JP2010132475A - Hematite particle powder for non-magnetic foundation layer of magnetic recording medium and magnetic recording medium - Google Patents
Hematite particle powder for non-magnetic foundation layer of magnetic recording medium and magnetic recording medium Download PDFInfo
- Publication number
- JP2010132475A JP2010132475A JP2008307803A JP2008307803A JP2010132475A JP 2010132475 A JP2010132475 A JP 2010132475A JP 2008307803 A JP2008307803 A JP 2008307803A JP 2008307803 A JP2008307803 A JP 2008307803A JP 2010132475 A JP2010132475 A JP 2010132475A
- Authority
- JP
- Japan
- Prior art keywords
- particle powder
- magnetic recording
- magnetic
- nonmagnetic
- recording medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compounds Of Iron (AREA)
- Magnetic Record Carriers (AREA)
Abstract
Description
本発明は、非磁性下地層用塗料における分散性に優れると共に、非磁性下地層中における充填性が改善された磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末、及び、該非磁性下地層用ヘマタイト粒子粉末を用いて得られる表面平滑性に優れた磁気記録媒体を提供する。 The present invention relates to a hematite particle powder for a nonmagnetic underlayer of a magnetic recording medium having excellent dispersibility in a nonmagnetic underlayer coating and having improved filling properties in the nonmagnetic underlayer, and the hematite for the nonmagnetic underlayer Provided is a magnetic recording medium having excellent surface smoothness obtained by using particle powder.
磁気記録技術は、オーディオ用、ビデオ用、コンピューター用等をはじめとしてさまざまな分野で幅広く用いられている。近年、機器の小型軽量化、記録の長時間化及び記録容量の増大等が求められており、記録媒体に対しては、記録密度のより一層の向上が望まれている。 Magnetic recording technology is widely used in various fields including audio, video, and computer. In recent years, there has been a demand for smaller and lighter devices, longer recording time, increased recording capacity, and the like, and further improvement in recording density is desired for recording media.
従来の磁気記録媒体に対してより高密度記録を行うためには、高いC/N比が必要であり、ノイズ(N)が低く、再生出力(C)が高いことが求められている。近年では、これまで用いられていた誘導型磁気ヘッドに代わり、磁気抵抗型ヘッド(MRヘッド)や巨大磁気抵抗型ヘッド(GMRヘッド)等の高感度ヘッドが開発されており、これらは誘導型磁気ヘッドに比べて再生出力が得られやすいことから、高いC/N比を得るためには、出力を上げるよりもノイズを低減する方が重要となってきている。 In order to perform high-density recording on a conventional magnetic recording medium, a high C / N ratio is required, noise (N) is low, and reproduction output (C) is required to be high. In recent years, high-sensitivity heads such as magnetoresistive heads (MR heads) and giant magnetoresistive heads (GMR heads) have been developed in place of the inductive magnetic heads used so far. Since it is easy to obtain a reproduction output as compared with the head, in order to obtain a high C / N ratio, it is more important to reduce the noise than to increase the output.
磁気記録媒体のノイズは、粒子性ノイズと磁気記録媒体の表面性に起因して発生する表面性ノイズに大別される。粒子性ノイズの場合、粒子サイズの影響が大きく、微粒子であるほどノイズ低減に有利であることから、磁気記録媒体に用いる磁性粒子粉末の粒子サイズはできるだけ小さいことが必要となる。 The noise of the magnetic recording medium is roughly classified into particulate noise and surface noise generated due to the surface property of the magnetic recording medium. In the case of particulate noise, the influence of the particle size is large, and the finer the particle, the better the noise reduction. Therefore, the particle size of the magnetic particle powder used for the magnetic recording medium needs to be as small as possible.
しかしながら、磁性粒子粉末の微粒子化は、磁気記録層の薄層化を伴うものであり、磁気記録層が薄層化することによって、磁気記録層の表面平滑化が困難になること及び塗膜強度の低下が問題となるため、上記磁気記録層の薄層化に対しては、ベースフィルム等の非磁性支持体上にヘマタイト粒子粉末等の非磁性粒子粉末を結合剤樹脂中に分散させてなる下地層(以下、「非磁性下地層」という。)を少なくとも一層設けることにより、磁気記録媒体の表面平滑性及び強度向上を図っている。 However, micronization of magnetic particle powder is accompanied by thinning of the magnetic recording layer, and it is difficult to smooth the surface of the magnetic recording layer due to the thinning of the magnetic recording layer and the strength of the coating film. In order to reduce the thickness of the magnetic recording layer, nonmagnetic particle powder such as hematite particle powder is dispersed in a binder resin on a nonmagnetic support such as a base film. By providing at least one underlayer (hereinafter referred to as “nonmagnetic underlayer”), surface smoothness and strength of the magnetic recording medium are improved.
一方、表面性ノイズの場合、磁気記録媒体の表面平滑性を改良することが重要であるが、磁気記録層が薄層化することによって、非磁性下地層の表面平滑性がそのまま上層の磁気記録層の表面平滑性に影響を及ぼすこととなる。 On the other hand, in the case of surface noise, it is important to improve the surface smoothness of the magnetic recording medium. However, by making the magnetic recording layer thinner, the surface smoothness of the nonmagnetic underlayer remains as it is. It will affect the surface smoothness of the layer.
従って、非磁性下地層には、平滑な表面と高い塗膜強度が要求されており、このような非磁性下地層を形成するために、非磁性下地層中に配合される非磁性粒子粉末に対しては、非磁性下地層用塗料における優れた分散性と共に、非磁性下地層中における充填性の向上が求められている。 Therefore, the non-magnetic underlayer is required to have a smooth surface and high coating strength. In order to form such a non-magnetic underlayer, the non-magnetic particle powder blended in the non-magnetic underlayer is used. On the other hand, the improvement of the filling property in a nonmagnetic underlayer is calculated | required with the outstanding dispersibility in the coating material for nonmagnetic underlayers.
粒子粉末を高充填するためには、粒子粉末の微粒子化と、微粒子化された粒子粉末をいかに高充填するかがポイントであり、一般に、粉体のタップ密度(ρt)が高いと粒子粉末中に含まれる空気が少なくなってかさが小さくなるため、強力なせん断力を混練物にかけることができることが知られている。 In order to achieve a high filling of the particle powder, the point is to make the particle powder fine and how high the fine particle powder is filled. Generally, when the tap density (ρt) of the powder is high, It is known that a strong shearing force can be applied to the kneaded product because the amount of air contained in is reduced and the bulk is reduced.
一般に、ヘマタイト粒子粉末は、出発原料(前駆体)となるゲータイト粒子粉末を加熱脱水することによって得られることから、微細なヘマタイト粒子粉末を得るためには、ゲータイト粒子の段階で微粒子化しておく必要がある。しかしながら、粒子粉末を微粒子化すると、粒子粉末の表面積が増大するため、これを加熱焼成すると粒子間焼結しやすくなると共に、粒子形状が崩れやすくなるために、ヘマタイト粒子粉末の分散性が低下するといった問題を有している。 In general, hematite particle powder is obtained by heating and dehydrating goethite particle powder as a starting material (precursor). Therefore, in order to obtain fine hematite particle powder, it is necessary to make it fine at the stage of goethite particles. There is. However, when the particle powder is made finer, the surface area of the particle powder increases, so if this is heated and fired, it becomes easier to sinter between particles and the shape of the particles tends to collapse, so the dispersibility of the hematite particle powder decreases. Have the problem.
均整な粒度を有する非磁性粒子粉末を得ることを目的として、アルミニウム含有針状ゲータイト粒子粉末を100〜200℃の温度範囲で加熱処理して該アルミニウム含有針状ゲータイト粒子粉末に含まれているアルミニウム含有ゲータイト超微粒子をアルミニウム含有針状ゲータイト粒子に吸収させる方法(特許文献1)が開示されている。 Aluminum contained in the aluminum-containing acicular goethite particle powder by heat-treating the aluminum-containing acicular goethite particle powder in a temperature range of 100 to 200 ° C. for the purpose of obtaining a non-magnetic particle powder having a uniform particle size. A method (Patent Document 1) in which the contained goethite ultrafine particles are absorbed by aluminum-containing acicular goethite particles is disclosed.
非磁性下地層用塗料における分散性に優れると共に、非磁性下地層中における充填性が改善された非磁性下地層用非磁性粒子粉末は、現在最も要求されているところであるが、未だ得られていない。 Nonmagnetic particle powders for nonmagnetic underlayers, which are excellent in dispersibility in nonmagnetic underlayer coatings and have improved filling properties in nonmagnetic underlayers, are currently the most demanded, but have not yet been obtained. Absent.
即ち、前出特許文献1では、アルミニウム含有針状ゲータイト粒子粉末を100〜200℃の温度範囲で加熱処理して該アルミニウム含有針状ゲータイト粒子粉末に含まれているアルミニウム含有ゲータイト超微粒子をアルミニウム含有針状ゲータイト粒子に吸収させる方法が記載されているが、得られたゲータイト粒子粉末を真空凍結乾燥することについては記載されておらず、後出比較例に示す通り、真空凍結乾燥を行わない場合には、下記関係式を満たすマタイト粒子粉末を得ることが困難であり、非磁性塗料中における分散性が不十分であるため、十分な表面平滑性を有する磁気記録媒体を得ることが困難となる。
<式>
713.1L−0.521 ≦BET比表面積値(SSA)≦ 725.5L−0.451
That is, in the above-mentioned patent document 1, aluminum-containing goethite ultrafine particles contained in the aluminum-containing acicular goethite particle powder by heat-treating the aluminum-containing acicular goethite particle powder in a temperature range of 100 to 200 ° C. contain aluminum. Although a method of absorbing needle-like goethite particles is described, there is no description about vacuum freeze-drying of the obtained goethite particle powder, and vacuum freeze-drying is not performed as shown in a comparative example below Therefore, it is difficult to obtain a matite particle powder satisfying the following relational expression, and it is difficult to obtain a magnetic recording medium having sufficient surface smoothness due to insufficient dispersibility in a nonmagnetic coating material. .
<Formula>
713.1L− 0.521 ≦ BET specific surface area value (SSA) ≦ 725.5L− 0.451
そこで、本発明は、表面平滑性が良好な磁気記録媒体を得ることのできる、非磁性下地層用塗料における分散性及び非磁性下地層中における充填性に優れた非磁性下地層用非磁性粒子粉末を提供することを技術的課題とする。 Therefore, the present invention provides a nonmagnetic particle for a nonmagnetic underlayer excellent in dispersibility in a coating for a nonmagnetic underlayer and filling properties in the nonmagnetic underlayer, which can obtain a magnetic recording medium having good surface smoothness. Providing powder is a technical challenge.
前記技術的課題は、次の通りの本発明によって達成できる。 The technical problem can be achieved by the present invention as follows.
即ち、本発明は、タップ密度(ρt)が0.60g/cm3以上であると共に、平均一次長軸径(L)(nm)とBET比表面積値(SSA)が下記関係式を満たすことを特徴とする磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末である(本発明1)。
<式>
713.1L−0.521 ≦BET比表面積値(SSA)≦ 725.5L−0.451
That is, according to the present invention, the tap density (ρt) is 0.60 g / cm 3 or more, and the average primary long axis diameter (L) (nm) and the BET specific surface area value (SSA) satisfy the following relational expression. A hematite particle powder for a nonmagnetic underlayer of a magnetic recording medium is characterized (Invention 1).
<Formula>
713.1L− 0.521 ≦ BET specific surface area value (SSA) ≦ 725.5L− 0.451
また、本発明は、圧縮性指数が28%以上であることを特徴とする本発明1の磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末である(本発明2)。 The present invention also provides a hematite particle powder for a nonmagnetic underlayer of the magnetic recording medium of the present invention 1 having a compressibility index of 28% or more (Invention 2).
また、本発明は、非磁性支持体、該非磁性支持体上に形成される非磁性粒子粉末と結合剤樹脂とを含む非磁性下地層及び該非磁性下地層の上に形成される磁性粒子粉末と結合剤樹脂とを含む磁気記録層からなる磁気記録媒体において、前記非磁性粒子粉末が本発明1又は本発明2に記載された磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末であることを特徴とする磁気記録媒体である(本発明3)。 The present invention also provides a nonmagnetic support, a nonmagnetic underlayer comprising a nonmagnetic particle powder and a binder resin formed on the nonmagnetic support, and a magnetic particle powder formed on the nonmagnetic underlayer. A magnetic recording medium comprising a magnetic recording layer containing a binder resin, wherein the nonmagnetic particle powder is a hematite particle powder for a nonmagnetic underlayer of a magnetic recording medium described in the present invention 1 or 2. (Invention 3).
本発明に係る磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末は、非磁性下地層用塗料における分散性及び非磁性下地層中における充填性に優れているため、高密度磁気記録媒体の非磁性下地層用非磁性粒子粉末として好適である。 The hematite particle powder for non-magnetic underlayer of the magnetic recording medium according to the present invention is excellent in dispersibility in the coating for non-magnetic underlayer and filling property in the non-magnetic underlayer. Suitable as nonmagnetic particle powder for underlayer.
また、本発明に係る磁気記録媒体は、上述のヘマタイト粒子粉末を磁気記録媒体の非磁性下地層用非磁性粒子粉末として用いることにより、高い表面平滑性を有する磁気記録媒体を得ることができるため、高密度磁気記録媒体として好適である。 Further, the magnetic recording medium according to the present invention can obtain a magnetic recording medium having high surface smoothness by using the above-described hematite particle powder as a nonmagnetic particle powder for a nonmagnetic underlayer of the magnetic recording medium. Suitable as a high-density magnetic recording medium.
本発明の構成をより詳しく説明すれば次の通りである。 The configuration of the present invention will be described in more detail as follows.
先ず、本発明に係る磁気記録媒体用の非磁性下地層用ヘマタイト粒子粉末(以下、「ヘマタイト粒子粉末」という。)について述べる。 First, a non-magnetic underlayer hematite particle powder (hereinafter referred to as “hematite particle powder”) for a magnetic recording medium according to the present invention will be described.
本発明に係るヘマタイト粒子粉末の粒子形状は針状であって、軸比(平均一次長軸径と平均一次短軸径の比)(以下、「軸比」という。)は2.0〜20.0が好ましく、より好ましくは2.5〜18.0、更により好ましくは3.0〜15.0である。ここで針状とは、文字通りの針状粒子はもちろん、紡錘状、米粒状も含まれる。 The particle shape of the hematite particle powder according to the present invention is needle-shaped, and the axial ratio (ratio of average primary major axis diameter to average primary minor axis diameter) (hereinafter referred to as “axial ratio”) is 2.0 to 20. 0.0 is preferable, more preferably 2.5 to 18.0, and still more preferably 3.0 to 15.0. Here, the term “needle” includes not only acicular particles but also spindles and rice grains.
本発明に係るヘマタイト粒子粉末の平均一次長軸径(L)は5〜300nmが好ましく、より好ましくは10〜250nm、更により好ましくは10〜200nmである。ヘマタイト粒子粉末の平均一次長軸径(L)が300nmを超える場合には、粒子サイズが大きすぎるため、これを用いて非磁性下地層を形成した場合、ヘマタイト粒子粉末を塗膜中に高充填することが難しく、結果、優れた表面平滑性を有する磁気記録媒体を得ることが困難となる。平均一次長軸径(L)が5nm未満の場合には、粒子の微細化による分子間力の増大により凝集を起こしやすいため、非磁性塗料中での分散が困難となる。 The average primary long axis diameter (L) of the hematite particle powder according to the present invention is preferably 5 to 300 nm, more preferably 10 to 250 nm, and still more preferably 10 to 200 nm. When the average primary long axis diameter (L) of the hematite particle powder exceeds 300 nm, the particle size is too large. When a nonmagnetic underlayer is formed using this, the hematite particle powder is highly filled in the coating film. As a result, it is difficult to obtain a magnetic recording medium having excellent surface smoothness. When the average primary long axis diameter (L) is less than 5 nm, aggregation is likely to occur due to an increase in intermolecular force due to particle miniaturization, so that dispersion in a nonmagnetic paint becomes difficult.
本発明に係るヘマタイト粒子粉末のBET比表面積値(SSA)は10〜200m2/gが好ましく、より好ましくは15〜180m2/g、更により好ましくは20〜160m2/gである。BET比表面積値が10m2/g未満の場合には、粒子サイズが大きすぎるため、これを用いて非磁性下地層を形成した場合、ヘマタイト粒子粉末を塗膜中に高充填することが難しく、結果、優れた表面平滑性を有する磁気記録媒体を得ることが困難となる。BET比表面積値が200m2/gを超える場合には、粒子の微細化による分子間力の増大により凝集を起こしやすいため、非磁性塗料中での分散が困難となる。 BET specific surface area of the hematite particles according to the present invention (SSA) is preferably from 10 to 200 m 2 / g, more preferably 15~180m 2 / g, still more preferably 20~160m 2 / g. When the BET specific surface area value is less than 10 m 2 / g, since the particle size is too large, when a nonmagnetic underlayer is formed using this, it is difficult to highly fill the hematite particle powder in the coating film, As a result, it becomes difficult to obtain a magnetic recording medium having excellent surface smoothness. When the BET specific surface area value exceeds 200 m 2 / g, aggregation is likely to occur due to an increase in intermolecular force due to particle miniaturization, so that dispersion in a nonmagnetic paint becomes difficult.
本発明に係るヘマタイト粒子粉末は、ヘマタイト粒子粉末の平均長軸径(L)(nm)とBET比表面積値(SSA)が下記関係式を満たす。
<式>
713.1L−0.521 ≦BET比表面積値(SSA)≦ 725.5L−0.451
In the hematite particle powder according to the present invention, the average major axis diameter (L) (nm) and the BET specific surface area value (SSA) of the hematite particle powder satisfy the following relational expression.
<Formula>
713.1L− 0.521 ≦ BET specific surface area value (SSA) ≦ 725.5L− 0.451
ヘマタイト粒子粉末の平均長軸径(L)(nm)とBET比表面積値(SSA)との関係が前記関係式の範囲外の場合、優れた分散性を有しているとは言い難い。殊に、BET比表面積値(SSA)が前記関係式の上限値を超える場合には、粒子サイズに対してBET比表面積値が大きすぎるため非磁性塗料中で増粘し、分散が困難となる。 When the relationship between the average major axis diameter (L) (nm) of the hematite particle powder and the BET specific surface area value (SSA) is outside the range of the relational expression, it is difficult to say that it has excellent dispersibility. In particular, when the BET specific surface area value (SSA) exceeds the upper limit of the above relational expression, the BET specific surface area value is too large with respect to the particle size, so that the viscosity increases in the nonmagnetic coating material and dispersion becomes difficult. .
本発明に係るヘマタイト粒子粉末のタップ密度(ρt)は0.60g/cm3以上であり、好ましくは0.65〜1.50g/cm3、より好ましくは0.70〜1.20g/cm3である。タップ密度(ρt)が0.60g/cm3未満の場合には、粒子粉末中に含まれる空気が多いため、非磁性塗料作製時のヘマタイト粒子粉末を混練・分散する際に、強力なせん断力を混練物にかけることが難しく、塗膜中にヘマタイト粒子粉末高充填することができないため、結果、優れた表面平滑性を有する磁気記録媒体を得ることが困難となる。 The tap density (ρt) of the hematite particle powder according to the present invention is 0.60 g / cm 3 or more, preferably 0.65 to 1.50 g / cm 3 , more preferably 0.70 to 1.20 g / cm 3. It is. When the tap density (ρt) is less than 0.60 g / cm 3 , since the air contained in the particle powder is large, a strong shearing force is applied when the hematite particle powder is kneaded and dispersed at the time of preparing the nonmagnetic paint. Is difficult to apply to the kneaded product, and the hematite particle powder cannot be filled in the coating film at a high level. As a result, it is difficult to obtain a magnetic recording medium having excellent surface smoothness.
本発明に係るヘマタイト粒子粉末の圧縮性指数は28%以上であることが好ましく、より好ましくは30%以上、更により好ましくは32%以上である。圧縮性指数が28%以上の場合には、塗膜中に充填されたヘマタイト粒子粉末がカレンダーをかけることにより圧縮されやすく、結果、表面平滑性に優れた磁気記録媒体を得ることができる。 The compressibility index of the hematite particle powder according to the present invention is preferably 28% or more, more preferably 30% or more, and even more preferably 32% or more. When the compressibility index is 28% or more, the hematite particle powder filled in the coating film is easily compressed by applying a calendar, and as a result, a magnetic recording medium having excellent surface smoothness can be obtained.
本発明に係るヘマタイト粒子粉末の体積基準平均粒子径(D50)は、0.01〜2.80μmであることが好ましく、より好ましくは0.01〜2.70μm、更により好ましくは0.01〜2.60μmである。体積基準平均粒子径(D50)が2.80μmを超える場合には、非磁性下地層を薄層化した場合に、得られた磁気記録媒体の表面性が低下するため好ましくない。 The volume-based average particle diameter (D 50 ) of the hematite particle powder according to the present invention is preferably 0.01 to 2.80 μm, more preferably 0.01 to 2.70 μm, still more preferably 0.01. ˜2.60 μm. When the volume-based average particle diameter (D 50 ) exceeds 2.80 μm, it is not preferable because the surface property of the obtained magnetic recording medium is deteriorated when the nonmagnetic underlayer is thinned.
次に、本発明に係る磁気記録媒体について述べる。 Next, the magnetic recording medium according to the present invention will be described.
本発明に係る磁気記録媒体は、非磁性支持体、該非磁性支持体上に形成された非磁性下地層及び該非磁性下地層上に形成された磁気記録層とからなる。また、必要に応じて、非磁性支持体の一方の面に形成される磁気記録層に対し、非磁性支持体の他方の面にバックコート層を形成させてもよい。殊に、コンピューター記録用のバックアップテープの場合には、巻き乱れの防止や走行耐久性向上の点から、バックコート層を設けることが好ましい。 The magnetic recording medium according to the present invention comprises a nonmagnetic support, a nonmagnetic underlayer formed on the nonmagnetic support, and a magnetic recording layer formed on the nonmagnetic underlayer. If necessary, a back coat layer may be formed on the other surface of the nonmagnetic support with respect to the magnetic recording layer formed on one surface of the nonmagnetic support. In particular, in the case of a backup tape for computer recording, it is preferable to provide a backcoat layer from the viewpoint of preventing winding disturbance and improving running durability.
本発明における非磁性支持体としては、現在、磁気記録媒体に汎用されているポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル類、ポリエチレン、ポリプロピレン等のポリオレフィン類、ポリカーボネート、ポリアミド、ポリアミドイミド、ポリイミド、芳香族ポリアミド、芳香族ポリイミド、芳香族ポリアミドイミド、ポリスルフォン、セルローストリアセテート、ポリベンゾオキサゾール等の合成樹脂フィルム、アルミニウム、ステンレス等金属の箔や板及び各種の紙を使用することができる。得られる磁気記録媒体の強度を考慮すれば、ポリエステル類、ポリアミド又は芳香族ポリアミドが好ましい。 As the nonmagnetic support in the present invention, polyesters such as polyethylene terephthalate and polyethylene naphthalate that are currently widely used in magnetic recording media, polyolefins such as polyethylene and polypropylene, polycarbonate, polyamide, polyamideimide, polyimide, aromatic Synthetic resin films such as polyamide, aromatic polyimide, aromatic polyamideimide, polysulfone, cellulose triacetate, and polybenzoxazole, metal foils and plates such as aluminum and stainless steel, and various papers can be used. Considering the strength of the magnetic recording medium to be obtained, polyesters, polyamides or aromatic polyamides are preferable.
次に、本発明における非磁性下地層について述べる。 Next, the nonmagnetic underlayer in the present invention will be described.
本発明における非磁性下地層は、本発明に係る非磁性下地層用ヘマタイト粒子粉末、及び結合剤樹脂とからなる。また、必要に応じて、磁気記録媒体の製造に通常用いられている潤滑剤、研磨剤、帯電防止剤等を添加してもよい。 The nonmagnetic underlayer in the present invention comprises the nonmagnetic underlayer hematite particle powder according to the present invention and a binder resin. Further, if necessary, a lubricant, an abrasive, an antistatic agent, etc. that are usually used in the production of magnetic recording media may be added.
結合剤樹脂としては、磁気記録媒体の製造にあたって汎用されている熱可塑性樹脂、熱硬化性樹脂、電子線硬化型樹脂等を単独又は組み合わせて用いることができる。 As the binder resin, a thermoplastic resin, a thermosetting resin, an electron beam curable resin, and the like that are widely used in the manufacture of magnetic recording media can be used alone or in combination.
帯電防止剤としては、カーボンブラック、グラファイト、酸化スズ、酸化チタン−酸化スズ−酸化アンチモン等の導電性粉末及び界面活性剤等を用いることができる。帯電防止の他に、摩擦係数低減、磁気記録媒体の強度向上といった効果が期待できることから、帯電防止剤としては、カーボンブラックを用いることが好ましい。 As the antistatic agent, conductive powder such as carbon black, graphite, tin oxide, titanium oxide-tin oxide-antimony oxide, a surfactant, and the like can be used. In addition to antistatic properties, carbon black is preferably used as the antistatic agent since effects such as reduction of the friction coefficient and improvement of the strength of the magnetic recording medium can be expected.
本発明における非磁性下地層用ヘマタイト粒子粉末を用いて得られた非磁性下地層は、塗膜の光沢度が175〜280%、好ましくは180〜280%、より好ましくは185〜280%であって、塗膜の表面粗度Raが2.0〜11.0nm、好ましくは2.0〜10.5nm、より好ましくは2.0〜10.0nmである。 The nonmagnetic underlayer obtained using the hematite particle powder for nonmagnetic underlayer in the present invention has a coating film glossiness of 175 to 280%, preferably 180 to 280%, more preferably 185 to 280%. The surface roughness Ra of the coating film is 2.0 to 11.0 nm, preferably 2.0 to 10.5 nm, and more preferably 2.0 to 10.0 nm.
次に、本発明における磁気記録層について述べる。 Next, the magnetic recording layer in the present invention will be described.
本発明における磁気記録層は、磁性粒子粉末と結合剤樹脂とを含んでいる。また、必要に応じて、磁気記録媒体の製造に通常用いられている潤滑剤、研磨剤、帯電防止剤等を添加してもよい。 The magnetic recording layer in the present invention contains magnetic particle powder and a binder resin. Further, if necessary, a lubricant, an abrasive, an antistatic agent, etc. that are usually used in the production of magnetic recording media may be added.
磁性粒子粉末としては、鉄を主成分とする金属磁性粒子粉末、鉄以外のCo、Al、Ni、P、Zn、Si、B、希土類金属等を含有する鉄合金磁性粒子粉末、Ba、Sr、又はBa−Srを含有するマグネトプランバイト型フェライト粒子粉末並びにこれらにCo、Ni、Zn、Mn、Mg、Ti、Sn、Zr、Nb、Cu、Mo等の2価及び4価の金属から選ばれた保磁力低減剤の一種又は二種以上を含有させたマグネトプランバイト型フェライト粒子粉末や窒化鉄等のいずれをも用いることができる。 Examples of magnetic particle powder include metal magnetic particle powder containing iron as a main component, iron alloy magnetic particle powder containing Co, Al, Ni, P, Zn, Si, B, rare earth metal, etc. other than iron, Ba, Sr, Or Ba-Sr-containing magnetoplumbite-type ferrite particles and these are selected from divalent and tetravalent metals such as Co, Ni, Zn, Mn, Mg, Ti, Sn, Zr, Nb, Cu, and Mo. Any one of magnetoplumbite type ferrite particle powder, iron nitride and the like containing one or more of the coercive force reducing agents can be used.
磁性粒子粉末は、平均一次長軸径もしくは平均一次粒子径が0.005〜0.50μmであることが好ましく、より好ましくは0.01〜0.30μmである。 The magnetic particle powder preferably has an average primary long axis diameter or an average primary particle diameter of 0.005 to 0.50 μm, more preferably 0.01 to 0.30 μm.
磁性粒子粉末の磁気特性は、保磁力値が63.7〜318.3kA/m、好ましくは71.6〜318.3kA/m、飽和磁化値が40〜200Am2/kg、好ましくは45〜180Am2/kgである。 The magnetic properties of the magnetic particle powder include a coercive force value of 63.7 to 318.3 kA / m, preferably 71.6 to 318.3 kA / m, and a saturation magnetization value of 40 to 200 Am 2 / kg, preferably 45 to 180 Am. 2 / kg.
結合剤樹脂としては、前記非磁性下地層を作製するために用いた結合剤樹脂を使用することができる。 As the binder resin, the binder resin used for producing the nonmagnetic underlayer can be used.
本発明におけるバックコート層中には、結合剤樹脂と共に、バックコート層の表面電気抵抗値及び光透過率低減、並びに強度向上を目的として、帯電防止剤及び無機粒子粉末を含有させることが好ましい。また、必要に応じて、通常の磁気記録媒体の製造に用いられる潤滑剤、研磨剤等が含まれていてもよい。 The back coat layer in the present invention preferably contains an antistatic agent and inorganic particle powder together with the binder resin for the purpose of reducing the surface electrical resistance value and light transmittance of the back coat layer and improving the strength. Further, if necessary, a lubricant, an abrasive and the like used for production of a normal magnetic recording medium may be contained.
結合剤樹脂及び帯電防止剤としては、前記非磁性下地層、及び磁気記録層を作製するために用いた結合剤樹脂及び帯電防止剤を使用することができる。 As the binder resin and the antistatic agent, the binder resin and the antistatic agent used for producing the nonmagnetic underlayer and the magnetic recording layer can be used.
無機粉末としては、アルミナ、ヘマタイト、ゲータイト、酸化チタン、シリカ、酸化クロム、酸化セリウム、酸化亜鉛、チッ化珪素、窒化ホウ素、炭化ケイ素、炭酸カルシウム及び硫酸バリウム等から選ばれる1種又は2種以上を用いることができる。 As the inorganic powder, one or more selected from alumina, hematite, goethite, titanium oxide, silica, chromium oxide, cerium oxide, zinc oxide, silicon nitride, boron nitride, silicon carbide, calcium carbonate, barium sulfate, etc. Can be used.
本発明に係る磁気記録媒体は、保磁力値は63.7〜318.3kA/mが好ましく、より好ましくは71.6〜318.3kA/m、塗膜の光沢度は185〜300%が好ましく、より好ましくは190〜300%、更により好ましくは195〜300%、塗膜の表面粗度Raは8.0nm以下が好ましく、より好ましくは2.0〜7.5nm、更により好ましくは2.0〜7.0nmである。 In the magnetic recording medium according to the present invention, the coercive force value is preferably 63.7 to 318.3 kA / m, more preferably 71.6 to 318.3 kA / m, and the glossiness of the coating film is preferably 185 to 300%. More preferably, it is 190 to 300%, still more preferably 195 to 300%, and the surface roughness Ra of the coating film is preferably 8.0 nm or less, more preferably 2.0 to 7.5 nm, still more preferably 2. 0 to 7.0 nm.
次に、本発明に係る磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末の製造法について述べる。 Next, a method for producing the hematite particle powder for the nonmagnetic underlayer of the magnetic recording medium according to the present invention will be described.
本発明に係るヘマタイト粒子粉末は、出発原料であるゲータイト粒子粉末を真空凍結乾燥した後に、200〜850℃の温度範囲で加熱脱水処理して得ることができる。 The hematite particle powder according to the present invention can be obtained by heat-dehydrating the goethite particle powder as a starting material in a temperature range of 200 to 850 ° C. after vacuum freeze-drying.
本発明において前駆体となるゲータイト粒子粉末は、例えば、第一鉄塩と、水酸化アルカリ又は炭酸アルカリ又は水酸化アルカリと炭酸アルカリの混合アルカリのいずれかとを用いて反応して得られる鉄の水酸化物や炭酸鉄等の第一鉄含有沈澱物を含む懸濁液に空気等の酸素含有ガスを通気してゲータイト粒子を生成させるといった、従来公知の製造方法によって得られたものを用いることができる。 The goethite particle powder as a precursor in the present invention is, for example, iron water obtained by reacting with ferrous salt and either alkali hydroxide or alkali carbonate or mixed alkali of alkali hydroxide and alkali carbonate. It is possible to use those obtained by a conventionally known production method such as generating a goethite particle by aerating an oxygen-containing gas such as air to a suspension containing a ferrous iron-containing precipitate such as oxide or iron carbonate. it can.
なお、ゲータイト粒子の生成反応中に、粒子の長軸径、短軸径、軸比等の諸特性向上のためにAl、Zr、Ti、P、Si、Sn、Sb、Y、Nb又はMn等の異種元素が添加されてもよい。殊に、得られる磁気記録媒体の塗膜強度向上を考慮した場合、粒子内部にアルミニウムを含有させることが好ましい。粒子内部に含有させる異種元素は、各元素換算の合計で0.05〜50重量%が好ましく、より好ましくは0.10〜40重量%、更により好ましくは0.15〜30重量%である。 In addition, during the formation reaction of goethite particles, Al, Zr, Ti, P, Si, Sn, Sb, Y, Nb, Mn, etc. are used to improve various characteristics such as the major axis diameter, minor axis diameter, and axial ratio of the particles. These different elements may be added. In particular, considering the improvement of the coating strength of the obtained magnetic recording medium, it is preferable to contain aluminum inside the particles. The total amount of the different elements contained in the particles is preferably 0.05 to 50% by weight in terms of each element, more preferably 0.10 to 40% by weight, still more preferably 0.15 to 30% by weight.
本発明におけるゲータイト粒子粉末の粒子形状は針状であり、軸比は2.0〜20.0が好ましく、より好ましくは2.5〜18.0、更により好ましくは3.0〜15.0である。 The particle shape of the goethite particle powder in the present invention is needle-like, and the axial ratio is preferably 2.0 to 20.0, more preferably 2.5 to 18.0, still more preferably 3.0 to 15.0. It is.
本発明におけるゲータイト粒子粉末の平均一次長軸径は0.005〜0.40μmであり、BET比表面積値は20〜250m2/gであり、体積基準平均粒子径(D50)は通常下限値が2.70μmを超える値を有している。その上限値は、好ましくは5.00μmであり、より好ましくは4.50μmである。 The average primary long axis diameter of the goethite particle powder in the present invention is 0.005 to 0.40 μm, the BET specific surface area value is 20 to 250 m 2 / g, and the volume-based average particle diameter (D 50 ) is usually the lower limit. Has a value exceeding 2.70 μm. The upper limit is preferably 5.00 μm, more preferably 4.50 μm.
本発明においては、真空凍結乾燥を行う前に、あらかじめゲータイト粒子粉末の粒子表面を焼結防止剤で被覆しておくことが好ましい。焼結防止剤による被覆処理は、出発原料であるゲータイト粒子粉末を含む水懸濁液中に焼結防止剤を添加し、均一になるように混合攪拌した後、ゲータイト粒子表面に焼結防止剤が被覆できるような適切なpH調整を行って表面を被覆する。 In the present invention, it is preferable to coat the surface of the goethite particle powder with a sintering inhibitor in advance before performing vacuum freeze-drying. The coating treatment with the sintering inhibitor is performed by adding the sintering inhibitor to the aqueous suspension containing the goethite particle powder as a starting material, mixing and stirring the mixture uniformly, and then applying the sintering inhibitor to the surface of the goethite particles. The surface is coated with appropriate pH adjustment so that can be coated.
前記焼結防止剤としては、通常使用されるヘキサメタリン酸ナトリウム、ポリリン酸、オルトリン酸等のリン化合物、3号水ガラス、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、コロイダルシリカ等のケイ素化合物、ホウ酸等のホウ素化合物、酢酸アルミニウム、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム等のアルミニウム塩や、アルミン酸ソーダ等のアルミン酸アルカリ塩、アルミナゾル、水酸化アルミニウム等のアルミニウム化合物、オキシ硫酸チタン等のチタン化合物、スカンジウム、イットリウム、ランタン、セリウム、プラセオジウム、ネオジウム、サマリウムから選ばれる希土類元素を含む硫酸塩、塩化物、硝酸塩等の一種又は二種以上を使用することができる。 Examples of the sintering inhibitor include commonly used phosphorus compounds such as sodium hexametaphosphate, polyphosphoric acid and orthophosphoric acid, No. 3 water glass, sodium orthosilicate, sodium metasilicate, colloidal silica and other silicon compounds, boric acid and the like. Boron compounds, aluminum salts such as aluminum acetate, aluminum sulfate, aluminum chloride, and aluminum nitrate, alkali aluminates such as sodium aluminate, aluminum compounds such as alumina sol and aluminum hydroxide, titanium compounds such as titanium oxysulfate, scandium, One kind or two or more kinds of sulfates, chlorides, nitrates and the like containing rare earth elements selected from yttrium, lanthanum, cerium, praseodymium, neodymium, and samarium can be used.
ゲータイト粒子粉末の粒子表面に存在する焼結防止剤の量は、焼結防止剤の種類や量、アルカリ水溶液中におけるpH値や加熱処理温度等の諸条件により異なるが、ゲータイト粒子粉末の全重量に対して0.05〜20重量%である。 The amount of anti-sintering agent present on the surface of the goethite particle powder depends on various conditions such as the type and amount of anti-sintering agent, the pH value in the alkaline aqueous solution and the heat treatment temperature, but the total weight of the goethite particle powder. And 0.05 to 20% by weight.
真空凍結乾燥は、上記で得られたゲータイト粒子粉末又は焼結防止処理されたゲータイト粒子粉末を含む含液物の固形分濃度を調整したものをそのまま用いて行うこともできるが、通常、濾別・水洗を行った後、固形分濃度を調整したものを用いることが好ましい。 The vacuum freeze-drying can be carried out using the obtained goethite particle powder or the liquid-containing material containing the anti-sintering treated goethite particle powder as it is, but it is usually filtered off. -It is preferable to use what adjusted solid content concentration after washing with water.
本発明においては、真空凍結乾燥する前のゲータイト粒子粉末は、水などの分散媒体に分散させ、固形分濃度を調整した後、真空凍結乾燥を行う。本発明においては、真空凍結乾燥する前のゲータイト粒子粉末を含む含液物の濃度(固形分換算)は5〜50重量%に調整することが好ましい。含液物の固形分が50重量%を超える場合には、ゲータイト粒子粉末を含む含液物を構成する液体が固体に変態した際に、粒子の存在割合が多すぎるために粒子間の距離が十分に広がらないため、ヘマタイト粒子を作製するための熱処理を行う際に、粒子同士の焼結が生じやすくなるため好ましくない。また、含液物の固形分が5重量%未満の場合には、真空凍結乾燥後に粒子同士の凝結は生じないが、真空凍結乾燥に時間がかかると共に、収量も少なく工業的に不利となるため好ましくない。 In the present invention, the goethite particle powder before vacuum freeze-drying is dispersed in a dispersion medium such as water and the solid content concentration is adjusted, followed by vacuum freeze-drying. In this invention, it is preferable to adjust the density | concentration (solid content conversion) of the liquid-containing material containing the goethite particle powder before vacuum freeze-drying to 5 to 50 weight%. When the solid content of the liquid-containing material exceeds 50% by weight, when the liquid constituting the liquid-containing material containing the goethite particle powder is transformed into a solid, the presence ratio of the particles is too high, so the distance between the particles is Since it does not spread sufficiently, it is not preferable because the particles tend to sinter when heat treatment for producing hematite particles is performed. Further, when the solid content of the liquid-containing material is less than 5% by weight, the particles do not condense after vacuum freeze-drying, but it takes time for vacuum freeze-drying, and the yield is small and disadvantageous industrially. It is not preferable.
本発明における真空凍結乾燥としては、固形分濃度を調整したゲータイト粒子粉末を含む含液物を予備凍結させ、予備凍結後に一定の真空度以下に減圧し、次いで減圧した状態で温度を徐々に上げて乾燥する方法や、固形分濃度を調整したゲータイト粒子粉末を含む含液物を一定の真空度以下になるまで減圧して、ゲータイト粒子粉末に含まれる水分を気化させることで、ゲータイト粒子粉末を含む含液物の温度を下げて自己凍結させ、その凍結した状態から温度を徐々に上げて乾燥する方法等、いずれの方法によっても行うことができる。 As the vacuum freeze-drying in the present invention, the liquid-containing material containing the goethite particle powder whose solid content concentration is adjusted is pre-frozen. The goethite particle powder is reduced by reducing the pressure of the liquid containing the goethite particle powder whose solid content concentration is adjusted to a certain degree of vacuum or less to vaporize the moisture contained in the goethite particle powder. It can be carried out by any method such as a method of lowering the temperature of the liquid-containing material to be self-freezing and then gradually raising the temperature from the frozen state and drying.
ゲータイト粒子粉末を含む含液物の予備凍結温度は0℃以下が好ましく、より好ましくは−20℃以下、更により好ましくは−30℃以下が好ましい。予備凍結温度が0℃を超えると、ゲータイト粒子粉末を含む含液物を構成する液体が完全に固体に変態できず、粒子間の距離が広がらないため、ヘマタイト粒子を作製するための熱処理を行う際に、粒子同士の焼結が生じやすいため好ましくない。 The prefreezing temperature of the liquid-containing material containing the goethite particle powder is preferably 0 ° C. or lower, more preferably −20 ° C. or lower, and still more preferably −30 ° C. or lower. When the pre-freezing temperature exceeds 0 ° C., the liquid constituting the liquid-containing material including the goethite particle powder cannot be completely transformed into a solid, and the distance between the particles does not increase, so that heat treatment for producing hematite particles is performed. At this time, it is not preferable because the particles are easily sintered.
ゲータイト粒子粉末を含む含液物の予備凍結後、又は自己凍結を行う際の真空度は、100Pa以下が好ましく、80Pa以下がより好ましい。 The degree of vacuum after preliminary freezing of the liquid-containing material containing the goethite particle powder or when self-freezing is preferably 100 Pa or less, and more preferably 80 Pa or less.
ゲータイト粒子粉末を含む含液物の予備凍結後、又は自己凍結後の乾燥温度は、0℃〜80℃が好ましく、10℃〜60℃がより好ましい。また、乾燥は、水分量が3.0%以下になるまで行うことが好ましく、より好ましくは2.5%以下である。 The drying temperature after preliminary freezing or self-freezing of the liquid-containing material containing the goethite particle powder is preferably 0 ° C to 80 ° C, and more preferably 10 ° C to 60 ° C. Moreover, it is preferable to perform drying until a moisture content becomes 3.0% or less, More preferably, it is 2.5% or less.
本発明における真空凍結乾燥後のゲータイト粒子粉末は、真空凍結乾燥前のゲータイト粒子粉末とほぼ同程度の粒子サイズ及びBET比表面積値を有している。 The goethite particle powder after vacuum freeze-drying in the present invention has a particle size and a BET specific surface area value substantially the same as those of the goethite particle powder before vacuum freeze-dry.
本発明における真空凍結乾燥後のゲータイト粒子粉末の体積基準平均粒子径(D50)は、0.01〜2.70μmであり、好ましくは0.01〜2.65μm、より好ましくは0.01〜2.60μmである。体積基準平均粒子径(D50)が2.70μmを超える場合には、高温加熱処理を行うことで粒子同士の焼結が起こりやすいため好ましくない。 The volume-based average particle size (D 50 ) of the goethite particle powder after vacuum freeze-drying in the present invention is 0.01 to 2.70 μm, preferably 0.01 to 2.65 μm, more preferably 0.01 to. 2.60 μm. When the volume-based average particle diameter (D 50 ) exceeds 2.70 μm, it is not preferable because the particles are easily sintered by performing high-temperature heat treatment.
本発明に係るヘマタイト粒子粉末は、真空凍結乾燥を行ったゲータイト粒子粉末を200〜400℃の温度範囲で低温加熱脱水処理して低密度ヘマタイト粒子粉末を得、次いで、該低密度ヘマタイト粒子粉末を400〜800℃の温度範囲で高温加熱処理を行うことにより得られる高密度化されたヘマタイト粒子粉末であることが好ましい。 The hematite particle powder according to the present invention is obtained by subjecting the goethite particle powder subjected to vacuum freeze-drying to low-temperature heat dehydration treatment in a temperature range of 200 to 400 ° C. to obtain a low-density hematite particle powder. A densified hematite particle powder obtained by high-temperature heat treatment in a temperature range of 400 to 800 ° C. is preferable.
低温加熱脱水温度が200℃未満の場合には、脱水反応に長時間を要するために好ましくない。低温加熱脱水温度が400℃を超える場合には、脱水反応が急激に生起し、粒子の形状が崩れやすくなったり、粒子相互間の焼結を引き起こしたりする可能性がある。低温加熱脱水処理して得られる低密度ヘマタイト粒子粉末は、ゲータイト粒子粉末からH2Oが脱水され、脱水孔を多数有する低密度粒子からなる。 A low temperature heating dehydration temperature of less than 200 ° C. is not preferable because a long time is required for the dehydration reaction. When the low temperature heating dehydration temperature exceeds 400 ° C., the dehydration reaction may occur rapidly, and the shape of the particles may be easily broken, or sintering between the particles may be caused. The low-density hematite particle powder obtained by low-temperature heat dehydration treatment is composed of low-density particles in which H 2 O is dehydrated from the goethite particle powder and has many dewatering holes.
また、低密度ヘマタイト粒子粉末を400〜800℃で高温加熱処理して高密度化されたヘマタイト粒子粉末とする場合、高温加熱処理温度が400℃未満の場合には、高密度化が不十分であるためヘマタイト粒子の粒子内部及び粒子表面に脱水孔が多数存在しており、非磁性塗料中における分散が難しく、非磁性下地層を形成した時、表面平滑な塗膜が得られにくい。800℃を超える場合には、ヘマタイト粒子の高密度化は十分なされているが、粒子及び粒子相互間の焼結が生じるため、粒子径が増大し、同様に表面平滑な塗膜は得られにくい。 In addition, in the case where the low density hematite particle powder is heat treated at 400 to 800 ° C. to obtain a densified hematite particle powder, if the high temperature heat treatment temperature is less than 400 ° C., the densification is insufficient. For this reason, there are a large number of dehydration pores inside and on the surface of the hematite particles, and it is difficult to disperse in the nonmagnetic paint, and when a nonmagnetic underlayer is formed, it is difficult to obtain a coating film with a smooth surface. When the temperature exceeds 800 ° C., the density of the hematite particles is sufficiently increased. However, since the particles and the particles are sintered with each other, the particle diameter increases, and it is difficult to obtain a coating film having a smooth surface. .
本発明に係るヘマタイト粒子粉末は、磁気記録媒体の耐腐食性を考慮した場合、ヘマタイト粒子粉末中の可溶性ナトリウム塩、可溶性硫酸塩等の含有量を低減した高純度化したヘマタイト粒子粉末が好ましい。 In consideration of the corrosion resistance of the magnetic recording medium, the hematite particle powder according to the present invention is preferably a highly purified hematite particle powder in which the content of soluble sodium salt, soluble sulfate, etc. in the hematite particle powder is reduced.
高純度化したヘマタイト粒子粉末は、可溶性ナトリウム塩の含有量がNa換算で300ppm以下が好ましく、より好ましくは200ppmである。また、可溶性硫酸塩の含有量はSO4換算で150ppm以下が好ましく、より好ましくは100ppm以下である。 The highly purified hematite particle powder preferably has a soluble sodium salt content of 300 ppm or less, more preferably 200 ppm in terms of Na. Further, the content of soluble sulfate is preferably 150 ppm or less, more preferably 100 ppm or less in terms of SO 4 .
高純度化されたヘマタイト粒子粉末は、ヘマタイト粒子粉末を湿式分散処理してスラリー化した後に、アルカリ水溶液中で加熱処理し、濾別・水洗することにより得ることができる。アルカリ水溶液のpH値は13.0以上が好ましく、加熱処理の温度は80℃以上が好ましい。 The highly purified hematite particle powder can be obtained by subjecting the hematite particle powder to a wet dispersion treatment to form a slurry, followed by heat treatment in an alkaline aqueous solution, followed by filtration and washing with water. The pH value of the aqueous alkaline solution is preferably 13.0 or higher, and the temperature of the heat treatment is preferably 80 ° C. or higher.
また、本発明に係るヘマタイト粒子粉末は、ヘマタイト粒子粉末の表面がアルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物から選ばれる一種又は二種以上の表面被覆物によって被覆されていることが好ましい。粒子表面が表面被覆物で被覆されているヘマタイト粒子粉末は、非磁性塗料中に分散させた場合に、結合剤樹脂とのなじみがよく、所望の分散度がより得られ易い。 Further, the hematite particle powder according to the present invention is one or two or more kinds of surface coatings in which the surface of the hematite particle powder is selected from aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon oxide. It is preferable that it is coat | covered with. When the hematite particle powder whose particle surface is coated with a surface coating is dispersed in a non-magnetic coating material, the hematite particle powder has good compatibility with the binder resin, and a desired degree of dispersion is more easily obtained.
表面被覆物により被覆されたヘマタイト粒子粉末は、ヘマタイト粒子粉末を分散して得られる水懸濁液に、アルミニウム化合物、ケイ素化合物又は当該両化合物を添加して混合攪拌することにより、又は、必要により、混合攪拌後にpH値を調整することにより、前記ヘマタイト粒子粉末の粒子表面を、アルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物から選ばれる一種又は二種以上の表面被覆物で被覆し、次いで、濾別、水洗、乾燥、粉砕する。必要により、更に、脱気・圧密処理等を施してもよい。 The hematite particle powder coated with the surface coating is added to an aqueous suspension obtained by dispersing the hematite particle powder by adding an aluminum compound, a silicon compound or both of the compounds and mixing and stirring, or as necessary. By adjusting the pH value after mixing and stirring, the particle surface of the hematite particles powder is one or more selected from aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon oxide The surface coating is then filtered, washed with water, dried and ground. If necessary, a deaeration / consolidation process may be further performed.
アルミニウム化合物としては、酢酸アルミニウム、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム等のアルミニウム塩や、アルミン酸ナトリウム等のアルミン酸アルカリ塩等が使用できる。 As the aluminum compound, aluminum salts such as aluminum acetate, aluminum sulfate, aluminum chloride, and aluminum nitrate, and alkali aluminates such as sodium aluminate can be used.
ケイ素化合物としては、3号水ガラス、オルトケイ酸ナトリウム、メタケイ酸ナトリウム等が使用できる。 As the silicon compound, No. 3 water glass, sodium orthosilicate, sodium metasilicate and the like can be used.
前記表面被覆物の添加量は、ヘマタイト粒子粉末に対してアルミニウムの水酸化物やアルミニウムの酸化物はAl換算で、ケイ素の水酸化物やケイ素の酸化物はSiO2換算で、それぞれ0.01〜50重量%が好ましい。0.01重量%未満の場合には、被覆による分散性向上効果がほとんどなく、50重量%を超える場合には、被覆効果が飽和するため、必要以上に被覆する意味がない。ビヒクル中における分散性向上効果及び工業的な生産性を考慮すれば、0.05〜20重量%がより好ましい。 The amount of the surface coating added is 0.01 for aluminum hydroxide and aluminum oxide in terms of Al, and 0.01 for silicon hydroxide and silicon oxide in terms of SiO 2 with respect to the hematite particle powder. -50% by weight is preferred. When the amount is less than 0.01% by weight, there is almost no effect of improving dispersibility by coating. When the amount exceeds 50% by weight, the coating effect is saturated, and there is no meaning to cover more than necessary. Considering the effect of improving dispersibility in the vehicle and industrial productivity, 0.05 to 20% by weight is more preferable.
アルミニウム化合物とケイ素化合物とを併せて使用する場合には、ヘマタイト粒子粉末に対してAl換算量とSiO2換算量との総和で0.01〜50重量%が好ましい。 When used in conjunction with an aluminum compound and a silicon compound, 0.01 to 50 wt% in total of Al equivalent amount and SiO 2 equivalent amount with respect to hematite particles are preferred.
また、本発明に係るヘマタイト粒子粉末は、低温加熱脱水及び高温加熱処理を経て得られたヘマタイト粒子粉末を水に再分散して得られる含液物又は表面被覆物によって被覆されたヘマタイト粒子粉末を含む含液物の固形分濃度を調整した後、再度真空凍結乾燥を行ってもよい。ヘマタイト粒子粉末を真空凍結乾燥することにより、非磁性塗料中への分散性がより向上し、より優れた表面平滑性を有する磁気記録媒体を得ることができる。 Further, the hematite particle powder according to the present invention is a hematite particle powder coated with a liquid-containing material or a surface coating obtained by redispersing the hematite particle powder obtained through low temperature heat dehydration and high temperature heat treatment in water. After adjusting the solid content concentration of the liquid containing product, vacuum freeze-drying may be performed again. By vacuum freeze-drying the hematite particle powder, the dispersibility in the nonmagnetic coating material is further improved, and a magnetic recording medium having better surface smoothness can be obtained.
上記で得られた表面処理されたゲータイト粒子粉末を含む含液物の場合、固形分濃度を調整したものをそのまま用いて行うこともできるが、通常、濾別・水洗を行った後、固形分濃度を調整したものを用いることが好ましい。 In the case of the liquid-containing product containing the surface-treated goethite particle powder obtained as described above, it can be used as it is after adjusting the solid content concentration, but usually after filtering and washing with water, It is preferable to use one with adjusted concentration.
ヘマタイト粒子粉末を含む含液物もしくは表面被覆物により被覆されたヘマタイト粒子粉末を含む含液物の真空凍結乾燥及びその処理条件は、前記ゲータイト粒子粉末の真空凍結乾燥を行う場合と同様の条件で行えばよい。 The vacuum freeze-drying and treatment conditions of the liquid-containing material containing the hematite particle powder or the liquid-containing material coated with the surface coating are the same as those for the vacuum freeze-drying of the goethite particle powder. Just do it.
次に、本発明における磁気記録媒体の製造法について述べる。 Next, a method for manufacturing a magnetic recording medium in the present invention will be described.
前記非磁性下地層、磁気記録層、及びバックコート層の形成にあたって用いる溶剤としては、磁気記録媒体に汎用されているアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びテトラヒドロフラン等のケトン類、トルエン、キシレン等の芳香族炭化水素類、メタノール、エタノール、プロパノール、ブタノール、イソブチルアルコール及びイソプロピルアルコール等のアルコール類、酢酸メチル、酢酸ブチル、酢酸イソブチル及び酢酸グリコール等のエステル類、グリコールジメチルエーテル、グリコールモノエチルエーテル及びジオキサン等のグリコールエーテル類及びその混合物等を使用することができる。 Solvents used in forming the nonmagnetic underlayer, magnetic recording layer, and backcoat layer include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and tetrahydrofuran, toluene, xylene, and the like that are widely used in magnetic recording media. Aromatic hydrocarbons, alcohols such as methanol, ethanol, propanol, butanol, isobutyl alcohol and isopropyl alcohol, esters such as methyl acetate, butyl acetate, isobutyl acetate and glycol acetate, glycol dimethyl ether, glycol monoethyl ether and dioxane Glycol ethers and mixtures thereof can be used.
非磁性下地層、磁気記録層、バックコート層は、各層を構成する成分及び溶剤を一般に使用される混練機及び分散機により混練・分散処理を行い、各塗料を作製する。該各塗料を用いて、非磁性支持体上の一面に非磁性下地層、磁気記録層の順に塗布、乾燥後、カレンダー処理を行う。その際の塗布方法としては、磁性層と非磁性層をほぼ同時に塗布するWet on Wet法でも、非磁性下地層を塗布・乾燥後、その上に磁気記録層を塗布するWet on Dry法のどちらでもよい。また、必要により、バックコート層を設ける場合には、非磁性下地層及び磁気記録層とは反対面の非磁性支持体上にバックコート層用塗料を塗布、乾燥後、カレンダー処理を行い、磁気記録媒体を得る。 The nonmagnetic underlayer, the magnetic recording layer, and the backcoat layer are kneaded and dispersed by a kneader and a disperser that generally use components and solvents that constitute each layer, thereby preparing each paint. Using each of the coating materials, a nonmagnetic underlayer and a magnetic recording layer are applied in this order on one surface of the nonmagnetic support, dried, and then calendared. As a coating method at that time, either a wet on wet method in which a magnetic layer and a nonmagnetic layer are applied almost simultaneously, or a wet on dry method in which a magnetic recording layer is applied thereon after applying and drying a nonmagnetic underlayer. But you can. If necessary, if a backcoat layer is provided, a backcoat layer coating is applied on the nonmagnetic support opposite to the nonmagnetic underlayer and the magnetic recording layer, dried, calendered, and magnetically treated. A recording medium is obtained.
<作用>
本発明において最も重要な点は、ゲータイト粒子粉末を含む含液物を真空凍結乾燥した後に、該乾燥物を熱処理することによって得られた非磁性下地層用ヘマタイト粒子粉末は、下記関係式を満たすと共にタップ密度(ρt)が0.60g/cm3以上であるため、非磁性塗料中における分散性に優れると共に、塗膜中にヘマタイト粒子粉末高充填することができるという事実である。
<式>
713.1L−0.521 ≦BET比表面積値(SSA)≦ 725.5L−0.451
<Action>
The most important point in the present invention is that the hematite particle powder for nonmagnetic underlayer obtained by heat-treating the dried product containing the goethite particle powder after vacuum freeze-drying satisfies the following relational expression: In addition, since the tap density (ρt) is 0.60 g / cm 3 or more, the dispersibility in the nonmagnetic coating material is excellent, and the coating film can be filled with hematite particles at a high level.
<Formula>
713.1L− 0.521 ≦ BET specific surface area value (SSA) ≦ 725.5L− 0.451
本発明に係る非磁性下地層用ヘマタイト粒子粉が、非磁性塗料中における分散性に優れると共に、塗膜中にヘマタイト粒子粉末を高充填することができる理由として、本発明者は下記のように推定している。 As the reason why the hematite particle powder for a nonmagnetic underlayer according to the present invention is excellent in dispersibility in a nonmagnetic paint and can be highly filled with the hematite particle powder in the coating film, the present inventor Estimated.
即ち、ゲータイト粒子粉末を含む含液物に対して真空凍結乾燥を行うことで、含液物を構成する液体が固体に変態する際に体積が膨張し、粒子間の距離が広がるため、その後行う熱処理における粒子同士の焼結を抑制できる。また、ゲータイト粒子の加熱脱水処理後の高温加熱処理が従来に比べて低い温度でできるため、より粒子同士の焼結を抑制することができると共に、上記関係式を満足する、粒子サイズ(平均一次長軸径)に対してBET比表面積値が大きいヘマタイト粒子粉末を得ることが可能となる。一方、ヘマタイト粒子粉末のタップ密度(ρt)を0.60g/cm3以上とすることにより、粒子粉末中に含まれる空気を少なくできるため、非磁性塗料作製時のヘマタイト粒子粉末を混練・分散する際に、強力なせん断力を混練物にかけることが容易となり、塗膜中にヘマタイト粒子粉末を高充填することができる。 That is, by performing vacuum freeze-drying on the liquid-containing material containing the goethite particle powder, the volume expands when the liquid constituting the liquid-containing material transforms into a solid, and the distance between the particles increases. Sintering of the particles in the heat treatment can be suppressed. In addition, since the high-temperature heat treatment after the heat dehydration treatment of the goethite particles can be performed at a lower temperature than conventional, it is possible to further suppress the sintering of the particles and to satisfy the above relational expression, the particle size (average primary It is possible to obtain a hematite particle powder having a large BET specific surface area value with respect to (major axis diameter). On the other hand, by setting the tap density (ρt) of the hematite particle powder to 0.60 g / cm 3 or more, the air contained in the particle powder can be reduced, so that the hematite particle powder is kneaded and dispersed at the time of preparing the nonmagnetic paint. At this time, it becomes easy to apply a strong shearing force to the kneaded material, and the coating film can be highly filled with the hematite particle powder.
以下に、本発明における実施例を示し、本発明を具体的に説明する。 Examples of the present invention are shown below, and the present invention will be specifically described.
ゲータイト粒子又はヘマタイト粒子を含む含液物の固形分濃度は、ゲータイト粒子又はヘマタイト粒子を含む含液物100gを秤量し、乾燥機を用いて含液物を構成する液体を蒸発させ、その後の乾燥物の重量を測定し、重量比から固形分濃度を算出した。 The solid content concentration of the liquid-containing material containing goethite particles or hematite particles is determined by weighing 100 g of the liquid-containing material containing goethite particles or hematite particles, evaporating the liquid constituting the liquid-containing material using a dryer, and then drying. The weight of the product was measured, and the solid content concentration was calculated from the weight ratio.
粒子の平均一次長軸径、平均一次短軸径、平均一次粒子径、及び平均一次厚みは、以下の手順で測定を行った。まず、透過型電子顕微鏡を用いて粒子を観察し、個々の粒子が重ならず、ばらばらに分散している視野において、粒子約400個が存在するように倍率を調整し、写真を撮影した。次に得られた写真を縦横4倍に拡大した後に、粒子約350個について長軸径、短軸径、粒子径、又は厚みを、DIGITIZER(型式:KD 4620、グラフテック株式会社製)を用いてそれぞれ測定し、その平均値で粒子の平均一次長軸径、平均一次短軸径、平均一次粒子径、及び平均一次厚みを示した。写真上において、粒子の輪郭がはっきりしないものや、粒子同士が重なって個々の粒子を判別しにくいものは粒子径の測定から除外した。 The average primary major axis diameter, average primary minor axis diameter, average primary particle diameter, and average primary thickness of the particles were measured by the following procedure. First, the particles were observed using a transmission electron microscope. The magnification was adjusted so that about 400 particles existed in a field where the individual particles did not overlap and were dispersed, and a photograph was taken. Next, after enlarging the obtained photograph four times in length and width, the major axis diameter, the minor axis diameter, the particle diameter, or the thickness of about 350 particles were measured using DIGITIZER (model: KD 4620, manufactured by Graphtec Corporation). Each was measured, and the average primary long axis diameter, average primary short axis diameter, average primary particle diameter, and average primary thickness of the particles were shown by the average value. In the photograph, particles whose outline was not clear or particles that overlapped each other and were difficult to distinguish individual particles were excluded from the particle diameter measurement.
軸比は平均一次長軸径と平均一次短軸径との比で示し、板状比は平均一次粒子径と平均一次厚みの比で示した。 The axial ratio was indicated by the ratio of the average primary major axis diameter to the average primary minor axis diameter, and the plate ratio was indicated by the ratio of the average primary particle diameter to the average primary thickness.
比表面積値は、「モノソーブMS−11」(カンタクロム株式会社製)を用いて、BET法により測定した値で示した。 The specific surface area value was represented by a value measured by BET method using “Monosorb MS-11” (manufactured by Kantachrome Co., Ltd.).
ゲータイト粒子粉末、ヘマタイト粒子粉末の粒子内部や粒子表面に存在するAl量、P量、SiO2量及びY量のそれぞれは、「蛍光X線分析装置3063M型」(理学電機工業株式会社製)を使用し、JIS K0119の「けい光X線分析通則」に従って測定した。また、板状マグネトプランバイト型フェライト粒子粉末のTi量、Ni量及びFe量は、上記と同様にして測定した。 For each of the Al amount, P amount, SiO 2 amount and Y amount existing inside and on the surface of the goethite particle powder and hematite particle powder, “fluorescence X-ray analyzer 3063M type” (manufactured by Rigaku Corporation) And measured in accordance with JIS K0119 “General Rules for Fluorescence X-ray Analysis”. Further, the Ti amount, Ni amount and Fe amount of the plate-like magnetoplumbite type ferrite particle powder were measured in the same manner as described above.
ヘマタイト粒子粉末のかさ密度(ρa)はJIS K5101に従い、カサ比重測定器((株)蔵持科学機械製作所)を用いて測定を行った。また、タップ密度(ρt)は、振盪比重測定器((株)蔵持科学機械製作所)を用い、25mlのタッピングセルに粉末を落下させ、セルが満杯に充填された後、ストローク長25mmでタッピングを600回行って測定した。 The bulk density (ρa) of the hematite particle powder was measured in accordance with JIS K5101 using a Casa specific gravity measuring device (Kurachi Scientific Machinery Co., Ltd.). The tap density (ρt) is measured by dropping the powder into a 25 ml tapping cell using a shaking specific gravity measuring instrument (Kurachi Kagaku Kikai Seisakusho Co., Ltd.) and filling the cell fully, then tapping with a stroke length of 25 mm. Measurement was performed 600 times.
ヘマタイト粒子粉末の圧縮性指数(%)は、下記数1に従って算出した値である。 The compressibility index (%) of the hematite particle powder is a value calculated according to the following formula 1.
<数1>
圧縮性指数(%)=((タップ密度−かさ密度)/タップ密度)×100
<Equation 1>
Compressibility index (%) = ((tap density−bulk density) / tap density) × 100
ゲータイト粒子粉末及びヘマタイト粒子粉末の体積基準平均粒子径(D50)は、あらかじめ乾燥機にて試料粉末を80℃で3時間乾燥した後、該試料を60mesh(目開き 250μm)の篩に通し、「レーザー回折式粒度分布測定装置 model HELOS LA/KA」(SYMPATEC社製)の乾式分散ユニットを用いて、分散圧0.5MPaにて測定した。 The volume-based average particle diameter (D 50 ) of the goethite particle powder and the hematite particle powder was measured by previously drying the sample powder at 80 ° C. for 3 hours with a dryer, and then passing the sample through a sieve of 60 mesh (aperture 250 μm), The measurement was performed at a dispersion pressure of 0.5 MPa using a dry dispersion unit of “Laser diffraction type particle size distribution measuring apparatus model HELOS LA / KA” (manufactured by SYMPATEC).
磁性粒子粉末及び磁気記録媒体の磁気特性は、「振動試料型磁力計VSM−3S−15」(東英工業株式会社製)を用いて外部磁場795.8kA/mの下で測定した値である。 The magnetic properties of the magnetic particle powder and the magnetic recording medium are values measured under an external magnetic field of 795.8 kA / m using a “vibrating sample magnetometer VSM-3S-15” (manufactured by Toei Kogyo Co., Ltd.). .
塗膜の表面光沢度は、「グロスメーター UGV−5D」(スガ試験機株式会社製)を用いて入射角45°で測定した値であり、標準板光沢を86.3%とした時の値を%で示したものである。 The surface glossiness of the coating film is a value measured by using “Glossmeter UGV-5D” (manufactured by Suga Test Instruments Co., Ltd.) at an incident angle of 45 °, and the value when the standard plate glossiness is 86.3%. In%.
表面粗度Raは、「Surfcom−575A」(東京精密株式会社製)を用いて塗膜の中心線平均粗さRaを測定した。 Surface roughness Ra measured the centerline average roughness Ra of the coating film using "Surfcom-575A" (made by Tokyo Seimitsu Co., Ltd.).
磁気記録媒体を構成する非磁性支持体、非磁性下地層、磁気記録層及びバックコート層の各層の厚みは、下記のようにして測定した。 The thicknesses of the nonmagnetic support, the nonmagnetic underlayer, the magnetic recording layer, and the backcoat layer constituting the magnetic recording medium were measured as follows.
「デジタル電子マイクロメーター K351C」(安立電気株式会社製)を用いて、先ず、非磁性支持体の膜厚(A)を測定する。次に、非磁性支持体と該非磁性支持体上に形成された非磁性下地層との厚み(B)(非磁性支持体の厚みと非磁性下地層の厚みとの総和)を同様にして測定する。更に、非磁性下地層上に磁気記録層を形成することにより得られた磁気記録媒体の厚み(C)(非磁性支持体の厚みと非磁性下地層の厚みと磁気記録層の厚みとの総和)を同様にして測定する。そして、非磁性下地層の厚みは(B)−(A)で示し、磁気記録層の厚みは(C)−(B)で示した。 First, the film thickness (A) of the nonmagnetic support is measured using “Digital Electronic Micrometer K351C” (manufactured by Anritsu Electric Co., Ltd.). Next, the thickness (B) of the nonmagnetic support and the nonmagnetic underlayer formed on the nonmagnetic support (the sum of the thickness of the nonmagnetic support and the nonmagnetic underlayer) was measured in the same manner. To do. Further, the thickness (C) of the magnetic recording medium obtained by forming the magnetic recording layer on the nonmagnetic underlayer (the sum of the thickness of the nonmagnetic support, the thickness of the nonmagnetic underlayer, and the thickness of the magnetic recording layer). ) Is measured in the same manner. The thickness of the nonmagnetic underlayer is indicated by (B)-(A), and the thickness of the magnetic recording layer is indicated by (C)-(B).
また、非磁性支持体の一方の面に形成される磁気記録層に対し、非磁性支持体の他方の面にバックコート層を設けた場合には、上記と同様に、「デジタル電子マイクロメーター K351C」(安立電気株式会社製)を用いて、先ず、非磁性支持体の膜厚(A)を測定する。次に、非磁性支持体と該非磁性支持体上に形成された非磁性下地層との厚み(B)(非磁性支持体の厚みと非磁性下地層の厚みとの総和)を同様にして測定する。更に、非磁性下地層上に磁気記録層を形成することにより得られた磁気記録媒体の厚み(C)(非磁性支持体の厚みと非磁性下地層の厚みと磁気記録層の厚みとの総和)を同様にして測定する。更に、磁気記録層とは反対の非磁性支持体面に設けたバックコート層との厚み(D)(非磁性支持体の厚みと非磁性下地層の厚みと磁気記録層の厚みとバックコート層の厚みとの総和)を同様にして測定する。そして、非磁性下地層の厚みは(B)−(A)で示し、磁気記録層の厚みは(C)−(B)で示し、バックコート層の厚みは(D)−(C)で示した。 Further, when a back coat layer is provided on the other surface of the nonmagnetic support with respect to the magnetic recording layer formed on one surface of the nonmagnetic support, as in the above, “digital electronic micrometer K351C”. ”(Manufactured by Anritsu Electric Co., Ltd.), first, the film thickness (A) of the nonmagnetic support is measured. Next, the thickness (B) of the nonmagnetic support and the nonmagnetic underlayer formed on the nonmagnetic support (the sum of the thickness of the nonmagnetic support and the nonmagnetic underlayer) was measured in the same manner. To do. Further, the thickness (C) of the magnetic recording medium obtained by forming the magnetic recording layer on the nonmagnetic underlayer (the sum of the thickness of the nonmagnetic support, the thickness of the nonmagnetic underlayer, and the thickness of the magnetic recording layer). ) Is measured in the same manner. Further, the thickness (D) of the backcoat layer provided on the surface of the nonmagnetic support opposite to the magnetic recording layer (the thickness of the nonmagnetic support, the thickness of the nonmagnetic underlayer, the thickness of the magnetic recording layer, and the thickness of the backcoat layer) The total thickness) is measured in the same manner. The thickness of the nonmagnetic underlayer is indicated by (B)-(A), the thickness of the magnetic recording layer is indicated by (C)-(B), and the thickness of the backcoat layer is indicated by (D)-(C). It was.
<実施例1−1:非磁性下地層用ヘマタイト粒子粉末の製造>
硫酸第一鉄水溶液と、水酸化ナトリウムと炭酸ナトリウムの混合水溶液とを用いて得られた前駆体1(種類:ゲータイト粒子、粒子形状:針状、平均一次長軸径:129.8nm、平均一次短軸径:17.0nm、軸比:7.6、BET比表面積値:145.4m2/g、体積基準平均粒子径D50:3.75μm)17kgのスラリー(固形分濃度を31g/l)550lを加熱し、温度を60℃とし、0.1NのNaOH水溶液を加えてスラリーのpH値を10.0に調整した。
<Example 1-1: Production of hematite particle powder for nonmagnetic underlayer>
Precursor 1 obtained using an aqueous ferrous sulfate solution and a mixed aqueous solution of sodium hydroxide and sodium carbonate (type: goethite particles, particle shape: needle shape, average primary major axis diameter: 129.8 nm, average primary Short axis diameter: 17.0 nm, axial ratio: 7.6, BET specific surface area value: 145.4 m 2 / g, volume-based average particle diameter D 50 : 3.75 μm) 17 kg slurry (solid content concentration 31 g / l) ) 550 l was heated to a temperature of 60 ° C., and 0.1N NaOH aqueous solution was added to adjust the pH value of the slurry to 10.0.
次に、上記スラリー中に、焼結防止剤としてヘキサメタリン酸ナトリウム400gを溶解した水溶液を徐々に加え、添加が終わった後、60分間熟成を行った。次に、このスラリーに0.1Nの酢酸溶液を加え、スラリーのpH値を6.5に調整した。その後、常法により、水洗、濾過を行い、ゲータイト粒子粉末を含む含水物(固形分濃度31重量%)を得た。 Next, an aqueous solution in which 400 g of sodium hexametaphosphate was dissolved as a sintering inhibitor was gradually added to the slurry, and after the addition was completed, aging was performed for 60 minutes. Next, a 0.1N acetic acid solution was added to the slurry to adjust the pH value of the slurry to 6.5. Then, it washed with water and filtered by the conventional method, and obtained the hydrated substance (solid content concentration 31 weight%) containing goethite particle powder.
次に、上記焼結防止処理を行って得られたゲータイト粒子粉末を含む含水物を、−50℃にて凍結させた(予備凍結)。凍結後、真空度を50Paにまであげて、そのままの状態で、凍結温度−50℃の状態から徐々に温度をあげて50℃にし、水分が3%以下になるまで乾燥を行い、リンの化合物が粒子表面に被覆されているゲータイト粒子粉末(ゲータイト粒子1)を16kg得た。得られたゲータイト粒子粉末はリンの含有量はP換算で0.70重量%、体積基準平均粒子径D50は2.10μmであった。 Next, the hydrous material containing the goethite particle powder obtained by performing the above-mentioned sintering prevention treatment was frozen at −50 ° C. (preliminary freezing). After freezing, raise the degree of vacuum to 50 Pa, and in that state, gradually raise the temperature from the freezing temperature −50 ° C. to 50 ° C. and dry until the water content is 3% or less. 16 kg of goethite particle powder (goethite particles 1) coated with the particle surface was obtained. Goethite particles obtained in the content of phosphorus 0.70% by weight P in terms of a volume-based average particle diameter D 50 was 2.10.
次いで、得られたゲータイト粒子粉末を、セラミック製の回転炉に入れ、回転駆動させながら空気中280℃で60分間加熱脱水処理を行い、ゲータイト粒子粉末を脱水して、低密度ヘマタイト粒子粉末を得た。 Next, the obtained goethite particle powder is put in a ceramic rotary furnace, and heated and dehydrated at 280 ° C. for 60 minutes in the air while being driven to rotate. The goethite particle powder is dehydrated to obtain a low-density hematite particle powder. It was.
次に、上記低密度ヘマタイト粒子粉末13kgをセラミック製の回転炉に再度投入し、回転駆動させながら空気中560℃で30分間熱処理を行い、脱水孔の封孔処理をすることにより、実施例1−1の非磁性下地層用ヘマタイト粒子粉末を得た。 Next, 13 kg of the above low-density hematite particle powder was again put into a ceramic rotary furnace, heat-treated at 560 ° C. for 30 minutes in the air while being driven to rotate, and sealing of the dewatering holes was carried out. -1 non-magnetic underlayer hematite particle powder was obtained.
得られた実施例1−1の非磁性下地層用ヘマタイト粒子粉末は、粒子形状が針状、平均一次長軸径が98.4nm、平均一次短軸径が15.3nm、軸比が6.4、BET比表面積値が76.1m2/g、体積基準平均粒子径D50が2.08、タップ密度(ρt)が0.95g/cm3、圧縮性指数が34.2%であり、リンの含有量(P換算)が0.63重量%であった。 The obtained hematite particle powder for nonmagnetic underlayer of Example 1-1 has a needle shape, an average primary major axis diameter of 98.4 nm, an average primary minor axis diameter of 15.3 nm, and an axial ratio of 6. 4, the BET specific surface area value is 76.1 m 2 / g, the volume standard average particle diameter D 50 is 2.08, the tap density (ρt) is 0.95 g / cm 3 , and the compressibility index is 34.2%, The phosphorus content (P conversion) was 0.63% by weight.
<非磁性下地層1:非磁性下地層の製造>
前記実施例1−1の非磁性下地層用ヘマタイト粒子粉末12gと結合剤樹脂溶液(スルホン酸カリウム基を有する塩化ビニル系共重合樹脂30重量%とシクロヘキサノン70重量%)及びシクロヘキサノンとを混合し、自動乳鉢を用いて30分間混練して混練物を得た。
<Nonmagnetic Underlayer 1: Production of Nonmagnetic Underlayer>
12 g of hematite particle powder for nonmagnetic underlayer of Example 1-1, binder resin solution (30% by weight of vinyl chloride copolymer resin having potassium sulfonate group and 70% by weight of cyclohexanone) and cyclohexanone are mixed, A kneaded product was obtained by kneading for 30 minutes using an automatic mortar.
この混練物を1.5mmφガラスビーズ95g、追加の結合剤樹脂溶液(スルホン酸ナトリウム基を有するポリウレタン樹脂30重量%、溶剤(メチルエチルケトン:トルエン=1:1)70重量%)、シクロヘキサノン、メチルエチルケトン及びトルエンと共に140mlガラス瓶に添加し、ペイントシェーカーで6時間混合・分散を行って塗料組成物を得た。その後、潤滑剤及び硬化剤を加え、更に、ペイントシェーカーで15分間混合・分散した後、3μmの平均孔径を有するフィルターを用いてろ過し、非磁性下地層用非磁性塗料を調整した。 This kneaded product was mixed with 95 g of 1.5 mmφ glass beads, an additional binder resin solution (polyurethane resin having a sodium sulfonate group 30% by weight, solvent (methyl ethyl ketone: toluene = 1: 1) 70% by weight), cyclohexanone, methyl ethyl ketone and toluene. The mixture was added to a 140 ml glass bottle and mixed and dispersed for 6 hours with a paint shaker to obtain a coating composition. Thereafter, a lubricant and a curing agent were added, and further mixed and dispersed for 15 minutes with a paint shaker, followed by filtration using a filter having an average pore diameter of 3 μm to prepare a nonmagnetic paint for a nonmagnetic underlayer.
得られた非磁性下地層用非磁性塗料の組成は、下記の通りであった。 The composition of the obtained nonmagnetic coating material for the nonmagnetic underlayer was as follows.
非磁性下地層用ヘマタイト粒子粉末 100.0重量部、
スルホン酸カリウム基を有する塩化ビニル系共重合樹脂 11.8重量部、
スルホン酸ナトリウム基を有するポリウレタン樹脂 11.8重量部、
シクロヘキサノン 78.3重量部、
メチルエチルケトン 195.8重量部、
トルエン 117.5重量部、
硬化剤(ポリイソシアネート) 3.0重量部、
潤滑剤(ブチルステアレート) 1.0重量部。
100.0 parts by weight of hematite particle powder for nonmagnetic underlayer,
11.8 parts by weight of a vinyl chloride copolymer resin having a potassium sulfonate group,
11.8 parts by weight of a polyurethane resin having a sodium sulfonate group,
78.3 parts by weight of cyclohexanone,
195.8 parts by weight of methyl ethyl ketone,
117.5 parts by weight of toluene,
Curing agent (polyisocyanate) 3.0 parts by weight,
Lubricant (butyl stearate) 1.0 part by weight.
上記非磁性下地層用非磁性塗料を厚さ4.5μmの芳香族ポリアミドフィルム上に塗布し、次いで、乾燥させることにより非磁性下地層を形成した。非磁性下地層の特性を評価するために、得られた塗布片の半分に対してカレンダー処理を行った後、60℃で24時間硬化反応を行った。 The nonmagnetic coating for the nonmagnetic underlayer was applied onto an aromatic polyamide film having a thickness of 4.5 μm, and then dried to form a nonmagnetic underlayer. In order to evaluate the characteristics of the nonmagnetic underlayer, a half of the obtained coated piece was calendered and then cured at 60 ° C. for 24 hours.
得られた非磁性下地層1は、膜厚が1.4μm、塗膜の光沢度が208%、表面粗度Raが5.8nmであった。 The obtained nonmagnetic underlayer 1 had a thickness of 1.4 μm, a coating film gloss of 208%, and a surface roughness Ra of 5.8 nm.
<実施例2−1:磁気記録媒体の製造>
磁性粒子(1)(種類:鉄を主成分とする金属磁性粒子、粒子形状:針状、平均一次長軸径:63.2nm、平均一次短軸径:11.6nm、軸比:5.4、保磁力値:187.0kA/m、飽和磁化値:131.8Am2/kg)12g、研磨剤(商品名:AKP−50、住友化学株式会社製)1.2g、カーボンブラック 0.12g、結合剤樹脂溶液(スルホン酸カリウム基を有する塩化ビニル系共重合樹脂30重量%とシクロヘキサノン70重量%)及びシクロヘキサノンとを混合し、自動乳鉢を用いて30分間混練して混練物を得た。
<Example 2-1: Production of magnetic recording medium>
Magnetic particles (1) (Type: metal magnetic particles containing iron as a main component, particle shape: needle shape, average primary major axis diameter: 63.2 nm, average primary minor axis diameter: 11.6 nm, axial ratio: 5.4 , Coercive force value: 187.0 kA / m, saturation magnetization value: 131.8 Am 2 / kg) 12 g, abrasive (trade name: AKP-50, manufactured by Sumitomo Chemical Co., Ltd.) 1.2 g, carbon black 0.12 g, A binder resin solution (30% by weight of vinyl chloride copolymer resin having potassium sulfonate group and 70% by weight of cyclohexanone) and cyclohexanone were mixed and kneaded for 30 minutes using an automatic mortar to obtain a kneaded product.
この混練物を1.5mmφガラスビーズ95g、追加結合剤樹脂溶液(スルホン酸ナトリウム基を有するポリウレタン樹脂30重量%、溶剤(メチルエチルケトン:トルエン=1:1)70重量%)、シクロヘキサノン、メチルエチルケトン及びトルエンと共に140mlガラス瓶に添加し、ペイントシェーカーで6時間混合・分散を行って磁性塗料を得た。その後、潤滑剤及び硬化剤を加え、更に、ペイントシェーカーで15分間混合・分散した後、3μmの平均孔径を有するフィルターを用いてろ過し、磁気記録層用磁性塗料を調整した。 Together with 95 g of 1.5 mmφ glass beads, an additional binder resin solution (polyurethane resin having a sodium sulfonate group 30% by weight, solvent (methyl ethyl ketone: toluene = 1: 1) 70% by weight), cyclohexanone, methyl ethyl ketone and toluene It was added to a 140 ml glass bottle and mixed and dispersed for 6 hours with a paint shaker to obtain a magnetic paint. Thereafter, a lubricant and a curing agent were added, and further mixed and dispersed for 15 minutes with a paint shaker, followed by filtration using a filter having an average pore diameter of 3 μm to prepare a magnetic coating material for a magnetic recording layer.
得られた磁気記録層用磁性塗料の組成は下記の通りであった。 The composition of the obtained magnetic coating material for the magnetic recording layer was as follows.
鉄を主成分とする金属磁性粒子粉末 100.0重量部、
スルホン酸カリウム基を有する塩化ビニル系共重合樹脂 10.0重量部、
スルホン酸ナトリウム基を有するポリウレタン樹脂 10.0重量部、
研磨剤(AKP−50) 10.0重量部、
カーボンブラック 1.0重量部、
潤滑剤(ミリスチン酸:ステアリン酸ブチル=1:2) 3.0重量部、
硬化剤(ポリイソシアネート) 5.0重量部、
シクロヘキサノン 65.8重量部、
メチルエチルケトン 164.5重量部、
トルエン 98.7重量部。
100.0 parts by weight of metal magnetic particle powder containing iron as a main component,
10.0 parts by weight of a vinyl chloride copolymer resin having a potassium sulfonate group,
10.0 parts by weight of a polyurethane resin having a sodium sulfonate group,
Abrasive (AKP-50) 10.0 parts by weight,
1.0 part by weight of carbon black,
Lubricant (myristic acid: butyl stearate = 1: 2) 3.0 parts by weight,
Curing agent (polyisocyanate) 5.0 parts by weight,
65.8 parts by weight of cyclohexanone,
164.5 parts by weight of methyl ethyl ketone,
98.7 parts by weight of toluene.
磁気記録層用塗料を前記非磁性下地層の上に塗布した後、磁場中において配向・乾燥した。その後、60℃で24時間硬化反応を行い、12.7mm幅にスリットして磁気記録媒体を得た。 A magnetic recording layer coating was applied on the nonmagnetic underlayer, and then oriented and dried in a magnetic field. Thereafter, a curing reaction was performed at 60 ° C. for 24 hours, and a magnetic recording medium was obtained by slitting to a width of 12.7 mm.
得られた磁気記録媒体は、磁気記録層の膜厚が0.26μm、保磁力値が197.4kA/m、光沢度が221%、表面粗度Raが5.5nmであった。 The obtained magnetic recording medium had a magnetic recording layer thickness of 0.26 μm, a coercive force value of 197.4 kA / m, a glossiness of 221%, and a surface roughness Ra of 5.5 nm.
前記実施例1−1、非磁性下地層1及び実施例2−1に従って非磁性下地層用ヘマタイト粒子粉末、非磁性下地層及び磁気記録媒体を作製した。各製造条件及び得られた非磁性下地層用ヘマタイト粒子粉末、非磁性下地層及び磁気記録媒体の諸特性を示す。 According to Example 1-1, nonmagnetic underlayer 1 and Example 2-1, hematite particle powder for nonmagnetic underlayer, nonmagnetic underlayer and magnetic recording medium were prepared. Various characteristics of each manufacturing condition and the obtained hematite particle powder for nonmagnetic underlayer, nonmagnetic underlayer and magnetic recording medium are shown.
前駆体2〜4:
ヘマタイト粒子を製造するための前駆体であるゲータイト粒子として前駆体2〜4を準備した。該ゲータイト粒子の諸特性を表1に示す。
Precursors 2-4:
Precursors 2 to 4 were prepared as goethite particles which are precursors for producing hematite particles. Various properties of the goethite particles are shown in Table 1.
ゲータイト粒子2〜4:
前駆体であるゲータイト粒子の種類、焼結防止剤の種類及び被覆量、真空凍結乾燥処理の固形分濃度、凍結温度、真空度及び乾燥温度を種々変化させた以外は、実施例1−1のゲータイト粒子1と同様にしてゲータイト粒子を得た。
Goethite particles 2-4:
Example 1-1 except that the kind of goethite particles as a precursor, the kind and coating amount of the sintering inhibitor, the solid content concentration in the vacuum freeze-drying treatment, the freezing temperature, the degree of vacuum and the drying temperature were variously changed. Goethite particles were obtained in the same manner as goethite particles 1.
このときの製造条件及び得られたゲータイト粒子粉末の体積基準平均粒子径D50を表2に示す。 Shows the volume-based average particle diameter D 50 of the goethite particles production conditions and obtained at this time in Table 2.
ゲータイト粒子5:
焼結防止処理を行って得られたゲータイト粒子粉末を含む含水物に対し、予備凍結を行わずに、真空度を50Paまであげて、ゲータイト粒子粉末を含む含水物を自己凍結させた。そのときの凍結温度は−40℃であった。次いで、−40℃の状態から徐々に温度をあげて50℃にし、水分が3%以下になるまで乾燥を行った以外は、実施例1−1のゲータイト粒子1と同様にしてゲータイト粒子を得た。
Goethite particles 5:
The hydrous material containing the goethite particle powder was self-frozen by raising the degree of vacuum to 50 Pa without pre-freezing the hydrous material containing the goethite particle powder obtained by performing the sintering prevention treatment. The freezing temperature at that time was −40 ° C. Subsequently, the goethite particles were obtained in the same manner as the goethite particles 1 of Example 1-1 except that the temperature was gradually raised from −40 ° C. to 50 ° C. and drying was performed until the water content became 3% or less. It was.
ゲータイト粒子6(比較ゲータイト粒子):
焼結防止処理後の乾燥を真空凍結乾燥で行わずに、通常の乾燥機により行った以外は、実施例1−1のゲータイト粒子1と同様にしてゲータイト粒子を得た。
Goethite particles 6 (comparative goethite particles):
Goethite particles were obtained in the same manner as the goethite particles 1 of Example 1-1, except that drying after the sintering prevention treatment was not performed by vacuum freeze-drying but by a normal dryer.
ゲータイト粒子5及びゲータイト粒子6の製造条件及び得られたゲータイト粒子の体積基準平均粒子径D50を表2に示す。 The goethite particles 5 and goethite volume-based average particle diameter D 50 of the production conditions and obtained goethite particles particles 6 shown in Table 2.
実施例1−2〜1−7及び比較例1−1:
ゲータイト粒子の種類、低密度加熱処理の温度と時間、高密度加熱処理の温度と時間を種々変化させた以外は、実施例1−1と同様にして非磁性下地層用ヘマタイト粒子粉末を得た。
Examples 1-2 to 1-7 and Comparative Example 1-1
A hematite particle powder for nonmagnetic underlayer was obtained in the same manner as in Example 1-1 except that the type of goethite particles, the temperature and time of low density heat treatment, and the temperature and time of high density heat treatment were variously changed. .
このときの製造条件を表3に、得られた非磁性下地層用ヘマタイト粒子粉末の諸特性を表4に示す。 The production conditions at this time are shown in Table 3, and the properties of the obtained nonmagnetic underlayer hematite particles are shown in Table 4.
実施例1−8 表面被覆物により被覆された非磁性下地層用ヘマタイト粒子粉末:
実施例1−1で得られたヘマタイト粒子粉末12kgを、凝集を解きほぐすために、純水70lに攪拌機を用いて邂逅し、更に、「TKパイプラインホモミクサー」(製品名、特殊機化工業株式会社製)を3回通して実施例1−1のヘマタイト粒子粉末を含むスラリーを得た。
Example 1-8 Hematite particle powder for nonmagnetic undercoat coated with surface coating:
12 kg of the hematite particle powder obtained in Example 1-1 was sprinkled with 70 l of pure water using a stirrer to break up the agglomeration, and “TK Pipeline Homomixer” (product name, Special Machine Industries Co., Ltd.) The slurry containing the hematite particle powder of Example 1-1 was obtained.
続いて、この実施例1−1のヘマタイト粒子粉末を含むスラリーを横型サンドグラインダー「マイティーミルMHG−1.5L」(製品名、井上製作所株式会社製)を用いて、軸回転数2000rpmにおいて5回パスさせて、実施例1−1のヘマタイト粒子粉末を含む分散スラリーを得た。 Subsequently, the slurry containing the hematite particle powder of Example 1-1 was subjected to 5 times at a shaft rotational speed of 2000 rpm using a horizontal sand grinder “Mighty Mill MHG-1.5L” (product name, manufactured by Inoue Seisakusho Co., Ltd.). A dispersion slurry containing the hematite particle powder of Example 1-1 was obtained by passing.
得られた実施例1−1のヘマタイト粒子粉末を含む分散スラリー濃度を62g/lとし、スラリーを180l採取した。このスラリーを攪拌しながら、6NのNaOH水溶液を加えてスラリーのpH値を13.4に調整した。次に、このスラリーを攪拌しながら加熱して95℃まで昇温し、その温度で3時間保持した。 The dispersion slurry concentration containing the obtained hematite particle powder of Example 1-1 was 62 g / l, and 180 l of the slurry was collected. While stirring the slurry, 6N NaOH aqueous solution was added to adjust the pH value of the slurry to 13.4. Next, this slurry was heated with stirring to a temperature of 95 ° C. and held at that temperature for 3 hours.
次に、このスラリーをデカンテーション法により水洗し、pH値が10.5のスラリーとした。この時点でのヘマタイト粒子粉末の重量は10.5kgであった。 Next, this slurry was washed with water by a decantation method to obtain a slurry having a pH value of 10.5. The weight of the hematite particle powder at this time was 10.5 kg.
次に、上記アルカリ性スラリー中に、アルミン酸ナトリウム546.0gを徐々に加え、20分間熟成を行った。次に、このスラリーに0.1Nの酢酸溶液を加え、スラリーのpH値を9.1に調整した。その後、常法により、濾別、水洗、乾燥を行い、実施例1−8の非磁性下地層用ヘマタイト粒子粉末を得た。 Next, 546.0 g of sodium aluminate was gradually added to the alkaline slurry and aged for 20 minutes. Next, a 0.1N acetic acid solution was added to the slurry to adjust the pH value of the slurry to 9.1. Thereafter, filtration, washing with water and drying were carried out by a conventional method to obtain a hematite particle powder for nonmagnetic underlayer of Example 1-8.
このときの製造条件を表5に、得られた非磁性下地層用ヘマタイト粒子粉末の諸特性を表6に示す。 The production conditions at this time are shown in Table 5, and various properties of the obtained hematite particle powder for nonmagnetic underlayer are shown in Table 6.
実施例1−9〜1−12及び比較例1−2:
ヘマタイト粒子の種類、表面処理添加物の種類及び量を種々変化させた以外は、実施例1−8と同様にして非磁性下地層用ヘマタイト粒子粉末を得た。
Examples 1-9 to 1-12 and Comparative Example 1-2:
A hematite particle powder for a nonmagnetic underlayer was obtained in the same manner as in Example 1-8, except that the type of hematite particles and the type and amount of the surface treatment additive were variously changed.
このときの製造条件を表5に、得られた非磁性下地層用非磁性粒子粉末の諸特性を表6に示す。 The production conditions at this time are shown in Table 5, and the properties of the obtained nonmagnetic particle powder for nonmagnetic underlayer are shown in Table 6.
実施例1−13:
実施例1−1で得られたヘマタイト粒子粉末12kgを、凝集を解きほぐすために、純水70lに攪拌機を用いて邂逅し、更に、「TKパイプラインホモミクサー」(製品名、特殊機化工業株式会社製)を3回通して実施例1−1のヘマタイト粒子粉末を含むスラリーを得た。
Example 1-13:
12 kg of the hematite particle powder obtained in Example 1-1 was sprinkled with 70 l of pure water using a stirrer to break up the agglomeration, and “TK Pipeline Homomixer” (product name, Special Machine Industries Co., Ltd.) The slurry containing the hematite particle powder of Example 1-1 was obtained.
続いて、この実施例1−1のヘマタイト粒子粉末を含むスラリーを横型サンドグラインダー「マイティーミルMHG−1.5L」(製品名、井上製作所株式会社製)を用いて、軸回転数2000rpmにおいて5回パスさせて、実施例1−1のヘマタイト粒子粉末を含む分散スラリーを得た。 Subsequently, the slurry containing the hematite particle powder of Example 1-1 was subjected to 5 times at a shaft rotational speed of 2000 rpm using a horizontal sand grinder “Mighty Mill MHG-1.5L” (product name, manufactured by Inoue Seisakusho Co., Ltd.). A dispersion slurry containing the hematite particle powder of Example 1-1 was obtained by passing.
次に、上記実施例1−1のヘマタイト粒子粉末を含む分散スラリーを水洗・濾過後、固形分濃度を30重量%に調整した実施例1−1のヘマタイト粒子粉末を含む含水物を、−40℃にて完全に凍結させ、凍結後、真空度を50Paにまであげて、その状態から徐々に温度を上げて60℃にした後に、水分が3%以下になるまで乾燥を行った。この乾燥粉末 10.0kgをエッジランナー「MPUV−2型」(製品名、株式会社松本鋳造鉄工所製)に投入して、392N/cmで20分間混合攪拌を行い、粒子の凝集を軽く解きほぐし、実施例1−13の非磁性下地層用ヘマタイト粒子粉末を得た。 Next, the dispersion slurry containing the hematite particle powder of Example 1-1 was washed with water and filtered, and then the hydrate containing the hematite particle powder of Example 1-1 adjusted to a solid content concentration of 30% by weight was −40. It was completely frozen at 0 ° C., and after freezing, the degree of vacuum was raised to 50 Pa, the temperature was gradually raised from this state to 60 ° C., and then drying was performed until the water content became 3% or less. 10.0 kg of this dry powder was put into an edge runner “MPUV-2 type” (product name, manufactured by Matsumoto Casting Iron Works Co., Ltd.), mixed and stirred at 392 N / cm for 20 minutes to loosen the particles agglomerate, The hematite particle powder for nonmagnetic underlayers of Example 1-13 was obtained.
このときの製造条件を表7に、得られた非磁性下地層用ヘマタイト粒子粉末の諸特性を表8に示す。 The production conditions at this time are shown in Table 7, and various characteristics of the obtained hematite particle powder for nonmagnetic underlayer are shown in Table 8.
実施例1−14〜1−20及び比較例1−3:
ヘマタイト粒子の種類、真空凍結乾燥処理の固形分濃度、凍結温度、真空度、及び乾燥温度を種々変化させた以外は、実施例1−13と同様にして非磁性下地層用ヘマタイト粒子粉末を得た。
Examples 1-14 to 1-20 and Comparative Example 1-3:
A hematite particle powder for a nonmagnetic underlayer is obtained in the same manner as in Example 1-13, except that the type of hematite particles, the solid content concentration in the vacuum freeze-drying treatment, the freezing temperature, the degree of vacuum, and the drying temperature are variously changed. It was.
このときの製造条件を表7に、得られた非磁性下地層用ヘマタイト粒子粉末の諸特性を表8に示す。 The production conditions at this time are shown in Table 7, and various characteristics of the obtained hematite particle powder for nonmagnetic underlayer are shown in Table 8.
<非磁性下地層の製造>
非磁性下地層2〜12及び比較非磁性下地層1〜3:
非磁性下地層用ヘマタイト粒子粉末の種類を種々変化させた以外は、非磁性下地層1と同様にして非磁性下地層を得た。
<Manufacture of nonmagnetic underlayer>
Nonmagnetic underlayers 2-12 and comparative nonmagnetic underlayers 1-3:
A nonmagnetic underlayer was obtained in the same manner as the nonmagnetic underlayer 1 except that the type of hematite particle powder for nonmagnetic underlayer was variously changed.
このときの製造条件、及び得られた非磁性下地層の諸特性を表9に示す。 Table 9 shows the manufacturing conditions at this time and various characteristics of the obtained nonmagnetic underlayer.
<磁気記録媒体の製造>
実施例2−2〜2−12及び比較例2−1〜2−3:
非磁性下地層の種類及び磁性粒子の種類を種々変化させた以外は、前記実施例2−1と同様にして磁気記録媒体を製造した。
<Manufacture of magnetic recording media>
Examples 2-2 to 2-12 and comparative examples 2-1 to 2-3:
A magnetic recording medium was manufactured in the same manner as in Example 2-1 except that the type of the nonmagnetic underlayer and the type of the magnetic particles were variously changed.
尚、使用した磁性粒子(1)〜(3)の諸特性を表10に示す。 Table 10 shows various characteristics of the magnetic particles (1) to (3) used.
このときの製造条件及び得られた磁気記録媒体の諸特性を表11に示す。 Table 11 shows the manufacturing conditions and various characteristics of the obtained magnetic recording medium.
本発明に係る磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末は、非磁性下地層用塗料における分散性及び非磁性下地層中における充填性に優れているため、高密度磁気記録媒体の非磁性下地層用非磁性粒子粉末として好適である。 The hematite particle powder for non-magnetic underlayer of the magnetic recording medium according to the present invention is excellent in dispersibility in the coating for non-magnetic underlayer and filling property in the non-magnetic underlayer. Suitable as nonmagnetic particle powder for underlayer.
また、本発明に係る磁気記録媒体は、上述のヘマタイト粒子粉末を磁気記録媒体の非磁性下地層用非磁性粒子粉末として用いることにより、高い表面平滑性を有する磁気記録媒体を得ることができるため、高密度磁気記録媒体として好適である。
Further, the magnetic recording medium according to the present invention can obtain a magnetic recording medium having high surface smoothness by using the above-described hematite particle powder as a nonmagnetic particle powder for a nonmagnetic underlayer of the magnetic recording medium. Suitable as a high-density magnetic recording medium.
Claims (3)
<式>
713.1L−0.521 ≦BET比表面積値(SSA)≦ 725.5L−0.451 A magnetic recording medium having a tap density (ρt) of 0.60 g / cm 3 or more and an average primary major axis diameter (L) (nm) and a BET specific surface area value (SSA) satisfy the following relational expression: Hematite particle powder for non-magnetic underlayer.
<Formula>
713.1L− 0.521 ≦ BET specific surface area value (SSA) ≦ 725.5L− 0.451
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008307803A JP5344139B2 (en) | 2008-12-02 | 2008-12-02 | Hematite particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008307803A JP5344139B2 (en) | 2008-12-02 | 2008-12-02 | Hematite particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010132475A true JP2010132475A (en) | 2010-06-17 |
JP5344139B2 JP5344139B2 (en) | 2013-11-20 |
Family
ID=42344182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008307803A Expired - Fee Related JP5344139B2 (en) | 2008-12-02 | 2008-12-02 | Hematite particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5344139B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019160145A1 (en) * | 2018-02-16 | 2019-08-22 | ソニー株式会社 | Magnetic recording medium and cartridge |
CN111902869A (en) * | 2018-03-30 | 2020-11-06 | 索尼公司 | Method for producing magnetic powder and method for producing magnetic recording medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10340447A (en) * | 1997-06-05 | 1998-12-22 | Dowa Mining Co Ltd | Lower layer powder of coated type magnetic recording medium |
JPH1166544A (en) * | 1997-08-21 | 1999-03-09 | Kao Corp | Magnetic recording medium |
JPH11100213A (en) * | 1997-09-26 | 1999-04-13 | Fuji Photo Film Co Ltd | Production of hematite, production of ferromagnetic powder using the hematite and magnetic recording medium |
JPH11338191A (en) * | 1998-03-26 | 1999-12-10 | Toda Kogyo Corp | Black complex non-magnetic particulate powders and black toner using the particulate powder |
JP2000327335A (en) * | 1999-05-24 | 2000-11-28 | Toda Kogyo Corp | Nonmagnetic particle powder for nonmagnetic ground layer of magnetic recording medium, its production and magnetic recording medium |
JP2001319316A (en) * | 2000-05-10 | 2001-11-16 | Fuji Photo Film Co Ltd | Magnetic recording medium |
-
2008
- 2008-12-02 JP JP2008307803A patent/JP5344139B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10340447A (en) * | 1997-06-05 | 1998-12-22 | Dowa Mining Co Ltd | Lower layer powder of coated type magnetic recording medium |
JPH1166544A (en) * | 1997-08-21 | 1999-03-09 | Kao Corp | Magnetic recording medium |
JPH11100213A (en) * | 1997-09-26 | 1999-04-13 | Fuji Photo Film Co Ltd | Production of hematite, production of ferromagnetic powder using the hematite and magnetic recording medium |
JPH11338191A (en) * | 1998-03-26 | 1999-12-10 | Toda Kogyo Corp | Black complex non-magnetic particulate powders and black toner using the particulate powder |
JP2000327335A (en) * | 1999-05-24 | 2000-11-28 | Toda Kogyo Corp | Nonmagnetic particle powder for nonmagnetic ground layer of magnetic recording medium, its production and magnetic recording medium |
JP2001319316A (en) * | 2000-05-10 | 2001-11-16 | Fuji Photo Film Co Ltd | Magnetic recording medium |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019160145A1 (en) * | 2018-02-16 | 2019-08-22 | ソニー株式会社 | Magnetic recording medium and cartridge |
JPWO2019160145A1 (en) * | 2018-02-16 | 2020-07-27 | ソニー株式会社 | Magnetic recording medium and cartridge |
JP2020144970A (en) * | 2018-02-16 | 2020-09-10 | ソニー株式会社 | Magnetic recording medium and cartridge |
US11031033B2 (en) | 2018-02-16 | 2021-06-08 | Sony Corporation | Magnetic recording medium and cartridge |
US11183209B2 (en) | 2018-02-16 | 2021-11-23 | Sony Corporation | High density magnetic recording medium and cartridge |
JP7247954B2 (en) | 2018-02-16 | 2023-03-29 | ソニーグループ株式会社 | Magnetic recording media and cartridges |
CN111902869A (en) * | 2018-03-30 | 2020-11-06 | 索尼公司 | Method for producing magnetic powder and method for producing magnetic recording medium |
Also Published As
Publication number | Publication date |
---|---|
JP5344139B2 (en) | 2013-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5403278B2 (en) | Hexagonal ferrite particle powder and magnetic recording medium | |
JP3509837B2 (en) | Hematite particle powder for a non-magnetic underlayer of a magnetic recording medium using iron-based metal magnetic particle powder, non-magnetic underlayer of a magnetic recording medium using the hematite particle powder, and the non-magnetic underlayer Magnetic recording medium and method for producing said hematite particle powder | |
JP5344139B2 (en) | Hematite particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium | |
JP5589348B2 (en) | Method for producing hexagonal ferrite particle powder and method for producing magnetic recording medium | |
JP5439861B2 (en) | Ferromagnetic metal particle powder, method for producing the same, and magnetic recording medium | |
JP5293946B2 (en) | Method for producing nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium | |
JP5454037B2 (en) | Method for producing hexagonal ferrite particle powder and magnetic recording medium | |
JP6103172B2 (en) | Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium | |
JP3427883B2 (en) | Non-magnetic particle powder for non-magnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium | |
JP4305589B2 (en) | Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium | |
JP5403241B2 (en) | Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium | |
JP5418773B2 (en) | Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium | |
JP4870860B2 (en) | Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium | |
US6124022A (en) | Acicular hematite particles for non-magnetic undercoat layer of magnetic recording medium, and magnetic recording medium using the same | |
JP4732556B2 (en) | Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium | |
JP5754091B2 (en) | Method for producing hexagonal ferrite particle powder and method for producing magnetic recording medium | |
JP3661738B2 (en) | Magnetic recording medium substrate having non-magnetic underlayer and magnetic recording medium using the substrate | |
JP3763353B2 (en) | Hematite powder for nonmagnetic underlayer of magnetic recording medium, nonmagnetic underlayer and magnetic recording medium of magnetic recording medium using hematite powder for nonmagnetic underlayer | |
JP5447767B2 (en) | Method for producing ferromagnetic metal particle powder | |
JP3763333B2 (en) | Acicular hematite particle powder for non-magnetic underlayer of magnetic recording medium and magnetic recording medium | |
JP5625364B2 (en) | Method for producing hexagonal ferrite particle powder, hexagonal ferrite particle powder, and magnetic recording medium | |
JP3952171B2 (en) | Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium | |
JP4352270B2 (en) | Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium | |
JP3656700B2 (en) | Magnetic recording medium | |
JP2007299459A (en) | Oxy iron hydroxide powder for multi-layered magnetic recording medium, and magnetic recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111020 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130717 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130730 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5344139 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |