JP2010242602A - Exhaust gas purifying system and control method of exhaust gas purifying system - Google Patents
Exhaust gas purifying system and control method of exhaust gas purifying system Download PDFInfo
- Publication number
- JP2010242602A JP2010242602A JP2009091304A JP2009091304A JP2010242602A JP 2010242602 A JP2010242602 A JP 2010242602A JP 2009091304 A JP2009091304 A JP 2009091304A JP 2009091304 A JP2009091304 A JP 2009091304A JP 2010242602 A JP2010242602 A JP 2010242602A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- carbon monoxide
- nox
- oxidation catalyst
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、内燃機関の排気通路にNOx吸蔵還元型触媒を備えた排気ガス浄化システム及び排気ガス浄化システムの制御方法に関し、より詳細には、内燃機関より排出されるNOxを低温から有効に活用してNOxの浄化を低温域から効率よく行うことができる排気ガス浄化システム及び排気ガス浄化システムの制御方法に関する。 The present invention relates to an exhaust gas purification system having an NOx occlusion reduction type catalyst in an exhaust passage of an internal combustion engine and a control method for the exhaust gas purification system, and more specifically, effectively utilizes NOx discharged from the internal combustion engine from a low temperature. The present invention relates to an exhaust gas purification system and an exhaust gas purification system control method that can efficiently purify NOx from a low temperature range.
ディーゼルエンジン等の車両搭載等の内燃機関においては、排気ガスは酸素過剰雰囲気中の窒素酸化物(NOx)を浄化するための一つの方法として、NOxを浄化するNOx吸蔵還元型触媒が実用化されている。このNOx吸蔵還元型触媒は、ディーゼルエンジンの排気ガスのような酸素過剰雰囲気中のNOxを処理するために空燃比がリーンであるときにNOxをNOx吸蔵還元型触媒に吸蔵させ、NOx吸蔵量が飽和に達する前に空燃比を理論空燃比またはリッチに制御し、吸蔵したNOxを放出還元する。 In an internal combustion engine mounted on a vehicle such as a diesel engine, a NOx occlusion reduction type catalyst that purifies NOx has been put into practical use as one method for purifying nitrogen oxide (NOx) in an atmosphere containing excess oxygen. ing. This NOx occlusion reduction type catalyst stores NOx in the NOx occlusion reduction type catalyst when the air-fuel ratio is lean to treat NOx in an oxygen-excess atmosphere such as exhaust gas of a diesel engine, and the NOx occlusion amount is reduced. Before reaching saturation, the air-fuel ratio is controlled to the stoichiometric air-fuel ratio or rich, and the stored NOx is released and reduced.
しかしながら、NOx吸蔵還元型触媒では、低温域ではリーン空燃比状態でのNOx吸蔵性能が低くNOxを十分に浄化できないという問題がある。そのため、NOx吸蔵還元型触媒の上流側に一酸化窒素酸化触媒(NO酸化触媒)を配置し、一酸化窒素酸化触媒で二酸化窒素を生成させることによりリーン空燃比状態における吸蔵性能を向上させる試みがなされている。 However, the NOx occlusion reduction type catalyst has a problem that the NOx occlusion performance in the lean air-fuel ratio state is low in the low temperature range and NOx cannot be sufficiently purified. Therefore, there is an attempt to improve the storage performance in the lean air-fuel ratio state by disposing a nitric oxide oxidation catalyst (NO oxidation catalyst) upstream of the NOx storage reduction catalyst and generating nitrogen dioxide with the nitric oxide oxidation catalyst. Has been made.
例えば、内燃機関の排ガス流路にNO酸化装置とNOx捕捉還元触媒を設置して内燃機関始動期間の排ガス中のNOxを浄化する内燃機関の排ガス浄化方法および排ガス浄化装置が提案されている(例えば、特許文献1参照。)。 For example, an exhaust gas purification method and an exhaust gas purification device for an internal combustion engine in which an NO oxidation device and a NOx trapping reduction catalyst are installed in the exhaust gas flow path of the internal combustion engine to purify NOx in the exhaust gas during the internal combustion engine start period have been proposed (for example, , See Patent Document 1).
しかしながら、150℃〜200℃の低温域では通常の一酸化窒酸化触媒における二酸化窒素生成活性及び二酸化窒素の吸着保持は十分ではなく、また、NOx吸蔵還元型触媒のNOx吸蔵性能も150℃〜200℃の低温域では低く、この低温域ではNOxを十分に浄化できないという問題がある。 However, in the low temperature range of 150 ° C. to 200 ° C., the nitrogen dioxide generating activity and the adsorption retention of nitrogen dioxide in the normal nitric oxide oxidation catalyst are not sufficient, and the NOx storage performance of the NOx storage reduction catalyst is also 150 ° C. to 200 ° C. There is a problem that the temperature is low in a low temperature region of ° C., and NOx cannot be sufficiently purified in this low temperature region.
