder magnetic core, and powder magnetic core |
CN103745791A (en) * | 2013-12-27 | 2014-04-23 | 青岛云路新能源科技有限公司 | Production method of ultrahigh magnetic permeability of iron-based nanocrystalline magnetic powder core |
JP2016039330A (en) * | 2014-08-08 | 2016-03-22 | 株式会社タムラ製作所 | Soft magnetic composite material, magnetic core arranged by use thereof, reactor, and manufacturing method of reactor |
JP2019081946A (en) * | 2017-10-31 | 2019-05-30 | 日立化成株式会社 | Method for manufacturing a sintered magnetic core, green compact and sintered magnetic core |
JP7217856B2 (en) | 2017-10-31 | 2023-02-06 | 株式会社レゾナック | Manufacturing method of sintered magnetic core, green compact, and sintered magnetic core |
CN112687447A (en) * | 2019-10-18 | 2021-04-20 | 株式会社村田制作所 | Inductor and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010245216A (en) | Magnetic powder material, granulating powder, compact, baked object for magnetic core, and method of manufacturing electromagnetic component and baked object for magnetic core | |
JP5374537B2 (en) | Soft magnetic powder, granulated powder, dust core, electromagnetic component, and method for manufacturing dust core | |
WO2012057153A1 (en) | Soft magnetic powder, powder granules, dust core, electromagnetic component, and method for manufacturing dust core | |
JP2012077363A (en) | Method of producing powder for metallurgy, and method for production of powder magnetic core | |
WO2010073590A1 (en) | Composite soft magnetic material and method for producing same | |
JP5522173B2 (en) | Composite magnetic body and method for producing the same | |
KR101910139B1 (en) | Magnetic core, method for producing magnetic core, and coil component | |
CN107658090B (en) | Soft magnetic metal powder magnetic core and reactor provided with same | |
WO2015079856A1 (en) | Powder core, coil component, and method for producing powder core | |
JP7128439B2 (en) | Dust core and inductor element | |
JP2003217919A (en) | Dust core and high-frequency reactor using the same | |
JP2013098384A (en) | Dust core | |
JP2014120678A (en) | Green compact and manufacturing method of green compact | |
JPWO2010038441A1 (en) | Composite magnetic material and manufacturing method thereof | |
JP2012186255A (en) | Dust core and manufacturing method therefor | |
CN104409189B (en) | Compound soft magnetic material and preparation method thereof | |
JPH11176680A (en) | Manufacture of core | |
WO2013140762A1 (en) | Composite magnetic material and method for manufacturing same | |
JP4701531B2 (en) | Dust core | |
WO2003060930A1 (en) | Powder magnetic core and high frequency reactor using the same | |
CN110942882A (en) | Composite magnetic material, reactor, and metal composite core and method for manufacturing same | |
JP7254449B2 (en) | Soft magnetic materials, dust cores, and inductors | |
JP2010185126A (en) | Composite soft magnetic material and method for producing the same | |
JPH11260617A (en) | Dust core, manufacture of the same, and winding component | |
JP2018137349A (en) | Magnetic core and coil component |