[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010107446A - Surface acoustic wave element - Google Patents

Surface acoustic wave element Download PDF

Info

Publication number
JP2010107446A
JP2010107446A JP2008281740A JP2008281740A JP2010107446A JP 2010107446 A JP2010107446 A JP 2010107446A JP 2008281740 A JP2008281740 A JP 2008281740A JP 2008281740 A JP2008281740 A JP 2008281740A JP 2010107446 A JP2010107446 A JP 2010107446A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
circuit
substrate
excited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008281740A
Other languages
Japanese (ja)
Other versions
JP5157828B2 (en
Inventor
Yasuyuki Yanagisawa
恭行 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2008281740A priority Critical patent/JP5157828B2/en
Publication of JP2010107446A publication Critical patent/JP2010107446A/en
Application granted granted Critical
Publication of JP5157828B2 publication Critical patent/JP5157828B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface acoustic wave element capable of accurately and precisely measuring the deceleration degree of the propagation speed, the degree of the phase delay and the reduction degree of the intensity of a surface acoustic wave when langasite is used as the material of a substrate including a surface acoustic wave circulating passage being a part of a spherical shape and having an annular shape. <P>SOLUTION: The surface acoustic wave element 10 is equipped with a substrate 14 formed of langasite and including an annular circulating passage 14a enabling the excited surface acoustic wave to circulate and a surface acoustic wave exciting and detecting means 16 for exciting the surface acoustic wave ASW to circulate the same to the circulating passage and detecting the circulated surface acoustic wave. In the circulating passage, the crossing line 14b wherein the crystal face around the Z-axis of langasite crosses the outer surface of the substrate becomes the maximum outer peripheral line of the outer surface of the substrate and the circulating passage is set to an annular shape along the crossing line while the surface acoustic wave exciting and detecting means 16 is arranged at a position where the attenuation of the surface acoustic wave excited to be circulated to the circulating passage most coincides with an exponential attenuation and the propagation speed of the surface acoustic wave becomes fastest in the circulating passage. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、弾性表面波素子に関する。   The present invention relates to a surface acoustic wave device.

平坦な基体上に配置された平坦な圧電体の上面の相互に離間した2つの位置に弾性表面波励起手段及び弾性表面波検知手段が相互に対向して配置された板状の弾性表面波素子は従来良く知られている。   A plate-like surface acoustic wave element in which surface acoustic wave excitation means and surface acoustic wave detection means are arranged opposite to each other at two positions on the upper surface of a flat piezoelectric body arranged on a flat substrate. Is well known in the art.

このような従来の板状の弾性表面波素子においては、弾性表面波励起手段及び弾性表面波検知手段の夫々としてすだれ状電極(櫛形電極とも呼ばれている)が使用されている。弾性表面波励起手段に高周波電流が供給されると弾性表面波励起手段は圧電体の上面に弾性表面波を励起し励起された弾性表面波を平坦な圧電体の上面に沿い弾性表面波検知手段に向かい伝搬させ弾性表面波検知手段により検知させる。   In such a conventional plate-shaped surface acoustic wave element, interdigital electrodes (also called comb-shaped electrodes) are used as the surface acoustic wave excitation means and the surface acoustic wave detection means, respectively. When a high-frequency current is supplied to the surface acoustic wave excitation means, the surface acoustic wave excitation means excites the surface acoustic wave on the upper surface of the piezoelectric body, and the excited surface acoustic wave is detected along the upper surface of the flat piezoelectric body. And is detected by the surface acoustic wave detection means.

このような従来の板状の弾性表面波素子は、遅延線,発振器の為の発振素子及び共振素子,周波数選択フィルター,化学センサー,バイオセンサー,そしてリモートタグ等に使用されている。そして、圧電体の上面の弾性表面波励起手段と弾性表面波検知手段との間の距離を長くとれればとれるほど、弾性表面波素子を利用したこれら種々の装置の精度は高まる。   Such conventional plate-like surface acoustic wave devices are used in delay lines, oscillation and resonance devices for oscillators, frequency selective filters, chemical sensors, biosensors, remote tags, and the like. The longer the distance between the surface acoustic wave excitation means and the surface acoustic wave detection means on the upper surface of the piezoelectric body, the higher the accuracy of these various devices using surface acoustic wave elements.

しかしながら、このような従来の板状の弾性表面波素子においては、平坦な基体上に配置された圧電体が平坦である為に、弾性表面波励起手段が圧電体の上面に励起した弾性表面波は平坦な圧電体の上面に沿い弾性表面波検知手段に向かい伝搬される間にその伝搬方向に対し直交する方向に拡散してしまい、そのエネルギーを失う。従って、平坦な圧電体の上面において設定可能な弾性表面波励起手段と弾性表面波検知手段との間の距離は、おのずと限りがある。   However, in such a conventional plate-shaped surface acoustic wave element, since the piezoelectric body disposed on the flat substrate is flat, the surface acoustic wave excited by the surface acoustic wave excitation means on the upper surface of the piezoelectric body is provided. Diffuses in a direction perpendicular to the propagation direction while propagating toward the surface acoustic wave detecting means along the upper surface of the flat piezoelectric body, and loses its energy. Accordingly, the distance between the surface acoustic wave excitation means and the surface acoustic wave detection means that can be set on the upper surface of the flat piezoelectric body is naturally limited.

弾性表面波励起手段に供給する高周波電流のエネルギーを増加させ平坦な基体の表面積を拡大すれば、上記距離を長くすることが出来るが、弾性表面波素子の駆動に要する電力が増大し、また弾性表面波素子の外形寸法が大形化する。   If the surface area of the flat substrate is increased by increasing the energy of the high-frequency current supplied to the surface acoustic wave excitation means, the distance can be increased, but the power required for driving the surface acoustic wave element increases and the elasticity is increased. The external dimensions of the surface acoustic wave device are increased.

国際公開 WO 01/45255 号公報(特許文献1)は、弾性表面波を励起させ伝搬させることが出来る球形状の基体の表面に対し弾性表面波励起検知手段としてのすだれ状電極を載置し、基体の半径とすだれ状電極により基体の表面に励起させる弾性表面波の周波数及び幅(基体の表面を弾性表面波が伝搬する方向に対し基体の表面に沿い直交する方向における弾性表面波の寸法)とを所定の条件に設定することにより、すだれ状電極により基体の表面に励起された弾性表面波を、基体の表面に沿い伝搬する方向に対し基体の表面に沿い直交する方向に無限に拡散させることなく、伝搬させることが出来、ひいては繰り返し周回させることが出来ることが明らかにされている。   International Publication No. WO 01/45255 (Patent Document 1) places interdigital electrodes as surface acoustic wave excitation detection means on the surface of a spherical substrate capable of exciting and propagating surface acoustic waves. Surface radius and frequency of surface acoustic wave excited on the surface of the substrate by the interdigital electrode (size of surface acoustic wave in a direction perpendicular to the surface of the substrate along the surface of the surface) Is set to a predetermined condition, and surface acoustic waves excited on the surface of the substrate by the interdigital electrode are diffused infinitely in a direction orthogonal to the direction of propagation along the surface of the substrate. It has been clarified that it can be propagated without being transmitted, and thus can be repeatedly circulated.

球形状の基体の表面を弾性表面波が周回する軌跡は、球形状の基体の表面において球形状の基体の最大外周線を含んでいる球の一部が円環状に連続している領域内にあり、この領域を弾性表面波周回路と呼んでいる。そして、球形状の基体を使用したこのような従来の弾性表面波素子は、弾性表面波周回路に沿い弾性表面波周回路の延出方向と交差する方向に拡散することなく弾性表面波を多数回周回させることが出来る(即ち、すだれ状電極が弾性表面波を励起させてから弾性表面波周回路を周回する弾性表面波をすだれ状電極が正確に検知することが出来なくなるまでに弾性表面が周回する回数が多い)ので、周回数の増大に伴う弾性表面波の伝搬速度の減速の程度や弾性表面波の位相の遅れの程度や弾性表面波の強度の減少の程度を精密に測定することが出来る。   The trajectory of the surface acoustic wave that circulates around the surface of the spherical substrate is within a region where a part of the sphere including the maximum outer circumference of the spherical substrate is continuous in an annular shape on the surface of the spherical substrate. This area is called a surface acoustic wave circuit. Such a conventional surface acoustic wave device using a spherical base body generates a large number of surface acoustic waves along the surface acoustic wave circuit without diffusing in the direction intersecting the extending direction of the surface acoustic wave circuit. (I.e., the surface of the elastic surface has not yet been detected until the interdigital electrode can accurately detect the surface acoustic wave that circulates the surface acoustic wave circuit after the interdigital electrode excites the surface acoustic wave.) Therefore, it is necessary to accurately measure the degree of deceleration of the surface acoustic wave propagation speed, the degree of phase lag of the surface acoustic wave, and the degree of reduction of the intensity of the surface acoustic wave. I can do it.

伝搬速度の減速の程度や弾性表面波の位相の遅れの程度や弾性表面波の強度の減少の程度は、球状弾性表面波素子の弾性表面波周回路が接している環境の変化(例えば、ガス濃度の増加)の程度に比例する。従って、上述した種々の程度を測定することは球状弾性表面波素子の弾性表面波周回路が接している環境の変化を測定することを意味する。
国際公開 WO 01/45255 号公報
The degree of deceleration of the propagation velocity, the degree of phase lag of the surface acoustic wave, and the degree of decrease in the intensity of the surface acoustic wave depend on the change in the environment in which the surface acoustic wave circuit of the spherical surface acoustic wave element is in contact (for example, gas Proportional to the degree of concentration increase). Therefore, measuring the various degrees described above means measuring changes in the environment in which the surface acoustic wave circuit of the spherical surface acoustic wave element is in contact.
International Publication No. WO 01/45255

弾性表面波を励起させ伝搬させることが可能な球形状の基体の材料としては、水晶,ランガサイト,リチウムナイオベート(ニオブ酸リチウム:LiNbO3),そしてリチウムタンタレート(タンタル酸リチウム:LiTaO3)などの圧電性結晶材料が広く知られている。 Materials for spherical substrates that can excite and propagate surface acoustic waves include quartz, langasite, lithium niobate (lithium niobate: LiNbO 3 ), and lithium tantalate (lithium tantalate: LiTaO 3 ). Piezoelectric crystal materials such as are widely known.

これらの圧電性結晶材料においてランガサイトは、水晶に比べると高価ではあるがリチウムナイオベート(ニオブ酸リチウム:LiNbO3)やリチウムタンタレート(タンタル酸リチウム:LiTaO3)に比べて安価であり、また水晶に比べると電気機械的結合定数が大きくて励起され伝搬された弾性表面波の伝搬速度が比較的遅いので、弾性表面波の伝搬速度の減速の程度や弾性表面波の位相の遅れの程度や弾性表面波の強度の減少の程度を観察して、球状弾性表面波素子の弾性表面波周回路が接している環境の変化(例えば、ガス濃度の増加)の程度を精密に観測するのが容易である。 In these piezoelectric crystal materials, langasite is expensive compared to quartz, but cheaper than lithium niobate (lithium niobate: LiNbO 3 ) or lithium tantalate (lithium tantalate: LiTaO 3 ). Compared to quartz, the electromechanical coupling constant is large and the propagation speed of surface acoustic waves that are excited and propagated is relatively slow, so the degree of deceleration of the surface acoustic wave propagation speed, the degree of phase delay of surface acoustic waves, Easy observation of the degree of decrease in the intensity of the surface acoustic wave and precise observation of the degree of change in the environment (for example, increase in gas concentration) with which the surface acoustic wave circuit of the spherical surface acoustic wave element is in contact It is.

とはいうものの、ランガサイトを弾性表面波を励起させ伝搬させることが可能な球形状の基体の材料として使用した場合、1つの弾性表面波周回路中を伝搬する弾性表面波の軌跡(経路)を詳細に検討した結果、弾性表面波周回軌跡が異なると伝搬する弾性表面波の強度の減衰の仕方が相互に異なり伝搬速度が相互に異なることがわかった。そして、当然のことながら、伝搬する弾性表面波の強度の減衰の仕方が指数関数的な減衰にできる限り一致し伝搬速度が速くなるほうが環境の変化(例えば、ガス濃度の増加)の程度をより精密に観測することができる。   However, when Langasite is used as a material for a spherical substrate capable of exciting and propagating a surface acoustic wave, the locus (path) of the surface acoustic wave propagating in one surface acoustic wave peripheral circuit As a result, it was found that the intensity of surface acoustic waves propagated differed and the propagation velocity differed when the surface acoustic wave orbits were different. And, naturally, the degree of environmental change (for example, increase in gas concentration) is greater when the attenuation of the intensity of the propagated surface acoustic wave matches the exponential attenuation as much as possible and the propagation velocity becomes faster. It can be observed precisely.

この発明は上記事情の下でなされ、この発明の目的は、弾性表面波を励起させ伝搬させることが可能な球形状の一部で円環形状の弾性表面波周回路を含む弾性表面波周回基体の材料としてランガサイトを使用した場合、弾性表面波の伝搬速度の減速の程度や弾性表面波の位相の遅れの程度や弾性表面波の強度の減少の程度を正確に精密に測定することが出来る、弾性表面波素子を提供することである。   SUMMARY OF THE INVENTION The present invention has been made under the above circumstances, and an object of the present invention is to provide a surface acoustic wave revolving substrate including a surface-circumferential circuit having a part of a spherical shape and an annular shape capable of exciting and propagating surface acoustic waves When Langasite is used as the material, the degree of deceleration of the surface acoustic wave propagation speed, the degree of phase lag of the surface acoustic wave, and the degree of reduction of the intensity of the surface acoustic wave can be measured accurately and accurately. It is to provide a surface acoustic wave device.

上述したこの発明の目的を達成する為に、この発明に従った弾性表面波素子は:弾性表面波が励起可能な結晶材料により形成されていて、球面の一部により円環状に規定され励起された弾性表面波が周回可能な少なくとも1つの弾性表面波周回路を含む弾性表面波周回基体と;そして、弾性表面波周回基体の弾性表面波周回路に弾性表面波を励起させて励起された弾性表面波を弾性表面波周回路に沿い周回させるとともに周回した弾性表面波を検知する弾性表面波励起検知手段と;を備えている。そして、弾性表面波周回基体がランガサイトにより形成されていて、弾性表面波周回基体においては、ランガサイトの1つの結晶軸回りの結晶面が弾性表面波周回基体の外表面と交差した交線が上記外表面の最大外周線となり弾性表面波周回路が上記交線に沿い円環状に設定されており、弾性表面波励起検知手段が弾性表面波周回路において、弾性表面波周回路に励起させ周回させた弾性表面波の減衰が指数関数的な減衰に最も良く一致するとともに上記弾性表面波の伝搬速度が最も早くなる位置に配置されている、ことを特徴としている。   In order to achieve the object of the present invention described above, a surface acoustic wave device according to the present invention is formed of a crystal material capable of exciting surface acoustic waves, and is defined and excited in an annular shape by a part of a spherical surface. A surface acoustic wave circuit including at least one surface acoustic wave circuit capable of circulating the surface acoustic wave; and the elasticity excited by exciting the surface wave in the surface wave circuit of the surface wave circuit And surface acoustic wave excitation detecting means for detecting surface acoustic waves that circulate along the surface acoustic wave circuit and detect the surface acoustic waves that have circulated. The surface acoustic wave orbiting base is formed of langasite, and in the surface acoustic wave orbiting base, there is an intersecting line in which the crystal surface around one crystal axis of the langasite intersects the outer surface of the surface acoustic wave orbiting base. The surface acoustic wave circuit is set in an annular shape along the line of intersection, and the surface acoustic wave excitation detecting means excites the surface acoustic wave circuit in the surface acoustic wave circuit to circulate. The surface acoustic wave attenuation is best matched with the exponential attenuation, and the surface acoustic wave propagation velocity is the fastest.

上述した如く構成されたことを特徴とするこの発明に従った弾性表面波素子は、弾性表面波の伝搬速度の減速の程度や弾性表面波の位相の遅れの程度や弾性表面波の強度の減少の程度を正確に精密に測定することが出来る。   The surface acoustic wave device according to the present invention, which is configured as described above, has a degree of deceleration of the propagation speed of surface acoustic waves, a degree of phase lag of surface acoustic waves, and a reduction in the intensity of surface acoustic waves. Can be measured accurately and precisely.

以下、この発明の一実施の形態及び種々の変形例に従った弾性表面波素子を使用した外部環境測定装置について添付の図面を参照しながら詳細に説明する。   Hereinafter, an external environment measuring device using a surface acoustic wave device according to an embodiment of the present invention and various modifications will be described in detail with reference to the accompanying drawings.

図1は、この発明の一実施の形態に従った弾性表面波素子10を使用した外部環境測定装置12の基本的な構成を概略的に図示している。   FIG. 1 schematically shows a basic configuration of an external environment measuring apparatus 12 using a surface acoustic wave element 10 according to an embodiment of the present invention.

弾性表面波素子10は:弾性表面波が励起可能な結晶材料であるランガサイトにより形成されていて、球面の一部により円環状に規定され励起された弾性表面波が周回可能な少なくとも1つの弾性表面波周回路14aを含む弾性表面波周回基体14と;そして、弾性表面波周回基体14の弾性表面波周回路14aに弾性表面波ASWを励起させて励起された弾性表面波ASWを弾性表面波周回路14aに沿い周回させるとともに周回した弾性表面波ASWを検知する弾性表面波励起検知手段16と;を備えている。   The surface acoustic wave element 10 is formed of langasite, which is a crystalline material that can excite surface acoustic waves, and is defined in an annular shape by a part of a spherical surface, and is capable of circulating at least one surface acoustic wave that is excited. A surface acoustic wave substrate 14 including a surface wave circuit 14a; and a surface acoustic wave ASW excited by causing the surface acoustic wave circuit 14a of the surface wave substrate 14a to excite the surface acoustic wave ASW. And a surface acoustic wave excitation detecting means 16 for detecting the surface acoustic wave ASW that has circulated along the circumferential circuit 14a.

ランガサイトなどの圧電性結晶材料は、夫々の球形状の外表面において夫々が有している結晶面が球形状の外表面と交差する交線14bに沿い弾性表面波を励起させると励起された弾性表面波は上記交線14bに沿い伝搬することが判っている。そして、国際公開 WO 01/45255 号公報(特許文献1)によれば、弾性表面波を励起させ伝搬させることが出来る球形状の弾性表面波周回基体14の半径と弾性表面波周回基体14の外表面に励起させる弾性表面波の周波数及び幅(弾性表面波周回基体14の表面を弾性表面波が伝搬する方向に対し弾性表面波周回基体14の表面に沿い直交する方向における弾性表面波の寸法)とを所定の条件に設定することにより、弾性表面波周回基体14の表面に励起された弾性表面波を、弾性表面波周回基体14の表面に沿い伝搬する方向に対し基体の表面に沿い直交する方向に無限に拡散させることなく、伝搬させることが出来、ひいては繰り返し周回させることが出来ることが明らかにされている。   Piezoelectric crystal materials such as langasite were excited when a surface acoustic wave was excited along an intersection line 14b in which the crystal surface of each spherical outer surface intersected with the spherical outer surface. It has been found that surface acoustic waves propagate along the intersection line 14b. According to International Publication No. WO 01/45255 (Patent Document 1), the radius of the spherical surface acoustic wave substrate 14 capable of exciting and propagating the surface acoustic wave and the outer surface of the surface acoustic wave substrate 14 are determined. Frequency and width of surface acoustic wave excited on the surface (size of surface acoustic wave in a direction perpendicular to the surface of surface acoustic wave orbiting substrate 14 along the surface of surface acoustic wave orbiting substrate 14) Are set to predetermined conditions so that the surface acoustic wave excited on the surface of the surface acoustic wave substrate 14 is orthogonal to the direction of propagation along the surface of the surface acoustic wave substrate 14 along the surface of the substrate. It has been clarified that it can be propagated without being infinitely diffused in the direction, and can be repeatedly circulated.

上記交線14bは、弾性表面波周回基体14の外表面において最大の径の外周となる線であり、上記交線14aに沿って励起された弾性表面波が伝搬する球面の一部により円環状に規定される領域が弾性表面波周回路14aである。   The intersecting line 14b is a line that becomes the outer periphery of the maximum diameter on the outer surface of the surface acoustic wave circulating substrate 14, and is formed into an annular shape by a part of the spherical surface on which the surface acoustic wave excited along the intersecting line 14a propagates. The region defined by is the surface acoustic wave circuit 14a.

ランガサイトは3つの結晶面を有していることが知られている。従ってランガサイトを弾性表面波周回基体14の為の圧電結晶性材料として使用した場合には、その球形状の外表面に3個の弾性表面波周回路14aが設定可能であることになる。   Langasite is known to have three crystal planes. Therefore, when langasite is used as the piezoelectric crystalline material for the surface acoustic wave rotating substrate 14, three surface acoustic wave circuit 14a can be set on the spherical outer surface.

弾性表面波励起検知手段16としては、弾性表面波周回基体14の弾性表面波周回路14aに励起した弾性表面波ASWをその伝搬方向に対し弾性表面波周回基体14の表面に沿い直交する方向に無限に拡散させることなく伝搬させ周回繰り返し周回させることを可能にする前述した所定の条件を満たす波長と幅とを容易に設定可能にする為に、すだれ状電極又は櫛歯状電極と言われている公知の電気音響変換素子が通常使用される。   As the surface acoustic wave excitation detection means 16, the surface acoustic wave ASW excited by the surface acoustic wave circuit 14 a of the surface acoustic wave substrate 14 is orthogonal to the propagation direction along the surface of the surface acoustic wave substrate 14. In order to make it possible to easily set the wavelength and width satisfying the above-mentioned predetermined conditions, which can be propagated without being diffused indefinitely and circulated repeatedly, it is said to be an interdigital electrode or a comb-like electrode. Known electroacoustic transducers are usually used.

すだれ状電極又は櫛歯状電極は、夫々が複数の櫛歯状電極枝16aを有した1対の櫛歯状電極部を、一方の櫛歯状電極部の複数の櫛歯状電極枝16aの複数の隙間の夫々の中央に他方の櫛歯状電極部の複数の櫛歯状電極枝16aの夫々を配置することにより構成されている。このような構成のすだれ状電極又は櫛歯状電極は、弾性表面波周回基体14の弾性表面波周回路14aの所望の位置に公知の形成方法(例えば、フォトリソグラフィー法)により容易に精密に形成することが可能である。弾性表面波周回基体14の弾性表面波周回路14aに複数の櫛歯状電極枝16aを前記交線14bと交差する方向に向けた状態ですだれ状電極又は櫛歯状電極を形成し、1対の櫛歯状電極部に対し相互に対向している2つの櫛歯状電極枝16aの相互間の離間距離に対応した周波数の高周波電流を供給すると、すだれ状電極又は櫛歯状電極は相互に対向している2つの櫛歯状電極枝16aの相互間の離間距離に対応した周波数を有しているとともに相互に対向している2つの櫛歯状電極枝16aの夫々の相互に対向している部分の長さの幅を有している弾性表面波ASWを弾性表面波周回基体14の弾性表面波周回路14aの上記所望の位置に励起させ、励起した弾性表面波ASWを1対の櫛歯状電極部の複数の櫛歯状電極枝16aが並んでいる方向に進行(即ち、伝搬させ)させる。   The interdigital electrode or the comb-like electrode includes a pair of comb-like electrode portions each having a plurality of comb-like electrode branches 16a and a plurality of comb-like electrode branches 16a of one comb-like electrode portion. Each of the plurality of comb-like electrode branches 16a of the other comb-like electrode portion is arranged in the center of each of the plurality of gaps. The interdigital electrode or the comb-like electrode having such a configuration is easily and precisely formed by a known forming method (for example, photolithography) at a desired position of the surface acoustic wave circuit 14a of the surface acoustic wave substrate 14. Is possible. A pair of interdigital electrodes or comb-like electrodes are formed on the surface acoustic wave circuit 14a of the surface acoustic wave-circulating substrate 14 with a plurality of comb-like electrode branches 16a facing the intersecting line 14b. When a high-frequency current having a frequency corresponding to the distance between the two comb-shaped electrode branches 16a facing each other is supplied to the comb-shaped electrode portion, the interdigital electrode or the comb-shaped electrode Each of the two comb-like electrode branches 16a facing each other has a frequency corresponding to the distance between the two comb-like electrode branches 16a facing each other. The surface acoustic wave ASW having the width of the length of the portion is excited at the desired position of the surface acoustic wave circuit 14a of the surface acoustic wave circulating substrate 14, and the excited surface acoustic wave ASW is paired with a pair of combs. A plurality of comb-like electrode branches 16a of the tooth-like electrode portion are arranged side by side That travels in a direction (that is, to propagate) causes.

なおここで、弾性表面波とは、通常のバルク波と呼ばれる縦波や横波と異なり、物質表面にそのエネルギーの多くを集中して伝搬する弾性波であり、レーリー波,セザワ波,擬セザワ波,ラブ波等を例示することができる。   Note that the surface acoustic wave is an elastic wave that concentrates and propagates much of its energy on the material surface, unlike the longitudinal and transverse waves called normal bulk waves. Rayleigh waves, Sezawa waves, and pseudo Sezawa waves , Love waves and the like.

弾性表面波励起検知手段16には、弾性表面波励起検知手段16の動作を制御する為の動作制御手段18が接続されている。動作制御手段18は、弾性表面波周回基体14の弾性表面波周回路14aに対し所望のタイミングで弾性表面波励起検知手段16に弾性表面波ASWをバースト状に励起させ伝搬させるとともに弾性表面波周回路14aに励起され伝搬された弾性表面波ASWを弾性表面波励起検知手段16に所望のタイミングで検知させる。例えば、動作制御手段18は、弾性表面波励起検知手段16を構成しているすだれ状電極又は櫛歯状電極の1対の櫛歯状電極部の一方に接続された入出力切り替え部18aと、入出力切り替え部18aの入力端子に接続された高周波信号発生部18bと、入出力切り替え部18bの出力端子にアンプ18cを介して接続された検出・出力部18dと、を含んでいる。そして、弾性表面波励起検知手段16を構成しているすだれ状電極又は櫛歯状電極の1対の櫛歯状電極部の他方は接地されている。   The surface acoustic wave excitation detection means 16 is connected to an operation control means 18 for controlling the operation of the surface acoustic wave excitation detection means 16. The operation control means 18 causes the surface acoustic wave circuit 14a of the surface acoustic wave circulation base 14 to excite the surface acoustic wave ASW in a burst form and propagate it to the surface acoustic wave excitation detection means 16 at a desired timing and propagate it. The surface acoustic wave ASW excited and propagated by the circuit 14a is detected by the surface acoustic wave excitation detecting means 16 at a desired timing. For example, the operation control unit 18 includes an input / output switching unit 18a connected to one of a pair of comb-shaped electrode portions of the interdigital electrode or the comb-shaped electrode constituting the surface acoustic wave excitation detecting unit 16, and A high-frequency signal generation unit 18b connected to the input terminal of the input / output switching unit 18a, and a detection / output unit 18d connected to the output terminal of the input / output switching unit 18b via an amplifier 18c. The other of the pair of interdigital electrodes or the interdigital electrodes constituting the surface acoustic wave excitation detecting means 16 is grounded.

弾性表面波励起検知手段16が入出力切り替え部18aにより高周波信号発生部18bに所望のタイミングで接続されることにより、高周波信号発生部18bから弾性表面波励起検知手段16に供給された高周波信号が弾性表面波周回路14a中にバースト上に弾性表面ASWを励起させ、励起されたバースト状の弾性表面波ASWは弾性表面波周回路14a中を前述した交線14bに沿い伝搬し弾性表面波周回路14a中を周回する。弾性表面波励起検知手段16が入出力切り替え部18aによりアンプ18cを介して検出・出力部18dに所望のタイミングで接続されることにより、弾性表面波周回路14a中を周回しているバースト状の弾性表面波ASWは所望のタイミングでアンプ18cを介して検出・出力部18dにより検知される。   The surface acoustic wave excitation detecting means 16 is connected to the high frequency signal generating section 18b by the input / output switching section 18a at a desired timing, so that the high frequency signal supplied from the high frequency signal generating section 18b to the surface acoustic wave excitation detecting means 16 is changed. The surface acoustic wave ASW is excited on the burst in the surface acoustic wave circuit 14a, and the excited surface acoustic wave ASW is propagated through the surface acoustic wave circuit 14a along the aforementioned intersection line 14b and the surface acoustic wave circumference. It circulates in the circuit 14a. The surface acoustic wave excitation detection means 16 is connected to the detection / output unit 18d via the amplifier 18c by the input / output switching unit 18a at a desired timing, so that the surface acoustic wave excitation circuit 16a circulates in the surface acoustic wave circuit 14a. The surface acoustic wave ASW is detected by the detection / output unit 18d through the amplifier 18c at a desired timing.

本願の発明者である柳沢は、弾性表面波周回基体14が三方晶系の圧電性単結晶材料であるランがサイトの場合について、弾性表面波周回路14a中を伝搬する弾性表面波ASWの軌跡(経路)を詳細に検討した結果、同じ弾性表面波周回路14a中でも励起された弾性表面波ASWを1周毎に同じ軌跡で周回させることが可能な1つの主周回軌跡20が存在することに気づいた。同じ弾性表面波周回路14a中でも1つの主周回軌跡20に沿って伝搬する弾性表面波ASWはその強度の減衰が指数関数的な減衰と良く一致し、また弾性表面波ASWの伝搬速度が最も速くなる。   Yanagisawa, the inventor of the present application, traces the surface acoustic wave ASW propagating in the surface acoustic wave circuit 14a in the case where the surface of the surface acoustic wave orbiting substrate 14 is a trigonal piezoelectric single crystal material is a site. As a result of examining the (path) in detail, there is one main orbit 20 that can cause the surface acoustic wave ASW excited in the same surface acoustic wave circuit 14a to circulate in the same locus every round. Noticed. Even in the same surface acoustic wave circuit 14a, the surface acoustic wave ASW propagating along one main orbit 20 has an intensity attenuation that agrees well with an exponential attenuation, and the surface acoustic wave ASW has the fastest propagation speed. Become.

そして、主周回軌跡20は、弾性表面波周回基体14の圧電性単結晶材料であるランガサイトが異方性を有していて上記交線14bに沿った複数の位置の夫々において、そこを通過する弾性表面波ASWの伝搬速度や、電気機械結合定数や、パワーフローアングルが相互に僅かに異なっていることから、上記交線14bと一致せず、弾性表面波周回基体14が、三方晶系の圧電性単結晶材料であるランガサイトの場合には、図1中に図示されている如く、弾性表面波周回路14a中で上記交線14bに沿った120°の回転角毎に上記交線14bに対し直交する一方向及び他方向に1°乃至3°の回転角αの範囲内で順次交互に正弦的に振れ蛇行している。   The main circuit locus 20 passes through each of the plurality of positions along the intersecting line 14b where the langasite which is the piezoelectric single crystal material of the surface acoustic wave circuit substrate 14 has anisotropy. Since the propagation speed of the surface acoustic wave ASW, the electromechanical coupling constant, and the power flow angle are slightly different from each other, they do not coincide with the intersecting line 14b. In the case of the langasite which is a piezoelectric single crystal material, as shown in FIG. 1, the intersection line is formed at every 120 ° rotation angle along the intersection line 14b in the surface acoustic wave circuit 14a. In one direction orthogonal to 14b and in the other direction, the sine wave oscillates alternately and sinusoidally in the range of the rotation angle α of 1 ° to 3 °.

なお、図1中には、三方晶系の圧電性単結晶材料の一種であるランガサイトの有する1つの結晶軸であるZ軸周りの結晶面が規定している交線14bに沿った弾性表面波周回路14aの場合について例示しており、球状の弾性表面波周回基体14を地球に見立てZ軸を地軸に上記交線14bを赤道とした場合の−Y軸方位の緯度方向では主周回軌跡20は上記交線14bから+2°振れている。   In FIG. 1, the elastic surface along the intersection line 14b defined by the crystal plane around the Z axis, which is one crystal axis of the langasite, which is a kind of trigonal piezoelectric single crystal material. The case of the wave circuit 14a is shown as an example. The spherical surface of the spherical surface wave base 14 is assumed to be the earth, the Z axis is the earth axis, and the intersection line 14b is the equator. 20 is swung + 2 ° from the intersection line 14b.

弾性表面波励起検知手段16を、弾性表面波周回路14aにおいて、弾性表面波周回路14aに励起させ周回させた弾性表面波ASWの減衰が指数関数的な減衰に最も良く一致するとともに上記弾性表面波ASWの伝搬速度が最も早くなる位置に配置すれば、弾性表面波励起検知手段16は主周回軌跡20上に載置されたことになり、弾性表面波周回路14aにおいて最も効率良くしかも精密に制御して弾性表面波ASWを伝搬させることができる。   In the surface acoustic wave circuit 14a, the surface acoustic wave excitation detection means 16 is excited by the surface acoustic wave circuit 14a so that the attenuation of the surface acoustic wave ASW best matches the exponential attenuation, and the surface acoustic wave. If the surface acoustic wave excitation detecting means 16 is placed on the main circumference trajectory 20 if it is arranged at the position where the propagation speed of the wave ASW is fastest, it is most efficient and precise in the surface acoustic wave circuit 14a. The surface acoustic wave ASW can be propagated by controlling.

1つの弾性表面波周回路14aにおいて主周回軌跡20が通過する領域に弾性表面波素子10を取り巻く外部環境の変化を検知する感応膜24が設けられている。   In one surface acoustic wave circuit 14a, a sensitive film 24 for detecting a change in the external environment surrounding the surface acoustic wave element 10 is provided in a region through which the main circuit locus 20 passes.

感応膜24は、外部環境の特定の物質に接触することにより、接触した特定の物質の量に応じてそこを通過する弾性表面波ASWの伝搬速度に変化を生じさせる。例えば、特定の物質を吸着することによりその質量効果によりそこを通過する弾性表面波ASWの伝搬速度を減速させ減衰率を急激に低下させたり、特定の物質が吸蔵されることによりその機械的な硬度が変化しそこを通過する弾性表面波ASWの伝搬速度や減衰率を変化させたり、特定の物質と反応することにより吸熱又は発熱反応を生じてそこを通過する弾性表面波ASWの伝搬速度や減衰率を変化させたりする。そして、感応膜24は、特定の物質に対する可逆反応を生じさせることが好ましい。   When the sensitive film 24 comes into contact with a specific substance in the external environment, the propagation speed of the surface acoustic wave ASW passing therethrough is changed according to the amount of the specific substance in contact. For example, by adsorbing a specific substance, due to its mass effect, the propagation speed of the surface acoustic wave ASW passing therethrough is reduced, and the attenuation rate is drastically reduced. The propagation speed and attenuation rate of the surface acoustic wave ASW passing through the change of hardness is changed, the propagation speed of the surface acoustic wave ASW passing through the endothermic or exothermic reaction by reacting with a specific substance, Change the attenuation factor. And it is preferable that the sensitive film | membrane 24 produces the reversible reaction with respect to a specific substance.

このような感応膜24としては、水素(H2)を吸蔵して水素化物を形成し機械的な特性を変化させるパラジウム(Pd),アンモニア(NH3)に対する吸着性が高いプラチナ(Pt),水素化物を吸着する酸化タングステン(WO3),一酸化炭素(CO)や二酸化炭素(CO2)や二酸化硫黄(SO2)や二酸化窒素(NO2)を選択的に吸着するフタロシアニン(Phthalocyanine)等が知られている。 As such a sensitive film 24, palladium (Pd), which absorbs hydrogen (H 2 ) to form a hydride and changes mechanical characteristics, platinum (Pt) having high adsorptivity to ammonia (NH 3 ), Tungsten oxide (WO 3 ) that adsorbs hydride, phthalocyanine (Phthalocyanine) that selectively adsorbs carbon monoxide (CO), carbon dioxide (CO 2 ), sulfur dioxide (SO 2 ), and nitrogen dioxide (NO 2 ) It has been known.

即ち、感応膜24を通過した弾性表面波ASWの伝搬速度や減衰率の変化、即ち感応膜24を通過した弾性表面波ASWの位相や強度の変化、の程度を測定すれば感応膜24が上述した如く感応する外部環境中の特定の物質の変化を検知することができる。   That is, if the degree of change in the propagation speed or attenuation rate of the surface acoustic wave ASW that has passed through the sensitive film 24, that is, the change in the phase or intensity of the surface acoustic wave ASW that has passed through the sensitive film 24, is measured, It is possible to detect a change in a specific substance in the external environment that is sensitive as described above.

主周回軌跡20上に弾性表面波励起検知手段16を載置する場合には、弾性表面波励起検知手段16の中心を主周回軌跡20に一致させればより効率良くより精密に制御して弾性表面波ASWを伝搬させることが可能である。   When the surface acoustic wave excitation detection means 16 is placed on the main circuit locus 20, if the center of the surface acoustic wave excitation detection means 16 is made coincident with the main circuit locus 20, the elastic force can be controlled more efficiently and precisely. It is possible to propagate the surface wave ASW.

図1を参照した前述した説明から明らかなように、主周回軌跡20は、上記交線14bと一致せず、弾性表面波周回路14a中で上記交線14bに沿った120°の回転角毎に上記交線14bに対し直交する一方向及び他方向に1°乃至3°の回転角αの範囲内で順次交互に正弦的に振れ蛇行しているので、弾性表面波励起検知手段16の中心を主周回軌跡20に一致させれば、弾性表面波励起検知手段16は図1中に図示されている如く、弾性表面波周回路14a中で上記交線14bから離れている場合と、図2中に図示されている如く上記交線14bと一致する場合と、がある。   As is clear from the above description with reference to FIG. 1, the main orbit 20 does not coincide with the intersecting line 14b, and every 120 ° rotation angle along the intersecting line 14b in the surface acoustic wave circuit 14a. In addition, the surface of the surface acoustic wave excitation detecting means 16 is meandered alternately and sinusoidally in the range of the rotation angle α of 1 ° to 3 ° in one direction and the other direction orthogonal to the intersecting line 14b. Is made to coincide with the main orbit 20, the surface acoustic wave excitation detecting means 16 is separated from the intersection line 14 b in the surface acoustic wave circuit 14 a as shown in FIG. In some cases, the line coincides with the intersection line 14b as shown in the figure.

弾性表面波励起検知手段16の中心を主周回軌跡20に一致させる場合、弾性表面波励起検知手段16が弾性表面波周回路14aにおいて励起させ伝搬させる弾性表面波ASWの波面が主周回軌跡20に対し直交していればさらに効率良くさらに精密に制御して弾性表面波ASWを伝搬させることが可能である。   When the center of the surface acoustic wave excitation detection means 16 is made coincident with the main circuit locus 20, the wavefront of the surface acoustic wave ASW that the surface acoustic wave excitation detection means 16 excites and propagates in the surface acoustic wave circuit 14a becomes the main circuit locus 20. On the other hand, if they are orthogonal to each other, it is possible to propagate the surface acoustic wave ASW through more efficient and more precise control.

弾性表面波励起検知手段16がすだれ状電極又は櫛歯状電極の場合、図2中に参照符号16´により指摘されている弾性表面波励起検知手段の如く1対の櫛歯状電極部の夫々の複数の櫛歯状電極枝16´aを主周回軌跡20に対し出来る限り直交するよう配置すれば良い。   In the case where the surface acoustic wave excitation detecting means 16 is an interdigital electrode or a comb-like electrode, each of the pair of comb-like electrode portions as in the surface acoustic wave excitation detecting means indicated by reference numeral 16 'in FIG. The plurality of comb-shaped electrode branches 16 ′ may be arranged so as to be as orthogonal as possible to the main circuit locus 20.

より精密には、図2中に参照符号16´´により指摘されている弾性表面波励起検知手段の如く、主周回軌跡20上ですだれ状電極又は櫛歯状電極が載置される位置において交線14に対し直交する方向に延出した複数の櫛歯状電極枝16´´aを上記位置における主周回軌跡20の交線14に対する傾斜に対応して上記直交する方向に順次ずれて配置することがさらに好ましい。   More precisely, as shown in FIG. 2, the surface acoustic wave excitation detection means indicated by reference numeral 16 ″, the interdigital electrode or the comb-like electrode is placed on the main orbit 20 in the position where the interdigital electrode is placed. A plurality of comb-like electrode branches 16 ″ a extending in a direction orthogonal to the line 14 are sequentially shifted in the orthogonal direction corresponding to the inclination of the main circuit locus 20 with respect to the intersecting line 14 at the position. More preferably.

図1は、この発明の一実施の形態に従った弾性表面波素子を使用した外部環境測定装置の構成を概略的に示す概略図である。FIG. 1 is a schematic diagram schematically showing a configuration of an external environment measuring apparatus using a surface acoustic wave element according to an embodiment of the present invention. 図2は、図1中に図示されていた弾性表面波素子において使用されている弾性表面波励起検知手段の種々の変形例を概略的に示す概略図である。FIG. 2 is a schematic view schematically showing various modifications of the surface acoustic wave excitation detecting means used in the surface acoustic wave element shown in FIG.

符号の説明Explanation of symbols

10…弾性表面波素子、12…外部環境測定装置、14…弾性表面波周回基体、14a…弾性表面波周回路、14b…交線、16,16´,16´´…弾性表面波励起検知手段、16a,16´a,16´´a…電極枝、18…動作制御手段、18a…入出力切り替え部、18b…高周波信号発生部、18c…アンプ、18d…検出・出力部、20…主周回軌跡、24…感応膜、ASW…弾性表面波。   DESCRIPTION OF SYMBOLS 10 ... Surface acoustic wave element, 12 ... External environment measuring apparatus, 14 ... Surface acoustic wave circulation base | substrate, 14a ... Surface acoustic wave circuit, 14b ... Intersection, 16, 16 ', 16 "... Surface acoustic wave excitation detection means 16a, 16'a, 16'a ... electrode branch, 18 ... operation control means, 18a ... input / output switching unit, 18b ... high frequency signal generating unit, 18c ... amplifier, 18d ... detection / output unit, 20 ... main circuit Trajectory, 24 ... sensitive film, ASW ... surface acoustic wave.

Claims (5)

弾性表面波が励起可能な結晶材料により形成されていて、球面の一部により円環状に規定され励起された弾性表面波が周回可能な少なくとも1つの弾性表面波周回路を含む弾性表面波周回基体と;そして、
弾性表面波周回基体の弾性表面波周回路に弾性表面波を励起させて励起された弾性表面波を弾性表面波周回路に沿い周回させるとともに周回した弾性表面波を検知する弾性表面波励起検知手段と;
を備えており、
弾性表面波周回基体がランガサイトにより形成されていて、
弾性表面波周回基体においては、ランガサイトの1つの結晶軸回りの結晶面が弾性表面波周回基体の外表面と交差した交線が上記外表面の最大外周線となり弾性表面波周回路が上記交線に沿い円環状に設定されており、
弾性表面波励起検知手段が弾性表面波周回路において、弾性表面波周回路に励起させ周回させた弾性表面波の減衰が指数関数的な減衰に最も良く一致するとともに上記弾性表面波の伝搬速度が最も早くなる位置に配置されている、
ことを特徴とする弾性表面波素子。
A surface acoustic wave circuit substrate including at least one surface acoustic wave circuit that is formed of a crystal material capable of exciting surface acoustic waves, and is circularly defined by a part of a spherical surface and capable of circulating the excited surface wave And; and
A surface acoustic wave excitation detection means for detecting a surface acoustic wave that is caused to circulate along the surface acoustic wave circuit by exciting the surface acoustic wave by exciting the surface acoustic wave in the surface acoustic wave circuit of the surface acoustic wave circuit. When;
With
The surface acoustic wave orbiting substrate is formed of langasite,
In the surface acoustic wave circulating substrate, the intersection line where the crystal surface around one crystal axis of the langasite intersects the outer surface of the surface acoustic wave circulating substrate becomes the maximum outer circumferential line of the outer surface, and the surface acoustic wave circuit is connected to the surface. It is set in an annular shape along the line,
When the surface acoustic wave excitation detection means is a surface acoustic wave circuit, the attenuation of the surface acoustic wave excited and circulated by the surface acoustic wave circuit best matches the exponential attenuation, and the propagation speed of the surface acoustic wave is Placed in the fastest position,
A surface acoustic wave device.
弾性表面波励起検知手段の中心が弾性表面波周回路において前記交線から離れて配置されている、ことを特徴とする請求項1に記載に弾性表面波素子。   2. The surface acoustic wave device according to claim 1, wherein the center of the surface acoustic wave excitation detecting means is disposed away from the intersecting line in the surface acoustic wave circuit. 弾性表面波励起検知手段の中心が弾性表面波周回路において前記交線上に配置されている、ことを特徴とする請求項1に記載に弾性表面波素子。   2. The surface acoustic wave device according to claim 1, wherein the center of the surface acoustic wave excitation detecting means is disposed on the intersection line in the surface acoustic wave circuit. 弾性表面波励起検知手段が弾性表面波周回路において励起させ伝搬させた弾性表面波の波面が、前記交線に対し直交する方向を向いている、ことを特徴とする請求項1乃至3のいずれか1項に記載に弾性表面波素子。   4. The wavefront of a surface acoustic wave excited and propagated by a surface acoustic wave excitation circuit in a surface acoustic wave circuit is directed in a direction orthogonal to the intersecting line. 5. 2. A surface acoustic wave device according to claim 1. 弾性表面波励起検知手段が弾性表面波周回路において励起させ伝搬させた弾性表面波は、弾性表面波周回基体の中心を中心として前記交線に沿った120°の回転角毎に前記交線に対し直交する方向の一方及び他方に1°から3°の回転角の範囲内で順次交互に振れる正弦波形状をした周回軌跡上を伝搬する、
ことを特徴とする請求項1乃至4のいずれか1項に記載に弾性表面波素子。
The surface acoustic wave excited and propagated by the surface acoustic wave excitation detecting means in the surface acoustic wave circuit is changed to the intersecting line at every 120 ° rotation angle along the intersecting line with the center of the surface acoustic wave circulating substrate as the center. Propagating on a circular trajectory having a sine wave shape that swings alternately in the range of a rotation angle of 1 ° to 3 ° to one and the other in the orthogonal direction.
The surface acoustic wave element according to claim 1, wherein the surface acoustic wave element is provided.
JP2008281740A 2008-10-31 2008-10-31 Surface acoustic wave device Expired - Fee Related JP5157828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008281740A JP5157828B2 (en) 2008-10-31 2008-10-31 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008281740A JP5157828B2 (en) 2008-10-31 2008-10-31 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2010107446A true JP2010107446A (en) 2010-05-13
JP5157828B2 JP5157828B2 (en) 2013-03-06

Family

ID=42297018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008281740A Expired - Fee Related JP5157828B2 (en) 2008-10-31 2008-10-31 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP5157828B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237388B (en) * 2014-09-03 2017-02-01 中冶建筑研究总院有限公司 Spherical ultrasonic probe for detecting defects of nonmetal solid material and detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191650A (en) * 2003-12-24 2005-07-14 Toppan Printing Co Ltd Surface acoustic wave element using langasite crystal and environment difference detector employing surface acoustic wave element
JP2009225105A (en) * 2008-03-17 2009-10-01 Toppan Printing Co Ltd Spherical surface acoustic wave element
JP2009225104A (en) * 2008-03-17 2009-10-01 Toppan Printing Co Ltd Spherical surface acoustic wave element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191650A (en) * 2003-12-24 2005-07-14 Toppan Printing Co Ltd Surface acoustic wave element using langasite crystal and environment difference detector employing surface acoustic wave element
JP2009225105A (en) * 2008-03-17 2009-10-01 Toppan Printing Co Ltd Spherical surface acoustic wave element
JP2009225104A (en) * 2008-03-17 2009-10-01 Toppan Printing Co Ltd Spherical surface acoustic wave element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237388B (en) * 2014-09-03 2017-02-01 中冶建筑研究总院有限公司 Spherical ultrasonic probe for detecting defects of nonmetal solid material and detection method

Also Published As

Publication number Publication date
JP5157828B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP3974765B2 (en) Surface acoustic wave element, electric signal processing apparatus using surface acoustic wave element, and environment evaluation apparatus using electric signal processing apparatus
Kondoh Nonlinear acoustic phenomena caused by surface acoustic wave and its application to digital microfluidic system
JP2007225546A (en) Elastic surface wave sensor
JP5093593B2 (en) Spherical surface acoustic wave device
JP5157828B2 (en) Surface acoustic wave device
JP5141318B2 (en) Spherical surface acoustic wave device
JP5309900B2 (en) Surface acoustic wave device
JP4899743B2 (en) Spherical surface acoustic wave sensor
JP3974766B2 (en) Surface acoustic wave device
JP5310362B2 (en) Spherical surface acoustic wave device
JP4826194B2 (en) Surface acoustic wave device and method of using the same
JP2005351799A (en) Surface elastic wave element, biosensor device, and measuring method by surface elastic wave element
JP5482244B2 (en) Spherical surface acoustic wave device
JP2005191650A (en) Surface acoustic wave element using langasite crystal and environment difference detector employing surface acoustic wave element
JP2005094610A (en) Surface acoustic wave element and environmental difference detecting apparatus employing the same
JP2005236751A (en) Surface acoustic wave element
JP2008128778A (en) Surface acoustic wave sensor
JP5233594B2 (en) Surface acoustic wave convolver element
JP5109871B2 (en) Spherical surface acoustic wave device
JP4816915B2 (en) Surface cleaning method for surface acoustic wave device
JP5470994B2 (en) Surface acoustic wave measuring device
JP2014078878A (en) Spherical substrate rotation controller and rotation control method
JP5533508B2 (en) Spherical surface acoustic wave device
JP5648305B2 (en) Spherical surface acoustic wave device
JP2011196797A (en) Gas analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees