[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010112714A - Ultraviolet ray measuring device and method of measuring ultraviolet ray - Google Patents

Ultraviolet ray measuring device and method of measuring ultraviolet ray Download PDF

Info

Publication number
JP2010112714A
JP2010112714A JP2008282811A JP2008282811A JP2010112714A JP 2010112714 A JP2010112714 A JP 2010112714A JP 2008282811 A JP2008282811 A JP 2008282811A JP 2008282811 A JP2008282811 A JP 2008282811A JP 2010112714 A JP2010112714 A JP 2010112714A
Authority
JP
Japan
Prior art keywords
ultraviolet
ultraviolet ray
sensor element
value
illuminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008282811A
Other languages
Japanese (ja)
Inventor
Takeshi Kurihara
健 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2008282811A priority Critical patent/JP2010112714A/en
Publication of JP2010112714A publication Critical patent/JP2010112714A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve an ultraviolet ray measuring device measuring an accurate dosage of ultraviolet rays even under various kinds of conditions. <P>SOLUTION: In a casing 100 in a rectangular parallelepiped shape having a prescribed thickness, an opening 101 is formed, and a UV sensor element 10 and an illuminance sensor element 20 are installed in a region opened by the opening 101. A control section 300 of a signal processing circuit determines whether ultraviolet rays at a threshold level enabling measurement of ultraviolet rays are being applied to a surface at the side of a wave reception surface of the casing 100, based on the level (determination value) of an illuminance detection voltage signal based on the output of the illuminance sensor element 20. The control section 300 measures the dosage of ultraviolet rays, based on a UV detection voltage signal from the UV sensor element 101 when the determination value reaches the threshold enabling measurement of ultraviolet rays. More specifically, it is grasped whether environment is such that ultraviolet rays can be observed according to the illuminance, and the dosage of ultraviolet rays is measured by the UV sensor element when it is determined that the environment is such that ultraviolet rays can be observed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、紫外線照射量を測定する紫外線測定装置および紫外線測定方法に関するものである。   The present invention relates to an ultraviolet ray measuring apparatus and an ultraviolet ray measuring method for measuring an ultraviolet ray irradiation amount.

従来、紫外線(UV)照射量を測定する各種の紫外線測定装置が考案されている。ここで、紫外線照射量を正確に測定するためには、紫外線を感知するUVセンサ素子の受波面が紫外線の照射方向に対してできる限り垂直に近づくように、紫外線測定装置を設置しなければならない。また、このような測定の制限があることから、経時的に紫外線照射量を測定する場合には、太陽の位置の移動に応じて受波面を回転等させる必要がある。   Conventionally, various ultraviolet measuring devices for measuring ultraviolet (UV) irradiation have been devised. Here, in order to accurately measure the amount of ultraviolet irradiation, it is necessary to install an ultraviolet measuring device so that the wave receiving surface of the UV sensor element that detects ultraviolet rays is as close as possible to the irradiation direction of the ultraviolet rays. . In addition, due to such measurement limitations, when measuring the amount of ultraviolet irradiation over time, it is necessary to rotate the wave receiving surface according to the movement of the sun position.

そこで、特許文献1に記載の紫外線測定装置では、固定台に対して回転可能に軸支された支持台を備え、当該支持台の上板上にUVセンサ素子を固定設置している。そして、この上板上にUVセンサ素子の受波面に対して垂直に伸びる形状からなる杆状体を設置し、当該杆状体が上板表面につくる陰に基づいて、支持台を回転させることで、UVセンサ素子の受波面を紫外線(太陽光)の照射方向へ向けるようにしている。
特開2000−121430号公報
Therefore, the ultraviolet ray measuring apparatus described in Patent Document 1 includes a support base that is rotatably supported with respect to a fixed base, and a UV sensor element is fixedly installed on the upper plate of the support base. Then, a bowl-shaped body having a shape extending perpendicularly to the wave receiving surface of the UV sensor element is installed on the upper plate, and the support base is rotated based on the shade that the bowl-shaped body creates on the upper plate surface. Thus, the wave receiving surface of the UV sensor element is directed in the direction of ultraviolet (sunlight) irradiation.
JP 2000-121430 A

しかしながら、特許文献1に記載の紫外線測定装置では、固定台、支持台、支持台の上板に設置された杆状体のように構成要素が多くなるとともに機構が複雑になってしまう。また、紫外線は照射されているが、可視光によって決まる陰が見えなかったり極端に見えにくい状況下では、正確にUVセンサ素子の受波面を合わせ込むことができなかった。このため、正確に受波面を合わせ込めていない状況のままで測定を行っていることもあり、正確な紫外線照射量を測定することが難しくなってしまう。   However, in the ultraviolet ray measuring apparatus described in Patent Document 1, the number of components is increased and the mechanism is complicated, such as a fixed base, a support base, and a bowl-shaped body installed on the upper plate of the support base. Moreover, although the ultraviolet rays were irradiated, the receiving surface of the UV sensor element could not be accurately adjusted under the situation where the shade determined by visible light was not visible or extremely difficult to see. For this reason, the measurement may be performed in a state where the wave receiving surface is not accurately aligned, and it becomes difficult to measure an accurate amount of ultraviolet irradiation.

この発明の目的は、各種の条件下であっても、正確な紫外線照射量を測定することができる紫外線測定装置を実現することにある。   An object of the present invention is to realize an ultraviolet ray measuring apparatus capable of measuring an accurate ultraviolet ray irradiation amount even under various conditions.

この発明の紫外線測定装置は、筐体に紫外線センサ素子と照度センサ素子とが、所定の位置関係で配置される。紫外線センサ素子は、紫外線に感応し、該紫外線の受波量に応じた信号を出力する。照度センサ素子は、紫外線を含む光の照度に応じた信号を出力する。紫外線量測定手段は、照度センサ素子の出力信号レベルに基づいて紫外線測定のための判断値を取得する。紫外線量測定手段は、この判断値が紫外線測定可能閾値に達したことを検出すると、紫外線センサ素子からの出力信号に基づいた紫外線照射量を測定値として出力する。   In the ultraviolet ray measuring apparatus of the present invention, the ultraviolet ray sensor element and the illuminance sensor element are arranged in a predetermined positional relationship in the housing. The ultraviolet sensor element is sensitive to ultraviolet rays and outputs a signal corresponding to the received amount of the ultraviolet rays. The illuminance sensor element outputs a signal corresponding to the illuminance of light including ultraviolet rays. The ultraviolet ray amount measuring means acquires a judgment value for ultraviolet ray measurement based on the output signal level of the illuminance sensor element. When the ultraviolet ray amount measuring means detects that this judgment value has reached the ultraviolet ray measurable threshold value, it outputs the ultraviolet ray irradiation amount based on the output signal from the ultraviolet ray sensor element as the measurement value.

この構成では、紫外線を含む光の照度を照度センサ素子により測定して、紫外線照射量の測定の判断値として利用している。そして、当該判断値に基づいて紫外線照射測定が可能なレベルであるかどうかの閾値が紫外線測定可能閾値として予め設定されており、当該紫外線測定可能閾値を超えなければ、紫外線センサ素子の出力信号を用いず、当該紫外線測定可能閾値を超えた場合にのみ紫外線センサ素子の出力信号を用いた紫外線照射量の測定値が出力される。この際、紫外線測定可能閾値を超えた時点で紫外線センサ素子で紫外線照射量の測定を行うようにしても良いし、照度センサ素子による測定とともに紫外線センサ素子による測定を行って測定値を記憶しておき、紫外線測定可能閾値を超えた場合に、紫外線測定可能閾値を超えた時点に対応して記憶した測定値を出力するようにしても良い。   In this configuration, the illuminance of light including ultraviolet rays is measured by the illuminance sensor element and used as a judgment value for measuring the amount of ultraviolet irradiation. Based on the determination value, a threshold value indicating whether the ultraviolet irradiation measurement is possible is set in advance as an ultraviolet ray measurable threshold value. If the ultraviolet ray measurable threshold value is not exceeded, an output signal of the ultraviolet sensor element is output. Only when the UV measurable threshold is exceeded, a measured value of the UV irradiation amount using the output signal of the UV sensor element is output. At this time, the ultraviolet ray irradiation amount may be measured by the ultraviolet ray sensor element when the ultraviolet ray measurable threshold is exceeded, or the measurement value is memorized by performing the measurement by the ultraviolet ray sensor element together with the measurement by the illuminance sensor element. Alternatively, when the ultraviolet ray measurable threshold value is exceeded, the stored measurement value corresponding to the time point when the ultraviolet ray measurable threshold value is exceeded may be output.

また、この発明の紫外線測定装置は、筐体を回転させる回転手段をさらに備える。紫外線量測定手段は、回転手段を回転させながら判断値を順次取得し、最大値となる判断値が紫外線測定可能閾値に達していれば、該最大値となる判断値に基づいた紫外線照射量を測定値として出力する。   Moreover, the ultraviolet ray measuring apparatus according to the present invention further includes a rotating means for rotating the casing. The ultraviolet ray amount measuring means sequentially obtains the judgment value while rotating the rotating means. If the judgment value that is the maximum value reaches the ultraviolet ray measurable threshold, the ultraviolet ray irradiation amount based on the judgment value that is the maximum value is obtained. Output as measured value.

この構成では、回転手段によりUVセンサ素子および照度センサ素子の受波面が回転すると、この回転に応じて各センサ素子の受波面と紫外線照射方向との関係が変化して、照度センサ素子で得られる判断値も変化する。これを利用し、受波面と紫外線照射方向とが最適な測定が可能な方向関係に近づいた時点の判断値、すなわち回転に応じて順次取得した判断値の最大値を、紫外線測定が可能かどうかの判断に用いる。これにより、常時最適な判断値を用いて紫外線照射量の測定を行うことができる。   In this configuration, when the wave receiving surfaces of the UV sensor element and the illuminance sensor element are rotated by the rotating means, the relationship between the wave receiving surface of each sensor element and the ultraviolet irradiation direction changes according to the rotation, and the illuminance sensor element can obtain the illuminance sensor element. The judgment value also changes. Whether or not UV measurement is possible using the judgment value at the time when the wave receiving surface and the UV irradiation direction are close to the directional relationship that enables optimal measurement, that is, the maximum judgment value obtained sequentially according to the rotation. Used for judgment. Thereby, it is possible to measure the amount of ultraviolet irradiation using the optimum judgment value at all times.

また、この発明の紫外線測定装置は、紫外線センサ素子は複数からなる。これら複数の紫外線センサ素子は筐体に対して、受波面の方向がそれぞれに異なるように設置されている。   Further, the ultraviolet ray measuring apparatus of the present invention comprises a plurality of ultraviolet ray sensor elements. The plurality of ultraviolet sensor elements are installed with respect to the housing such that the directions of the wave receiving surfaces are different from each other.

この構成では、受波面が異なる複数の紫外線センサ素子を用いることで、筐体に対して複数の角度から紫外線照射量を測定することができる。これにより、回転機構を備えなくても適当な紫外線照射量を測定できたり、回転機構による回転量を少なくしても最適な測定状態で紫外線照射量を測定することができる。   In this configuration, by using a plurality of ultraviolet sensor elements having different wave receiving surfaces, it is possible to measure the amount of ultraviolet irradiation from a plurality of angles with respect to the housing. As a result, an appropriate ultraviolet irradiation amount can be measured without a rotating mechanism, or the ultraviolet irradiation amount can be measured in an optimum measurement state even if the rotating amount by the rotating mechanism is reduced.

また、この発明の紫外線測定装置は、複数の紫外線センサ素子のそれぞれに対して一対の関係となるように、照度センサ素子が複数設置されている。そして、一対の関係となる照度センサ素子と紫外線センサ素子とは互いの受波面の方向が略一致するように設置されている。   In the ultraviolet ray measuring apparatus according to the present invention, a plurality of illuminance sensor elements are installed so as to have a paired relationship with each of the plurality of ultraviolet sensor elements. The pair of illuminance sensor elements and ultraviolet sensor elements are installed such that the directions of the wave receiving surfaces thereof substantially coincide with each other.

この構成では、紫外線センサ素子毎に照度センサ素子が設けられているので、紫外線照射量とともに、筐体に対して複数の角度から照度(判断値)を測定することができる。このため、回転機構を備えなくても判断値の測定ができたり、回転機構による回転量を少なくしても判断値を測定することができる。これにより、筐体を回転させることなく、もしくは回転量を少なくしても、最適な判断値の選択および紫外線照射量測定が可能であるかの判定を行うことができる。さらに、紫外線照射量測定に最適な判断値の選択および紫外線照射量測定が可能であるかの判定を素早く行うことができる。   In this configuration, since the illuminance sensor element is provided for each ultraviolet sensor element, it is possible to measure the illuminance (judgment value) from a plurality of angles with respect to the housing together with the ultraviolet irradiation amount. For this reason, the determination value can be measured without a rotation mechanism, or the determination value can be measured even if the amount of rotation by the rotation mechanism is reduced. Thereby, it is possible to determine whether or not the optimum judgment value can be selected and the ultraviolet ray irradiation amount can be measured without rotating the casing or reducing the rotation amount. In addition, it is possible to quickly select the optimum judgment value for the ultraviolet irradiation amount measurement and determine whether the ultraviolet irradiation amount measurement is possible.

また、この発明の紫外線測定方法は、閾値設定工程、判断値取得工程、測定判断工程、および紫外線量測定工程を有する。閾値設定工程は、照度センサ素子の出力信号に基づいて紫外線照射量の測定が可能かどうかを判定するための紫外線測定可能閾値を設定する。判断値取得工程は、照度センサ素子の出力信号レベルに基づいて紫外線照射量測定のための判断値を取得する。測定判断工程は、この判断値が紫外線測定可能閾値に達したかどうかを判断する。紫外線量測定工程は、判断値が紫外線測定可能閾値に達したことを検出した時点で、紫外線センサ素子からの出力信号に基づいた紫外線照射量を測定値として出力する。   The ultraviolet ray measuring method of the present invention includes a threshold setting step, a judgment value acquisition step, a measurement judgment step, and an ultraviolet ray amount measurement step. In the threshold value setting step, an ultraviolet ray measurable threshold value is set for determining whether the ultraviolet ray irradiation amount can be measured based on the output signal of the illuminance sensor element. The determination value acquisition step acquires a determination value for measuring the amount of ultraviolet irradiation based on the output signal level of the illuminance sensor element. In the measurement judgment step, it is judged whether or not the judgment value has reached the ultraviolet ray measurable threshold. In the ultraviolet ray amount measuring step, when it is detected that the judgment value has reached the ultraviolet ray measurable threshold value, the ultraviolet ray irradiation amount based on the output signal from the ultraviolet sensor element is output as the measurement value.

この方法では、照度センサ素子の出力信号に基づく判断値が紫外線測定可能閾値に達していなければ紫外線センサ素子からの出力信号を採用せず、紫外線測定可能閾値に達していれば紫外線センサ素子の出力信号を採用して、紫外線照射量を測定する。これにより、紫外線が紫外線センサ素子へ確実に照射されている場合にのみ測定が行われ、紫外線照射量を正確に測定することができる。   In this method, if the judgment value based on the output signal of the illuminance sensor element does not reach the UV measurable threshold, the output signal from the UV sensor element is not adopted, and if it reaches the UV measurable threshold, the output of the ultraviolet sensor element The signal is used to measure the amount of UV irradiation. Thereby, the measurement is performed only when the ultraviolet ray sensor element is reliably irradiated with the ultraviolet ray, and the ultraviolet ray irradiation amount can be accurately measured.

また、この発明の紫外線測定方法は、さらに、回転角別判断値取得工程と最大判断値検出工程とを有する。回転角別判断値取得工程は、判断値を照度センサ素子の受波方向を回転させながら順次取得する。最大判断値検出工程は、この回転させながら取得した複数の判断値の最大値を検出する。そして、判断値取得工程は、この最大値となる判断値を、紫外線測定可能閾値による判断に利用する。   The ultraviolet ray measuring method of the present invention further includes a determination value acquisition step for each rotation angle and a maximum determination value detection step. The determination value acquisition step for each rotation angle sequentially acquires the determination value while rotating the receiving direction of the illuminance sensor element. The maximum judgment value detection step detects the maximum value of a plurality of judgment values acquired while rotating. Then, in the determination value acquisition step, the maximum determination value is used for determination based on the ultraviolet ray measurable threshold.

この方法では、筐体の回転により最適な測定の方向が得られるので、紫外線照射量を正確に測定することができる。   In this method, since the optimum measurement direction can be obtained by rotating the housing, the ultraviolet irradiation amount can be accurately measured.

この発明によれば、紫外線測定装置の配置状況に影響されることなく、正確な紫外線照射量を容易に測定することができる。   According to the present invention, it is possible to easily measure an accurate ultraviolet ray irradiation amount without being affected by the arrangement state of the ultraviolet ray measuring apparatus.

本発明の第1の実施形態に係る紫外線測定装置について図を参照して説明する。
図1は、本実施形態の紫外線測定装置の主要構成を示す図であり、(A)は受波面側から見た平面図、(B)は側面断面図、(C)は回路ブロック図である。
また、図2は、本実施形態の紫外線測定装置を用いた紫外線測定方法を説明するためのフローチャートである。
An ultraviolet ray measuring apparatus according to a first embodiment of the present invention will be described with reference to the drawings.
1A and 1B are diagrams showing a main configuration of an ultraviolet ray measuring apparatus according to the present embodiment, in which FIG. 1A is a plan view viewed from a wave receiving surface side, FIG. 1B is a side sectional view, and FIG. 1C is a circuit block diagram. .
FIG. 2 is a flowchart for explaining an ultraviolet ray measuring method using the ultraviolet ray measuring apparatus of this embodiment.

紫外線測定装置1は、機構的には、図1(A)、図1(B)に示すように、所定開口面積からなる開口部101が形成された筐体100を有する。筐体100は、例えば所定の厚み(図1における縦方向の長さ)からなる内部空間を有する直方体形状からなる。   As shown in FIGS. 1A and 1B, the ultraviolet ray measuring apparatus 1 has a housing 100 in which an opening 101 having a predetermined opening area is formed. The casing 100 has a rectangular parallelepiped shape having an internal space having a predetermined thickness (length in the vertical direction in FIG. 1), for example.

筐体100の内部には、平板状の誘電体基板に回路電極パターンを形成してなる信号処理回路基板30が設置されている。この信号処理回路基板30の開口部101側の表面には、UVセンサ素子10と照度センサ素子20とが実装されている。これらUVセンサ素子10と照度センサ素子20とは、受波面が平行になるとともに近接して設置されている。また、信号処理回路基板30の開口部101側の表面には、信号処理用IC40が実装されている。また、信号処理回路基板30の開口部101と反対の表面には、二次電池とこれを収納するホルダ部材とからなるバッテリ50が設置されている。なお、信号処理回路IC40およびバッテリ50の設置位置は、図1に示す例に限らず、設計仕様に応じて適宜設定すればよい。   A signal processing circuit board 30 formed by forming a circuit electrode pattern on a flat dielectric substrate is installed inside the housing 100. The UV sensor element 10 and the illuminance sensor element 20 are mounted on the surface of the signal processing circuit board 30 on the opening 101 side. The UV sensor element 10 and the illuminance sensor element 20 are disposed close to each other with the wave receiving surfaces parallel to each other. A signal processing IC 40 is mounted on the surface of the signal processing circuit board 30 on the opening 101 side. A battery 50 including a secondary battery and a holder member for storing the secondary battery is installed on the surface of the signal processing circuit board 30 opposite to the opening 101. The installation positions of the signal processing circuit IC 40 and the battery 50 are not limited to the example shown in FIG. 1, and may be set as appropriate according to design specifications.

筐体100の開口部101には、カバー部材110が設置されている。当該カバー部材100は、例えば紫外線のみを透過する材質からなる。   A cover member 110 is installed in the opening 101 of the housing 100. The cover member 100 is made of a material that transmits only ultraviolet rays, for example.

このような紫外線測定装置1は、電気回路的には、図1(C)に示す構成からなる。すなわち、UVセンサ素子10および照度センサ素子20は、信号処理回路基板30および信号処理用IC40により実現される信号処理回路に接続する。信号処理回路は、マイコン等からなる制御部300と、UV用電圧検出回路301、照度用電圧検出回路302、およびメモリ303を備える。また、バッテリ50は、UVセンサ素子10、照度センサ素子20、および信号処理回路に接続し、これらの回路構成要素に対して電力を供給する。   Such an ultraviolet ray measuring apparatus 1 has a configuration shown in FIG. That is, the UV sensor element 10 and the illuminance sensor element 20 are connected to a signal processing circuit realized by the signal processing circuit board 30 and the signal processing IC 40. The signal processing circuit includes a control unit 300 including a microcomputer, a UV voltage detection circuit 301, an illuminance voltage detection circuit 302, and a memory 303. The battery 50 is connected to the UV sensor element 10, the illuminance sensor element 20, and the signal processing circuit, and supplies power to these circuit components.

UVセンサ素子10とUV用電圧検出回路301は、バッテリ50からの電力供給により、UVセンサ素子10が検出した紫外線受波量(照射量)に応じたUV検知電圧信号を出力する。照度センサ素子20と照度用電圧検出回路302は、バッテリ50からの電力供給により、照度センサ素子20が検出した照度に応じた照度検知電圧信号を出力する。制御部300は、照度検知電圧信号のレベルを取得し、予め設定した紫外線測定可能閾値に達しているかどうかを判定する。制御部300は、照度検知電圧信号のレベルが紫外線測定可能閾値に達していれば、UV検知電圧信号のレベルを取得して、後段の回路に出力したり、メモリ300に記憶する。この際、図示しないが表示部等を備えていれば、当該表示部へUV検知電圧信号のレベルに応じた表示を行っても良い。なお、制御部300は、照度検知電圧信号のレベルが紫外線測定可能閾値に達していなければUV検知電圧信号のレベルを行わないか測定結果を破棄し、表示部を備えていれば有効な紫外線測定結果が得られていないことを示す表示を行う。   The UV sensor element 10 and the UV voltage detection circuit 301 output a UV detection voltage signal corresponding to the amount of received ultraviolet rays (irradiation amount) detected by the UV sensor element 10 by supplying power from the battery 50. The illuminance sensor element 20 and the illuminance voltage detection circuit 302 output an illuminance detection voltage signal corresponding to the illuminance detected by the illuminance sensor element 20 by supplying power from the battery 50. The control unit 300 acquires the level of the illuminance detection voltage signal and determines whether or not a preset ultraviolet ray measurable threshold value has been reached. If the level of the illuminance detection voltage signal has reached the ultraviolet ray measurable threshold, the control unit 300 acquires the level of the UV detection voltage signal and outputs it to a subsequent circuit or stores it in the memory 300. At this time, although not shown, if a display unit or the like is provided, display corresponding to the level of the UV detection voltage signal may be performed on the display unit. If the level of the illuminance detection voltage signal does not reach the ultraviolet ray measurable threshold, the control unit 300 discards the measurement result whether or not the level of the UV detection voltage signal is performed, and effective ultraviolet measurement if the display unit is provided. A display indicating that the result is not obtained is performed.

このような構成の紫外線測定装置1は図2に示すフローにより紫外線照射量を測定する。   The ultraviolet ray measuring apparatus 1 having such a configuration measures the ultraviolet ray irradiation amount according to the flow shown in FIG.

まず、制御部300は、照度センサ素子20により得られる照度をパラメータとして、UVセンサ素子10によって検出される紫外線照射量が利用可能な程度のレベルであるかの判断基準を決定する(S101)。例えば、UVセンサ素子10および照度センサ素子20の受波面が水平になるように紫外線測定装置1を設置し、受波面に対する紫外線を含む光の照射角を変化させながら、通常検出可能な最低レベルで一定レベルの光を照射する。そして紫外線の照射方向が受波面に直交する場合を基準として、UVセンサ素子10が仕様上紫外線照射量を正確に検出できる範囲での照度検知電圧信号の最低値を取得する。   First, the control unit 300 determines a criterion for determining whether or not the UV irradiation amount detected by the UV sensor element 10 is at a usable level using the illuminance obtained by the illuminance sensor element 20 as a parameter (S101). For example, the ultraviolet ray measuring device 1 is installed so that the wave receiving surfaces of the UV sensor element 10 and the illuminance sensor element 20 are horizontal, and the irradiation angle of light including ultraviolet rays with respect to the wave receiving surface is changed, and at the lowest level that can be normally detected. Irradiate a certain level of light. Then, based on the case where the irradiation direction of the ultraviolet rays is orthogonal to the wave receiving surface, the minimum value of the illuminance detection voltage signal in the range in which the UV sensor element 10 can accurately detect the ultraviolet irradiation amount by specifications is acquired.

制御部300は、この値を紫外線測定可能閾値として記憶しておく。なお、この紫外線測定可能閾値は、日付や時刻毎や緯度毎等によって個別に設定してもよく、日付、時刻や緯度を取得する機能部を備えておくことで、これらのパラメータに応じて紫外線測定可能閾値を変更してもよい。   The controller 300 stores this value as an ultraviolet ray measurable threshold. Note that this ultraviolet ray measurable threshold value may be individually set for each date, time, latitude, etc., and by providing a function unit for acquiring the date, time, latitude, the ultraviolet ray can be set according to these parameters. The measurable threshold may be changed.

制御部300は、照度検知電圧信号のレベル(以下、「判断値」と称する。)を取得し(S102)、当該判断値と紫外線測定可能閾値とを比較する(S103)。   The control unit 300 acquires the level of the illuminance detection voltage signal (hereinafter referred to as “determination value”) (S102), and compares the determination value with the ultraviolet ray measurable threshold (S103).

制御部300は、判断値が紫外線測定可能閾値に達していなければ、紫外線照射量の測定を行わず、再度、判断値である照度検知電圧信号のレベルの取得処理を行う(S103:No→S102)。   If the determination value does not reach the ultraviolet ray measurable threshold value, the control unit 300 does not measure the ultraviolet ray irradiation amount, and again performs the process of acquiring the level of the illuminance detection voltage signal that is the determination value (S103: No → S102). ).

一方、制御部300は、判断値が紫外線測定可能閾値に達していれば、UV検知電圧信号のレベルを取得して、紫外線照射量の測定を行う(S103:Yes→S104)。なお、この際、UVセンサ素子10は、照度センサ素子20とともに順次UV検知電圧信号のレベルを測定して記憶しておき、制御部300は、判断値が紫外線測定可能閾値に達した時点で、当該時点に対応する、記憶されているUV検知電圧信号のレベルを測定値として出力しても良い。   On the other hand, if the determination value has reached the ultraviolet ray measurable threshold, the control unit 300 acquires the level of the UV detection voltage signal and measures the ultraviolet ray irradiation amount (S103: Yes → S104). At this time, the UV sensor element 10 sequentially measures and stores the level of the UV detection voltage signal together with the illuminance sensor element 20, and the control unit 300, when the judgment value reaches the ultraviolet ray measurable threshold, The level of the stored UV detection voltage signal corresponding to the time point may be output as a measurement value.

このような構成および測定方法を用いることにより、紫外線が確実に照射されている状態、すなわち十分に観測対象となり得る状態の時にのみ紫外線照射量を測定することができる。これにより、測定環境が不十分な状態での測定値を含まず、正確な紫外線照射量の測定を行うことができる。   By using such a configuration and measurement method, it is possible to measure the ultraviolet irradiation amount only in a state where the ultraviolet rays are reliably irradiated, that is, in a state where the ultraviolet rays can be sufficiently observed. Thereby, the measurement value in the state where measurement environment is inadequate is not included, and an accurate ultraviolet irradiation amount measurement can be performed.

次に、第2の実施形態にかかる紫外線測定装置について図を参照して説明する。   Next, an ultraviolet ray measuring apparatus according to the second embodiment will be described with reference to the drawings.

図3は、本実施形態の紫外線測定装置2の主要構成を示す図であり、(A)は外観斜視図であり、(B)は回路ブロック図である。
また、図4は、本実施形態の紫外線測定装置2を用いた紫外線測定方法を説明するためのフローチャートである。
3A and 3B are diagrams showing the main configuration of the ultraviolet ray measuring apparatus 2 according to the present embodiment. FIG. 3A is an external perspective view, and FIG. 3B is a circuit block diagram.
FIG. 4 is a flowchart for explaining an ultraviolet ray measuring method using the ultraviolet ray measuring apparatus 2 of the present embodiment.

本実施形態に示す紫外線測定装置2は、第1の実施形態(図1)に示した紫外線測定装置1に対して、筐体100を支持する支持軸102および台103が設置されたものである。支持軸102は、棒体からなり、軸方向の一方端に筐体100が接続され、他方端に台103が接続されている。この際、支持軸102は、筐体100に対しては側壁面に接続し、台103に対しては一主面に接続する。この構成により、紫外線測定装置2は、筐体100のUVセンサ素子10および照度センサ素子20の受波面が鉛直方向に沿うように、立てた状態で設置することができる。   The ultraviolet ray measuring apparatus 2 shown in the present embodiment is provided with a support shaft 102 and a base 103 that support the housing 100 with respect to the ultraviolet ray measuring apparatus 1 shown in the first embodiment (FIG. 1). . The support shaft 102 is composed of a rod, and the housing 100 is connected to one end in the axial direction, and the base 103 is connected to the other end. At this time, the support shaft 102 is connected to the side wall surface of the housing 100 and is connected to one main surface of the base 103. With this configuration, the ultraviolet ray measuring apparatus 2 can be installed in an upright state so that the wave receiving surfaces of the UV sensor element 10 and the illuminance sensor element 20 of the housing 100 are along the vertical direction.

さらに、筐体100には図3(B)に示すようにモータ60が配設されるとともに、筐体100と支持軸102とは、互いに噛合するギアが設置されている。モータ60で発生する動力は、ギアに伝達され、筐体100は、前記受波面が鉛直方向に沿ったままで、支持軸102に対して回動する。この構成により、紫外線測定装置2は、水平面の全周方向からの紫外線およびこれを含む光を受波することができる。   Further, the housing 100 is provided with a motor 60 as shown in FIG. 3B, and the housing 100 and the support shaft 102 are provided with gears that mesh with each other. The power generated by the motor 60 is transmitted to the gear, and the housing 100 rotates with respect to the support shaft 102 while the wave receiving surface remains along the vertical direction. With this configuration, the ultraviolet ray measuring device 2 can receive ultraviolet rays and light including the ultraviolet rays from the entire circumferential direction of the horizontal plane.

このような構成の紫外線測定装置2は図4に示すフローにより紫外線照射量を測定する。   The ultraviolet ray measuring apparatus 2 having such a configuration measures the ultraviolet ray irradiation amount according to the flow shown in FIG.

まず、制御部300は、第1の実施形態と同様に、照度センサ素子20により得られる照度をパラメータとして、UVセンサ素子10によって観測される紫外線照射量が利用可能な程度のレベルであるかの判断基準を決定する(S201)。   First, as in the first embodiment, the control unit 300 uses the illuminance obtained by the illuminance sensor element 20 as a parameter and determines whether the ultraviolet irradiation amount observed by the UV sensor element 10 is at a usable level. Determination criteria are determined (S201).

制御部300は、筐体100が所定の角速度で回転するように回転制御する(S202)。   The control unit 300 controls rotation so that the housing 100 rotates at a predetermined angular velocity (S202).

制御部300は、筐体100の回転中の所定タイミング毎に、照度検知電圧信号のレベル(以下、「判断値」と称する。)を取得して、各タイミングでの回転角度も記憶する(S203)。この処理は、筐体100が一回転するまで行われる。これにより、回転角度毎の判断値を全周方向で得ることができる。   The control unit 300 acquires the level of the illuminance detection voltage signal (hereinafter referred to as “judgment value”) at each predetermined timing during the rotation of the housing 100, and also stores the rotation angle at each timing (S203). ). This process is performed until the housing 100 rotates once. Thereby, the judgment value for each rotation angle can be obtained in the entire circumferential direction.

制御部300は、一回転中の複数の判断値を比較して、最大値となる判断値(以下、「最大判断値」と称する。)を取得する(S204)。この際、制御部300は、当該最大判断値に対応する回転角度も取得する。   The control unit 300 compares a plurality of determination values during one rotation, and acquires a determination value that is the maximum value (hereinafter referred to as “maximum determination value”) (S204). At this time, the control unit 300 also acquires a rotation angle corresponding to the maximum determination value.

制御部300は、判断値が紫外線測定可能閾値に達していなければ、紫外線照射量の測定を行わず、再度、筐体100を回転させながらの判断値の取得処理を行う(S205:No→S202)
一方、制御部300は、最大判断値が紫外線測定可能閾値に達していれば、UV検知電圧信号のレベルを取得して、紫外線照射量の測定を行う(S205:Yes→S206)。この際、制御部300は、最大判断値となる回転角度になるように筐体100を回転させて、固定する。これにより、当該測定の時点で最適な方向に受波面が向くので、より正確な紫外線照射量を測定することができる。
If the determination value does not reach the ultraviolet ray measurable threshold value, the control unit 300 does not measure the ultraviolet ray irradiation amount and performs the determination value acquisition process while rotating the housing 100 again (S205: No → S202). )
On the other hand, if the maximum judgment value has reached the ultraviolet ray measurable threshold, the control unit 300 acquires the level of the UV detection voltage signal and measures the ultraviolet ray irradiation amount (S205: Yes → S206). At this time, the control unit 300 rotates and fixes the housing 100 so that the rotation angle becomes the maximum judgment value. As a result, the wave receiving surface is oriented in an optimum direction at the time of the measurement, so that a more accurate ultraviolet irradiation amount can be measured.

このような構成および測定方法を用いることにより、測定を実行する時点および状況において最適な測定環境で紫外線照射量を測定することができる。これにより、さらに正確な紫外線照射量の測定を行うことができる。   By using such a configuration and measurement method, it is possible to measure the ultraviolet irradiation amount in an optimum measurement environment at the time and situation when the measurement is performed. Thereby, a more accurate measurement of the amount of ultraviolet irradiation can be performed.

なお、上述の第2の実施形態の説明では、最大判断値となる回転角度が決定してから、最適な方向へ受波面を向けて紫外線照射量の測定を行う例を示したが、予め各回転角度におけるUV検知電圧信号のレベルを測定して記憶しておき、最大判断値となる各回転角度が決定した時点で、当該回転角度に対応する予め記憶されていたUV検知電圧信号のレベルを測定値として出力するようにしても良い。   In the description of the second embodiment described above, the example in which the ultraviolet irradiation amount is measured by directing the wave receiving surface in the optimum direction after the rotation angle that is the maximum judgment value is determined has been described. The level of the UV detection voltage signal at the rotation angle is measured and stored, and when each rotation angle that is the maximum judgment value is determined, the level of the UV detection voltage signal stored in advance corresponding to the rotation angle is determined. You may make it output as a measured value.

また、上述の第2の実施形態の説明では、受波面が水平方向を向きながら、筐体100が水平面上で回転する例を示したが、図5に示すように、鉛直面上で半周回転するようにしてもよい。
図5は、別の構造からなる本実施形態の紫外線測定装置2’の主要構成を示す外観斜視図である。
図5に示すように、紫外線測定装置2’は図3に示した紫外線測定装置2に対して、略立方体形状からなる筐体100’の回転方向が鉛直面上となるように駆動するものである。このような構成とすることで、紫外線測定装置2’を水平面上に設置した場合に、当該設置位置の水平面から天頂方向側の半円の内で、最適な方向を受波面の向く方向とすることができる。このような構成であっても、回転によって最適な方向に受波面を向けて紫外線照射量を測定することができる。
In the above description of the second embodiment, an example in which the casing 100 rotates on a horizontal plane while the wave receiving surface faces in the horizontal direction is shown. However, as shown in FIG. You may make it do.
FIG. 5 is an external perspective view showing a main configuration of the ultraviolet ray measuring apparatus 2 ′ of the present embodiment having another structure.
As shown in FIG. 5, the ultraviolet ray measuring device 2 ′ is driven with respect to the ultraviolet ray measuring device 2 shown in FIG. 3 so that the rotation direction of the substantially cubic housing 100 ′ is on the vertical plane. is there. With such a configuration, when the ultraviolet ray measuring device 2 ′ is installed on a horizontal plane, the optimum direction is the direction in which the wave receiving surface faces in the semicircle on the zenith direction side from the horizontal plane at the installation position. be able to. Even with such a configuration, it is possible to measure the amount of ultraviolet irradiation by turning the wave receiving surface in an optimum direction by rotation.

次に、第3の実施形態に係る紫外線測定装置について図を参照して説明する。
図6は、本実施形態の紫外線測定装置3の主要構成を示す図である。
本実施形態の紫外線測定装置3は、第2の実施形態における図3で示した紫外線測定装置2に対して、筐体200が略立方体形状からなり、軸支される面に対して垂直な四つの側壁にそれぞれUVセンサ素子と照度センサ素子とが一対になって設置されたものである。
Next, an ultraviolet ray measuring apparatus according to a third embodiment will be described with reference to the drawings.
FIG. 6 is a diagram showing a main configuration of the ultraviolet ray measuring apparatus 3 of the present embodiment.
The ultraviolet ray measuring apparatus 3 according to the present embodiment is similar to the ultraviolet ray measuring apparatus 2 shown in FIG. 3 according to the second embodiment in that the housing 200 has a substantially cubic shape and is perpendicular to the surface to be supported. A UV sensor element and an illuminance sensor element are installed in a pair on one side wall.

具体的には、四つの側壁における第一の側壁(図6の右前壁面)には、UVセンサ素子10Aと照度センサ素子20Aとの組が設置されており、カバー部材110で保護されている。この第一の側壁に対向する第三の側壁(図6の左奥壁面)には、UVセンサ素子10Cと照度センサ素子20Cとの組が設置されている。さらに、これらの側壁に垂直な第二の側壁(図6の右奥壁面)には、UVセンサ素子10Bと照度センサ素子20Bとの組が設置されており、第四の側壁(図6の左前壁面)には、UVセンサ素子10Dと照度センサ素子20Dとの組が設置されている。この際、各センサの組は、図6のように設置した状態で、同じ水平位置となるように設置されている。   Specifically, a set of the UV sensor element 10 </ b> A and the illuminance sensor element 20 </ b> A is installed on the first side wall (the right front wall surface in FIG. 6) of the four side walls and is protected by the cover member 110. A set of a UV sensor element 10 </ b> C and an illuminance sensor element 20 </ b> C is installed on the third side wall (the left rear wall surface in FIG. 6) that faces the first side wall. Further, a set of a UV sensor element 10B and an illuminance sensor element 20B is installed on a second side wall (right rear wall surface in FIG. 6) perpendicular to these side walls, and a fourth side wall (front left in FIG. 6). On the wall surface, a set of a UV sensor element 10D and an illuminance sensor element 20D is installed. At this time, each set of sensors is installed so as to have the same horizontal position in a state of being installed as shown in FIG.

また、本実施形態の紫外線測定装置3は、第2の実施形態に示したようなモータを用いなくてもよい。
このような構成の場合、制御部300は、それぞれに受波面の向く方向が90°ずつ異なる照度センサ素子20A〜20Dによる判断値(照度検知電圧信号のレベル)を取得する。制御部300は、これらの照度センサ素子20A〜20Dによる判断値を比較して、最大値をとる照度センサ素子を選択する。制御部300は、最大値をとる照度センサ素子と組を成すUVセンサ素子を選択し、当該UVセンサ素子によるUV検知電圧信号のレベルを取得して、上述のような閾値を用いた紫外線照射量の測定を行う。これにより、モータを用いることなく、観測に適する方向に向く受波面での紫外線照射量を測定することができる。
Moreover, the ultraviolet ray measuring apparatus 3 of this embodiment does not need to use the motor as shown in the second embodiment.
In the case of such a configuration, the control unit 300 acquires judgment values (the levels of the illuminance detection voltage signal) by the illuminance sensor elements 20A to 20D, each of which has a direction in which the wave receiving surface faces is different by 90 °. The control unit 300 compares the determination values obtained by these illuminance sensor elements 20A to 20D and selects the illuminance sensor element that takes the maximum value. The control unit 300 selects a UV sensor element that forms a pair with the illuminance sensor element that takes the maximum value, acquires the level of the UV detection voltage signal from the UV sensor element, and uses the threshold value as described above for the UV irradiation amount. Measure. As a result, it is possible to measure the amount of ultraviolet irradiation at the wave receiving surface facing in a direction suitable for observation without using a motor.

なお、本実施形態の構成では、もちろんモータを設置してもよい。この場合、第2の実施形態に示したように、360°の回転を行う必要はなく、90°の回転を行えば全周囲方向に対する照度結果を得ることができるので、より簡単かつ素早く、受波面の向くべき最適な方向を決定することができる。   Of course, a motor may be installed in the configuration of the present embodiment. In this case, as shown in the second embodiment, it is not necessary to perform 360 ° rotation, and if 90 ° rotation is performed, it is possible to obtain illuminance results in all directions. It is possible to determine the optimum direction in which the wavefront should face.

また、本実施形態の構成では、四側面を有する筐体200を例に説明したが上面視した形状が多角形となる多側面体からなる筐体を用いることもでき、この構成では、各側面にUVセンサ素子と照度センサ素子との対を設置すればよい。   In the configuration of the present embodiment, the case 200 having four side surfaces has been described as an example. However, a multi-sided case having a polygonal shape when viewed from the top can also be used. A pair of a UV sensor element and an illuminance sensor element may be installed.

また、本実施形態の構成に対して、図5に示すような円直面上で回転する機構を設けてもよく、この場合には、水平面よりも天頂側のみに複数の側面を有する形状の筐体を用いればよい。   Further, in the configuration of the present embodiment, a mechanism that rotates on a circle as shown in FIG. 5 may be provided. In this case, a housing having a plurality of side surfaces only on the zenith side of the horizontal plane. Use your body.

なお、前述の各実施形態では、UVセンサ素子と照度センサ素子とが筐体の同じ壁面に設置されている例を示したが、図7に示すような構造であってもよい。   In each of the above-described embodiments, the example in which the UV sensor element and the illuminance sensor element are installed on the same wall surface of the housing is shown, but a structure as shown in FIG. 7 may be used.

図7は、他の構造例からなる紫外線測定装置の構成を示す図であり、(A)が平面図、(B)が側面図である。   7A and 7B are diagrams showing a configuration of an ultraviolet ray measuring apparatus having another structural example, where FIG. 7A is a plan view and FIG. 7B is a side view.

図7に示すように、紫外線測定装置4は、上面の面積が下面の面積よりも狭い台形型の立方体からなる筐体210を有する。筐体210の上面には、カバー部材110を用いて内装される照度センサ素子20が設置されている。筐体210の四側面のそれぞれには、カバー部材110を用いて内装されるUVセンサ素子10A〜10Dが内装される。この際、照度センサ素子20、UVセンサ素子10A〜10Dは、それぞれが内装される壁面と受波面とが平行になり、受波面が筐体210から外方を向くように設置されている。このような構造であっても、受波面の向く方向が異なるUVセンサ素子10A〜10Dを用いることができるので、回転を行わずとも観測に適する方向に受波面が向くUVセンサ素子からのUV検知電圧信号のレベルを取得して、紫外線照射量の測定をより正確に行うことができる。この際、照度センサ素子20による判断値に対する紫外線測定可能閾値の設定を、照度センサ素子20の受波面とUVセンサ素子10A〜10D群の受波面との成す角に応じて適宜設定すれば、照度センサ素子20による判断値を用いて正確に紫外線測定が可能であるかどうかを決定することができる。   As shown in FIG. 7, the ultraviolet ray measuring device 4 includes a casing 210 made of a trapezoidal cube whose upper surface area is smaller than the lower surface area. On the upper surface of the casing 210, the illuminance sensor element 20 is installed that is built using the cover member 110. UV sensor elements 10 </ b> A to 10 </ b> D are provided on each of the four side surfaces of the casing 210 using the cover member 110. At this time, the illuminance sensor element 20 and the UV sensor elements 10 </ b> A to 10 </ b> D are installed such that the walls on which the illuminance sensor element 20 and the UV sensor elements 10 </ b> A and 10 </ b> D are respectively installed are parallel to each other. Even with such a structure, it is possible to use the UV sensor elements 10A to 10D in which the direction of the receiving surface is different, so that UV detection from the UV sensor element in which the receiving surface is directed in a direction suitable for observation without rotation. The level of the voltage signal can be acquired, and the ultraviolet irradiation amount can be measured more accurately. At this time, if the setting of the UV measurable threshold for the judgment value by the illuminance sensor element 20 is appropriately set according to the angle formed by the wave receiving surface of the illuminance sensor element 20 and the wave receiving surfaces of the UV sensor elements 10A to 10D, the illuminance It is possible to determine whether or not the ultraviolet ray can be accurately measured using the judgment value obtained by the sensor element 20.

また、図7の構成を用いることで、UVセンサ素子数と同じ数の照度センサ素子を用いなくても、正確な紫外線測定を行うことができる。また、水平面に対して直角でない所定の角度を成すように斜めの側壁を設け、当該側壁に沿ってUVセンサ素子10A〜10Dの受波面が設置されるので、第1の実施形態に示した照度センサ素子20とUVセンサ素子10とが同一方向を向く構造で、受波面を天頂方向に向けた場合と比較して、光の照射方向の仰角が低くても紫外線照射量を測定することができる。   In addition, by using the configuration of FIG. 7, accurate ultraviolet measurement can be performed without using the same number of illuminance sensor elements as the number of UV sensor elements. In addition, since an oblique side wall is provided so as to form a predetermined angle that is not perpendicular to the horizontal plane, and the wave receiving surfaces of the UV sensor elements 10A to 10D are installed along the side wall, the illuminance shown in the first embodiment Compared to the case where the sensor element 20 and the UV sensor element 10 are directed in the same direction and the wave receiving surface is directed to the zenith direction, the ultraviolet irradiation amount can be measured even when the elevation angle in the light irradiation direction is low. .

なお、図7に示すような構造であっても側面数を五面以上にしてもよく、多側面体とすることで、より正確に紫外線測定を行うことができる。   In addition, even if it is a structure as shown in FIG. 7, the number of side surfaces may be five or more, and by using a multi-sided body, ultraviolet rays can be measured more accurately.

第1の実施形態に係る紫外線測定装置の主要構成を示す図である。It is a figure which shows the main structures of the ultraviolet-ray measuring apparatus which concerns on 1st Embodiment. 第2の実施形態に係る紫外線測定装置を用いた紫外線測定方法を説明するためのフローチャートである。It is a flowchart for demonstrating the ultraviolet-ray measuring method using the ultraviolet-ray measuring apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る紫外線測定装置2の主要構成を示す図である。It is a figure which shows the main structures of the ultraviolet-ray measuring apparatus 2 which concerns on 2nd Embodiment. 第2の実施形態に係る紫外線測定装置2を用いた紫外線測定方法を説明するためのフローチャートである。It is a flowchart for demonstrating the ultraviolet-ray measuring method using the ultraviolet-ray measuring apparatus 2 which concerns on 2nd Embodiment. 第2の実施形態に係る別の構造からなる本実施形態の紫外線測定装置2’の主要構成を示す外観斜視図である。It is an external appearance perspective view which shows the main structures of the ultraviolet-ray measuring apparatus 2 'of this embodiment which consists of another structure which concerns on 2nd Embodiment. 第3の実施形態に係る紫外線測定装置3の主要構成を示す図である。It is a figure which shows the main structures of the ultraviolet-ray measuring apparatus 3 which concerns on 3rd Embodiment. 他の構造例からなる紫外線測定装置の構成を示す図である。It is a figure which shows the structure of the ultraviolet-ray measuring apparatus which consists of another structural example.

符号の説明Explanation of symbols

1,2,3,4−紫外線測定装置、10,10A〜10D−UVセンサ素子、20,20A〜20D−照度センサ素子、30−信号処理回路基板、40信号処理IC、50バッテリ、60−モータ、100,100’−筐体、101−開口部、110−カバー部材、102−支持軸、103−台、300−制御部、301−UV用電圧検出回路、302−照度用電圧検出回路、303−メモリ 1,2,3,4-UV measuring device, 10, 10A-10D-UV sensor element, 20, 20A-20D-illuminance sensor element, 30-signal processing circuit board, 40 signal processing IC, 50 battery, 60-motor , 100, 100′-housing, 101-opening, 110-cover member, 102-support shaft, 103-stand, 300-control unit, 301-UV voltage detection circuit, 302-illuminance voltage detection circuit, 303 -Memory

Claims (6)

紫外線に感応し、該紫外線の受波量に応じた信号を出力する紫外線センサ素子と、
前記紫外線を含む光の照度に応じた信号を出力する照度センサ素子と、
前記紫外線センサ素子と前記照度センサ素子とが所定の位置関係で配置される筐体と、
前記照度センサ素子の出力信号レベルに基づいて紫外線測定のための判断値を取得し、該判断値が紫外線測定可能閾値に達したことを検出すると、前記紫外線センサ素子からの出力信号に基づいた紫外線照射量を測定値とする紫外線量測定手段と、を備えた紫外線測定装置。
An ultraviolet sensor element that is sensitive to ultraviolet rays and outputs a signal corresponding to the received amount of ultraviolet rays;
An illuminance sensor element that outputs a signal corresponding to the illuminance of light including the ultraviolet rays;
A housing in which the ultraviolet sensor element and the illuminance sensor element are arranged in a predetermined positional relationship;
An ultraviolet ray based on an output signal from the ultraviolet sensor element is obtained when a judgment value for ultraviolet ray measurement is acquired based on the output signal level of the illuminance sensor element and the judgment value is detected to reach a threshold for measuring ultraviolet rays. An ultraviolet ray measuring device comprising: an ultraviolet ray amount measuring unit that measures the irradiation amount.
前記筐体を回転させる回転手段を備え、
前記紫外線量測定手段は、前記回転手段を回転させながら前記判断値を順次取得し、最大値となる判断値が前記紫外線測定可能閾値に達していれば、該最大値となる判断値に基づいた前記紫外線照射量を測定値とする、請求項1に記載の紫外線測定装置。
Rotating means for rotating the housing,
The ultraviolet ray amount measuring means sequentially obtains the judgment value while rotating the rotating means, and if the judgment value that is the maximum value has reached the ultraviolet ray measurable threshold, it is based on the judgment value that is the maximum value. The ultraviolet ray measuring apparatus according to claim 1, wherein the ultraviolet ray irradiation amount is a measured value.
前記紫外線センサ素子は複数からなり、該複数の紫外線センサ素子は前記筐体に対して、受波面の方向がそれぞれに異なるように設置されている、請求項1または請求項2に記載の紫外線測定装置。   3. The ultraviolet measurement according to claim 1, wherein the ultraviolet sensor element includes a plurality of ultraviolet sensor elements, and the plurality of ultraviolet sensor elements are installed with respect to the housing such that directions of wave receiving surfaces thereof are different from each other. apparatus. 前記照度センサ素子は、前記複数の紫外線センサ素子のそれぞれに対して一対の関係となるように、複数設置されており、一対の関係となる照度センサ素子と紫外線センサ素子とは互いの受波面の方向が略一致するように設置されている、請求項3に記載の紫外線測定装置。   A plurality of the illuminance sensor elements are installed so as to have a pair of relationships with each of the plurality of ultraviolet sensor elements, and the pair of illuminance sensor elements and the ultraviolet sensor elements are on the receiving surface of each other. The ultraviolet ray measuring apparatus according to claim 3, wherein the ultraviolet measuring apparatus is installed so that the directions substantially coincide with each other. 照度センサ素子の出力信号に基づいて紫外線の測定が可能かどうかを判定するための紫外線測定可能閾値を設定する閾値設定工程と、
前記照度センサ素子の出力信号レベルに基づいて紫外線測定のための判断値を取得する判断値取得工程と、
該判断値が前記紫外線測定可能閾値に達したかどうかを判断する測定判断工程と、
前記判断値が前記紫外線測定可能閾値に達したことを検出した時点で、紫外線センサ素子からの出力信号に基づいた紫外線照射量を測定値とする紫外線量測定工程と、を有する紫外線測定方法。
A threshold setting step for setting an ultraviolet ray measurable threshold value for determining whether or not ultraviolet ray measurement is possible based on the output signal of the illuminance sensor element;
A determination value acquisition step of acquiring a determination value for ultraviolet measurement based on the output signal level of the illuminance sensor element;
A measurement determination step of determining whether the determination value has reached the ultraviolet ray measurable threshold;
An ultraviolet ray measuring method comprising: an ultraviolet ray amount measuring step in which an ultraviolet ray irradiation amount based on an output signal from an ultraviolet sensor element is measured when it is detected that the judgment value has reached the ultraviolet ray measurable threshold.
前記判断値を前記照度センサ素子の受波方向を回転させながら順次取得する回転角別判断値取得工程と、
該回転させながら取得した複数の判断値の最大値を検出する最大判断値検出工程と、をさらに有し、
前記判断値取得工程では、該最大値となる判断値を、前記紫外線測定可能閾値による判断に利用する、請求項5に記載の紫外線測定方法。
A determination value acquisition step for each rotation angle for sequentially acquiring the determination value while rotating the wave receiving direction of the illuminance sensor element;
A maximum judgment value detection step of detecting a maximum value of a plurality of judgment values acquired while rotating, and
The ultraviolet ray measurement method according to claim 5, wherein, in the decision value acquisition step, the decision value that is the maximum value is used for the determination based on the ultraviolet ray measurable threshold.
JP2008282811A 2008-11-04 2008-11-04 Ultraviolet ray measuring device and method of measuring ultraviolet ray Pending JP2010112714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008282811A JP2010112714A (en) 2008-11-04 2008-11-04 Ultraviolet ray measuring device and method of measuring ultraviolet ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008282811A JP2010112714A (en) 2008-11-04 2008-11-04 Ultraviolet ray measuring device and method of measuring ultraviolet ray

Publications (1)

Publication Number Publication Date
JP2010112714A true JP2010112714A (en) 2010-05-20

Family

ID=42301391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008282811A Pending JP2010112714A (en) 2008-11-04 2008-11-04 Ultraviolet ray measuring device and method of measuring ultraviolet ray

Country Status (1)

Country Link
JP (1) JP2010112714A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012090452A (en) * 2010-10-20 2012-05-10 Rohm Co Ltd Self-supporting power supply unit and optical-related apparatus using the same
JP2012120632A (en) * 2010-12-07 2012-06-28 Rohm Co Ltd Sunscreen applicator
KR20160021633A (en) * 2014-08-18 2016-02-26 삼성전자주식회사 Method for detecting ultraviolet ray and electronic device thereof
US10006805B2 (en) 2014-04-04 2018-06-26 Sharp Kabushiki Kaisha Light receiver and mobile electronic device
KR101876705B1 (en) * 2018-03-26 2018-07-09 최성희 Cosmetic container with ultraviolet measuring module
US10281323B2 (en) 2015-03-10 2019-05-07 Sharp Kabushiki Kaisha Light receiver and portable electronic apparatus
JP2019100938A (en) * 2017-12-06 2019-06-24 一般財団法人電力中央研究所 Method, device, and program for measuring photon flux density
JP2021519420A (en) * 2018-03-26 2021-08-10 ヴァネッサ リサーチ インコーポレイテッドVanessa Research, Inc. Sun protection device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012090452A (en) * 2010-10-20 2012-05-10 Rohm Co Ltd Self-supporting power supply unit and optical-related apparatus using the same
JP2012120632A (en) * 2010-12-07 2012-06-28 Rohm Co Ltd Sunscreen applicator
US10006805B2 (en) 2014-04-04 2018-06-26 Sharp Kabushiki Kaisha Light receiver and mobile electronic device
KR20160021633A (en) * 2014-08-18 2016-02-26 삼성전자주식회사 Method for detecting ultraviolet ray and electronic device thereof
KR102267520B1 (en) 2014-08-18 2021-06-21 삼성전자주식회사 Method for detecting ultraviolet ray and electronic device thereof
US10281323B2 (en) 2015-03-10 2019-05-07 Sharp Kabushiki Kaisha Light receiver and portable electronic apparatus
JP2019100938A (en) * 2017-12-06 2019-06-24 一般財団法人電力中央研究所 Method, device, and program for measuring photon flux density
KR101876705B1 (en) * 2018-03-26 2018-07-09 최성희 Cosmetic container with ultraviolet measuring module
WO2019190070A1 (en) * 2018-03-26 2019-10-03 최성희 Cosmetics container having ultraviolet measuring module
JP2021519420A (en) * 2018-03-26 2021-08-10 ヴァネッサ リサーチ インコーポレイテッドVanessa Research, Inc. Sun protection device

Similar Documents

Publication Publication Date Title
JP2010112714A (en) Ultraviolet ray measuring device and method of measuring ultraviolet ray
US8564765B2 (en) Optical measurement system
TW201100693A (en) Parallel light solar simulator
EP3274676B1 (en) Spherical-motion average radiant temperature sensor
KR20140076214A (en) Meteorological observation apparatus with 3-axis acceleration sensor
JP5401660B2 (en) Sensor test apparatus and sensor test method
JP2009038312A (en) Sunlight incident direction sensor
TWI269027B (en) Leveler
TWI465646B (en) Digital display fan unbalance detectors
JP2011188048A (en) Personal digital assistant
EP2933601A1 (en) Light source position detection device, light source tracking device, control method, and program
JP5539613B2 (en) Bottle inspection equipment
KR102138522B1 (en) Apparatus and method for measuringing the distance
CN105372170B (en) The sensor device for weathering apparatus with multiple sensors
CN105928908A (en) Method and device for measuring material surface reflectivity
JP2009198460A (en) Film thickness measurement method and device
CA2691310A1 (en) A method for calibrating an accelerometer of an electronic device, an accelerometer, and an electronic device having an accelerometer with improved calibration features
KR102187892B1 (en) Cooking apparatus for detecting slope of ground
JP5087512B2 (en) Shutter device
JP2012112727A (en) Electromagnetic wave intensity distribution measuring device
JP6748910B2 (en) Intelligent target
US11578861B2 (en) Infrared light module uniformity rotational test module
JP2018031613A5 (en)
TW201819880A (en) Apparatus and method for optical system polarizer calibration
TH141640A (en) Solar detection device