本発明は、上記の状況を鑑みてなされたものであり、その目的は、内燃機関の排気通路にNOx吸蔵還元型触媒を備えた排気ガス浄化システムにおいて、排気ガス中の一酸化炭素(CO)を利用して、一酸化窒素酸化触媒(NO酸化触媒)に流入する排気ガスの温度が150℃〜200℃の低温域にあるような内燃機関の運転状態においても、効率よくNOxを浄化することができる排気ガス浄化システム及び排気ガス浄化システムの制御方法を提供することにある。 The present invention has been made in view of the above situation, and an object of the present invention is to provide carbon monoxide (CO) in exhaust gas in an exhaust gas purification system including an NOx occlusion reduction type catalyst in an exhaust passage of an internal combustion engine. Is used to efficiently purify NOx even in an operating state of an internal combustion engine in which the temperature of exhaust gas flowing into the nitric oxide oxidation catalyst (NO oxidation catalyst) is in a low temperature range of 150 ° C. to 200 ° C. It is an object of the present invention to provide an exhaust gas purification system and a control method for the exhaust gas purification system.
上記のような目的を達成するための排気ガス浄化システムは、内燃機関の排気通路にNOx吸蔵還元型触媒を備えた排気ガス浄化システムにおいて、前記排気通路の前記NOx吸蔵還元型触媒よりも上流側に一酸化窒素酸化触媒を設けると共に、前記内燃機関の運転状態が予め設定された運転状態になった場合に、前記一酸化窒素酸化触媒に流入する排気ガス中の一酸化炭素を増加させる一酸化炭素増量制御を行う制御装置を備えて構成される。 An exhaust gas purification system for achieving the above object is an exhaust gas purification system comprising an NOx occlusion reduction type catalyst in an exhaust passage of an internal combustion engine, upstream of the NOx occlusion reduction type catalyst in the exhaust passage. Provided with a nitric oxide oxidation catalyst, and increases the carbon monoxide in the exhaust gas flowing into the nitric oxide oxidation catalyst when the operation state of the internal combustion engine becomes a preset operation state. It is configured with a control device that performs carbon increase control.
この構成によれば、一酸化炭素(CO)がある場合には、一酸化窒素酸化触媒(NO酸化触媒)においては一酸化窒素(NO)を二酸化窒素(NO2)に酸化して二酸化窒素を生成する割合が著しく高まるので、一酸化炭素増量制御と組み合わせることにより、150℃〜200℃の低温域では、一酸化窒素酸化触媒(NO酸化触媒)で一酸化窒素を二酸化窒素に酸化して吸着保持できるので、この低温域でも、NOxを浄化できる。 According to this configuration, when carbon monoxide (CO) is present, the nitric oxide oxidation catalyst (NO oxidation catalyst) oxidizes nitrogen monoxide (NO) to nitrogen dioxide (NO 2 ) to generate nitrogen dioxide. Since the rate of generation increases significantly, in combination with carbon monoxide increase control, nitrogen monoxide is oxidized and adsorbed to nitrogen dioxide with a nitric oxide oxidation catalyst (NO oxidation catalyst) in the low temperature range of 150 ° C to 200 ° C. Since it can be retained, NOx can be purified even in this low temperature range.
また、NOx吸蔵還元型触媒のNOx吸蔵性能が活性化する温度以上になる排気ガスの温度が200℃以上では、一酸化窒素酸化触媒に保持していた二酸化窒素を脱離するが、下流側のNOx吸蔵還元型触媒で浄化することができる。 Further, when the temperature of the exhaust gas at which the NOx occlusion performance of the NOx occlusion reduction type catalyst becomes higher than the activation temperature is 200 ° C. or more, the nitrogen dioxide held in the nitric oxide oxidation catalyst is desorbed, but the downstream side The NOx occlusion reduction catalyst can be used for purification.
つまり、150℃〜200℃の低温域で一酸化炭素を利用して一酸化窒素酸化触媒にNOxを酸化保持し、200℃以上の高温域で保持していたNOxを放出させる。これにより、NOx選択還元型触媒の浄化性能が低い低温域においてはNOxを一酸化窒素酸化触媒で保持しておき、この保持していたNOxを高温域でNOx吸蔵還元型触媒に供給して浄化する。これにより、従来技術では浄化できなかった低温域からの排気ガス中のNOxの浄化が可能となる。 That is, NOx is oxidized and held in the nitric oxide oxidation catalyst using carbon monoxide in a low temperature range of 150 ° C. to 200 ° C., and NOx held in a high temperature range of 200 ° C. or higher is released. As a result, NOx is retained by the nitric oxide oxidation catalyst in the low temperature range where the purification performance of the NOx selective reduction type catalyst is low, and this retained NOx is supplied to the NOx occlusion reduction type catalyst in the high temperature range for purification. To do. This makes it possible to purify NOx in the exhaust gas from a low temperature range that could not be purified by the prior art.
なお、この一酸化炭素増量制御は、空気過剰率センサで検出した酸素濃度と窒素酸化物センサで検出した窒素酸化物濃度をチェックしながら、筒内(シリンダ内)への燃料噴射量の増加、プレ噴射なしでのメイン噴射又は排気管内燃料直接噴射、吸気量の絞り、EGR量の増加などで行うことができる。 The carbon monoxide increase control is performed by increasing the amount of fuel injected into the cylinder (inside the cylinder) while checking the oxygen concentration detected by the excess air sensor and the nitrogen oxide concentration detected by the nitrogen oxide sensor. Main injection without pre-injection or direct fuel injection in the exhaust pipe, throttle of the intake air amount, increase of the EGR amount, etc. can be performed.
また、上記の内燃機関において、前記予め設定された運転状態が、前記一酸化窒素酸化触媒に流入する排気ガスの温度が150℃〜200℃の低温域にある場合を含むように構成される。この構成により、従来技術では困難であった150℃〜200℃の低温域でも強い吸着力を有する二酸化窒素を生成して一酸化窒素酸化触媒に保持できるので、より低い温度域から、NOxを浄化できるようになる。 In the internal combustion engine, the preset operating state includes a case where the temperature of the exhaust gas flowing into the nitric oxide oxidation catalyst is in a low temperature range of 150 ° C to 200 ° C. With this configuration, it is possible to generate nitrogen dioxide having strong adsorptive power and hold it in the nitric oxide oxidation catalyst even in the low temperature range of 150 ° C to 200 ° C, which was difficult with the prior art, and purify NOx from a lower temperature range. become able to.
また、上記の内燃機関で、前記一酸化炭素増量制御において、排気ガス中の一酸化炭素の体積濃度が窒素酸化物の体積濃度の5倍以上20倍以下になるように一酸化炭素を増量するように構成される。言い換えれば、一酸化炭素増量制御において、排気ガス中の一酸化炭素(CO)と窒素酸化物(NOx)のモル比(CO/NOx)を5以上20以下になるように一酸化炭素を増量する。この構成により、効率よく二酸化窒素を生成し、一酸化窒素酸化触媒に保持することができるようになる。 Further, in the internal combustion engine, in the carbon monoxide increase control, the carbon monoxide is increased so that the volume concentration of carbon monoxide in the exhaust gas is not less than 5 times and not more than 20 times the volume concentration of nitrogen oxides. Configured as follows. In other words, in the carbon monoxide increase control, the carbon monoxide is increased so that the molar ratio (CO / NOx) of carbon monoxide (CO) to nitrogen oxide (NOx) in the exhaust gas is 5 or more and 20 or less. . With this configuration, nitrogen dioxide can be efficiently generated and held in the nitric oxide oxidation catalyst.
上記のような目的を達成するための排気ガス浄化システムの制御方法は、内燃機関の排気通路にNOx吸蔵還元型触媒を備えると共に、前記排気通路の前記NOx吸蔵還元型触媒よりも上流側に一酸化窒素酸化触媒を設けた排気ガス浄化システムの制御方法において、前記内燃機関の運転状態が予め設定された運転状態になった場合に、前記一酸化窒素酸化触媒に流入する排気ガス中の一酸化炭素を増加させる一酸化炭素増量制御を行うことを特徴とする方法である。 An exhaust gas purification system control method for achieving the above object includes a NOx occlusion reduction type catalyst in an exhaust passage of an internal combustion engine, and is provided upstream of the NOx occlusion reduction type catalyst in the exhaust passage. In a control method of an exhaust gas purification system provided with a nitrogen oxide oxidation catalyst, when the operation state of the internal combustion engine becomes a preset operation state, monoxide in the exhaust gas flowing into the nitrogen monoxide oxidation catalyst It is a method characterized by performing carbon monoxide increase control for increasing carbon.
この方法によれば、一酸化炭素(CO)がある場合には、一酸化窒素酸化触媒(NO酸化触媒)においては一酸化窒素(NO)を二酸化窒素(NO2)に酸化して二酸化窒素を生成する割合が著しく高まるので、一酸化炭素増量制御と組み合わせることにより、150℃〜200℃の低温域では、一酸化窒素酸化触媒(NO酸化触媒)で一酸化窒素を二酸化窒素に酸化して吸着保持できるので、この低温域でも、NOxを浄化できる。 According to this method, when carbon monoxide (CO) is present, in the nitric oxide oxidation catalyst (NO oxidation catalyst), nitrogen monoxide (NO) is oxidized to nitrogen dioxide (NO 2 ) to generate nitrogen dioxide. Since the rate of generation increases significantly, in combination with carbon monoxide increase control, nitrogen monoxide is oxidized and adsorbed to nitrogen dioxide with a nitric oxide oxidation catalyst (NO oxidation catalyst) in the low temperature range of 150 ° C to 200 ° C. Since it can be retained, NOx can be purified even in this low temperature range.
また、この一酸化窒素酸化触媒に保持していた二酸化窒素は、排気ガスの温度が200℃以上で、脱離及び放出されるが、この排気ガス温度では、下流側のNOx吸蔵還元型触媒の温度がNOx吸蔵性能が活性化する温度以上になるので、このNOx吸蔵還元型触媒で浄化することができる。 Further, the nitrogen dioxide held in the nitric oxide oxidation catalyst is desorbed and released when the temperature of the exhaust gas is 200 ° C. or higher. At this exhaust gas temperature, the NOx occlusion reduction catalyst on the downstream side is released. Since the temperature is equal to or higher than the temperature at which the NOx occlusion performance is activated, the NOx occlusion reduction catalyst can be used for purification.
また、上記の排気ガス浄化システムの制御方法において、前記一酸化窒素酸化触媒に流入する排気ガスの温度が150℃〜200℃の低温域にある場合を含むと、この方法により、従来技術では困難であった150℃〜200℃の低温域でも強い吸着力を有する二酸化窒素を生成して一酸化窒素酸化触媒に保持できるので、150℃〜200℃の低温域から、NOxを浄化できるようになる。 Further, in the above control method of the exhaust gas purification system, if the temperature of the exhaust gas flowing into the nitric oxide oxidation catalyst is in a low temperature range of 150 ° C. to 200 ° C., this method makes it difficult for the prior art. NO2 can be purified from a low temperature range of 150 ° C. to 200 ° C. because nitrogen dioxide having strong adsorptive power can be generated and held in the nitric oxide oxidation catalyst even in a low temperature range of 150 ° C. to 200 ° C. .
また、上記の内燃機関の制御方法で、前記一酸化炭素増量制御において、排気ガス中の一酸化炭素の体積濃度が窒素酸化物の体積濃度の5倍以上20倍以下になるように一酸化炭素を増量すると、効率よく一酸化窒素を酸化して二酸化窒素とし、NOxを保持することができるようになる。 Further, in the control method for an internal combustion engine, in the carbon monoxide increase control, the carbon monoxide so that the volume concentration of carbon monoxide in the exhaust gas is not less than 5 times and not more than 20 times the volume concentration of nitrogen oxides. Increasing the amount effectively oxidizes nitric oxide to form nitrogen dioxide and retains NOx.
本発明に係る排気ガス浄化システム及び排気ガス浄化システムの制御方法によれば、排気ガス中の一酸化炭素(CO)を利用して、一酸化窒素酸化触媒に流入する排気ガスの温度が、150℃〜200℃の低温域にあるような予め設定した内燃機関の運転状態において、一酸化炭素増量制御を行うことで、一酸化窒素酸化触媒で二酸化窒素を効率よく生成して、この生成された二酸化窒素を一酸化窒素酸化触媒に保持して、NOxを浄化し、一酸化窒素酸化触媒に保持していた二酸化窒素が脱離される、排気ガス温度が200℃以上の高温域では、下流側のNOx吸蔵還元型触媒のNOx吸蔵性能が活性化する温度以上になるので、NOx吸蔵還元型触媒で浄化することができる。従って、低温域からNOx浄化性能を向上することができる。 According to the exhaust gas purification system and the exhaust gas purification system control method of the present invention, the temperature of the exhaust gas flowing into the nitrogen monoxide oxidation catalyst using carbon monoxide (CO) in the exhaust gas is 150. In the operation state of the internal combustion engine that is set in a low temperature range from ℃ to 200 ℃, the carbon monoxide increase control is performed to efficiently generate nitrogen dioxide with the nitric oxide oxidation catalyst. Nitrogen dioxide is held in the nitric oxide oxidation catalyst to purify NOx, and nitrogen dioxide held in the nitric oxide oxidation catalyst is desorbed. Since the NOx occlusion performance of the NOx occlusion reduction catalyst is higher than the temperature at which it is activated, it can be purified by the NOx occlusion reduction catalyst. Therefore, NOx purification performance can be improved from a low temperature range.
以下、本発明に係る実施の形態の排気ガス浄化システム及び排気ガス浄化システムの制御方法について、図面を参照しながら説明する。図1に、本発明の実施の形態の排気ガス浄化システム1の構成を示す。
Hereinafter, an exhaust gas purification system and an exhaust gas purification system control method according to embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of an exhaust
この排気ガス浄化システム1は、エンジン(内燃機関)2の排気通路3に上流側から順に、排気管内燃料直接噴射装置4、一酸化窒素酸化触媒5、NOx吸蔵還元型触媒6が設けられている。排気ガス浄化システム1の制御装置(図示しない)を備えており、この制御装置は、ECU(エンジンコントロールユニット)と呼ばれる制御装置(図示しない)の中に組み込まれている。
In this exhaust
この一酸化窒素酸化触媒5は、担体である金属酸化物がアルミニウム(Al)、セリウム(Ce)の少なくとも1種類の酸化物を含む金属酸化物の担体に、白金(Pt),パラジウム(Pd)の少なくとも1種類を含む金属触媒を担持して形成される。なお、貴金属は白金(Pt)以外にもロジウム(Ph),白金−パラジウム(Pt−Pd),パラジウム(Pd)などでも同様な効果を示すので、これらを用いることができる。
This nitric
この一酸化窒素酸化触媒5に使用する担体は一般的な酸化アルミニウム(Al2O3)でよいが、酸素吸収機能(OSC)のある酸化セリウム(CeO2)、酸化セリウム・二酸化ジルコニア(CeO2・ZrO2)を含む材料で形成すると更に二酸化窒素の生成効果が大きいのでより好ましい。
Carriers used in this
排気管内燃料直接噴射装置4は、NOx吸蔵還元型触媒6のNOx吸蔵能力を回復するための再生処理において、排気ガスの空燃比を理論空燃比又はリッチ状態にするために、燃料を排気通路3に噴射するための装置である。
In the exhaust pipe fuel direct injection device 4, in the regeneration process for recovering the NOx occlusion capacity of the NOx occlusion reduction type catalyst 6, in order to bring the air-fuel ratio of the exhaust gas into the stoichiometric air-fuel ratio or rich state, the fuel is supplied to the
NOx吸蔵還元型触媒(LNT)6は、アルカリ金属又はアルカリ土類金属を貴金属と共に担持して形成され、酸素過剰な排気ガス中の一酸化窒素(NO)を酸化して硝酸塩として触媒上に吸着させて、NOxを浄化する。このNOx吸蔵還元型触媒6は、排気ガスがリーン空燃比では、NOxを吸蔵し、リッチ空燃比では、吸蔵したNOxを放出すると共に、この放出されたNOxを還元雰囲気中で還元して、NOxを低減する。 NOx occlusion reduction catalyst (LNT) 6 is formed by supporting alkali metal or alkaline earth metal together with noble metal, and oxidizes nitrogen monoxide (NO) in exhaust gas containing excess oxygen and adsorbs as nitrate on the catalyst. To purify NOx. The NOx occlusion reduction catalyst 6 occludes NOx when the exhaust gas is lean, and releases the occluded NOx when the exhaust gas is rich, and reduces the released NOx in a reducing atmosphere. Reduce.
更に、制御装置が、内燃機関1の運転状態が予め設定された運転状態になった場合に、一酸化窒素酸化触媒5に流入する排気ガス中の一酸化炭素を増加させる一酸化炭素増量制御を行うように構成される。この予め設定された運転状態は、一酸化窒素酸化触媒5に流入する排気ガスの温度が150℃〜200℃の低温域にある場合を含む。つまり、一酸化炭素の酸化活性温度以上にならないと触媒表面の酸素が除去できず、二酸化窒素生成活性が低い。一酸化炭素浄化率が20%以上となると大幅に二酸化窒素生成が高まる。また、200℃以上では活性が一定となり一酸化炭素増量効果がなくなるため、一酸化炭素増量制御は一酸化炭素浄化率が20%以上となる温度〜200℃以下の範囲とすることが望ましい。
Further, the control device performs carbon monoxide increase control for increasing carbon monoxide in the exhaust gas flowing into the nitrogen
この一酸化炭素増量制御は、空気過剰率センサ(図示しない)で検出した酸素濃度と窒素酸化物センサ(図示しない)で検出した窒素酸化物(NOx)濃度をチェックしながら、筒内(シリンダ内)への燃料噴射量の増加又は排気管内燃料直接噴射、吸気量の絞り、EGR量の増加などで行う。一酸化炭素の濃度で言えば、通常は、10ppm〜300ppm程度であるが、1000ppm〜2000ppmに増量する。 This carbon monoxide increase control is performed in the cylinder (inside the cylinder) while checking the oxygen concentration detected by the excess air sensor (not shown) and the nitrogen oxide (NOx) concentration detected by the nitrogen oxide sensor (not shown). ), Or by direct injection of fuel in the exhaust pipe, restriction of the intake air amount, increase of the EGR amount, and the like. Speaking of the concentration of carbon monoxide, it is usually about 10 ppm to 300 ppm, but increases to 1000 ppm to 2000 ppm.
次に一酸化炭素による二酸化窒素生成量の増加について、一酸化炭素を利用した場合の一酸化窒素酸化触媒(NO酸化触媒)の触媒表面における窒素酸化物(NOx)吸着、及び、二酸化窒素(NO2)生成と脱離のモデルを示す、図4及び図5を参照しながら説明する。ディーゼルエンジン等の排気ガス浄化システム1において、一酸化炭素(CO)が白金(Pt)上の酸素(O2)と反応する状況を示した図4のように、エンジン本体2より排気通路3に排出される窒素酸化物(NOx)を一酸化窒素酸化触媒5で一酸化炭素(CO)を酸化することにより、一酸化窒素酸化触媒5の白金(Pt)等の貴金属活性点の酸素が消費される。
Next, regarding the increase in the amount of nitrogen dioxide produced by carbon monoxide, nitrogen oxide (NOx) adsorption on the catalyst surface of the nitrogen monoxide oxidation catalyst (NO oxidation catalyst) when carbon monoxide is used, and nitrogen dioxide (NO) 2 ) A model of generation and desorption will be described with reference to FIGS. In an exhaust
一方、一酸化窒素(NO)が白金(Pt)上の酸素(O2)と反応して二酸化窒素(NO2)を生成する状況を示した図5のように、一酸化窒素(NO)の酸化においては酸素不(O2)足の状態になるため、貴金属近傍の担体酸化物格子酸素が貴金属に引き付けられて二酸化窒素(NO2)等の一酸化窒素酸化生成物を安定保持するサイトが形成される。この安定保持サイトに、貴金属上で一酸化窒素(NO)が酸化して生成した二酸化窒素(NO2)等の化合物は速やかに移動して保持される。従って、一酸化窒素酸化触媒5への一酸化窒素(NO)の酸化と酸化された二酸化窒素(NO2)の吸着とが連続的に発生する。
On the other hand, as shown in FIG. 5 in which nitrogen monoxide (NO) reacts with oxygen (O 2 ) on platinum (Pt) to generate nitrogen dioxide (NO 2 ), as shown in FIG. Oxidation results in an oxygen-free (O 2 ) foot state, and therefore, a site that stably retains nitric oxide oxidation products such as nitrogen dioxide (NO 2 ) by attracting the carrier oxide lattice oxygen in the vicinity of the noble metal to the noble metal. It is formed. At this stable holding site, compounds such as nitrogen dioxide (NO 2 ) generated by oxidation of nitric oxide (NO) on the noble metal quickly move and be held. Therefore, oxidation of nitric oxide (NO) and adsorption of oxidized nitrogen dioxide (NO 2 ) on the nitric
この吸着された二酸化窒素(NO2)は温度が上昇すると脱離する。この脱離の温度は200℃〜300℃程度であり、従来の制御方法では一酸化窒素酸化触媒5の出口では二酸化窒素を生成し難い温度領域である。
The adsorbed nitrogen dioxide (NO 2 ) is desorbed when the temperature rises. The desorption temperature is about 200 ° C. to 300 ° C., and is a temperature range in which nitrogen dioxide is hardly generated at the outlet of the nitric
つまり、図4に示すように、一酸化炭素(CO)が白金(Pt)を清浄化することで、白金(Pt)表面への窒素酸化物(NOx)の吸着が促進される。さらに、図5に示すように、白金(Pt)表面の酸素(O2)と、担体(Al2O3,CeO2,ZrO2等)表面と担体から放出される酸素とより、NOx+(2−x)/2×O2→NO2(x≦2)の反応が促進する。生成した二酸化窒素(NO2)は白金(Pt)および担体表面に吸着し、温度上昇(200℃〜300℃)により排気ガス中に脱離する。 That is, as shown in FIG. 4, carbon monoxide (CO) cleans platinum (Pt), thereby promoting adsorption of nitrogen oxide (NOx) on the platinum (Pt) surface. Further, as shown in FIG. 5, the oxygen (O 2 ) on the surface of platinum (Pt), the surface of the carrier (Al 2 O 3 , CeO 2 , ZrO 2, etc.) and the oxygen released from the carrier, NOx + (2 -X) / 2 × O 2 → NO 2 (x ≦ 2) reaction is promoted. The generated nitrogen dioxide (NO 2 ) is adsorbed on platinum (Pt) and the surface of the carrier, and desorbed into the exhaust gas due to a temperature rise (200 ° C. to 300 ° C.).
図6に一酸化窒素酸化触媒(NO酸化触媒)5の前後におけるモデルガスでの実験での160℃における窒素酸化物(NOx)の吸着率(見かけのNOx浄化率)を示す。一酸化炭素(CO)濃度の違いにより窒素酸化物(NOx)吸着率が異なり、一酸化炭素(CO)と窒素酸化物(NOx)のモル比(CO/NOx)の違いによりNOx吸着性能が異なり、このモル比が5〜20で低温域でのNOx保持性能が最大になっている。また、この保持されたNOx(主としてNO2として)は200℃以上の温度域で脱離する。 FIG. 6 shows the adsorption rate (apparent NOx purification rate) of nitrogen oxide (NOx) at 160 ° C. in the experiment with the model gas before and after the nitric oxide oxidation catalyst (NO oxidation catalyst) 5. Nitrogen oxide (NOx) adsorption rate varies depending on the carbon monoxide (CO) concentration, and NOx adsorption performance varies depending on the molar ratio (CO / NOx) of carbon monoxide (CO) and nitrogen oxide (NOx). The molar ratio is 5 to 20, and the NOx retention performance in the low temperature range is maximized. The retained NOx (mainly as NO 2 ) is desorbed in a temperature range of 200 ° C. or higher.
この反応で使用する一酸化炭素(CO)量は、図6に示すように、CO/NOxが5〜20の範囲が好ましく、上限は、触媒量、窒素酸化物(NOx)濃度などにより異なるが、概ねCO/NOxで10〜20程度となる。 As shown in FIG. 6, the amount of carbon monoxide (CO) used in this reaction is preferably in the range of CO / NOx of 5 to 20, and the upper limit varies depending on the amount of catalyst, the concentration of nitrogen oxide (NOx), etc. In general, CO / NOx is about 10 to 20.
この低温域における一酸化炭素増量制御で一酸化窒素酸化触媒5に流入する一酸化炭素を増量し、この一酸化炭素の効果により生成した二酸化窒素を一酸化窒素酸化触媒5に保持させることで、NOxを浄化することができる。
By increasing the amount of carbon monoxide flowing into the nitric
従って、上記の構成の排気ガス浄化システム1及び排気ガス浄化システムの制御方法によれば、NOx吸蔵還元型触媒6のリーン時のNOx吸蔵性能が低く、NOx浄化が十分にできない150℃〜200℃の低温域で、一酸化窒素酸化触媒5によりNOxが酸化保持され、排気ガス中のNOxは浄化される。この一酸化窒素酸化触媒5で酸化保持されたNOxは、200℃以上の高温域で放出されるが、この放出されたNOxは、活性化温度以上に昇温している下流側のNOx吸蔵還元型触媒6で浄化されるので、その結果、従来技術では浄化できなかった低温域から排気ガス中のNOxを浄化することができるようになる。
Therefore, according to the exhaust
次に、本発明の実施例について説明する。図1に示すように、排気通路3の上流側に一酸化窒素酸化触媒5を、下流側にNOx吸蔵還元型触媒6を配置して、模擬ガス試験を行って、本発明の効果を確認した。一酸化窒素酸化触媒5として白金(Pt)担持の酸化アルミニウム(Al2O3)で一酸化炭素(CO)と窒素酸化物(NOx)の体積比(モル比と同じ)(CO/NOx)を20とした場合を図中ではAとした。また、白金(Pt)担持の酸化セリウム(CeO2)/白金(Pt)担持の酸化アルミニウム(Al2O3)で体積比(CO/NOx)を20とした場合を図中のBとした。また、実施例1の触媒を用いて、体積比(CO/NOx)を0とした比較例を図中のCとした。
Next, examples of the present invention will be described. As shown in FIG. 1, a nitrogen
実験の結果、図2に示すような窒素酸化物(NOx)吸着率が得られる各一酸化窒素酸化触媒を用いて、図3に示すようなNOx浄化率と触媒入口温度(一酸化窒素酸化触媒入口ガス温度)の関係が得られた。 As a result of the experiment, the NOx purification rate and the catalyst inlet temperature (nitrogen monoxide oxidation catalyst as shown in FIG. 3) are obtained using each nitric oxide oxidation catalyst that can obtain the nitrogen oxide (NOx) adsorption rate as shown in FIG. Inlet gas temperature) relationship was obtained.
図2は、実施例A,B及び比較例Cにおける一酸化窒素酸化触媒のNOx吸着率の図である。NOx吸着率が正の値を示す場合は、一酸化窒素酸化触媒へのNOx吸着保持の進行を、負の値を示す場合は、吸着していたNOxを放出していることを示す。 FIG. 2 is a graph of the NOx adsorption rate of the nitric oxide oxidation catalyst in Examples A and B and Comparative Example C. When the NOx adsorption rate shows a positive value, the progress of NOx adsorption and retention to the nitric oxide oxidation catalyst is shown. When the NOx adsorption rate shows a negative value, the adsorbed NOx is released.
図3に示されたように、実施例A,Bでは体積比(=モル比)(CO/NOx)を調整することにより、200℃以下の低温域で一酸化窒素を一酸化窒素酸化触媒5に酸化保持し、200℃以上のNOx選択還元型触媒6の活性温度域で放出することにより、低温で排出するNOxの浄化性能を向上できたことが分かった。
As shown in FIG. 3, in Examples A and B, by adjusting the volume ratio (= molar ratio) (CO / NOx), nitrogen monoxide is converted into nitric
この結果から、NOx吸蔵還元型触媒6のNOx吸蔵能力が低く、NOx浄化が困難な低温域で低温域の体積比(CO/NOx)を調整することにより一酸化窒素酸化触媒5に酸化保持され、高温でこの酸化保持されたNOxをNOx吸蔵還元型触媒6で浄化できることが確認できた。
From this result, the NOx occlusion capacity of the NOx occlusion reduction type catalyst 6 is low, and it is oxidized and held in the nitric
本発明の排気ガス浄化システム及び排気ガス浄化システムの制御方法によれば、ディーゼルエンジン等の内燃機関の排気通路にNOx吸蔵還元型触媒を備え、NOx吸蔵還元型触媒の上流側に一酸化窒素酸化触媒を設けて、内燃機関の運転状態が低温時等の予め設定された運転状態になった場合に、一酸化窒素酸化触媒に流入する排気ガス中の一酸化炭素を増加させる一酸化炭素増量制御を行うことにより、この運転状態において、排気ガス中の一酸化炭素を利用して、一酸化窒素酸化触媒にNOxを酸化保持し、この保持したNOxを排気ガスの温度がNOx吸蔵還元型触媒の活性温度以上になったときに脱離及び放出し、下流のNOx吸蔵還元型触媒で浄化し、NOxを低減できる。 According to the exhaust gas purification system and the exhaust gas purification system control method of the present invention, a NOx occlusion reduction type catalyst is provided in an exhaust passage of an internal combustion engine such as a diesel engine, and nitric oxide oxidation is performed upstream of the NOx occlusion reduction type catalyst. A carbon monoxide increase control that increases the carbon monoxide in the exhaust gas flowing into the nitric oxide oxidation catalyst when a catalyst is provided and the internal combustion engine is in a preset operating state such as at low temperatures. In this operation state, NOx is oxidized and held in the nitric oxide oxidation catalyst using carbon monoxide in the exhaust gas, and the temperature of the exhaust gas is changed to that of the NOx occlusion reduction type catalyst. When the temperature rises above the activation temperature, it is desorbed and released and purified by the downstream NOx storage reduction catalyst to reduce NOx.
そのため、本発明の排気ガス浄化システム及び排気ガス浄化システムの制御方法は、自動車搭載等の内燃機関の排気ガス浄化システムや排気ガス浄化システムの制御方法として利用できる。 Therefore, the exhaust gas purification system and the exhaust gas purification system control method of the present invention can be used as an exhaust gas purification system for an internal combustion engine mounted on an automobile or a control method for an exhaust gas purification system.
1 排気ガス浄化システム
2 エンジン(内燃機関)
3 排気通路
4 排気管内燃料直接噴射装置
5 一酸化窒素酸化触媒(NO酸化触媒)
6 NOx吸蔵還元型触媒
1 Exhaust
3 Exhaust passage 4 Fuel direct injection device in
6 NOx storage reduction catalyst
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009091304A JP5476771B2 (en) | 2009-04-03 | 2009-04-03 | Exhaust gas purification system and control method of exhaust gas purification system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009091304A JP5476771B2 (en) | 2009-04-03 | 2009-04-03 | Exhaust gas purification system and control method of exhaust gas purification system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010242602A true JP2010242602A (en) | 2010-10-28 |
JP5476771B2 JP5476771B2 (en) | 2014-04-23 |
Family
ID=43095866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009091304A Expired - Fee Related JP5476771B2 (en) | 2009-04-03 | 2009-04-03 | Exhaust gas purification system and control method of exhaust gas purification system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5476771B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012147411A1 (en) * | 2011-04-28 | 2012-11-01 | 日産自動車株式会社 | Lean nox trap type exhaust gas purification catalyst and exhaust gas purification system |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06108827A (en) * | 1992-09-29 | 1994-04-19 | Mazda Motor Corp | Exhaust emission control device of engine |
JP2002047986A (en) * | 2000-08-03 | 2002-02-15 | Nissan Motor Co Ltd | Exhaust air particulate treatment device for internal combustion engine |
JP2002089246A (en) * | 2000-09-20 | 2002-03-27 | Hitachi Ltd | Exhaust emission control method and exhaust emission control device for internal combustion engine |
JP2006077675A (en) * | 2004-09-09 | 2006-03-23 | Isuzu Motors Ltd | Induction structure and exhaust emission control device |
JP2006152947A (en) * | 2004-11-30 | 2006-06-15 | Isuzu Motors Ltd | Desulfurization control method for exhaust emission control system and exhaust emission control system |
JP2007160167A (en) * | 2005-12-12 | 2007-06-28 | Toyota Motor Corp | Method of use for ordinary temperature nox adsorbent |
JP2007237134A (en) * | 2006-03-13 | 2007-09-20 | Hitachi Ltd | Exhausted gas-clarifying method |
JP2008019820A (en) * | 2006-07-14 | 2008-01-31 | Isuzu Motors Ltd | Exhaust emission control system and exhaust emission control method |
JP2008261252A (en) * | 2007-04-11 | 2008-10-30 | Isuzu Motors Ltd | Nox purification system and its controlling method |
-
2009
- 2009-04-03 JP JP2009091304A patent/JP5476771B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06108827A (en) * | 1992-09-29 | 1994-04-19 | Mazda Motor Corp | Exhaust emission control device of engine |
JP2002047986A (en) * | 2000-08-03 | 2002-02-15 | Nissan Motor Co Ltd | Exhaust air particulate treatment device for internal combustion engine |
JP2002089246A (en) * | 2000-09-20 | 2002-03-27 | Hitachi Ltd | Exhaust emission control method and exhaust emission control device for internal combustion engine |
JP2006077675A (en) * | 2004-09-09 | 2006-03-23 | Isuzu Motors Ltd | Induction structure and exhaust emission control device |
JP2006152947A (en) * | 2004-11-30 | 2006-06-15 | Isuzu Motors Ltd | Desulfurization control method for exhaust emission control system and exhaust emission control system |
JP2007160167A (en) * | 2005-12-12 | 2007-06-28 | Toyota Motor Corp | Method of use for ordinary temperature nox adsorbent |
JP2007237134A (en) * | 2006-03-13 | 2007-09-20 | Hitachi Ltd | Exhausted gas-clarifying method |
JP2008019820A (en) * | 2006-07-14 | 2008-01-31 | Isuzu Motors Ltd | Exhaust emission control system and exhaust emission control method |
JP2008261252A (en) * | 2007-04-11 | 2008-10-30 | Isuzu Motors Ltd | Nox purification system and its controlling method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012147411A1 (en) * | 2011-04-28 | 2012-11-01 | 日産自動車株式会社 | Lean nox trap type exhaust gas purification catalyst and exhaust gas purification system |
JP2012232231A (en) * | 2011-04-28 | 2012-11-29 | Nissan Motor Co Ltd | LEAN NOx TRAP TYPE EXHAUST GAS PURIFICATION CATALYST AND EXHAUST GAS PURIFICATION SYSTEM |
US8992844B2 (en) | 2011-04-28 | 2015-03-31 | Nissan Motor Co., Ltd. | Lean NOx type exhaust gas purifying catalyst |
RU2557056C2 (en) * | 2011-04-28 | 2015-07-20 | Ниссан Мотор Ко., Лтд. | Trap-type catalyst for cleaning nox-depleted exhaust gases and exhaust gas cleaning system |
Also Published As
Publication number | Publication date |
---|---|
JP5476771B2 (en) | 2014-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5196026B2 (en) | Exhaust gas purification device for internal combustion engine | |
KR101339523B1 (en) | Exhaust purification system of internal combustion engine | |
WO2011114540A1 (en) | Exhaust purification device for internal combustion engine | |
WO2012029189A1 (en) | Exhaust gas purification device for internal combustion engine | |
KR101317411B1 (en) | System of regenerating gasoline particulate filter and method thereof | |
JP5152415B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2004251177A (en) | METHOD FOR REGENERATING NOx CATALYST OF NOx PURIFYING SYSTEM AND NOx PURIFYING SYSTEM | |
JP5610083B1 (en) | Exhaust gas purification device for internal combustion engine | |
WO2014128969A1 (en) | Exhaust gas purification device for internal combustion engine | |
JP4507018B2 (en) | Exhaust gas purification device for internal combustion engine | |
WO2012014330A1 (en) | Exhaust purification apparatus for internal combustion engine | |
JPWO2014016965A1 (en) | Exhaust gas purification device for internal combustion engine | |
JP5476771B2 (en) | Exhaust gas purification system and control method of exhaust gas purification system | |
JP4626854B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP5880781B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2010013975A (en) | Exhaust emission control device of internal combustion engine | |
JP5476770B2 (en) | Exhaust gas purification system and control method of exhaust gas purification system | |
JP4877574B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP5396959B2 (en) | Exhaust gas purification system and control method of exhaust gas purification system | |
KR101826561B1 (en) | Afterteatment system for exhaust gas and catalyst regeneration method using plasma | |
JP2024123807A (en) | Exhaust purification equipment | |
JP6500636B2 (en) | Engine exhaust purification system | |
JP2007113497A (en) | Exhaust emission control device of internal combustion engine | |
JP5293337B2 (en) | Internal combustion engine and control method for internal combustion engine | |
JP5782710B2 (en) | Exhaust gas purification apparatus and exhaust gas purification method for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120305 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120814 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130521 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5476771 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |