[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010130871A - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
JP2010130871A
JP2010130871A JP2008305966A JP2008305966A JP2010130871A JP 2010130871 A JP2010130871 A JP 2010130871A JP 2008305966 A JP2008305966 A JP 2008305966A JP 2008305966 A JP2008305966 A JP 2008305966A JP 2010130871 A JP2010130871 A JP 2010130871A
Authority
JP
Japan
Prior art keywords
magnetic pole
linear motor
main magnetic
support
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008305966A
Other languages
Japanese (ja)
Other versions
JP5253114B2 (en
Inventor
Misa Nakayama
美佐 中山
Kazumasa Ito
一将 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008305966A priority Critical patent/JP5253114B2/en
Publication of JP2010130871A publication Critical patent/JP2010130871A/en
Application granted granted Critical
Publication of JP5253114B2 publication Critical patent/JP5253114B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easy to assemble linear motor whose magnets are fixed without reduction in magnetic field. <P>SOLUTION: The linear motor includes: a stator structured by arranging a main magnetic pole and a complementary magnetic pole alternately on a support body to form a linear Halbach array; and a moving member driven linearly. In the linear motor, the complementary magnetic poles are each set in a groove formed by providing a level difference on the support body and only the complementary magnetic poles are fixed to the support body with magnet retainers. The grooves are sections for fixing the complementary magnetic poles, each sections being formed higher than a principal surface of the support body with a level difference between island-shaped sections, for fixing the main magnetic poles, and each of the main magnetic poles is installed on the section for fixing the main magnetic pole between the complementary magnetic poles. This invention provides the easy to assemble linear motor without reducing the magnetic field. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明はリニアモータに関し、特に工作機械や半導体製造装置などの産業機械のテーブル送りに用いるのに適したリニアモータに関するものである。   The present invention relates to a linear motor, and more particularly to a linear motor suitable for use in table feed of industrial machines such as machine tools and semiconductor manufacturing apparatuses.

工作機械のテーブル送りや搬送機器のアクチュエータに対しては、高速化・高精度化の要求が高い。そこで近年工作機械などにリニアモータがよく用いられている。リニアモータはダイレクト駆動であり、従来の回転型サーボモータとボールネジを組み合わせた駆動方式に比べ、高速度・高加速度特性を得ることができ、かつバックラッシュや摩擦による応答誤差が生じないため高精度なシステムを構築可能である。しかしその反面、モータの発熱や振動が機械に伝わりやすいという問題点がある。そこで、リニアモータは低損失でかつコギング推力が小さい必要がある。   There is a high demand for high speed and high precision for table feed of machine tools and actuators of transfer equipment. In recent years, linear motors are often used in machine tools and the like. The linear motor is direct drive, and can achieve high speed and high acceleration characteristics compared to the conventional drive system combining a rotary servo motor and a ball screw. A simple system can be constructed. On the other hand, however, there is a problem that heat generation and vibration of the motor are easily transmitted to the machine. Therefore, the linear motor needs to have low loss and small cogging thrust.

リニアモータを低損失化するためには、発生する磁界を高めることが必要であり、コギング推力を小さくするためには発生する磁界を正弦波に近づけることが必要である。このことから、リニアモータの固定子の磁石配列として、発生する磁界が大きく正弦波分布になるハルバッハ配列を用いることが知られている。   In order to reduce the loss of the linear motor, it is necessary to increase the generated magnetic field, and in order to reduce the cogging thrust, it is necessary to bring the generated magnetic field closer to a sine wave. For this reason, it is known to use a Halbach array in which the generated magnetic field is large and has a sinusoidal distribution as the magnet array of the stator of the linear motor.

しかし、ハルバッハ配列は隣接する磁石の磁化方向が90°異なるため、磁石間に大きな反発力が発生し、組み立てにくいという問題点がある。この問題の解決方法として、磁石を非磁性の磁石ホルダーに非磁性の磁石押さえおよび固定用ボルトにより機械的に固定するとともに、磁石の対向面を磁性カバーで覆うことが提案されている(例えば特許文献1参照)。   However, the Halbach array has a problem in that since the magnetizing directions of adjacent magnets differ by 90 °, a large repulsive force is generated between the magnets and it is difficult to assemble. As a solution to this problem, it has been proposed to mechanically fix a magnet to a nonmagnetic magnet holder with a nonmagnetic magnet presser and a fixing bolt, and to cover the opposing surface of the magnet with a magnetic cover (for example, a patent) Reference 1).

特開平10−27699号公報JP-A-10-27699

しかしながら、特許文献1の方法は、電子ビーム加速器に設置される周期磁場発生装置に用いられるためのものであり、この目的のためには有用であるが、リニアモータに適用した場合、保持強度を確保するために磁性カバーを厚くすると磁束の漏れが増加し、発生する磁界が弱まりリニアモータの損失が増加するという問題がある。   However, the method of Patent Document 1 is for use in a periodic magnetic field generator installed in an electron beam accelerator, and is useful for this purpose. However, when applied to a linear motor, the holding strength is reduced. If the magnetic cover is made thicker in order to ensure, there is a problem that the leakage of magnetic flux increases, the generated magnetic field is weakened, and the loss of the linear motor increases.

従ってこの発明の目的は、発生する磁界を低減させずに磁石の固定ができ組み立てやす
いリニアモータを提供することである。
Accordingly, an object of the present invention is to provide a linear motor that can fix a magnet without reducing a generated magnetic field and is easy to assemble.

この発明によれば、複数の主磁極および複数の補磁極を支持体上に交互に直線状にハルバッハ配列して構成した固定子と、上記固定子に対して直線的に駆動される可動子とを備えたリニアモータにおいて、上記補磁極が上記支持体に設けた溝内に配置されていて、上記補磁極だけが磁石保持体により上記支持体に固定されていることを特徴とするリニアモータが得られる。   According to the present invention, a stator in which a plurality of main magnetic poles and a plurality of auxiliary magnetic poles are alternately arranged in a Halbach array on a support, and a mover that is linearly driven with respect to the stator. A linear motor comprising: a linear motor, wherein the auxiliary magnetic pole is disposed in a groove provided in the support, and only the auxiliary magnetic pole is fixed to the support by a magnet holder. can get.

この発明によれば、補磁極主磁極と可動子の間には磁石押さえが不要となり、磁束の漏れがなくなって磁界が十分確保できるとともに組み立てが容易である。   According to the present invention, there is no need to hold a magnet between the auxiliary magnetic pole main magnetic pole and the mover, magnetic flux leakage is eliminated, a sufficient magnetic field can be secured, and assembly is easy.

実施の形態1.
図1はこの発明の実施の形態1のリニアモータを示す模式的断面図であり、図2は図1のリニアモータの固定子の概略斜視図、図3〜5はリニアモータの固定子の組立手順を示す概略斜視図である。図1および2において、リニアモータ1は、固定子10と可動子20を備えていて、固定子10と可動子20とは間に所定の空隙が形成されるように配置され、可動子20が電磁力によって固定子10に沿って駆動方向E(矢印Eで示す)に直線的に駆動される。固定子10は、磁石板である支持体11と、支持体11上でハルバッハ配列状に固着された複数の主磁極12および補磁極13とを備えている。
Embodiment 1 FIG.
1 is a schematic sectional view showing a linear motor according to Embodiment 1 of the present invention, FIG. 2 is a schematic perspective view of a stator of the linear motor of FIG. 1, and FIGS. 3 to 5 are assembly of the stator of the linear motor. It is a schematic perspective view which shows a procedure. 1 and 2, the linear motor 1 includes a stator 10 and a mover 20. The linear motor 1 is disposed so that a predetermined gap is formed between the stator 10 and the mover 20. Driven linearly in the drive direction E (indicated by arrow E) along the stator 10 by electromagnetic force. The stator 10 includes a support body 11 that is a magnet plate, and a plurality of main magnetic poles 12 and auxiliary magnetic poles 13 fixed on the support body 11 in a Halbach array.

固定子10は、支持体11の上に複数の主磁極12と補磁極13を交互に直線状に配列して構成されている。複数の主磁極12は、一定の極ピッチで等間隔に直線状に配置され、それらの磁化方向AおよびB(矢印AおよびBで示す)は、いずれも可動子20の駆動方向Eに対して直角な方向であるが、交互に逆方向となるようにされている。主磁極12の間には、補磁極13が隙間なしに配置されているが、補磁極13の磁化方向は、駆動方向Eに平行で互いに逆方向の磁化方向CおよびD(矢印CおよびDで示す)となっている。   The stator 10 is configured by alternately arranging a plurality of main magnetic poles 12 and auxiliary magnetic poles 13 on a support 11. The plurality of main magnetic poles 12 are linearly arranged at regular intervals with a constant pole pitch, and their magnetization directions A and B (indicated by arrows A and B) are all relative to the drive direction E of the mover 20. Although the direction is a right angle, the directions are alternately reversed. The auxiliary magnetic pole 13 is disposed between the main magnetic poles 12 without a gap. The magnetization direction of the auxiliary magnetic pole 13 is parallel to the driving direction E and opposite to the magnetization directions C and D (indicated by arrows C and D). It is shown).

可動子20は、固定子10に所定の間隙を介して対向し、複数のティース21が設けられた電機子コア22と、ティース21に巻回されたコイル23とを備えている。極数とティース数の組み合わせであるスロットコンビは任意でよい。   The mover 20 includes an armature core 22 that faces the stator 10 with a predetermined gap and is provided with a plurality of teeth 21, and a coil 23 wound around the teeth 21. A slot combination that is a combination of the number of poles and the number of teeth may be arbitrary.

補磁極13は、磁石板である支持体11に設けられた溝17内に配置されていて、この補磁極13だけが押さえ板である磁石保持体14によって覆われて支持体11に固定されていて、主磁極12は磁石保持体14によっては固定されていない。溝17の幅は補磁極13の幅と一致していて駆動方向Eについての補磁極13の位置決めをすることができる。磁石保持体14は両端部で支持体11にネジ15によって固定されている。   The auxiliary magnetic pole 13 is disposed in a groove 17 provided in the support body 11 that is a magnet plate, and only the auxiliary magnetic pole 13 is covered and fixed to the support body 11 by a magnet holding body 14 that is a pressing plate. The main magnetic pole 12 is not fixed by the magnet holder 14. The width of the groove 17 coincides with the width of the auxiliary magnetic pole 13 so that the auxiliary magnetic pole 13 can be positioned in the driving direction E. The magnet holder 14 is fixed to the support 11 with screws 15 at both ends.

組立完了時に磁石押さえ板である磁石保持体14の頂面すなわち最大高さと、主磁極12の頂面即ち最大高さは同じで、面一になっている。図示の例では、主磁極12と補磁極13の高さが同じであって、支持体11に配置されたときに段差Sの分だけ、補磁極13の頂面が主磁極12の頂面よりも低くなっている。しかしながら、補磁極13の頂面上に設けられた磁石保持体14の厚さは段差Sと等しいため、磁石保持体14の頂面と主磁極12の頂面とは高さが等しい。   When the assembly is completed, the top surface, that is, the maximum height of the magnet holder 14, which is a magnet pressing plate, and the top surface, that is, the maximum height, of the main magnetic pole 12 are the same and are flush with each other. In the illustrated example, the main magnetic pole 12 and the auxiliary magnetic pole 13 have the same height, and when placed on the support 11, the top surface of the auxiliary magnetic pole 13 is higher than the top surface of the main magnetic pole 12 by the level difference S. Is also low. However, since the thickness of the magnet holder 14 provided on the top surface of the auxiliary magnetic pole 13 is equal to the step S, the top surface of the magnet holder 14 and the top surface of the main pole 12 have the same height.

図3〜5には図1および2に示すリニアモータの固定子の組立手順を示す。図2に示す支持体11は矩形の板状部材であって、一方の主面上の主磁極12を配置すべき位置に主磁極12の平面形と同じ平面形で所定の段差Sを持つアイランド部である主磁極固定部18が設けてある。並べて配置された複数の主磁極固定部18の間には、段差Sの溝17が形成されており、この溝17は、その中に補磁極13が配置されるので補磁極固定部でもある。支持体11にはまた溝17の両端部に磁石保持体14を固定するためのネジ15を受け入れるネジ穴16が設けられている。   3 to 5 show an assembly procedure of the stator of the linear motor shown in FIGS. The support 11 shown in FIG. 2 is a rectangular plate-like member, and is an island having a predetermined step S in the same planar shape as the planar shape of the main magnetic pole 12 at a position where the main magnetic pole 12 is to be disposed on one main surface. A main magnetic pole fixing portion 18 is provided. A groove 17 having a step S is formed between the plurality of main magnetic pole fixing portions 18 arranged side by side, and this groove 17 is also an auxiliary magnetic pole fixing portion since the auxiliary magnetic pole 13 is arranged therein. The support 11 is also provided with a screw hole 16 for receiving a screw 15 for fixing the magnet holder 14 at both ends of the groove 17.

図4においては、支持体11の溝17内に補磁極13が、端部を主磁極固定部18の端部と整列して配置されていて、その上方には補磁極13の保持のために用意された磁石保持体14が描かれている。主磁極固定部18が段差Sの分だけ高いため、溝17である補磁極固定部に補磁極13をはめ込むこととなり、補磁極13の駆動方向Eについての位置決めができる。   In FIG. 4, the auxiliary magnetic pole 13 is arranged in the groove 17 of the support 11 with the end thereof aligned with the end of the main magnetic pole fixing portion 18, and the auxiliary magnetic pole 13 is held above the auxiliary magnetic pole 13. The prepared magnet holder 14 is depicted. Since the main magnetic pole fixing portion 18 is higher by the step S, the auxiliary magnetic pole 13 is fitted into the auxiliary magnetic pole fixing portion which is the groove 17, and the auxiliary magnetic pole 13 can be positioned in the driving direction E.

図5においては、ネジ15により支持体11に固定された磁石保持体14が補磁極13上に被せられていて、駆動方向Eに対して直角方向(磁化方向B)にも移動しないように保持されている。固定強度をさらに向上させる場合には、接着剤を併用して固定することもできる。このようにして支持体11上に補磁極13を固定すると、補磁極13およびそれを保持する磁石保持体14と、隣に配置された補磁極13および磁石保持体14との間に、主磁極固定部18が露出した状態となるので、この主磁極固定部18上に主磁極12を配置し、必要に応じて接着剤を用いて固定する。   In FIG. 5, the magnet holder 14 fixed to the support 11 by the screw 15 is placed on the auxiliary magnetic pole 13 and held so as not to move in the direction perpendicular to the drive direction E (magnetization direction B). Has been. In order to further improve the fixing strength, it can be fixed together with an adhesive. When the auxiliary magnetic pole 13 is fixed on the support 11 in this manner, the main magnetic pole is interposed between the auxiliary magnetic pole 13 and the magnet holder 14 holding the auxiliary magnetic pole 13 and the auxiliary magnetic pole 13 and the magnet holder 14 arranged adjacent to each other. Since the fixing portion 18 is exposed, the main magnetic pole 12 is disposed on the main magnetic pole fixing portion 18 and is fixed using an adhesive as necessary.

このように、この発明のリニアモータは、複数の主磁極12および複数の補磁極13を支持体11上に交互に直線状にハルバッハ配列して構成した固定子10と、固定子10に対して直線的に駆動される可動子20とを備え、補磁極13が支持体11に設けた段差Sにより形成される溝17内に配置されていて、補磁極13だけが磁石保持体14により支持体11に固定されている。また、支持体11が、支持体11の主面に対して段差Sをもって高くされたアイランド部である主磁極固定部18と、この主磁極固定部18間に形成された溝17である補磁極固定部17とを備えていて、主磁極12が、補磁極13間で主磁極固定部18上に設けられている。   As described above, the linear motor according to the present invention has a stator 10 in which a plurality of main magnetic poles 12 and a plurality of auxiliary magnetic poles 13 are alternately arranged on the support 11 in a linear Halbach arrangement. The auxiliary magnetic pole 13 is disposed in a groove 17 formed by a step S provided on the support 11, and only the auxiliary magnetic pole 13 is supported by the magnet holder 14. 11 is fixed. Further, the support 11 has a main magnetic pole fixing portion 18 that is an island portion raised with a step S with respect to the main surface of the support 11 and a complementary magnetic pole that is a groove 17 formed between the main magnetic pole fixing portions 18. The main magnetic pole 12 is provided on the main magnetic pole fixing portion 18 between the auxiliary magnetic poles 13.

このような構成とすることにより、補磁極13の位置決めが容易であり、また補磁極13は溝17と磁石保持体14とにより完全に固定されているため、補磁極13と主磁極12との間の吸引力もしくは反発力により補磁極13が磁石板である支持体11から外れることなく、主磁極12の貼り付けを行うことができる。さらに、主磁極12と可動子20との間、即ち主磁極12の表面には磁石押さえなどが無いため、磁気漏洩が起こらず磁界が十分確保できる。   With this configuration, the auxiliary magnetic pole 13 can be easily positioned, and the auxiliary magnetic pole 13 is completely fixed by the groove 17 and the magnet holder 14. The main magnetic pole 12 can be attached without the auxiliary magnetic pole 13 being detached from the support 11 which is a magnet plate due to the attractive force or the repulsive force. Further, since there is no magnet pressing between the main magnetic pole 12 and the mover 20, that is, on the surface of the main magnetic pole 12, magnetic leakage does not occur and a sufficient magnetic field can be secured.

実施の形態2.
図6には磁石板である支持体11に主磁極12を組み付ける場合に作用する磁気力Fの様子を断面図で示してある。図7は支持体11と主磁極12の距離xと磁気力Fとの関係を示すグラフである。
Embodiment 2. FIG.
FIG. 6 is a sectional view showing the state of the magnetic force F acting when the main magnetic pole 12 is assembled to the support 11 that is a magnet plate. FIG. 7 is a graph showing the relationship between the distance x between the support 11 and the main magnetic pole 12 and the magnetic force F.

補磁極13を支持体11に磁石保持体14により固定した状態で、主磁極12を支持体11に組立るために近づけるときの様子を図6に示す。主磁極12にかかる磁気力Fは、支持体11と主磁極12との間の距離xに応じて変化する。磁気力Fの正方向は支持体の垂直上向きとし、磁気力Fが正方向に発生する場合は支持体11と主磁極12との間に生じる反発力、負方向に磁気力Fが発生する場合は支持体11と主磁極12との間に生じる吸引力と定義する。また、これらの反発力、もしくは吸引力は補磁極固定部17と主磁極固定部18の段差Sの値によっても変化する。これらを踏まえて、支持体11と主磁極12との間の距離xと磁気力Fとの関係を磁界解析により求めたのが図7である。段差Sの値は、主磁極12の厚さに対する割合で表記した。   FIG. 6 shows a state in which the main magnetic pole 12 is brought close to the support 11 in a state where the auxiliary magnetic pole 13 is fixed to the support 11 by the magnet holder 14. The magnetic force F applied to the main magnetic pole 12 changes according to the distance x between the support 11 and the main magnetic pole 12. The positive direction of the magnetic force F is vertically upward of the support. When the magnetic force F is generated in the positive direction, the repulsive force generated between the support 11 and the main magnetic pole 12 and the magnetic force F is generated in the negative direction. Is defined as the attractive force generated between the support 11 and the main magnetic pole 12. Further, these repulsive forces or attractive forces vary depending on the value of the step S between the auxiliary magnetic pole fixing portion 17 and the main magnetic pole fixing portion 18. Based on these, FIG. 7 shows the relationship between the distance x between the support 11 and the main magnetic pole 12 and the magnetic force F obtained by magnetic field analysis. The value of the step S is expressed as a ratio to the thickness of the main magnetic pole 12.

図7において、段差Sが60%以下では距離xが0の場合に磁気力Fが正であるため、反発力が発生していることとなり、主磁極12が浮き上がることとなる。この場合には、主磁極12を固定するためには反発力に耐える接着力を持った接着剤が必要である。一方、段差が70%以上では距離xが0の場合でも磁気力Fが負であるため、支持体11と主磁極12には吸引力が発生していることとなり、吸引力により簡単に貼り付けることが可能である。また、確実な固定のためには接着剤はあった方がよいが、反発力が発生しているときほどは接着剤に接着力を必要とはしない。   In FIG. 7, when the step S is 60% or less, the magnetic force F is positive when the distance x is 0. Therefore, a repulsive force is generated, and the main magnetic pole 12 is lifted. In this case, in order to fix the main magnetic pole 12, an adhesive having an adhesive force that can withstand the repulsive force is required. On the other hand, when the level difference is 70% or more, the magnetic force F is negative even when the distance x is 0. Therefore, an attractive force is generated between the support 11 and the main magnetic pole 12, and the magnetic force F is easily attached by the attractive force. It is possible. Moreover, although it is better to have an adhesive for secure fixing, the adhesive does not require an adhesive force as much as when a repulsive force is generated.

また、解析では示していないが、図7のグラフから明らかなように、段差Sが60%と70%の間に、距離xが0の場合に磁気力がちょうど0になる段差の値がある。磁気力が0の場合には、貼り付け時に過剰な力が主磁極にかからず、磁石の欠けや割れを防止できる。   Although not shown in the analysis, as is apparent from the graph of FIG. 7, there is a step value between which the step S is 60% and 70% and the magnetic force is just zero when the distance x is zero. . When the magnetic force is 0, an excessive force is not applied to the main magnetic pole at the time of pasting, and the magnet can be prevented from being broken or broken.

これらのことから、xが0の場合に力が発生しないかもしくは吸引力が発生するような段差の設計とすることが望ましい。そのようなリニアモータは、段差Sの大きさを、主磁極12と支持体11との間に力が発生しないように設定したものか、あるいは段差Sの大きさを、主磁極12と支持体11の間に吸引力が発生するように設定したものとなる。   For these reasons, it is desirable to design the step so that no force is generated or an attractive force is generated when x is 0. In such a linear motor, the size of the step S is set so that no force is generated between the main magnetic pole 12 and the support 11, or the size of the step S is set to the main magnetic pole 12 and the support. 11 is set to generate a suction force.

実施の形態3.
図8に示すリニアモータの固定子10は、磁石保持体14の組立時の最大高さが主磁極12の最大高さよりも高くされている。図示の例では、主磁極12と補磁極13の高さが同じであって、支持体11に配置されたときに段差Sの分だけ、補磁極13の頂面が主磁極12の頂面よりも低くなっている。しかしながら、補磁極13の頂面上に設けられた磁石保持体14の厚さは段差Sよりも大きいため、その差に相当する高さHだけ主磁極12の頂面よりも高い。
Embodiment 3 FIG.
In the stator 10 of the linear motor shown in FIG. 8, the maximum height when the magnet holder 14 is assembled is higher than the maximum height of the main pole 12. In the illustrated example, the height of the main magnetic pole 12 and that of the auxiliary magnetic pole 13 are the same, and the top surface of the auxiliary magnetic pole 13 is higher than the top surface of the main magnetic pole 12 by the level difference S when arranged on the support 11. Is also low. However, since the thickness of the magnet holder 14 provided on the top surface of the auxiliary magnetic pole 13 is larger than the step S, it is higher than the top surface of the main magnetic pole 12 by a height H corresponding to the difference.

このような構成とすることで、可動子20と固定子10とが万一当たっても、あるいは他の異物が固定子10に衝突しても、主磁極12に衝突する危険が少なくなり、磁石の保護を行うことができる。   By adopting such a configuration, even if the movable element 20 and the stator 10 hit each other, or even if other foreign matter collides with the stator 10, the risk of colliding with the main magnetic pole 12 is reduced. Can be protected.

実施の形態4.
図9および10に示すリニアモータの固定子においては、補磁極固定部17の幅(駆動方向Eの寸法)をWa、補磁極13の幅(駆動方向Eの寸法)をWmag、磁石押さえ板の幅(駆動方向Eの寸法)をwb、磁石押さえ板である磁石保持体14の内側長さ(駆動方向Eに対して直角方向の寸法)をlb、主磁極固定部18の長さ(駆動方向Eに対して直角方向の寸法)をlaとした場合に、Wa>Wmag、Wb>Wmagおよびla>lbの関係を満たすようにされている。
Embodiment 4 FIG.
In the stator of the linear motor shown in FIGS. 9 and 10, the width of the auxiliary magnetic pole fixing portion 17 (dimension in the driving direction E) is Wa, the width of the auxiliary magnetic pole 13 (dimension in the driving direction E) is Wmag, The width (dimension in the driving direction E) is wb, the inner length (dimension in the direction perpendicular to the driving direction E) of the magnet holder 14 that is a magnet pressing plate is lb, and the length (driving direction) of the main magnetic pole fixing portion 18. When the dimension in the direction perpendicular to E) is la, the relations Wa> Wmag, Wb> Wmag and la> lb are satisfied.

図9から明らかな通り、補磁極13を確実に補磁極固定部17内に配置するためには、Wa>Wmagの関係を満たす必要があり、同様に磁石保持体14を補磁極固定部17内に配置するためには、Wb>Wmagの関係を満たす必要がある。これらの2式を満たした状態で、図10に示す磁石保持体14の内側長さlbと支持体11の主磁極固定部18の長さlaとが、la>lbとなるとすれば、このとき、磁石保持体14は補磁極固定部17と主磁極固定部18間の段差Sにつきあてて固定することが可能となる。   As is clear from FIG. 9, in order to reliably arrange the auxiliary magnetic pole 13 in the auxiliary magnetic pole fixing portion 17, it is necessary to satisfy the relationship of Wa> Wmag. Similarly, the magnet holder 14 is placed in the auxiliary magnetic pole fixing portion 17. In order to arrange them, it is necessary to satisfy the relationship of Wb> Wmag. If the inner length lb of the magnet holder 14 shown in FIG. 10 and the length la of the main magnetic pole fixing portion 18 of the support 11 satisfy la> lb in a state where these two formulas are satisfied, The magnet holder 14 can be fixed by being applied to the step S between the auxiliary magnetic pole fixing portion 17 and the main magnetic pole fixing portion 18.

補磁極固定部17と主磁極固定部18の段差Sにすべて一方向からつきあてて磁石保持体14を固定することにより、磁石保持体14のピッチを揃えることができるため、磁石保持体14の固定後に固定を行う主磁極12のピッチが揃う。つまりこのような構成とすることにより、磁石保持体14や主磁極12の支持体11上の位置決め精度が向上し、位置決め作業も容易になる。さらに、磁石保持体14や主磁極12の位置決め精度が向上することにより、コギング推力の低減が可能である。   The pitch of the magnet holder 14 can be made uniform by fitting all the steps S between the auxiliary pole fixing part 17 and the main pole fixing part 18 in one direction and fixing the magnet holder 14. After fixing, the pitches of the main magnetic poles 12 to be fixed are aligned. That is, with such a configuration, the positioning accuracy of the magnet holder 14 and the main magnetic pole 12 on the support 11 is improved, and the positioning work is facilitated. Furthermore, cogging thrust can be reduced by improving the positioning accuracy of the magnet holder 14 and the main magnetic pole 12.

実施の形態5.
図11に示すリニアモータの固定子においては、磁石押さえである磁石保持体14が、それぞれの補磁極13の長さ方向(駆動方向Eに直角な方向)の両端部を固定する構造であって、一つの補磁極13について2つのほぼクランク形の一対の保持片14a、14bで構成された磁石保持体14が使われている。このような構成とすることで、磁石保持体14の重量を減らせるため固定子10の軽量化が可能である。
Embodiment 5 FIG.
In the stator of the linear motor shown in FIG. 11, the magnet holder 14 that is a magnet presser has a structure that fixes both ends of each auxiliary magnetic pole 13 in the length direction (direction perpendicular to the driving direction E). A magnet holder 14 composed of two substantially crank-shaped holding pieces 14a and 14b is used for one auxiliary pole 13. By setting it as such a structure, since the weight of the magnet holding body 14 can be reduced, the weight reduction of the stator 10 is possible.

実施の形態6.
図12〜14には、本発明のリニアモータの固定子を示す。このリニアモータの固定子10は、補磁極13は主磁極12よりも長い構成とし、磁石保持体14は、主磁極12に対して突出した複数の補磁極13の両端部を押さえつけて固定する構造であり、複数の補磁極13の両端部をほぼクランク形の断面形の共通の磁石保持体14でそれぞれ保持している。
Embodiment 6 FIG.
12-14 show the stator of the linear motor of the present invention. The stator 10 of this linear motor has a configuration in which the auxiliary magnetic pole 13 is longer than the main magnetic pole 12, and the magnet holder 14 is configured to press and fix both ends of the plurality of auxiliary magnetic poles 13 protruding from the main magnetic pole 12. The both end portions of the plurality of auxiliary magnetic poles 13 are respectively held by a common magnet holder 14 having a substantially crank-shaped cross section.

図13に示されているように、支持体11は図3に示されているものと同様の主磁極固定部18と、その間に形成された補磁極固定部17とを持ち、補磁極13が補磁極固定部17である溝内に配置されている。補磁極13のそれぞれは、主磁極12よりも長く、両端部が溝17から突出して、図示の例では支持体11の端縁にまで延びている。磁石保持体14を支持体11に固定するためのネジ穴16は、補磁極13の突出した端部の間に設けられている。   As shown in FIG. 13, the support 11 has a main magnetic pole fixing portion 18 similar to that shown in FIG. 3 and an auxiliary magnetic pole fixing portion 17 formed therebetween. The auxiliary magnetic pole fixing portion 17 is disposed in the groove. Each of the auxiliary magnetic poles 13 is longer than the main magnetic pole 12, and both end portions protrude from the groove 17 and extend to the edge of the support 11 in the illustrated example. A screw hole 16 for fixing the magnet holder 14 to the support 11 is provided between the protruding end portions of the auxiliary magnetic pole 13.

磁石保持体14は二本の棒状の部材である保持部材14c、14dで構成されており、それぞれの保持部材14c、14dは、補磁極13の突出端部を受け入れて保持するスロット14eを持っていて、保持部材14c、14dをネジ15で支持体11に固定したときに補磁極13の突出端部を保持することができる。   The magnet holder 14 is composed of two holding members 14c and 14d, which are rod-like members, and each holding member 14c and 14d has a slot 14e that receives and holds the protruding end of the auxiliary magnetic pole 13. Thus, when the holding members 14c and 14d are fixed to the support 11 with the screws 15, the protruding end portion of the auxiliary magnetic pole 13 can be held.

図13および図14により固定子10の組立手順を示す。まず図13では、磁石板である磁石支持体11に複数の補磁極13を配置し、補磁極13の両端を1組の磁石保持体14で固定する様子を示す。このとき、補磁極13は主磁極12よりも長い構成とし、主磁極12に対して補磁極13が突出している部分に対して磁石保持体14を押さえつけ、ネジ15により固定する。図14では、磁石保持体14にて補磁極13の支持体11への固定が完了したのちに、複数の主磁極12を補磁極13の間に固定する様子を示す。   FIG. 13 and FIG. 14 show the assembly procedure of the stator 10. First, FIG. 13 shows a state in which a plurality of auxiliary magnetic poles 13 are arranged on a magnet support 11 that is a magnet plate, and both ends of the auxiliary magnetic poles 13 are fixed by a pair of magnet holders 14. At this time, the auxiliary magnetic pole 13 is configured to be longer than the main magnetic pole 12, and the magnet holder 14 is pressed against the portion where the auxiliary magnetic pole 13 protrudes from the main magnetic pole 12, and is fixed by the screw 15. FIG. 14 shows a state where a plurality of main magnetic poles 12 are fixed between the auxiliary magnetic poles 13 after the auxiliary magnetic pole 13 is fixed to the support 11 by the magnet holder 14.

このように、磁石保持体14が固定子10の両端に配置される構成とすることにより、可動子20のコイル23と固定子10の距離が短縮されるため、コイル23からの熱が固定子10に流入しやすくなり可動子20の温度が低減できる。また、多数の補磁極13の一端部を単一の共通の保持部材14cあるいは14dによってそれぞれ保持できるので、部品点数が削減できる。   As described above, since the magnet holders 14 are arranged at both ends of the stator 10, the distance between the coil 23 of the mover 20 and the stator 10 is shortened, so that the heat from the coil 23 is transferred to the stator. The temperature of the movable element 20 can be reduced. Moreover, since one end part of many auxiliary magnetic poles 13 can each be hold | maintained by the single common holding member 14c or 14d, the number of parts can be reduced.

以上に図示して説明した通り、この発明のリニアモータは、主磁極と可動子の間には磁石押さえを不要とした構成としたため、磁束の漏れがなくなり、磁界が十分確保できるとともに組み立てやすい。   As illustrated and described above, the linear motor according to the present invention has a configuration in which a magnet presser is not required between the main magnetic pole and the mover. Therefore, there is no leakage of magnetic flux, a sufficient magnetic field can be secured, and the assembly is easy.

また以上に図示して説明したリニアモータは、単なる例であって様々な変形が可能であり、またそれぞれの具体例の特徴を全てあるいは選択的に組み合わせて用いることもできる。例えば、上の説明では、可動子の電機子コアにティースを設けたコア付きリニアモータの例を示したが、ティースがないスロットレスリニアモータでも、コアもティースも省略したコアレスリニアモータでもよい。また、磁石保持体14の高さを主磁極12よりも高くし、磁石の保護を行うことも可能である。ただし、この場合空隙長を変えないことが望ましいため、磁石保持体14と対向する可動子20のコイルエンド部をティース先端部に対して高くし、接触しないようにするとよい。また、図12〜14に示す磁石保持体14は、固定子10の長さに応じて複数に分割してもよい。さらに、磁石保持体14の支持体11に対する固定方法としてねじ以外のその他の固定方法を用いてもよい。   Further, the linear motor illustrated and described above is merely an example, and various modifications are possible, and the features of each specific example can be used altogether or selectively combined. For example, in the above description, an example of a linear motor with a core in which teeth are provided on the armature core of the mover has been shown. Further, the magnet holder 14 can be made higher than the main magnetic pole 12 to protect the magnet. However, in this case, since it is desirable not to change the gap length, the coil end portion of the mover 20 facing the magnet holder 14 should be made higher than the tooth tip portion so as not to contact. Moreover, you may divide | segment the magnet holding body 14 shown in FIGS. 12-14 into plurality according to the length of the stator 10. FIG. Further, as a method of fixing the magnet holder 14 to the support body 11, other fixing methods other than screws may be used.

この発明の実施の形態1におけるリニアモータを示す概略断面図である。It is a schematic sectional drawing which shows the linear motor in Embodiment 1 of this invention. 図1のリニアモータの固定子の概略斜視図である。It is a schematic perspective view of the stator of the linear motor of FIG. 図2のリニアモータの固定子の組立手順を示すための支持体の概略斜視図である。It is a schematic perspective view of the support body for showing the assembly procedure of the stator of the linear motor of FIG. 図2のリニアモータの固定子の組立手順を示すために図3の支持体に補磁極を配置し、磁石保持体を取り付ける前の状態を示す概略斜視図である。FIG. 4 is a schematic perspective view showing a state before an auxiliary pole is arranged on the support of FIG. 3 and a magnet holder is attached in order to show the assembly procedure of the stator of the linear motor of FIG. 2. 図2のリニアモータの固定子の組立手順を示すために図4の支持体に磁石保持体を取り付け、主磁極を取り付ける前の状態を示す概略斜視図である。FIG. 5 is a schematic perspective view showing a state before attaching a magnet holder to the support shown in FIG. 4 and attaching a main pole in order to show the assembly procedure of the stator of the linear motor shown in FIG. 2. この発明の実施の形態2における支持体に主磁極を近づける様子を示す断面図である。It is sectional drawing which shows a mode that a main pole is brought close to the support body in Embodiment 2 of this invention. この発明の実施の形態2における支持体と主磁極との距離xと磁気力Fの関係を説明するフラフである。It is a flow explaining the relationship between the distance x between the support and the main magnetic pole and the magnetic force F in Embodiment 2 of the present invention. この発明の実施の形態3における固定子の断面図である。It is sectional drawing of the stator in Embodiment 3 of this invention. この発明の実施の形態4における固定子の説明図である。It is explanatory drawing of the stator in Embodiment 4 of this invention. この発明の実施の形態4における固定子部品の説明図である。It is explanatory drawing of the stator components in Embodiment 4 of this invention. この発明の実施の形態5における固定子の概略斜視図である。It is a schematic perspective view of the stator in Embodiment 5 of this invention. この発明の実施の形態6における固定子の概略斜視図である。It is a schematic perspective view of the stator in Embodiment 6 of this invention. この発明の実施の形態6における支持体に補磁極を固定する様子を示す概略斜視図である。It is a schematic perspective view which shows a mode that a supplementary magnetic pole is fixed to the support body in Embodiment 6 of this invention. この発明の実施の形態6における支持体に主磁極を固定する様子を示す概略斜視図である。It is a schematic perspective view which shows a mode that the main pole is fixed to the support body in Embodiment 6 of this invention.

符号の説明Explanation of symbols

1 リニアモータ、10 固定子、11 支持体、12 主磁極、13 補磁極、14 磁石保持体、17 補磁極固定部(溝)、18 主磁極固定部、20 可動子、21 ティース、22 電機子コア、23 コイル、S 段差。   DESCRIPTION OF SYMBOLS 1 Linear motor, 10 Stator, 11 Support body, 12 Main magnetic pole, 13 Complementary magnetic pole, 14 Magnet holder, 17 Complementary magnetic pole fixing part (groove), 18 Main magnetic pole fixing part, 20 Movable element, 21 Teeth, 22 Armature Core, 23 coils, S steps.

Claims (8)

複数の主磁極および複数の補磁極を支持体上に交互に直線状にハルバッハ配列して構成した固定子と、上記固定子に対して直線的に駆動される可動子とを備えたリニアモータにおいて、
上記補磁極が上記支持体に設けた段差により形成される溝内に配置されていて、上記補磁極だけが磁石保持体により上記支持体に固定されていることを特徴とするリニアモータ。
In a linear motor comprising a stator having a plurality of main magnetic poles and a plurality of auxiliary magnetic poles alternately arranged on a support in a linear Halbach arrangement, and a mover linearly driven with respect to the stator ,
A linear motor, wherein the auxiliary magnetic pole is disposed in a groove formed by a step provided on the support, and only the auxiliary magnetic pole is fixed to the support by a magnet holder.
上記支持体が、上記支持体の主面に対して段差をもって高くされたアイランド部である主磁極固定部と、この主磁極固定部間に形成された上記溝である補磁極固定部とを備え、
上記主磁極が、上記補磁極間で上記主磁極固定部上に設けられていることを特徴とする請求項1に記載のリニアモータ。
The support includes a main magnetic pole fixing portion that is an island portion raised with a step with respect to the main surface of the support, and an auxiliary magnetic pole fixing portion that is the groove formed between the main magnetic pole fixing portions. ,
The linear motor according to claim 1, wherein the main magnetic pole is provided on the main magnetic pole fixing portion between the auxiliary magnetic poles.
上記段差の大きさが、上記主磁極と支持体の間に力が発生しないように設定してあることを特徴とする請求項1あるいは2に記載のリニアモータ。   The linear motor according to claim 1 or 2, wherein the step is set so that no force is generated between the main magnetic pole and the support. 上記段差の大きさが、上記主磁極と支持体の間に吸引力が発生するように設定してあることを特徴とする請求項1あるいは2に記載のリニアモータ。   3. The linear motor according to claim 1, wherein the step is set so that an attractive force is generated between the main magnetic pole and the support. 上記保持体の組立時の最大高さが主磁極の最大高さよりも高いことを特徴とする請求項1ないし4のいずれか1項に記載のリニアモータ。   5. The linear motor according to claim 1, wherein a maximum height of the holder when assembled is higher than a maximum height of the main magnetic pole. 上記補磁極固定部の幅をWa、補磁極の幅をWmag、磁石押さえ板の幅をwb、磁石押さえ板の内側長さをlb、主磁極固定部の長さをlaとした場合に、
Wa>Wmag
Wb>Wmag
la>lb
の関係を満たすことを特徴とする請求項2〜5のいずれか1項に記載のリニアモータ。
When the width of the auxiliary magnetic pole fixing portion is Wa, the width of the auxiliary magnetic pole is Wmag, the width of the magnet pressing plate is wb, the inner length of the magnet pressing plate is lb, and the length of the main magnetic pole fixing portion is la,
Wa> Wmag
Wb> Wmag
la> lb
The linear motor according to claim 2, wherein the relationship is satisfied.
上記保持体は補磁極の両端部を固定する構造であることを特徴とする請求項1〜6のいずれか1項に記載のリニアモータ。   The linear motor according to claim 1, wherein the holding body has a structure for fixing both end portions of the auxiliary magnetic pole. 上記補磁極は上記主磁極よりも長い構成とし、上記保持体は、上記主磁極に対して突出した複数の上記補磁極の両端部を押さえつけて固定する構造であることを特徴とする請求項1〜7のいずれか1項に記載のリニアモータ。   2. The auxiliary magnetic pole is configured to be longer than the main magnetic pole, and the holding body is configured to press and fix both ends of the plurality of auxiliary magnetic poles protruding with respect to the main magnetic pole. The linear motor of any one of -7.
JP2008305966A 2008-12-01 2008-12-01 Linear motor Expired - Fee Related JP5253114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008305966A JP5253114B2 (en) 2008-12-01 2008-12-01 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008305966A JP5253114B2 (en) 2008-12-01 2008-12-01 Linear motor

Publications (2)

Publication Number Publication Date
JP2010130871A true JP2010130871A (en) 2010-06-10
JP5253114B2 JP5253114B2 (en) 2013-07-31

Family

ID=42330826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008305966A Expired - Fee Related JP5253114B2 (en) 2008-12-01 2008-12-01 Linear motor

Country Status (1)

Country Link
JP (1) JP5253114B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205879A (en) * 2010-01-13 2011-10-13 Integrated Dynamics Engineering Gmbh Magnetic actor and method of mounting the same
JP2012228072A (en) * 2011-04-20 2012-11-15 Mitsubishi Electric Corp Permanent magnet type rotary electric apparatus and method for manufacturing the same
ES2406191R1 (en) * 2011-11-29 2013-09-27 Consorci Escola Ind De Barcelona SYNCHRONOUS LINEAR ELECTRIC MACHINE FOR PERMANENT MAGNETS
CN107612281A (en) * 2017-10-16 2018-01-19 三峡大学 One kind improves Halbach type magnetic gear devices
JP2018038112A (en) * 2016-08-29 2018-03-08 日本電産セイミツ株式会社 Vibration motor
CN108282060A (en) * 2018-04-02 2018-07-13 无锡星微科技有限公司 A kind of the magnet installation equipment and its installation method of linear motor
WO2019017495A1 (en) * 2017-07-21 2019-01-24 株式会社デンソー Dynamo-electric machine
JP2019024294A (en) * 2017-07-21 2019-02-14 株式会社デンソー Rotary electric machine
RU191798U1 (en) * 2019-04-15 2019-08-22 Валерий Петрович Бордыков LINEAR ELECTRIC MOTOR
JP2019152785A (en) * 2018-03-05 2019-09-12 キヤノン株式会社 Stage device and imaging device equipped with stage device
US20200395878A1 (en) 2017-12-28 2020-12-17 Denso Corporation Rotating electrical machine
US11110793B2 (en) 2017-12-28 2021-09-07 Denso Corporation Wheel driving apparatus
WO2022118761A1 (en) * 2020-12-01 2022-06-09 株式会社神戸製鋼所 Magnetic field generating device, and electric motor provided with same
US11368073B2 (en) 2017-12-28 2022-06-21 Denso Corporation Rotating electrical machine
WO2022196895A1 (en) * 2021-03-16 2022-09-22 가천대학교 산학협력단 Back-yokeless magnetic-bearing-integrated motor
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine
US11979063B2 (en) 2017-12-28 2024-05-07 Denso Corporation Rotating electric machine
US11984778B2 (en) 2020-03-05 2024-05-14 Denso Corporation Rotating electric machine
US12074477B2 (en) 2017-12-28 2024-08-27 Denso Corporation Rotating electrical machine system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320800A (en) * 1996-05-24 1997-12-12 Shin Etsu Chem Co Ltd Fixing method for magnet for insertion of light source
JPH1027699A (en) * 1996-07-10 1998-01-27 Shin Etsu Chem Co Ltd Periodic magnetic field generating device
JP2005348599A (en) * 2002-04-23 2005-12-15 Mitsubishi Electric Corp Linear motor
JP2006191093A (en) * 2004-12-29 2006-07-20 Asml Netherlands Bv Lithographic apparatus and actuator
JP2007014110A (en) * 2005-06-30 2007-01-18 Asmo Co Ltd Rotary electric machine
JP2007110822A (en) * 2005-10-13 2007-04-26 Yaskawa Electric Corp Periodic magnetic field generator, manufacturing method therefor, and linear motor using this periodic magnetic field generator
JP2010063201A (en) * 2008-09-01 2010-03-18 Mitsubishi Electric Corp Linear motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320800A (en) * 1996-05-24 1997-12-12 Shin Etsu Chem Co Ltd Fixing method for magnet for insertion of light source
JPH1027699A (en) * 1996-07-10 1998-01-27 Shin Etsu Chem Co Ltd Periodic magnetic field generating device
JP2005348599A (en) * 2002-04-23 2005-12-15 Mitsubishi Electric Corp Linear motor
JP2006191093A (en) * 2004-12-29 2006-07-20 Asml Netherlands Bv Lithographic apparatus and actuator
JP2007014110A (en) * 2005-06-30 2007-01-18 Asmo Co Ltd Rotary electric machine
JP2007110822A (en) * 2005-10-13 2007-04-26 Yaskawa Electric Corp Periodic magnetic field generator, manufacturing method therefor, and linear motor using this periodic magnetic field generator
JP2010063201A (en) * 2008-09-01 2010-03-18 Mitsubishi Electric Corp Linear motor

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205879A (en) * 2010-01-13 2011-10-13 Integrated Dynamics Engineering Gmbh Magnetic actor and method of mounting the same
JP2012228072A (en) * 2011-04-20 2012-11-15 Mitsubishi Electric Corp Permanent magnet type rotary electric apparatus and method for manufacturing the same
ES2406191R1 (en) * 2011-11-29 2013-09-27 Consorci Escola Ind De Barcelona SYNCHRONOUS LINEAR ELECTRIC MACHINE FOR PERMANENT MAGNETS
JP2018038112A (en) * 2016-08-29 2018-03-08 日本電産セイミツ株式会社 Vibration motor
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
CN113972806A (en) * 2017-07-21 2022-01-25 株式会社电装 Rotating electrical machine
US11962228B2 (en) 2017-07-21 2024-04-16 Denso Corporation Rotating electrical machine
JP2019024294A (en) * 2017-07-21 2019-02-14 株式会社デンソー Rotary electric machine
US11831228B2 (en) 2017-07-21 2023-11-28 Denso Corporation Rotating electrical machine
WO2019017495A1 (en) * 2017-07-21 2019-01-24 株式会社デンソー Dynamo-electric machine
US11824428B2 (en) 2017-07-21 2023-11-21 Denso Corporation Rotating electrical machine
US11984795B2 (en) 2017-07-21 2024-05-14 Denso Corporation Rotating electrical machine
CN113972806B (en) * 2017-07-21 2023-10-31 株式会社电装 Rotary electric machine
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11374465B2 (en) 2017-07-21 2022-06-28 Denso Corporation Rotating electrical machine
US11664707B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
CN107612281B (en) * 2017-10-16 2023-12-22 三峡大学 Improved Halbach type magnetic gear device
CN107612281A (en) * 2017-10-16 2018-01-19 三峡大学 One kind improves Halbach type magnetic gear devices
US11110793B2 (en) 2017-12-28 2021-09-07 Denso Corporation Wheel driving apparatus
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine
US11368073B2 (en) 2017-12-28 2022-06-21 Denso Corporation Rotating electrical machine
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
US11979063B2 (en) 2017-12-28 2024-05-07 Denso Corporation Rotating electric machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US20200395878A1 (en) 2017-12-28 2020-12-17 Denso Corporation Rotating electrical machine
US12074477B2 (en) 2017-12-28 2024-08-27 Denso Corporation Rotating electrical machine system
US12028004B2 (en) 2017-12-28 2024-07-02 Denso Corporation Rotating electrical machine
JP2019152785A (en) * 2018-03-05 2019-09-12 キヤノン株式会社 Stage device and imaging device equipped with stage device
JP7086646B2 (en) 2018-03-05 2022-06-20 キヤノン株式会社 A stage device, and an image pickup device and a lens device provided with the stage device.
CN108282060B (en) * 2018-04-02 2024-05-03 无锡星微科技有限公司 Magnet mounting equipment of linear motor and mounting method thereof
CN108282060A (en) * 2018-04-02 2018-07-13 无锡星微科技有限公司 A kind of the magnet installation equipment and its installation method of linear motor
RU191798U1 (en) * 2019-04-15 2019-08-22 Валерий Петрович Бордыков LINEAR ELECTRIC MOTOR
US11984778B2 (en) 2020-03-05 2024-05-14 Denso Corporation Rotating electric machine
WO2022118761A1 (en) * 2020-12-01 2022-06-09 株式会社神戸製鋼所 Magnetic field generating device, and electric motor provided with same
KR102627855B1 (en) * 2021-03-16 2024-01-23 가천대학교 산학협력단 Backyokeless moter integrated with magnetic bearing
KR20220129213A (en) * 2021-03-16 2022-09-23 가천대학교 산학협력단 Backyokeless moter integrated with magnetic bearing
WO2022196895A1 (en) * 2021-03-16 2022-09-22 가천대학교 산학협력단 Back-yokeless magnetic-bearing-integrated motor

Also Published As

Publication number Publication date
JP5253114B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5253114B2 (en) Linear motor
JP5294762B2 (en) Linear motor
JP6269895B2 (en) Linear motor
KR102178178B1 (en) Linear motor
JP5188357B2 (en) Linear motor
JP4458238B2 (en) Permanent magnet synchronous linear motor
TWI338431B (en)
EP1919063A1 (en) Flux-reversal linear motor
WO2011155022A1 (en) Linear motor
US8179001B2 (en) Linear motor armature and linear motor
US20110221283A1 (en) Mover, armature, and linear motor
JP2010141978A (en) Thrust generation mechanism
JP5300325B2 (en) Linear motor
JP2004364374A (en) Linear motor
WO2018174235A1 (en) Linear motor
KR102154569B1 (en) Linear motor
JP2011067030A (en) Field of linear motor, and linear motor with the same
JP2011155757A (en) Linear motor
JP6036221B2 (en) Linear motor
JPWO2018167970A1 (en) Linear motor
JP2015047002A (en) Armature of linear motor and linear motor
JP7505638B2 (en) Magnet arrangement method and rotor manufacturing method
JP2006054973A (en) Linear motor for machine tool
JP2007209175A (en) Three-phase linear motor
JP2006087180A (en) Permanent magnet type synchronous linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130416

R150 Certificate of patent or registration of utility model

Ref document number: 5253114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees