JP2010115657A - Binderless powder for surface hardening - Google Patents
Binderless powder for surface hardening Download PDFInfo
- Publication number
- JP2010115657A JP2010115657A JP2008282867A JP2008282867A JP2010115657A JP 2010115657 A JP2010115657 A JP 2010115657A JP 2008282867 A JP2008282867 A JP 2008282867A JP 2008282867 A JP2008282867 A JP 2008282867A JP 2010115657 A JP2010115657 A JP 2010115657A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- powder
- metal
- hardness
- hard
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 64
- 239000002245 particle Substances 0.000 claims abstract description 140
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 58
- 229910052751 metal Inorganic materials 0.000 claims abstract description 57
- 239000002184 metal Substances 0.000 claims abstract description 57
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 57
- 230000003647 oxidation Effects 0.000 claims abstract description 29
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 29
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 22
- 229910052742 iron Inorganic materials 0.000 claims abstract description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 12
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 7
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 7
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 239000002131 composite material Substances 0.000 claims description 11
- 238000009792 diffusion process Methods 0.000 claims description 10
- 239000006185 dispersion Substances 0.000 abstract description 4
- 150000001875 compounds Chemical class 0.000 abstract 2
- 239000010936 titanium Substances 0.000 description 57
- 239000011159 matrix material Substances 0.000 description 28
- 238000000034 method Methods 0.000 description 22
- 239000011230 binding agent Substances 0.000 description 14
- 238000012360 testing method Methods 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 10
- 230000035515 penetration Effects 0.000 description 10
- 238000003466 welding Methods 0.000 description 10
- 230000005484 gravity Effects 0.000 description 9
- 230000002175 menstrual effect Effects 0.000 description 6
- 239000011195 cermet Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 150000001247 metal acetylides Chemical group 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000007873 sieving Methods 0.000 description 4
- 238000001308 synthesis method Methods 0.000 description 4
- 239000011362 coarse particle Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000007751 thermal spraying Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910002593 Fe-Ti Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011361 granulated particle Substances 0.000 description 1
- 238000005552 hardfacing Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005551 mechanical alloying Methods 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Coating By Spraying Or Casting (AREA)
Abstract
Description
この発明は、例えば、肉盛、溶射等に好適な、優れた耐酸化性を備えるとともに高硬度・高分散性を有する、WとTiの複合炭化物粒子あるいはWとTiと副金属成分Mの複合炭化物粒子からなる表面硬装用バインダレス粉末に関するものである。 The present invention is, for example, a composite carbide particle of W and Ti or a composite of W, Ti, and sub-metal component M that has excellent oxidation resistance and has high hardness and high dispersibility suitable for overlaying, thermal spraying, etc. The present invention relates to a binderless powder for surface hard wearing made of carbide particles.
従来、炭化物粒子の製造法としては、
(イ)金属と炭素の金属浴中拡散による合成法(いわゆる、メンストラム法)、
(ロ)金属粉末と炭素粉末の固相・気相拡散による熱合成法、
(ハ)金属酸化物粉末と炭素粉末の還元炭化法、金属粉末の気相炭化法、
(ニ)金属ハロゲン化物と炭化水素の反応を利用した製法、
(ホ)メカニカルアロイング等、
種々の方法が知られている。
しかしながら、これらの炭化物粒子を、表面硬装用に用いようとした場合、硬質粉末粒子の粒径は数十μm以上、かつ、高密度であることが好ましいが、上記(ロ)〜(ホ)の製造法により得たものは微細粒子であるため、バインダ金属を添加して粉末冶金法による焼結をしなければならない。
例えば、特許文献1として示す従来技術においては、上記硬質粒子にCo、NiあるいはFe等のバインダ成分を添加混合し、所定粒径に造粒・焼結した粒子、あるいは、焼結・粉砕・整粒した粒子を、プラズマガスを利用したPTA(Plasma Transferred Arc)溶接で肉盛溶接することにより、母材表面に硬質粒子が分散分布する肉盛部を形成していた。
また、他の従来技術として、例えば、アーク熱で母材表面に形成した溶融池に、上記造粒複合粉末を添加することにより、肉盛部を形成することも行なわれていた。
ところで、上記の各従来技術においては、肉盛用粉末としては、WC、TiC等の硬質粒子にCo、Ni、Feからなるバインダ成分を加えた混合粉末を使用することが必要とされるとともに、形成された肉盛部においては、WC、TiC等の硬質粒子がその比重差(例えば、WCの比重は約15.7、一方、TiCの比重は約4.9)により肉盛時に沈み込みや浮き上がり現象を生じ、硬質粒子の均一分散が行なわれないため、肉盛部の組織、硬さ分布が不均一になりやすいという欠点があった。
また、ステンレス鋼等のマトリックス材を用いて肉盛を行ったような場合には、マトリックス材への硬質粒子の溶け込みが生じ肉盛部の硬質粒子含有割合が減少することにより、肉盛部全体としての硬さ上昇が十分でないという問題点があった。
(B) Synthesis method by diffusion of metal and carbon in metal bath (so-called menstral method)
(B) Thermal synthesis method by solid phase / vapor phase diffusion of metal powder and carbon powder,
(C) Reduction carbonization of metal oxide powder and carbon powder, vapor phase carbonization of metal powder,
(D) a production method utilizing a reaction between a metal halide and a hydrocarbon,
(E) Mechanical alloying, etc.
Various methods are known.
However, when these carbide particles are used for surface hardening, the particle diameter of the hard powder particles is preferably several tens of μm or more and high density, but the above (b) to (e) Since the product obtained by the manufacturing method is fine particles, it is necessary to add a binder metal and sinter by powder metallurgy.
For example, in the prior art shown as Patent Document 1, a binder component such as Co, Ni, or Fe is added to and mixed with the hard particles, and the particles are granulated and sintered to a predetermined particle size, or sintered, pulverized, and adjusted. By depositing the granulated particles by PTA (Plasma Transferred Arc) welding using plasma gas, a build-up portion in which hard particles are dispersed and distributed is formed on the surface of the base material.
Further, as another conventional technique, for example, a build-up portion has been formed by adding the granulated composite powder to a molten pool formed on the surface of a base material by arc heat.
By the way, in each of the above prior arts, as the overlaying powder, it is necessary to use a mixed powder obtained by adding a binder component made of Co, Ni, Fe to hard particles such as WC and TiC, In the built-up portion, hard particles such as WC and TiC are submerged during the build-up due to the difference in specific gravity (for example, the specific gravity of WC is about 15.7, while the specific gravity of TiC is about 4.9). Since the floating phenomenon occurs and the hard particles are not uniformly dispersed, there is a drawback that the structure and hardness distribution of the built-up portion are likely to be uneven.
In addition, when overlaying is performed using a matrix material such as stainless steel, the hard particles are dissolved into the matrix material and the hard particle content of the overlay is reduced, so that the entire overlay part As a result, there was a problem that the increase in hardness was not sufficient.
そこで、本発明は、表面硬装用の硬質粉末として、肉盛時に沈み込みや浮き上がりを生じることなく、また、マトリックス材への硬質粒子の溶け込み量が少なく、さらに、Co、Ni、Fe等のバインダ成分を用いる必要がない、優れた耐酸化性を備え、高硬度かつ硬質粒子が均一に分散する硬装肉盛を形成することができる表面硬装用バインダレス粉末を提供することを目的とするものである。 Accordingly, the present invention provides a hard powder for surface hard wearing that does not cause sinking or lifting during overlaying, has a small amount of hard particles to be dissolved in the matrix material, and further has a binder such as Co, Ni, or Fe. An object of the present invention is to provide a binderless powder for surface hard wearing, which does not require the use of ingredients, has excellent oxidation resistance, and can form a hard dressing with high hardness and uniform dispersion of hard particles. It is.
本発明者らは、前記課題を解決すべく、硬質粉末の種類とその製法の関連について、鋭意研究を行ない、以下の知見を得た。 In order to solve the above-mentioned problems, the present inventors have conducted intensive research on the relationship between the type of hard powder and its production method, and obtained the following knowledge.
表面硬装用粉末としてのWC粒子、TiC粒子あるいはNbC粒子それぞれ単独の粒子については、例えば、図1に示す概略工程からなる金属と炭素の金属浴中拡散による合成法(以下、メンストラム法と略称する。)等により従来から製造されてきており、これらを硬装用粉末として用いて肉盛した場合、所定の硬さの肉盛部が形成されることが知られている。 For the WC particles, TiC particles or NbC particles as the surface hardening powder, for example, a synthesis method by diffusion of metal and carbon in a metal bath consisting of the schematic steps shown in FIG. Etc.), and it has been known that, when these materials are built up as hard wearing powders, a built-up portion having a predetermined hardness is formed.
ところで、本発明者らは、WC粒子単独あるいはTiC粒子単独ではなく、WとTiの複合炭化物(以下、(W,Ti)Cで示す)粒子を、上記メンストラム法で製造したところ、硬装用粉末として極めて優れた特性を有する(W,Ti)C粒子が得られることを見出した。 By the way, when the present inventors manufactured composite carbide of W and Ti (hereinafter referred to as (W, Ti) C) particles, not WC particles alone or TiC particles alone, by the above-mentioned menstrual method, As a result, it was found that (W, Ti) C particles having extremely excellent characteristics can be obtained.
即ち、メンストラム法により得られた(W,Ti)C粒子は、その結晶構造が立方晶構造であって、ほぼ球状に近い形状を有するとともに、粗大な粒径(20〜200μm)を有する粒子であって、これを硬装用粉末として使用する場合にも、Co、Ni、Fe等のバインダ成分を添加混合する必要はなく、さらに、例えばPTA溶接によって形成した肉盛部には、(W,Ti)C粒子の沈み込みや浮き上がりが極めて少なく、また、ステンレス鋼等のマトリックス材への硬質成分の溶け込みも少ない。 That is, the (W, Ti) C particles obtained by the menstral method are particles having a cubic crystal structure, almost a spherical shape, and a coarse particle size (20 to 200 μm). Even when this is used as a powder for hard wearing, it is not necessary to add and mix binder components such as Co, Ni, Fe, etc. Further, for example, (W, Ti ) Subsidence and lifting of C particles are extremely low, and hard components are not so much dissolved in a matrix material such as stainless steel.
したがって、本発明(請求項1)の表面硬装用粉末によれば、バインダ成分の使用を不要とするばかりか、従来の肉盛部の特性と比較して、優れた耐酸化性を備えるとともに、肉盛部の硬質粒子が均一に分散する高硬度な硬装肉盛を得ることができる。 Therefore, according to the powder for surface hardening of the present invention (Claim 1), not only the use of a binder component is unnecessary, but also excellent oxidation resistance as compared with the characteristics of the conventional built-up part, It is possible to obtain a hardened built-up with high hardness in which hard particles in the built-up portion are uniformly dispersed.
また、本発明者らは、前記同様、WとTiとM(但し、Mは、Nb,Ta,Zr,Vからなる金属成分のいずれか1種または2種以上)の複合炭化物(以下、(W,Ti,M)Cで示す。なお、(W,Ti)Cおよび(W,Ti,M)Cの両者を総称して、(W,Ti(M))Cで示す)粒子について、メンストラム法により製造したところ、硬装用粉末として、前記(W,Ti)C粒子と比較してさらに一段と優れる特性を有する(W,Ti,M)C粒子が得られることを見出した。 Further, as described above, the present inventors also have a composite carbide of W, Ti, and M (wherein M is one or more of metal components composed of Nb, Ta, Zr, and V) (hereinafter referred to as ( W, Ti, M) C. It should be noted that both (W, Ti) C and (W, Ti, M) C are collectively referred to as (W, Ti (M)) C) for the particles. As a result of the production by the method, it was found that (W, Ti, M) C particles having characteristics more excellent than the (W, Ti) C particles can be obtained as the hard powder.
即ち、前記(W,Ti)C粒子の場合と同様、得られた(W,Ti,M)C粒子は、立方晶構造であって、ほぼ球形状かつ粗大粒径を有する粒子であり、これを硬装用粉末として使用する場合には、Co、Ni、Fe等のバインダ成分の添加混合は不要であり、また、肉盛部に、(W,Ti,M)C粒子の沈み込み、浮き上がりはなく、マトリックス材への溶け込みも少ないことを確認するとともに、さらに、副金属成分Mを、含有量合計で20重量%以下、好ましくは10〜20重量%、添加含有することによって以下のごとき優れた作用効果が奏されることも確認した。
副金属成分Mは、Nb,Ta,Zr,Vからなる金属成分のいずれか1種または2種以上からなるが、Nb成分あるいはTa成分はマトリックス成分との濡れ性改善、Zr成分あるいはV成分は高硬度化、マトリックスの強化という作用効果を奏し、(W,Ti,M)C粒子の靭性、硬度等をさらに向上させる。
That is, as in the case of the (W, Ti) C particles, the obtained (W, Ti, M) C particles have a cubic structure and are substantially spherical and have a coarse particle size. Is used as a hard powder, it is not necessary to add and mix binder components such as Co, Ni, Fe, etc., and (W, Ti, M) C particles sink into the build-up part In addition, it was confirmed that there was little penetration into the matrix material, and further, the secondary metal component M was added in a total amount of 20% by weight or less, preferably 10 to 20% by weight. It was also confirmed that the effect was achieved.
The sub-metal component M is composed of one or more of Nb, Ta, Zr, and V, but the Nb component or Ta component improves the wettability with the matrix component, and the Zr component or V component It has the effect of increasing the hardness and strengthening the matrix, and further improves the toughness, hardness and the like of the (W, Ti, M) C particles.
したがって、本発明(請求項2)の表面硬装用粉末によれば、バインダ成分の使用不要、肉盛部の良耐酸化性、高硬度、高分散に加え、靭性、硬度等の点で、より一段と優れた特性を有する硬装肉盛を形成することができるのである。 Therefore, according to the surface-hardening powder of the present invention (Claim 2), in addition to the use of a binder component, good oxidation resistance, high hardness, and high dispersion of the built-up portion, in terms of toughness, hardness, etc. It is possible to form a hardfacing with more excellent characteristics.
この発明は、上記知見に基づいてなされたものであって、
「(1) 金属と炭素の金属浴中拡散で合成されたWとTiを主要金属成分とする複合炭化物粒子からなり、Co、NiおよびFeからなる金属成分を含有量合計で3重量%以下に抑え、かつ、平均粒径が20〜200μmである、耐酸化性と高硬度・高分散性を有する表面硬装用バインダレス粒子粉末。
(2) 金属と炭素の金属浴中拡散で合成されたWとTiと副金属成分M(但し、Mは、Nb,Ta,Zr,Vからなる金属成分のいずれか1種または2種以上)を主要金属成分とする複合炭化物粒子からなり、Co、NiおよびFeからなる金属成分を含有量合計で3重量%以下に抑え、また、副金属成分Mを含有量合計で20重量%以下含有し、かつ、平均粒径が20〜200μmである、耐酸化性と高硬度・高分散性を有する表面硬装用バインダレス粒子粉末。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) Composed of composite carbide particles composed mainly of W and Ti synthesized by diffusion of metal and carbon in a metal bath, and the total content of metal components consisting of Co, Ni, and Fe is less than 3% by weight. A binderless particle powder for surface wear that has an oxidation resistance, high hardness, and high dispersibility, and has an average particle size of 20 to 200 μm.
(2) W, Ti synthesized by diffusion of metal and carbon in a metal bath, and sub-metal component M (where M is one or more metal components composed of Nb, Ta, Zr, V) Is composed of composite carbide particles containing as a main metal component, the metal component consisting of Co, Ni and Fe is suppressed to a total content of 3% by weight or less, and the sub metal component M is contained in a total content of 20% by weight or less. And the binderless particle | grain powder for surface hardening which has an oxidation resistance, high hardness, and high dispersibility whose average particle diameter is 20-200 micrometers. "
It has the characteristics.
以下に、本発明について、より具体的かつ詳細に説明する。 Hereinafter, the present invention will be described more specifically and in detail.
「金属と炭素の金属浴中拡散で合成された」とは、要するに、「金属浴中で炭化物を析出、酸処理により金属分を分解し余剰な炭素を選鉱により取り除き、目的とする炭化物を得る製法(メンストラム法)により得られた」という技術的意味であるが、メンストラム法による炭化物の製造を、まず説明すると次のとおりである。 In short, “synthesized by diffusion of metal and carbon in a metal bath” means that “carbide is precipitated in the metal bath, the metal content is decomposed by acid treatment, and excess carbon is removed by beneficiation to obtain the desired carbide. The technical meaning of “obtained by the production method (Mentrum method)” is as follows. First, the production of carbide by the Mestram method will be described.
図1に工程図を示すように、メンストラム法は、Fe−炭化物生成金属(またはFe+炭化物生成金属)+Cからなる原料を、2000℃以上の溶融金属浴(浴は、Feのほか、Mn,Co,Ni,Cu,Al等を含んでいてもよい)からなる熱処理炉中で炭化物を合成し、ついで、酸処理し、Feの他、目的物以外の炭化物を分解し、ついで、選鉱工程で水洗・篩分・比重選鉱を行って、高品位目的炭化物を得ると同時に不純物を分離除去し、その後さらに、乾燥・篩分を行って、所望の炭化物を得る製法である。 As shown in the process diagram of FIG. 1, the Mestram method uses a raw material composed of Fe—carbide-forming metal (or Fe + carbide-generating metal) + C and a molten metal bath at 2000 ° C. or higher (in addition to Fe, Mn, Co , Ni, Cu, Al, etc.) may be included in the heat treatment furnace, followed by acid treatment, decomposition of carbides other than the target product in addition to Fe, and then washing with water in the beneficiation process.・ Sieving and specific gravity separation to obtain high-quality target carbides, at the same time, impurities are separated and removed, followed by further drying and sieving to obtain a desired carbide.
本発明では、上記メンストラム法において、配合原料の種類・組成を種々変更し、各種の炭化物を製造したところ、WとTiを主要金属成分とし、重量比で、WC/TiC=60/40〜70/30の組成割合に相当する(W,Ti)C粒子、さらに、これに副金属成分M(但し、Mは、Nb,Ta,Zr,Vからなる金属成分のいずれか1種または2種以上)を含有量合計で20重量%以下(好ましくは、10〜20重量%)含有する(W,Ti,M)C粒子を得ることができた。 In the present invention, in the above-described menstral method, various types and compositions of blending raw materials were changed to produce various carbides. As a result, W and Ti were main metal components, and the weight ratio was WC / TiC = 60/40 to 70. (W, Ti) C particles corresponding to a composition ratio of / 30, and further, a sub-metal component M (where M is one or more of metal components composed of Nb, Ta, Zr, V) ) In a total content of 20 wt% or less (preferably 10 to 20 wt%), (W, Ti, M) C particles could be obtained.
上記メンストラム法で得られたこれらの炭化物粒子は、いずれも粒子形状がほぼ球状で、かつ、平均粒径は20〜200μmの粗大粒径を有していた。
そして、W,Ti,Mの配合割合によって多少の変化はあるものの、得られた上記(W,Ti(,M))C粒子の硬度(Hv)はほぼ2600、また、組成・配合による狙い比重の均一硬質粒子であるため、上記(W,Ti(,M))C粒子を表面硬装用粒子粉末として用いた場合に、肉盛部において硬質粒子の沈み込みや浮き上がりが生じることはなく、肉盛部全体にわたって均一な硬質粒子の分布が形成され、その結果、均一な硬度分布、均質な肉盛組織を有する肉盛部が形成される。
All of these carbide particles obtained by the above-mentioned menstrual method had a roughly spherical particle shape and an average particle diameter of 20 to 200 μm.
The hardness (Hv) of the obtained (W, Ti (, M)) C particles is approximately 2600, and the specific gravity is determined by the composition and blending, although there are some changes depending on the blending ratio of W, Ti, and M. Therefore, when the above (W, Ti (, M)) C particles are used as the surface hard wear particle powder, the hard particles are not submerged or lifted up in the built-up portion. A uniform hard particle distribution is formed over the entire built-up portion, and as a result, a built-up portion having a uniform hardness distribution and a uniform built-up structure is formed.
また、上記(W,Ti(,M))C粒子は、Co、Ni、Fe等のバインダ成分を添加混合しないで肉盛部を形成することができるため、Co、Ni、Fe等のバインダ成分を使用した従来の肉盛部に比して、バインダ使用による硬度低下はなく、より高硬度の肉盛部を形成し得る。なお、主として原料からの持ち込みにより、(W,Ti(,M))C粒子に微量のCo、Ni、Feが含有される場合があるが、その含有量合計が3重量%以下であれば、肉盛部特性への大きな影響はないことから、これらの金属成分は合計含有量が3重量%以下の範囲内で含有することが許容されるものの、その含有量が3重量%を超えるようになると、肉盛部における軟質成分(Co、Ni、Fe)の増加によって肉盛部の硬度低下が生じるようになることから、(W,Ti(,M))C粒子におけるCo、Ni、Feからなる金属成分の含有量は、合計量で3重量%以下(即ち、重量で、(Co+Ni+Fe)/(Co+Ni+Fe+W+Ti(+Nb+Ta+Zr+V))≦0.03)に抑えなければならない。 In addition, the (W, Ti (, M)) C particles can form a built-up portion without adding and mixing binder components such as Co, Ni, and Fe, so that binder components such as Co, Ni, and Fe are used. Compared to a conventional built-up portion using a binder, there is no decrease in hardness due to the use of a binder, and a built-up portion with higher hardness can be formed. In addition, a small amount of Co, Ni, Fe may be contained in (W, Ti (, M)) C particles mainly due to carry-in from the raw material, if the total content is 3 wt% or less, Since there is no significant effect on the build-up portion characteristics, these metal components are allowed to be contained within a total content of 3% by weight or less, but the content exceeds 3% by weight. Then, the increase in the soft component (Co, Ni, Fe) in the build-up part causes a decrease in the hardness of the build-up part, so that from the Co, Ni, Fe in the (W, Ti (, M)) C particles The total content of the metal components must be suppressed to 3% by weight or less (that is, (Co + Ni + Fe) / (Co + Ni + Fe + W + Ti (+ Nb + Ta + Zr + V)) ≦ 0.03).
さらに、上記(W,Ti(,M))C粒子は、ほぼ球状かつ大粒径の硬質粒子であるため、肉盛に際し、ステンレス鋼等のマトリックス材を使用した場合にも、マトリックス材への(W,Ti(,M))C粒子の溶け込みが少ないため、硬質成分の溶け込みによる硬度低下を生じることがなく、その結果、肉盛部全体にわたって、高硬度を維持することができる。
また、硬質成分の溶け込みが少ないということは、硬質成分の存在によって肉盛部のマトリックス硬度に大きな変化は生じないということであるから、使用するマトリックス材の硬度を適宜選択することにより、肉盛部のマトリックス硬度を所望硬度範囲内に、容易にかつ幅広く調整することが可能である。
Furthermore, since the (W, Ti (, M)) C particles are hard particles having a substantially spherical shape and a large particle size, when the matrix material such as stainless steel is used for overlaying, Since the (W, Ti (, M)) C particles are less soluble, the hardness is not lowered by the penetration of the hard component, and as a result, the high hardness can be maintained throughout the built-up portion.
In addition, the low penetration of the hard component means that there is no significant change in the matrix hardness of the built-up part due to the presence of the hard component. Therefore, by appropriately selecting the hardness of the matrix material to be used, It is possible to easily and widely adjust the matrix hardness of the part within the desired hardness range.
なお、メンストラム法以外の製法として、例えば、WC+TiCの固溶合成、W+Ti+C、W+酸化Ti+C、酸化W+酸化Ti+Cによる合成等もあるが、これらの方法で(W,Ti(,M))C粒子を製造したところ、いずれの方法によっても、本発明でいう20〜200μmの平均粒径の粗大かつ高密度な粒子を得ることはできなかった。あるいは、20〜200μmの粗大かつ高密度な粒子は、ほとんど形成されなかった。 In addition, as a production method other than the menstrual method, there are, for example, solid solution synthesis of WC + TiC, synthesis by W + Ti + C, W + oxidized Ti + C, oxidized W + oxidized Ti + C, and the like. As a result, it was not possible to obtain coarse and high-density particles having an average particle diameter of 20 to 200 μm according to the present invention by any method. Or the coarse and high-density particle | grains of 20-200 micrometers were hardly formed.
メンストラム法によって得た(W,Ti(,M))C粒子は、篩分けによって粒径を調整し、全粒子が平均粒径20μm以上の球状粒子となるように調製されるが、平均粒径が20μm未満では、マトリックス材への溶け込み量が増加し、肉盛部全体としての硬度低下をきたし、あるいは、肉盛部の硬度調整が困難になり、一方、平均粒径が200μmを超えると、肉盛部の充填率が低下(密度が低下)し脆化傾向を示すようになるので、(W,Ti(,M))C粒子の平均粒径は20〜200μmと定める。 The (W, Ti (, M)) C particles obtained by the menstrual method are adjusted so that the particle size is adjusted by sieving so that all particles become spherical particles having an average particle size of 20 μm or more. Is less than 20 μm, the amount of penetration into the matrix material is increased, the hardness of the built-up part as a whole is reduced, or the hardness of the built-up part is difficult to adjust, while the average particle size is more than 200 μm, Since the filling ratio of the built-up portion is reduced (density is reduced) and tends to become brittle, the average particle diameter of (W, Ti (, M)) C particles is determined to be 20 to 200 μm.
本発明の表面硬装用粒子粉末は、WとTi(と副金属成分M)を主要金属成分とする複合炭化物粒子からなり、Co、Ni、Feの含有量を低減した平均粒径が20〜200μmの、金属と炭素の金属浴中拡散で合成された(メンストラム法により製造した)耐酸化性と高硬度・高分散性を有する表面硬装用バインダレス粒子粉末であって、これを肉盛に使用した場合に、肉盛部はすぐれた耐酸化性を有し、また、肉盛部には、硬質粒子の浮き上がり、沈み込みを生じることはなく、硬質(W,Ti(,M))C粒子が均一分散しているため均質な肉盛組織を有し、さらに、Co、Ni、Feからなる金属成分をバインダとして使用していないので、粒子の硬度を高めることができ、さらにまた、硬質(W,Ti(,M))C粒子は、球状粗大粒子であってマトリックスに対する溶け込みが少ないことから高硬度を保持し、あるいは、マトリックス材を選択することにより、肉盛部のマトリックス硬さを容易に所望値に調整することができるので、肉盛、溶射等の表面硬装用に非常に好適な(W,Ti(,M))C粒子粉末であるといえる。 The surface-hardening particle powder of the present invention is composed of composite carbide particles containing W and Ti (and sub-metal component M) as main metal components, and has an average particle size of 20 to 200 μm with reduced contents of Co, Ni and Fe. This is a binderless particle powder for surface wear with oxidation resistance, high hardness and high dispersibility synthesized by diffusion of metal and carbon in a metal bath. In this case, the built-up part has excellent oxidation resistance, and the hard part does not float and sink, and the hard (W, Ti (, M)) C particles do not appear in the built-up part. Has a homogeneous build-up structure because it is uniformly dispersed, and further, since a metal component consisting of Co, Ni, and Fe is not used as a binder, the hardness of the particles can be increased, and further, hard ( W, Ti (, M)) C particles are spherical coarse Since it is a particle and has low penetration into the matrix, it retains high hardness, or by selecting a matrix material, it is possible to easily adjust the matrix hardness of the built-up part to a desired value. It can be said that the (W, Ti (, M)) C particle powder is very suitable for surface hard wearing such as thermal spraying.
以下に、本発明を実施例に基づいて詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.
本発明(請求項1)の実施例として、表1に示す(W,Ti)C粒子粉末をメンストラム法により製造した。
即ち、図2において、25wt%Fe−Ti合金(17kg)、W粉(23kg)および炭素粉(5kg)の割合で配合した原料を、直流通電加熱方式のアーク熱処理炉内に装入し、2000℃以上の溶融金属浴中で炭化物を合成し、ついで、80℃の塩酸で酸処理し、Feの他、目的物以外の炭化物を分解し、ついで、選鉱工程で水洗・篩分・比重選鉱を行って、不純物を分離除去し、その後さらに、乾燥・篩分を行って、平均粒径が20〜200μmのWC/TiC=60/40wt%に相当するタングステンとチタンの複合炭化物((W,Ti)C)粒子粉末を得た。
得られた(W,Ti)C粒子粉末(以下、本発明例1という)について測定した、平均粒径(μm)、硬度(Hv)、比重、耐酸化性(酸化開始温度。℃)およびCo、Ni、Feの合計含有量(wt%)の値を表1に示す。
なお、酸化開始温度(℃)は、示差熱天秤による大気中TG−DTA測定によって求めた。
As an example of the present invention (Claim 1), (W, Ti) C particle powder shown in Table 1 was produced by the Menstral method.
That is, in FIG. 2, raw materials blended at a ratio of 25 wt% Fe—Ti alloy (17 kg), W powder (23 kg) and carbon powder (5 kg) were charged into a direct current heating type arc heat treatment furnace. Carbide is synthesized in a molten metal bath at ℃ or higher, then acid-treated with hydrochloric acid at 80 ℃, decomposes carbides other than the target product in addition to Fe, and then washed with water, sifted, and specific gravity beneficiation in the beneficiation process The impurities are separated and removed, followed by further drying and sieving, and a composite carbide of tungsten and titanium corresponding to WC / TiC = 60/40 wt% with an average particle size of 20 to 200 μm ((W, Ti ) C) Particle powder was obtained.
The average particle diameter (μm), hardness (Hv), specific gravity, oxidation resistance (oxidation start temperature, ° C.) and Co measured for the obtained (W, Ti) C particle powder (hereinafter referred to as Invention Example 1). Table 1 shows the values of the total content (wt%) of Ni, Ni, and Fe.
The oxidation start temperature (° C.) was determined by measuring TG-DTA in air with a differential thermobalance.
比較のため、メンストラム法でNbC,WC,TiC,超硬,サーメットの粉末粒子についても製造し、その粒子粉末の平均粒径(μm)、硬度(Hv)、比重、耐酸化性(酸化開始温度。℃)およびCo、Ni、Feの合計含有量(wt%)を測定した。その値を、同じく表1に示す。 For comparison, NbC, WC, TiC, cemented carbide, and cermet powder particles were also produced by the Mestram method, and the average particle diameter (μm), hardness (Hv), specific gravity, and oxidation resistance (oxidation start temperature) of the particle powder. .Degree. C.) and the total content (wt%) of Co, Ni and Fe. The values are also shown in Table 1.
次に、本発明例1の(W,Ti)C粒子粉末を用いて、プラズマガスを利用したPTA(Plasma Transferred Arc)溶接で肉盛溶接することによりPTA肉盛試験を実施した。
表2に示す溶接条件で、図3に示す寸法・形状の溶接試験片をPTA肉盛溶接で作成した。
また、比較のため、メンストラム法で製造した前記NbC,WC,TiC,超硬,サーメットの各粒子粉末(比較例1〜5)についても、上記本発明例1と同一の条件でPTA肉盛試験を実施した。
Next, using the (W, Ti) C particle powder of Example 1 of the present invention, a PTA build-up test was performed by overlay welding using PTA (Plasma Transferred Arc) welding using plasma gas.
Under the welding conditions shown in Table 2, welding test pieces having dimensions and shapes shown in FIG. 3 were prepared by PTA overlay welding.
For comparison, the NbC, WC, TiC, cemented carbide, and cermet particle powders (Comparative Examples 1 to 5) manufactured by the menstral method are also subjected to the PTA overlay test under the same conditions as in the above-described Invention Example 1. Carried out.
本発明例1により形成された肉盛部の断面写真を図4(a)に、また、走査電子顕微鏡による観察された肉盛部の組織状態を図5(a)に示し、さらに、比較例1〜5により形成された肉盛部の断面写真をそれぞれ図4(b)〜(f)に、また、走査電子顕微鏡による観察された肉盛部の組織状態をそれぞれ図5(b)〜(f)に示す。 FIG. 4 (a) shows a cross-sectional photograph of the built-up portion formed according to Example 1 of the present invention, and FIG. 5 (a) shows the structural state of the built-up portion observed by a scanning electron microscope. 4 (b) to 4 (f) show cross-sectional photographs of the built-up portion formed by 1 to 5, respectively, and FIG. 5 (b) to (f) show the tissue state of the built-up portion observed by a scanning electron microscope, respectively. Shown in f).
まず、表1の本発明例1に見られる様に、本発明例1の(W,Ti)C粒子粉末は、硬度、酸化開始温度ともにTiC粉末に次いで高く、また、その比重は8.3と均一(当然のことながら)である。
そして、本発明例1の(W,Ti)C粒子粉末を、硬装用粉末として使用した場合、図4(a)に示されるように、浮き上がり、沈み込みを生じることはなく、肉盛部に硬質粒子が均一に分散する均一組織・高分散組織を有しており、また、図5(a)に占めされるように、マトリックス硬度は400〜600、粒子硬度は2500〜2800であって肉盛部は高硬度であり、かつ、耐酸化性に優れるものである。
First, as seen in Invention Example 1 in Table 1, the (W, Ti) C particle powder of Invention Example 1 has the second highest hardness and oxidation start temperature next to TiC powder, and its specific gravity is 8.3. And uniform (naturally).
And when the (W, Ti) C particle powder of Invention Example 1 is used as a powder for hard wearing, as shown in FIG. It has a uniform structure and a highly dispersed structure in which hard particles are uniformly dispersed, and as shown in FIG. 5 (a), the matrix hardness is 400 to 600, and the particle hardness is 2500 to 2800. The raised portion has high hardness and excellent oxidation resistance.
一方、表1に比較例3として示されるように、TiC粉末自体は硬度が2900Hv、また、酸化開始温度も840℃と非常に高く、硬度、耐酸化性ともに本発明の(W,Ti)C粒子粉末より優れており、また、図5(d)に示されるように、TiC粒子粉末を用いて、PTA肉盛溶接を行った肉盛部は、マトリックス硬度は300〜550、粒子硬度は2800〜3200であって、肉盛部は高硬度を有する。
しかし、図4(d)に示されるように、TiC粒子粉末を用いて形成した肉盛部には、硬質粒子の浮き上がり現象が生じており、肉盛部上方にはTiC硬質粒子が偏在し、母材近傍にはマトリックス材(SUS316L)が偏在しており、肉盛部全体にわたっての高分散組織・均一組織が得られていない。したがって、TiCを硬装用粒子粉末として用いた場合には、硬質成分の不均質分布により肉盛部硬さが不均一となり、信頼性のある肉盛部を得ることができない。
On the other hand, as shown in Table 1 as Comparative Example 3, the TiC powder itself has a very high hardness of 2900 Hv and an oxidation start temperature of 840 ° C., and both the hardness and the oxidation resistance are (W, Ti) C of the present invention. As shown in FIG. 5 (d), the build-up portion where PTA build-up welding was performed using TiC particle powder has a matrix hardness of 300 to 550 and a particle hardness of 2800. It is -3200, Comprising: The build-up part has high hardness.
However, as shown in FIG. 4 (d), in the built-up portion formed using the TiC particle powder, a hard particle lift phenomenon occurs, and the TiC hard particles are unevenly distributed above the built-up portion, A matrix material (SUS316L) is unevenly distributed in the vicinity of the base material, and a highly dispersed structure / uniform structure over the entire built-up portion is not obtained. Therefore, when TiC is used as a hard wearing particle powder, the build-up portion hardness becomes non-uniform due to the heterogeneous distribution of hard components, and a reliable build-up portion cannot be obtained.
また、その他の粒子粉末NbC,WC,超硬,サーメット(比較例1、2、4、5)については、表1に示されるとおり、本発明例1の(W,Ti)C粒子に比して、硬度、耐酸化性がいずれも劣るものであった。 Further, as shown in Table 1, the other particle powders NbC, WC, carbide, cermet (Comparative Examples 1, 2, 4, 5) are compared with the (W, Ti) C particles of Example 1 of the present invention. Both hardness and oxidation resistance were inferior.
さらに、その他の粒子粉末を用いてPTA溶接によって肉盛部を形成した場合、例えば、NbC粒子粉末の場合には、図4(b)に示されるように、肉盛部における硬質粒子の均一分散は図れるものの、図5(b)にも示されるように、肉盛部のマトリックス硬度、粒子硬度ともに低く、また、耐酸化性も低い(表1において、酸化開始温度は580℃)ため、硬装用粒子粉末としては満足できる特性を有するとはいえない。
WC粒子粉末の場合には、図4(c)に示されるように、肉盛部において硬質粒子の偏析が生じるため、不均一肉盛組織を呈し、また、図5(c)に示されるように、粒子硬度が低い一方で、硬質粒子の溶け込みによりマトリックス硬度が上昇しているが、肉盛部全体としての硬さが不足し、また、耐酸化性も低いため、硬装用粒子粉末としては満足できる特性を有するものではない。
超硬粒子粉末の場合には、図4(e)に示されるように、肉盛部においてほとんどの超硬粒子がマトリックスに溶け込んで(溶融して)おり、また、図5(e)に示されるように、超硬粒子の溶け込みによりマトリックス硬度は上昇するものの、肉盛部全体としての硬さが不足し、また、耐酸化性も低いため、硬装用粒子粉末として満足できるものではない。
サーメット粒子粉末の場合には、図4(f)に示されるように、肉盛部においてほとんどのサーメット粒子がマトリックスに溶け込んで(溶融して)おり、また、図5(f)に示されるように、肉盛部全体としての硬さが不足するため、硬装用粒子粉末として満足できるものではない。
Furthermore, when the build-up portion is formed by PTA welding using other particle powder, for example, in the case of NbC particle powder, as shown in FIG. 4B, uniform dispersion of hard particles in the build-up portion However, as shown in FIG. 5 (b), the matrix hardness and particle hardness of the built-up portion are low, and the oxidation resistance is low (in Table 1, the oxidation start temperature is 580 ° C.). It cannot be said that it has satisfactory characteristics as a wearing particle powder.
In the case of the WC particle powder, as shown in FIG. 4 (c), segregation of hard particles occurs in the built-up portion, so that a non-uniform build-up structure is exhibited, and as shown in FIG. 5 (c). In addition, while the particle hardness is low, the matrix hardness is increased due to the penetration of the hard particles, but the hardness of the built-up part as a whole is insufficient, and the oxidation resistance is also low. It does not have satisfactory characteristics.
In the case of the super hard particle powder, as shown in FIG. 4 (e), most of the super hard particles are dissolved (melted) in the built-up portion, and as shown in FIG. 5 (e). As described above, although the hardness of the matrix increases due to the penetration of the super hard particles, the hardness of the entire built-up portion is insufficient and the oxidation resistance is low, so that it is not satisfactory as a powder for hard wearing particles.
In the case of the cermet particle powder, as shown in FIG. 4 (f), most of the cermet particles are dissolved (melted) in the built-up portion, and as shown in FIG. 5 (f). In addition, since the hardness of the built-up part as a whole is insufficient, it is not satisfactory as a powder for hard wearing.
上記PTA試験の結果を踏まえ、硬質粒子硬度、耐酸化性、肉盛部における硬質粒子の残留量(溶け込みやすさに反比例)、分散性(肉盛部における硬質粒子の均一分布)、マトリックスの硬度の観点から、表面硬装用粒子粉末としての適正総合評価を行うと、表3のとおりとなる。
表3によれば、本発明(請求項1)の(W,Ti)C粉末は、粒子自体の硬度が高く、マトリックスへの溶け込みも少なく、肉盛部内での分散性も高く、耐酸化性にも優れるため、表面硬装用粒子粉末として好適であることがわかる。
Based on the results of the PTA test, hard particle hardness, oxidation resistance, residual amount of hard particles in the overlay (inversely proportional to penetration), dispersibility (uniform distribution of hard particles in the overlay), matrix hardness From the point of view, Table 3 shows the appropriate comprehensive evaluation as the particle powder for surface hard wearing.
According to Table 3, the (W, Ti) C powder of the present invention (Claim 1) has high hardness of the particles themselves, little penetration into the matrix, high dispersibility in the built-up portion, and oxidation resistance. Therefore, it can be seen that it is suitable as a particle powder for surface hard wearing.
次に、本発明(請求項2)の実施例として、表4に示される原料を用い、副金属成分Mとして、Nb,Ta,Zr,Vからなる金属成分のいずれか1種または2種以上含有する(W,Ti,M)C粒子粉末を、図2に示すメンストラム法により製造した。
得られた(W,Ti,M)C粒子粉末(本発明例2〜6という)について測定した特性値等を表5に示す。
また、上記本発明例2〜6の(W,Ti,M)C粒子粉末を用い、実施例1と同一条件(表2に示す溶接条件、図3に示す寸法・形状の溶接試験片)でPTA肉盛試験を実施した。
実施例1と同様に、粒子硬度、マトリックス硬度を測定するとともに、肉盛部の硬質粒子の残留量、分散性を、肉盛部の断面観察、組織観察により調査した。その結果を、表6に示す。
Next, as an example of the present invention (Claim 2), the raw materials shown in Table 4 are used, and the sub-metal component M is any one or more of metal components composed of Nb, Ta, Zr, and V. The contained (W, Ti, M) C particle powder was produced by the menstrual method shown in FIG.
Table 5 shows the characteristic values measured for the obtained (W, Ti, M) C particle powder (referred to as Invention Examples 2 to 6).
In addition, using the (W, Ti, M) C particle powders of Invention Examples 2 to 6, the same conditions as in Example 1 (welding conditions shown in Table 2, welding test pieces having dimensions and shapes shown in FIG. 3). A PTA overlay test was conducted.
Similar to Example 1, the particle hardness and matrix hardness were measured, and the residual amount and dispersibility of the hard particles in the built-up part were investigated by cross-sectional observation and structure observation of the built-up part. The results are shown in Table 6.
以上、表3、表6、図4、図5に示される結果から、本発明の(W,Ti)C粒子粉末あるいは(W,Ti,M)C粒子粉末は、これを肉盛に使用した場合に、肉盛部はすぐれた耐酸化性を有し、また、肉盛部には、硬質粒子の浮き上がり、沈み込みを生じることはなく、硬質粒子が均一分散しているため均質な肉盛組織が形成され、さらに、肉盛する際に、Co、Ni、Feからなる金属成分をバインダとして使用する必要がないので、肉盛部の硬度を高めることができ、さらにまた、硬質粒子は、球状粗大粒子であってマトリックスに対する溶け込みが少ないことから高硬度を保持し、あるいは、マトリックス材を選択することにより、肉盛部のマトリックス硬さを容易に所望値に調整することができるので、肉盛、溶射等の表面硬装用粒子粉末として好適な粒子粉末であるといえる。 As described above, from the results shown in Table 3, Table 6, FIG. 4, and FIG. 5, the (W, Ti) C particle powder or (W, Ti, M) C particle powder of the present invention was used for overlaying. In this case, the built-up portion has excellent oxidation resistance, and the built-up portion does not cause hard particles to rise or sink, and the hard particles are uniformly dispersed. When the structure is formed, and when building up, it is not necessary to use a metal component consisting of Co, Ni, Fe as a binder, the hardness of the built-up part can be increased. Spherical coarse particles that have low penetration into the matrix, maintain high hardness, or by selecting a matrix material, the matrix hardness of the built-up part can be easily adjusted to a desired value, For surface wear such as deposition and thermal spraying Said to be preferred particles as a child powder.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008282867A JP5207922B2 (en) | 2008-11-04 | 2008-11-04 | Binderless powder for surface hardening |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008282867A JP5207922B2 (en) | 2008-11-04 | 2008-11-04 | Binderless powder for surface hardening |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010115657A true JP2010115657A (en) | 2010-05-27 |
JP5207922B2 JP5207922B2 (en) | 2013-06-12 |
Family
ID=42303638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008282867A Active JP5207922B2 (en) | 2008-11-04 | 2008-11-04 | Binderless powder for surface hardening |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5207922B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012096971A (en) * | 2010-11-04 | 2012-05-24 | Japan Fine Ceramics Center | Method for manufacturing superfine and homogeneous titanium-based carbonitride solid solution powder |
WO2018173719A1 (en) * | 2017-03-23 | 2018-09-27 | Kyb株式会社 | Method for manufacturing sliding member, and sliding member |
WO2022109685A1 (en) * | 2020-11-30 | 2022-06-02 | Weir Minerals Australia Ltd | Complex materials |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS602647A (en) * | 1983-06-20 | 1985-01-08 | Mitsubishi Metal Corp | Tungsten carbide-base sintered hard alloy for cutting tool |
JPH0732189A (en) * | 1993-07-14 | 1995-02-03 | Kobe Steel Ltd | Composite power material for powder plasma welding |
JP2004142993A (en) * | 2002-10-24 | 2004-05-20 | Toshiba Tungaloy Co Ltd | Hexagonal composite carbide, and production method therefor |
JP2007045670A (en) * | 2005-08-10 | 2007-02-22 | Hyogo Prefecture | Manufacturing method of metal carbide |
-
2008
- 2008-11-04 JP JP2008282867A patent/JP5207922B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS602647A (en) * | 1983-06-20 | 1985-01-08 | Mitsubishi Metal Corp | Tungsten carbide-base sintered hard alloy for cutting tool |
JPH0732189A (en) * | 1993-07-14 | 1995-02-03 | Kobe Steel Ltd | Composite power material for powder plasma welding |
JP2004142993A (en) * | 2002-10-24 | 2004-05-20 | Toshiba Tungaloy Co Ltd | Hexagonal composite carbide, and production method therefor |
JP2007045670A (en) * | 2005-08-10 | 2007-02-22 | Hyogo Prefecture | Manufacturing method of metal carbide |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012096971A (en) * | 2010-11-04 | 2012-05-24 | Japan Fine Ceramics Center | Method for manufacturing superfine and homogeneous titanium-based carbonitride solid solution powder |
WO2018173719A1 (en) * | 2017-03-23 | 2018-09-27 | Kyb株式会社 | Method for manufacturing sliding member, and sliding member |
JP2018159113A (en) * | 2017-03-23 | 2018-10-11 | Kyb株式会社 | Sliding member and manufacturing method of sliding member |
WO2022109685A1 (en) * | 2020-11-30 | 2022-06-02 | Weir Minerals Australia Ltd | Complex materials |
Also Published As
Publication number | Publication date |
---|---|
JP5207922B2 (en) | 2013-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4969008B2 (en) | Powder mixtures and composite powders, methods for their production and their use in composite materials | |
EP3577242B1 (en) | Method of making a double-structured bimodal tungsten cemented carbide composite material | |
US7810587B2 (en) | Drill bits comprising dual-phase tungsten carbide material | |
JP6227517B2 (en) | Cemented carbide | |
Li et al. | Influence of NbC and VC on microstructures and mechanical properties of WC–Co functionally graded cemented carbides | |
Aramian et al. | A review on the microstructure and properties of TiC and Ti (C, N) based cermets | |
JP5703272B2 (en) | Abrasion resistant material | |
JP6011946B2 (en) | Nickel-based intermetallic compound composite sintered material and method for producing the same | |
JP2009024214A (en) | Hard metal and manufacturing method therefor | |
JP5207922B2 (en) | Binderless powder for surface hardening | |
JP6259978B2 (en) | Ni-based intermetallic compound sintered body and method for producing the same | |
KR20070027516A (en) | Hardfacing ferroalloy materials | |
Xia et al. | Influence of WC particle content of Fe-based powder-cored wire on microstructure and properties of plasma cladding reinforced layers | |
JP2018150194A (en) | Hard sintered body | |
Nakonechnyi et al. | WC-based Cemented Carbides with Nanostructured NiFeCrWMo High-Entropy Alloy Binder | |
JP5618364B2 (en) | Method for producing ultrafine and homogeneous titanium carbonitride solid solution powder | |
JP3605740B2 (en) | Carbide alloy for end mill | |
JPS63286549A (en) | Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation | |
JP2021080542A (en) | Sintered material and method for producing the same | |
Razumov et al. | Synthesis and properties of high-entropy CoCrFeNiMnWx alloys | |
JPH1053823A (en) | Manufacture of tungsten carbide-base cemented carbide with high strength | |
JPH10130748A (en) | Production of alloy excellent in corrosion and wear resistance and material for producing alloy | |
CN114406287B (en) | High-density nano precipitated phase in-situ reinforced material | |
JP2019077930A (en) | Hard phase dispersed nickel group intermetallic compound composite sintered material, manufacturing method therefor, and corrosion resistant abrasion resistant component using the material | |
JPS634618B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110630 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121005 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130219 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160301 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5207922 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |